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Abstract

Orthodoxy holds that there is always a determinate fact of the matter about
every arithmetical claim. Little argument has been supplied in favour of
orthodoxy, and work of Field, Warren and Waxman, and others suggests that
the presumption in its favour is unjustified. This paper supports orthodoxy by
establishing the determinacy of arithmetic in a well-motivated modal plural
logic (Theorem 1). Recasting this result in higher-order logic (Theorem 13)
reveals that even the nominalist who thinks that there are only finitely many
things should think that there is some sense in which arithmetic is true and
determinate.

Keywords: philosophy of mathematics; indeterminacy; modal logic; plural logic;
higher-order logic.

1 Introduction
This paper presents an argument that there is always a determinate fact of the matter
about any given arithmetical claim. Equivalently, that every arithmetical truth is
determinately true. An arithmetical truth is the sort of truth that can be expressed by
an arithmetical sentence: a sentence that contains only arithmetical and (first-order)
logical vocabulary. The view defended entails, for instance, that it is determinate
whether Peano arithmetic is consistent, whether every even number greater than two
is the sum of two primes, whether there are infinitely many twin primes, and so on.

Arithmetic is typically thought of as a paradigmatic case of a subject matter free
from indeterminacy. Work of Field (1998), Warren and Waxman (2020), and others
has cast doubt on this consensus. The dialectical sitution, however, is confused by
these authors’ conflation of two positions that could both be called “arithmetical
determinacy”. As they see it, for arithmetic to be indeterminate is for there to be
arithmetical sentences whose truth-values are somehow underspecified. But there
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is another interesting (and hitherto neglected) question in the vicinity, namely that
of whether the arithmetical propositions themselves are indeterminate. On this
conception, for arithmetic to be indeterminate is for the numbers themselves to have
an indeterminate structure, independently of how we speak about them. The main
results of this paper concern this second question. Section 2 makes the distinction
more clearly, and shows that the linguistic conception of arithmetical determinacy
cannot be adjudicated on without also resolving the question of whether arithmetical
propositions are determinate.

On the conception of determinacy as a property of propositions, the determinacy
operator is most appropriately formalised as a modal operator. With certain logical
assumptions in place governing this modal operator and its interaction with plural
reasoning, the determinacy of arithmetic can be derived. Section 3 puts forward and
motivates the relevant assumptions, and Section 4 presents the formal argument for
arithmetical determinacy in full detail.

The main argument for arithmetical determinacy requires the slightly awkward
assumption that there are some things that satisfy the second-order Peano axioms,
and that are also all determinately distinct from one another. Both of these assump-
tions can be eliminated by running the argument in a natural higher-order logic. It
is shown in Section 5 that generalised quantifiers, including being zero in number,
being one in number, and so on, determinately play the role of natural numbers, and
that they are determinately distinct, eliminating the need for individuals playing the
relevant roles.

2 Linguistic Indeterminacy
For Field, Warren and Waxman, and their opponents in the literature,1 the question
of whether arithmetic is determinate is the question of whether every arithmetical
sentence is either determinately true or determinately false. These theorists interpret
the “determinately” in a sentence like “determinately, there are infinitely many twin
primes” as covertly predicating determinate truth of the sentence “there are infinitely
many twin primes” (despite the fact that the first sentence makes no explicit mention
of any sentences). By contrast, “determinately, there are infinitely many twin
primes” is here interpreted compositionally: it says that the proposition that there are
infinitely many twin primes is determinately true. For arithmetic to be indeterminate
in this sense is a defect in how the number themselves are arranged, rather than in
what our sentences mean.

1Contributions to this literature includeMcGee 1997, Feferman et al. 1999, Martin 2001, Parsons
2007, Hamkins 2012, Hamkins 2015, and Button and Walsh 2016.
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Thus, there are two ways of understanding arithmetical determinacy, and both
seem perfectly good. Once we acknowledge a propositional operator interpretation
of “determinacy”, we can ask whether that propositional operator applies to propo-
sitions such as that the sentence “there are infinitely many twin primes” is true. On
the other hand, supposing that we understand what it would be for the truth-values
of sentences to be indeterminate, we can just as well ask whether the arrangement
of the numbers itself suffers from the same factual defectiveness.

