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CHAPTER 1

THE EVOLUTION OF THE
BIOLOGICAL SCIENCES

NATHALIE GONTIER

EPISTEMIC PLURALISM IN
BIOLOGICAL EVOLUTION

EvoLuTION is a phenomenon that is originally studied from within the biological
sciences. The latter have evolved numerous disciplines and research areas that can be
grouped into seven main schools (Figure 1.1). Several of these schools can be clustered
further into megastructures called paradigms (Kuhn, 1962). Darwinism marks the
onset of modern evolutionary thinking and it lies at the foundation of the Modern
Synthesis. Darwinism and the teachings of the Modern Synthesis together are referred
to as the Neo-Darwinian paradigm. Micro-, Meso-, and Macroevolutionary schools are
expansions of the Neo-Darwinian paradigm, and together with the school of Ecology,
they constitute the paradigm called Ecological Evolutionary Developmental Biology (Eco-
Evo-Devo). The Reticulate Evolution school evolves somewhat independently of these
Darwinian-based research schools.

In what follows, the major theses of these schools and paradigms are discussed.
Afterwards, the chapter provides a universal definition of evolution and looks into how
distinct units, levels, and mechanisms underlie theorizing on evolutionary hierarchies
and evolutionary causation. The following chapter examines how the diverse evolution
schools are applied and implemented into the symbolic sciences.
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FIGURE 1.1: Evolutionary theories develop along seven main research schools: Darwinism, the
Modern Synthesis, Microevolution, Mesoevolution, Macroevolution, Ecology, and Reticulate
Evolution. The schools in blue represent the Eco-Evo-Devo paradigm. The concepts are explained
in the body of the text where they are marked in bold.

Source: © Nathalie Gontier

DARWINISM

Darwinism refers to the nineteenth century school of evolutionary thought that
commences with the publication of Darwin’s (1859) volume On the Origin of Species by
Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life. In
this work, in part inspired by Malthusian economics, Darwin hypothesizes that popula-
tion growth inevitably leads to a scarcity of resources (life necessities) that in turn brings
forth a struggle for existence between ° ... either one individual with another of the
same species, or with the individuals of distinct species, or with the physical conditions
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of life’ (Darwin, 1859, p. 63). This struggle for existence, according to Darwin (1859, p.
62), has an impact on both the survival chances and the reproductive success (or fitness)
of the organism. Individuals demonstrate variation in organismal traits that either help
or disable them in the struggle for existence over scarce resources, and in the battle be-
tween the sexes over reproductive mates. Some traits are beneficial or adaptive, others
are deleterious or maladaptive, and still others are neutral. Accordingly, organisms with
adaptive traits are more likely to be preserved long enough to pass on their traits to fu-
ture generations than are organisms with maladaptive traits, and it is this process that
Darwin calls natural selection. Sexual selection refers to the additional influence that
mate choice has on organismal fitness. Here too, organisms with traits deemed attractive
to the opposite sex are thought to have more chance to reproduce and thereby to pass on
their traits to future generations.

Darwin thus already recognizes that organismal traits are the subject of inheritance.
He furthermore conjectures that both forms of selection, natural and sexual, influence
what kind of organismal variation is transmitted to future generations, with adaptive
traits standing a better chance than maladaptive ones. Over time, the natural and
sexual selection of organisms with adaptive traits leads to a gradual shift in populations
resulting in a pattern whereby organisms demonstrate adaptation to their surroundings
and the species they belong to demonstrate descent with modification.

THE MODERN SYNTHESIS

It is an empirical observation that children resemble their parents, but for Darwin
(1859, p. 13), ‘The laws governing inheritance are quite unknown. Hereditary laws
first become described by Gregor Mendel, six years after Darwin wrote the Origin
of Species. Largely ignored at that time, Mendel’s work is rediscovered at the turn of
the twentieth century, and for a while, together with theories of genetic mutation
(de Vries, 1901-1903), the laws are recruited to counter Darwinian thinking (Bowler,
1983). But by the 1940s, scholars active in the field of Theoretical Population Genetics
are able to reconcile mutation theories and hereditary laws with selection theory. This
marks the founding of the Modern Synthesis (Huxley, 1942; Provine & Mayr, 1980;
Smocovitis, 1992). Also known as the Neo-Darwinian Synthesis, it gives new meaning
to Darwin’s old ideas.

Theoretical Population Geneticists construct important, mathematically founded
theories on how genes can be dissociated from organisms and conceptualized as forming
populations of genes or gene pools that can in turn be visualized as spreading out or
flowing over what are called fitness landscapes. In these models, adaptation becomes
understood as a form of hill climbing in a rugged landscape. Such research furthermore
gives way to the mathematical conceptualization of genetic drift (Wright, 1932; Kimura,
1983) that is understood as a random walk in this landscape by a subpopulation that
eventually leads to a shifting balance (Dietrich & Millstein, 2008; Plutynski, 2007).
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In association with these statistical models, the founders of the Modern Synthesis also
introduce theoretical species concepts and speciation models (Mayr, 1963), as well as
discussions of large-scale evolutionary trends (Simpson, 1944). Also counted among
the founders of the Modern Synthesis are Experimental Evolutionists (Morgan, 1932)
known for their many artificial breeding experiments and x-ray-induced mutation
studies conducted with fruit flies and other animals in order to better understand vari-
ation at individual and population levels.

EXPANSIONS OF NEO-DARWINISM

The founders of the Modern Synthesis are known for examining hereditary traits on
a theoretical and an experimental level. Today, empirically driven scientific advances
have expanded the Neo-Darwinian paradigm further into what are now three distin-
guishable sub-schools that study evolution, respectively, at a micro (genetic), meso (or-
ganismal), and macro (species) level.

Microevolution

Microevolutionary schools associate with the discovery, based upon Rosalind
Franklin's work, of the double helix structure of DNA and the subsequent deciphering
of the genetic ‘code’ (Watson & Crick, 1953; Morange, 1998; Sarkar, 2005). The fields of
Biochemistry and Molecular Genetics have been reinterpreting Darwins conceptual-
ization of heredity as well as the Theoretical Population Geneticists’ concepts of genetic
traits and mutations, gene flow and migration.

During mitosis (cell division) or meiosis (the formation of the reproductive cells), for
example, genes demonstrate high copying fidelity, and this founded the idea that genes
are replicators that have more longevity than the organisms they belong to (Dawkins,
1976). The ideas that genetic mutations are rare and accidental copying errors of a
fixed code, coupled with the assumption that genes mutate at a steady rate, has helped
to substantiate molecular clock theories (Zuckerkandl & Pauling, 1965). By building
on results from DNA, RNA, and amino acids sequencing, these theories try to cap-
ture the pace of evolution. In fields such as cladistics and systematics, molecular clock
theories help to estimate the time of divergence of evolutionary lineages. Originally
able to unravel only small segments of biomolecular sequences, these fields are now
evolving into the (multi)-omics (Narad & Kirthanashri, 2018; Huang, 2018) such as gen-
omics, proteomics, and metabolomics that enable big data mining (Krassowski et al.,
2020). Successful examples of such mining studies include the Human Genome Project
(Venter et al.,, 2001), the Chimpanzee Genome Project (Chimpanzee Sequencing and
Analysis Consortium, 2005), the Cancer Genome Atlas (Cancer Genome Atlas Research
Network, et al., 2013), the Neanderthal Genome Project (Green et al., 2008, 2010), the
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Human Protein Atlas (Uhlén et al., 2015), and the Expression Atlas (Papatheodorou
etal., 2020).

Mesoevolution

Traditional molecular genetic studies originally focused on the passive replicative
aspects of genetic material. However, such passive views on genes today are moderated
by our more advanced understanding of development and the role played therein by
genetic and environmental factors. These are studied from within Mesoevolutionary
schools.

Mesoevolutionary schools originate by continuing Darwin’s focus on the organism,
and they originally do so mainly as a way to counter the gene-reductionism brought
about by the Modern Synthesis and the Microevolutionary-oriented evolution school.
Strictu sensu, these latter schools investigate genes, what they encode for, how they
mutate, and how they are passed on to future generations. How traits evolve across
generations in time marks the study of phylogeny (evolution), which is tradition-
ally opposed to ontogeny (development). Such a rigid distinction, however, ignores an
organism’s life history, and it ignores the cyclic developmental patterns that return each
generation anew. Consequently, development has, traditionally, wrongly been assumed
not to impact evolution.

One of the first scholars to point out this problem is Gould (1977), who in his
book on ontogeny and phylogeny reexamines the important contributions made
by early embryologists and developmental scientists to our understanding of how
morphology (bodily form) develops and how it runs through similar stages across
the animal kingdom (Figure 1.2, top). The book helped to lay the foundation of the
evolutionary developmental (evo-devo) movement that studies these developmental
patterns, from conception until death (Arthur, 2011; Carroll, 2005; Hall, 2012; Oyama
etal., 2001).