To be clear, whereas Field and Warren and Waxman suggest that arithmetical
sentences might be indeterminate in truth-value, the central argument of this paper is
that the numbers themselves have a determinate arrangement. There is therefore no
immediate contact between the present argument and the literature. However, there
is a very important sense in which Field, Warren and Waxman, and especially their
opponents, should be concerned with the present question of whether arithmetic is
determinate.

These philosophers debate whether there are multiple admissible interpreta-
tions of arithmetical language that disagree on the truth-values of some sentences
(admissibility of interpretation being a term-of-art that means something like: an
interpretation that is not determinately incorrect). Call the view that admissible inter-
pretations all agree on the truth-values of sentences the determinacy of arithmetical
reference. It is common ground that admissible interpretations of arithmetical lan-
guage form models of first-order Peano arithmetic (in the sense that an admissible
interpretation of “is a natural number” and “is less than” together form a model
of Peano arithmetic). Those who accept the determinacy of arithmetical reference
endorse the stronger claim that on any admissible interpretation, the interpretation
of “is a natural number” forms a minimal infinite well-ordering when ordered by
the interpretation of “is less than”. Since minimal infinite well-orderings are all
isomorphic to one another, this would ensure that they agree on all sentences, as
required. In this way, the debate over arithmetical determinacy has become a debate
over whether there are admissible interpretations of “is a natural number” and “is
less than” that do not form a minimal infinite well-ordering.

There are various ways that the proponent of determinacy can back up this
constraint on admissible interpretations. One that seems especially promising is
an appeal to reference magnetism (following a suggestion of Lewis (1984)). The
obvious naturalness of being a minimal infinite well-ordering means that it would be
very surprising if it was only an accident that we ended up talking about an instance
of this structure with our arithmetical language. So, one might reasonably think, it
should be possible to determinately speak about such a structure.

However: no matter how the constraint is justified, the determinacy of arith-
metical reference is insufficient for establishing arithmetical determinacy, or even
the determinate truth or falsity of every arithmetical sentence. For even granting
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that every arithmetical sentence means exactly one proposition determinately, that
proposition might itself be an indeterminate one. For this reason, the relevance of
the debate over the determinacy of arithmetical reference depends importantly on
whether arithmetic is determinate in the present, non-linguistic, sense.

3 The Logic of Determinacy
This section and the next work towards the following result:

Theorem 1 (Rig). Where ϕ schematically ranges over first-order arithmetical sen-
tences: if the natural numbers are determinately distinct from one another and
each axiom of second-order Peano arithmetic is determinately true, then either it is
determinate that ϕ or it is determinate that ¬ϕ.

This section concerns the logical principles and assumptions that are necessary
for the proof (which are codified in the logic Rig), which is then carried out in Sec-
tion 4. One point of controversy that I wish to sidestep is the assumption of classical
logic. Many philosophers and mathematicians expect classical logic to fail, in one
way or another, when indeterminacy is involved. This idea is too radical for my
tastes, and positing failure of classical logic in mathematics is especially radical. Or-
thodox mathematics, which involves drawing out complicated logical consequences
of simpler assumptions, contains an explicit commitment to classical logic, and so
the denial of classical logic here would require the revision of mathematics as it is
normally practised. Perhaps such revision will ultimately prove necessary, but the
question of whether arithmetic might be indeterminate is an interesting one even on
the presupposition that orthodox mathematics is in good standing. Here, then, we
will assume classical logic to be correct. Field, as well as Warren and Waxman, are
happy to make this assumption as well. For example, Field writes

[. . . ] when I say that certain mathematical sentences might lack de-
terminate truth value, I do not intend to suggest that we must abandon
classical reasoning in connection with those sentences. (Field 1998, p.
295)

With classical logic in the background, we can begin to discuss the principles
specific to determinacy. The least controversial principles of determinacy concern
its propositional modal logic:

Factivity For all p, if it is determinate that p, then p.