Embryologists investigate the crucial role that modularity (Altenberg, 1995; Wagner,
1996) as well as timing plays in the development of body plans. Vertebrate embry-
onic development, for example, is typified by a gastrulation phase where the blastula
(the multicellular complex that forms from the zygote, the fertilized egg) arranges into
a multilayered structure: the ectoderm (outer layer), mesoderm (middle layer), and
endoderm (inner layer). From these germ layers, organs such as the stomach, liver,
pancreas, lungs, heart, and kidneys, and systems such as the respiratory system, the di-
gestive system, the vascular, lymph, and the nervous systems evolve. These systems (von
Bertalanfly, 1950) are studied for their functions from within the field of physiology
(Noble, 2011, 2013).

The developmental, mesoevolutionary school today also integrates knowledge
from Microevolutionary, genetic, and biochemical research. Scholars now know
that the different segments that underlie vertebrate embryogenesis, organogenesis,
and overall morphogenesis are governed by the same homeotic or regulatory genes.
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FIGURE 1.2: Embryology and hox genes.

Top:

Haeckel’s (1874) controversial comparative drawings of embryos at three different stages of em-
bryogenesis that follow the gastrulation phase. Depicted from left to right are the embryos of a
fish, salamander, turtle, chicken, swine, cow, rabbit, and human.

Bottom:

Homeotic genes are a group of genes that regulate the cell differentiation and morphogenesis of
vertebrates. The picture depicts a schematic of the homeotic genes and their corresponding body
segments for a species of fruit fly (Drosophila melanogaster) and their homologous counterparts
in a roundworm (Caenorhabditis elegans), Florida lancelet (Branchiostoma floridae), mouse em-
bryo (Mus musculus), and adult human (Homo sapiens)

Sources: (A) Reproduced from Haeckel, E. (1874). Antropogenie. Leipzig: Engelmann. (B) Reproduced with
permission from Hueber, S. D., Weiller, G. F,, Djordjevic, M. A., & Frickey, T. (2010). Improving Hox protein
classification across the major model organisms. PLOS ONE 5(5), e10820 under a CC-BY-3.0 license.
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These structures are thus homologous across species which means that they have a
shared ancestry. Homeotic genes shared by all vertebrates and some invertebrates,
for example, include the homeobox gene complex (Figure 1.2, bottom; De Robertis
etal., 1990, p. 47; Hueber et al., 2010; McGinnis et al., 1984; Gehring, 1996, Davidson &
Erwin, 2006).

The onset, location, and duration of activation of homeotic genes brings forth differ-
ential structures at a species level, lending new meaning to the understanding of genetic
mutations. Minor genetic alterations in regulatory genes can lead to rapid and drastic
evolutionary changes in body plans, while changes in structural genes instead bring
forth individual variation.

Evo-devo thus investigates gene-regulatory networks which are the signaling
pathways from genotype to phenotype that underlie the formation of protein
structures and tissues. Epigenetics (Pardee et al., 1959; Jacob & Monod, 1961; Lovtrup,
1972; Ho & Saunders, 1979; Hallgrimsson & Hall, 2011; Jablonka & Lamb, 1995;
Waddington, 1953) goes one step further by additionally examining how extra-genetic
factors enable and constrain gene expression and development thereby setting limits
to evolvability (Wagner & Altenberg, 1996). All epigenetic processes involve a form of
learning and this occurs at a molecular, cellular, or organismal level. The knowledge
acquired through learning can become transmitted phylogenetically and this can im-
pact evolution long term.

Epigenetic changes at the molecular and cellular level (Felsenfeld, 2014) can occur in
chromatin regulation or epigenetic change can be induced by mobile genetic elements.
Changes in chromatin regulation result in changes in gene expression which becomes
enhanced, inhibited, or otherwise modified; and this can be understood as a form of ‘de-
velopmental programming’ (Straussman et al., 2009). Examples are changes induced by
histone modification or DNA methylation. Chromosomes consist of chromatin fibers
made up of proteins called histones that bind the DNA together into a tight coil. Histone
modification (Stedman & Stedman, 1950) involves a loosening or tightening of the wrap
of DNA around histons, thereby enabling or disabling gene transcription and translation.
DNA methylation (Riggs, 1975; Mohn et al., 2008) is another mechanism that plays a sig-
nificant role in gene regulation. Gene regulatory mechanisms enable the attribution of cell
function during embryogenesis where stem cells (cells that are pluripotent because they
have the ability to become any kind of cell in the body) differentiate into their destination
cells (e.g. heart or lung cells, or neurons). Environmental influences such as diet, exercise,
and chemicals can induce epigenetic changes in both histone binding and methylation,
and this molecular learning can impact overall health and disease as well as aging.

Mobile genetic elements (McClintock, 1950; Shapiro, 2011) are DNA segments such
as transposons, retrotransposons, or bacterial plasmids. These segments can switch
location by cutting or copying and pasting their sequence to other regions within the
genome they belong to, or they can transfer DNA sequences to viruses or other genomes
or cells belonging to different species or bacterial types. Their movement can in-
sert, delete, or otherwise alter existing DNA sequence structure in a way that has been
compared to ‘natural genetic engineering’ (Shapiro, 2011). The dynamicity displayed by
mobile genetic elements therefore challenges the replicator notion of genes.
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Examples of epigenetic change at the organismal and behavioral level are the
alterations induced by the Baldwin effect or by phenotypic plasticity. The Baldwin
effect (Baldwin, 1896) emphasizes phenotypic flexibility expressed by organismal
learning (Badyaev, 2009; Sznajder et al., 2012). When faced with a new or chan-
ging environment, an organism’s ability to learn new behavior helps to overcome
genetic constraints. The Baldwin effect is often opposed to phenotypic plasticity
(West-Eberhard, 1986, 2003; Sultan, 2017). Also known as developmental or epi-
genetic plasticity, or as gene-switching, this refers to the phenotypic flexibility
expressed by the genome. The same genome brings forth alternative phenotypes
when environmental circumstances vary. A switch from one phenotype to another
can happen rapidly, and the alternative phenotype can become fixed for the popu-
lation, without the genome actually undergoing genetic mutations. Phenotypic
plasticity can lead to punctuated and epigenetic evolutionary innovation, and
this in turn can enhance divergence and speciation. Jablonka and Lamb (1995)
furthermore understand symbolic inheritance or the transmission of information
(Shannon & Weaver, 1949) through language and other communicative systems as
an epigenetic system.

In summary, Evo-devo schools and Epigenetics are demonstrating that neither
organisms nor genes are simply selected passively, either by the environment or by
sexual mates (Lewontin, 1983). The Modern Synthesis, that understood organisms
as programed by fixed genes, is also flawed. Rather than viewing the gene/organism-
environment relationship as dyadic in kind, a more dialectical approach is needed
(Gould & Lewontin, 1979; Gontier, 2018b).

The study of how natural selection operates not only on organisms but also on in-
ternal structures (Lewontin, 1983) such as genes or gene segments, organs, and physio-
logical systems has brought forth new research on the units (Lewontin, 1970; Hull, 1981)
and levels (Brandon, 1982) of selection. This has led to theorizing on multilevel selec-
tion (Okasha, 2006; Sober & Wilson, 1999), the nature of complexity (Simon, 1962),
and the major transitions of evolution (Table 1.1, Maynard Smith & Szathmary, 1995;
Szathmary, 2015).

It is primarily within this Mesoevolutionary school that scholars are advocating
for an Extended Evolutionary Synthesis (Pigliucci & Miiller, 2010; Laland et al., 2015)
or Third Way of Evolution (Shapiro & Noble, 2021). However, the criticism that the
Modern Synthesis is unfinished (Eldredge, 1985) is also put forward by Ecological and
Macroevolutionary schools. The former study the place where evolution occurs, yielding
research on the economy or resource management of evolution (Haeckel, 1866), and the
latter study the time of evolution. Time here is understood as both the pace at which
evolution occurs, and how evolution occurs over deep time in the geological record (the
geological time scale). The following sections turn toward these schools.
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Table 1.1: The major transitions in evolution

Maynard Smith & Szathmary's (1995) original version

Szathmary's (2015) ‘2.0' version

Criterium used to mark transitions is ‘increasing complexity, which
is defined differentially by the 'reaching of a Darwinian threshold',
the ‘introduction of new types of information and information

transfer', the 'division of labor’, and the ‘overcoming of free-riders

to facilitate cooperation!

Criterium used to mark
transitions is the origin of a new
‘biological individual:

From

To

Origin of

1 Naked replicating
molecules

2 Independently replicating
genes (selfish replicators)

3 RNA (ribozymes that
function as genetic
information and as enzymes)

4 Prokaryotes (cells without
nucleus;i.e. bacteria and
archaea)

5 Asexual individual clones

6 Single-celled eukaryotic
organisms (protists)

7 Solitary individuals

8 Pre-linguistic primate
societies

Molecular populations arranged
within compartments (protocells)

Cooperating chromosomes

*DNA, differentiation between
genes and enzymes (proteins) that
mark a division of labor

* Eukaryotes (cells with nucleus)
and the origin of organelles (more
division of labor)

*Sexual populations

Multicellular eukaryotic organisms
(fungi, animals, plants) with cellular
differentiation (more division of labor)

Colonies (with non-reproductive
castes, e.g. bees, termites, and ants)
(more division of labor and origin of
eusociality)

*Human societies with syntactic
language

*Transitions considered as ‘difficult;’
Italics refer to the Pre-RNA world and prokaryotic cells;
Regular text refers to eukaryotes; Bold refers to a new biological individual.

Protocells
(catalysts-replicators-
chromosomes-cells)

Prokaryotes
(molecular networks-ribosomes-
genetic code)

Unicellular eukaryotes
(nucleus-mitochondria-
mitosis-meiosis/sex)
Plastids

(recursive endosymbiosis and
lateral gene transfer between
organelles and nucleus)

Multicellular eukaryotes
(genetic and epigenetic
inheritance)

Eusocial animal societies
(organisms and superorganisms)

Societies with language
(cultural groups)

Macroevolution

In the Macroevolutionary school, debates on evolutionary trends, the major transitions
of evolution, and the search for the units and levels of evolution pose questions about
the nature of above-organismal phenomena such as populations and species and how nat-
ural selection operates within and upon them (Jablonski, 2008; Sepkoski & Ruse, 2009);
as well as how we need to conceptualize evolutionary hierarchies (Eldredge, 2008;
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Gontier, 2021; Pattee, 1973; Salthe, 1985; Témkin & Eldredge, 2015). Even natural selec-
tion is now recognized to occur at different tempos and rates. Scholars distinguish be-
tween different evolutionary patterns (Eldredge, 1985). Natural selection, for example,
is described by Darwin (1859) to bring forth a pattern of descent with modification. But
contrary to what he thought, such descent need not always be gradual. Rather, Eldredge
and Gould (1972) have demonstrated that evolution is often characterized by a pattern of
punctuated equilibria, where long periods of stasis (Eldredge et al., 2005) are intermitted
by episodes of rapid evolutionary change. Punctuated equilibria help to explain phe-
nomena such as phenotypic plasticity as well as adaptive radiations where one or a
few species rapidly evolve into a variety of new species. Adaptive radiations and drift
in turn help to account for life’s biodiversity (Wilson, 1984; MacArthur & Wilson, 1967;
Hubbell, 2001; Seddon et al., 2016). Biodiversity is characterized not only by the abun-
dance of life form but also by both gradual and punctuated (mass) extinctions (Benton
& Harper, 2009), where the evolutionary lineages that are studied in the fields of cladis-
tics and phylogenetics die out. This research links to conservation ethics.

EcoLoGY

Micro-, Meso-, and Macroevolutionary schools are nowadays often grouped together
with the school of Ecology. Together, they form the superstructure currently designated
as the Eco-Evo-Devo program (Hall, 2003; Gilbert & Epel, 2008). The school of Ecology
studies the place of evolution, and traditionally, the locus of evolution is identified as the
environment. It is in the environment that Darwin suggested that a struggle for exist-
ence occurs due to a scarcity of natural resources, leading Van Valen (1973) in particular
to emphasize that the environment is not merely physical or abiotic. Rather, the environ-
ment is mostly biotic, which means that it is made up of other living organisms. The scar-
city of resources is thus induced by competition that occurs amongst living organisms
that engage, for example, in consumer-producer or predator-prey relationships, and
that in turn make up the typical food chains, cycles, and webs studied by ecologists
(Egerton, 2007). Ecological relationships can lead to co-evolutionary arms races between
species, where one species has to evolve to keep up with the other, which is a phenom-
enon studied by the Red Queen Hypothesis (Van Valen, 1973). Ecology here sides with
hierarchy and multilevel selection theory, and Ecology in particular studies the relation
that exists between different organisms belonging to the same and to different species
in the context of the communities, ecosystems, and biomes that they form, the energy
fluxes or dynamics that exist between them, and how these impact energetics (Lotka,
1922, 1925; Van Valen, 1976; Saks et al.,, 2009) or bio(geo)chemical cycles (Lovelock &
Margulis, 1974; Jacobson et al., 2000; Volk, 2003; Egerton, 2017). This further translates
into economic studies on how resources are produced, managed, optimized, or wasted.
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Table 1.2: Niche construction according to Lewontin*

Niche construction refers to the organismal capacity to construct/build a niche/environment.
1. Organisms partly determine their niche.
There is never an exact fit or complete adaptation of an organism to the environment.
E.g. Abush can be part of the habitat of a butterfly, while a tree is not.
2. Organisms literally construct the environment that surrounds them.
Organisms actively modify their surroundings.
E.g. Beavers build dams.
3. Every act of consumption is an act of production.
Organismal behavior has an ecological impact on the biotic and abiotic environment.
E.g. The first photosynthetic organisms changed earth from an oxygen-low to an oxygen-rich planet.
4. Organisms learn to anticipate the external conditions that the environment provides.
This distinguishes the problem of adaptation (fitting to an environment) from that of adaptability
(the ability to evolve new traits, possibly by learning).
E.g. Many organisms harvest food for the winter.
5. Organisms modify external signals according to their constitution.
The interaction between an organism and its environment is mediated by the organismal body.
E.g. If the external temperature rises, an internal signal will lead to the release of certain hormones
that cool down the body and prevent it from overheating.

*Lewontin, R. C. (2000). The triple helix. Cambridge, MA: Harvard University Press; Gould, S. J., &
Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the
adaptationist programme. Proceedings of the Royal Society B: Biological Sciences 205(1161), 581-598.

Of great importance here is the study of niche construction (von UexKkiill, 1921, 1937;
Lewontin, 2000; Sinha, this volume) and ecological inheritance (Odling-Smee, 1988).
In line with the more active role attributed to organisms, organisms are recognized
to significantly alter and even to altogether construct their environment. Niche con-
struction (Table 1.2) leaves an ecological footprint that spans generations. All of us, for
example, live in the oxygen-rich environment created by the first photosynthetic life;
human children inherit the created sociocultural environment from older generations;
and future generations will unfortunately inherit the problems caused by the pollution
induced by human activity.

RETICULATE EVOLUTION

The Reticulate Evolution School identifies symbiosis, symbiogenesis, lateral gene
transfer, infective heredity, and hybridization as important evolutionary mechanisms
and processes (Carrapico, 2015; Gontier, 2015; Sapp, 1994; Shapiro & Noble, 2021). These
mechanisms and processes require a rethink of the evolutionary importance that co-
operation plays in species interactions and how they complement competition-focused
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Table 1.3: The spectrum of symbiotic associations

Neutralism (0, 0) Indifferent for all symbionts

Commensalism (+, 0) Beneficial for one, indifferent for the other/s
Amensalism (-, 0) Harmful for one, indifferent for the other/s
Mutualism (+, +) Beneficial for all

Parasitism (+, —) Beneficial for one, harmful for the other/s
Synnecrosis (-, =) Harmful for all

selection theory. The different mechanisms and processes that underlie reticulate evo-
lution can be united into a single research school because pattern-wise, during reticula-
tion, evolutionary lineages cross horizontally. Lineages sometimes also merge into new
ones. Scholars active in the Reticulate Evolution school therefore propose to replace
tree of life images and metaphors, that focus on the vertical ramification of evolutionary
lineages, with a more accurate web of life metaphor and with network models (Doolittle,
1999; Bapteste & Papale, 2021). In this section, the mechanisms and processes of reticu-
late evolution are briefly discussed.

Symbiosis (Margulis, 1991; Gontier, 2016) is an ecological phenomenon that refers
to the multiple interactions that exist during ontogeny between organisms belonging
to different species. Symbiosis is a neutral term, and the ontogenetically occurring
symbiotic interactions can be beneficial or harmful for the symbionts (the interacting
organisms), or they can remain indifferent from the symbiosis (Table 1.3).

Symbiogenesis (Margulis, 1998) is an evolutionary mechanism that occurs when
symbiosis becomes hereditary. Symbiogenesis has played an important role in the evo-
lution of eukaryotic cells. The cells of multicellular organisms such as fungi, plants, and
animals are eukaryotic. Besides a nucleus, the cytoplasm of eukaryotic cells also harbors
small bodies called organelles, and some of these organelles have a prokaryotic origin.
That means that once free-living bacteria have long ago entered some of the first eu-
karyotic cells and commenced an intracellular symbiosis or endosymbiosis. Over time,
this resulted in a loss of organismal identity for the symbiotic bacteria that perman-
ently transformed and evolved into the organellar structures. Organelles that have such
a symbiotic origin include mitochondria and chloroplasts. Mitochondria evolved from
alfa proteobacteria and are found in fungi, animal, and plant cells where they supply the
cell with energy; and chloroplasts evolved from cyanobacteria and are found mostly in
algal and plant cells where they underlie photosynthesis (Figure 1.3). Note that besides
mitochondria and chloroplasts, eukaryotic cells carry more organellar structures and
their evolutionary origin remains unknown.

Symbiosis and symbiogenesis play an additional and important role in evolution
by underlying holobiont formation (Margulis, 1991; Guerrero et al., 2013). This is the
process whereby different living beings interact in such a way that they function as a
new spatiotemporal entity. Humans, for example, maintain symbiotic associations with
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FIGURE 1.3: The evolution of mitochondria and chloroplasts by symbiogenesis.

Source: © Nathalie Gontier

their microbiome (Berg et al., 2020) and viriome (Anderson et al., 2003) and together
they form one heterogenous and functional entity (Figure 1.4). The genomes of these
interacting symbionts, together with the host genome, have been conceptualized as
forming a hologenome (Rosenberg & Zilber-Rosenberg, 2011).

Another important mechanism of reticulate evolution is lateral gene transfer
(Keeling & Palmer, 2008); the phenomenon whereby gene-carrying entities such as
organisms but also viruses exchange genes horizontally. When a cell is infected with a
virus, for example, that virus copies its DNA into the host genome and it makes the host
genome ignore its own genes to the benefit of the viral genes (Ryan, 2009). Research on
symbiosis and lateral gene transfer therefore also links to infective heredity (Lederberg,
2003) or the impact health and disease has on evolution; and it links to hierarchy theories
and multilevel evolution theories.

A final mechanism whereby reticulate evolution occurs is by way of hybridization.
This happens when members of different species belonging to opposite sexes mate and
produce offspring (Arnold, 2009). This too enables the introgression of genes from one
species into another, and we know that such mixing has occurred frequently enough
within the hominin lineage to leave genetic traces thereof (Ackermann et al., 2019; Chen
etal., 2020; Green et al,, 2010; Priifer et al., 2014; Vernot & Akey, 2014).

Note that all forms of reticulate evolution can induce rapid and abrupt evolutionary
change and that symbiotic relations can lead both to coevolution as well as to stasis.
Mitochondria and chloroplasts, for example, have gone through an initial phase of gene
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FIGURE 1.4: Humans maintain numerous symbiotic associations with their microbiome and
viriome.

loss, and some of the genes have relocated to the nucleus of the host, but overall, they
are highly conserved and semi-stable structures that evolve at a lower evolutionary rate
than the organisms they belong to. This is because they are inherited directly from the
mother, and thus no genetic recombination takes place. For this reason, they are also
excellent biochemical markers that help in the tracing of evolutionary ancestry (Cavalli-
Sforza, 1997; Pddbo, 2014).

A UNIVERSAL DEFINITION OF EVOLUTION

The concept of evolution today is no longer synonymous with that which evolves as a
result of natural selection, or that which is studied from within the Modern or Neo-
Darwinian Synthesis. We therefore need a more universal definition of evolution that
applies equally to the phenomena studied by Micro-, Meso-, and Macroevolutionary,
Ecological, or Reticulately-oriented schools.

As diverse as the fields are, all the petals of the flower of evolution have identified
means or mechanisms whereby units or objects of evolution evolve at distinct loci or
levels. Within a field called Applied Evolutionary Epistemology (Gontier, 2010, 2017,
2018a, 2018b, 2021), I have therefore redefined evolution as that which occurs when
units evolve (change) at levels of an ontological hierarchy by mechanisms and processes
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Table 1.4: Applied evolutionary epistemology

1. Universal definition of evolution
Evolution occurs when units evolve (change) at levels of an ontological hierarchy by mechanisms
and processes.

2. Aderived universal evolutionary methodology
Studying evolution involves a search for units, levels, and mechanisms, and allocating them into
ontological hierarchies.

(Table 1.4). This definition also provides a methodology whereby we can study evolu-
tion, namely, studying evolution involves a search for units, levels, and mechanisms, and
situating them into an ontological hierarchy.

Examples of hierarchies are the classic evolutionary hierarchy that goes from
genes and organisms to species, or the ecological hierarchy that goes from organisms
to populations, to species and communities (Simon, 1962; Pattee, 1973; Mayr, 1982;
Eldredge & Salthe, 1984; Salthe, 1985; Grene, 1987). Hierarchies such as these are a meth-
odological means to get a grip of the different ontological layers of reality that are rele-
vant for the study of evolution.

Hierarchies also help to define evolutionary causation (Gontier, 2018b, 2021).
Causation can be understood as an upward, downward, reticulate, or circular movement
along the strands of a hierarchy (Figure 1.5).

The traditional Neo-Darwinian paradigm, for example, understands genes,
organisms, and species as real entities (Hull, 1980, 1981; Mayr, 1982; Ghiselin, 1974) that
together form a genealogical hierarchy (Eldredge, 1985). Within this tradition, causation

Species Species
W
Organisms Organisms
D\
Genes

FIGURE 1.5: Upward (yellow), downward (orange), reticulate (red), and self-causation (gray).
Source: © Nathalie Gontier
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is understood as an upward movement (Bechtel, 2011; Bechtel & Richardson, 1993)
whereby genes bring forth organisms, and organisms bring forth species.

Within Evo-Devo schools and Epigenetics (Pardee et al., 1959; Ho & Saunders, 1979;
Jablonka & Lamb, 1995; Emmeche et al., 2000; Hallgrimsson & Hall, 2011; Shapiro, 2013;
Noble, 2013), scholars instead investigate how the life history of organisms can alter gen-
etic material, and such is a form of downward causation (Campbell, 1974) where the higher
level of the genealogical hierarchy affects the evolution of a lower level of that hierarchy.

The genealogical hierarchy is based upon the genealogical descent line where genetic
material or information is transmitted. Eldredge (1985) has argued that the genealogical
hierarchy can be complemented by an ecological hierarchy, where much more than an
informational code is transferred. Genes, for example, are part of cells that group into
organisms and populations, and these exchange all sort of matter and energy within the
economy of nature. This brings forth a dual hierarchy that is characterized by horizontal
interactions between both hierarchies (Témkin & Eldredge, 2015).

Interactional hierarchies are also studied within reticulate evolution schools, and this
requires an understanding of reticulate causation (Gontier, 2021). When genes of one
organism are exchanged horizontally with the genome of another organism, or when
distinct organisms hybridize, such implies reticulate interactions between distinct onto-
logical hierarchies.

A final form of causation is self-causation. Self-causation is often studied in the be-
havioral and cognitive sciences where scholars investigate how organisms can dem-
onstrate autopoiesis (Maturana & Varela, 1980). Autopoiesis refers to the capacity to
self-maintain and self-regulate, and this underlies teleonomic (Pittendrigh, 1958) or
goal-oriented behavior (Corning, 1983, 2014; Vane-Wright, 2014). That self-causation
exists has often been denied because it requires causation to occur at the focal level ra-
ther than at a level above or below the entity under study. If that focal level is an or-
ganism, then autopoiesis requires the recognition that, beyond being regulated by its
genes, the organism itself makes goal-directed choices. Even though there is a causal
chain of events from genes to organisms, once in existence, and thus at a later point
in time, humans learn to self-regulate and self-maintain. This enables them to demon-
strate free will that by far surpasses the initial influence of their genes. Self-causation
occurring at the same ontological level of a hierarchy can be explained by taking into
account that over time, the focal level can start to self-maintain.

CONCLUSION

As we come to the end of our glance at the distinct petals of the flower whereby I have
characterized evolutionary biological research, we can conclude that evolution is a
heterogenous phenomenon that can occur according to a number of mechanisms and
processes researched by distinct evolutionary schools, some of which can be grouped
into larger paradigms, some of which cannot. There thus does not exist a single
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all-encompassing research framework or evolutionary paradigm; and this is due, on the
one hand, to the division of the evolutionary sciences, and on the other, to the plural-
istic nature of evolution. Current focus therefore lies, not on how distinct sciences and
schools can be unified, but on how we can account for this evolutionary pluralism. Of
major importance in this is how we define units, levels, mechanisms, and evolutionary
hierarchies, and how these can account for evolutionary causation. The following
chapter examines how these diverse schools are differentially implemented into the
symbolic sciences.
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