(∆ϕ) → ϕ

(Where “∆” formalises the determinacy operator.)
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Closure For all p and q, if it is determinate that if p then q, and it is determinate
that p, then it is determinate that q.

∆(ϕ→ ψ) → (∆ϕ→ ∆ψ)

These will be assumed without argument.
Things become more contentious when quantifiers and identity are introduced.

However, once various confusions are cleared up, there is a strong case to be made
for each of the required principles. One disputed principle is the Determinacy of
Identity:

Determinacy of Identity For all x and y, if x = y, then it is determinate that x = y.

∀xy(x = y → ∆(x = y))

Famously, Evans (1978) proved the Determinacy of Identity by assuming the de-
terminacy of self -identity and Leibniz’ Law. Informally, the proof is as follows: if
it is not determinate that x = y, then x and y differ in whether they are determi-
nately equal to y, because y is determinately identical to y by the determinacy of
self-identity. By Leibniz’ Law, things that differ in any respect are not identical,
so x and y are not identical. Since both of these premisses are as certain as any
philosophical principle can be, Evans’ proof is a convincing one.

Evans’ proof crucially depends on “determinately” being regimented as a propo-
sitional operator rather than a predicate of sentences. Leibniz’ Law says that identical
things have the same properties, not that different names for the same person do.
Even if “Anne is Anne” is determinately true and Anne is Beth, “Anne is Beth”might
not be determinately true because it might be indeterminate who “Beth” refers to.
This would of course be a case where “Anne is Beth” is indeterminate in which
proposition it expresses, and not a case where the proposition that Anne is Beth is
itself indeterminate.

One might also wonder whether there can be indeterminate cases of distinctness.
Evans thought not; he argued from the determinacy of identity to the determinacy
of distinctness via an assumption to the effect that indeterminacy is always had
determinately: if it is indeterminate whether p, then it is determinate that it is
indeterminate that p. Any two things that are not determinately not identical are
not determinately not determinately identical by the determinacy of identity, and so
are determinately identical by the assumption. But although the argument is valid,
Evans makes no effort to motivate the assumption that indeterminacy is always had
determinately, and it is not an obvious one. Since the assumption is not necessary
for the following argument it will be eschewed. Accordingly, we will not take a
stand here on whether there are indeterminate cases of distinctness.

Similar remarks apply to the following principle:
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Converse Barcan Formula If it is determinate that everything is some way, then
everything is determinately that way.

(∆∀xϕ) → ∀x∆ϕ

There is a compelling argument for the Converse Barcan Formula that relies on the
determinate truth of each instance of Universal Instantiation. The argument is as
follows (where y is any variable that does not occur in ϕ):

1. ∆((∀xϕ) → ϕ[y/x]) Assumption

2. (∆∀xϕ) → ∆ϕ[y/x] 1, Closure

3. (∆∀xϕ) → ∀y(∆ϕ[y/x]) 2, Universal Generalisation

The assumption, ∆((∀xϕ) → ϕ[y/x]), is the result of putting a “determinately”
before the Universal Instantiation instance (∀xϕ) → ϕ[y/x]. On the face of it,
the classical logician should expect the theorems of classical logic to expresss
determinate truths, so this provides excellent reason for accepting Converse Barcan
Formula.

The converse of theConverseBarcan Formula—theBarcan Formula—states that
if everything is determinately some way then determinately everything is that way.
There seems to be no analogous argument for the Barcan Formula, and accordingly it
is on much shakier ground than its converse. Like the Determinacy of Distinctness,
the Barcan Formula is a reasonable-seeming principle that will not be assumed here.

The interaction between determinacy and plural reasoning will be crucial to
the argument for arithmetical determinacy. We will take plural quantification for
granted; regimenting sentences like “there are some things that are all and only the
bald people in this room” as the result of concatenating a quantifier-like expression
called a plural quantifier with an open formula containing a free plural variable:
“for some X , everything is one of the X if and only if it is a bald person in this
room.” No stand will be taken on whether plural quantification is “set theory in
sheep’s clothing”, as Quine (1970) would have it (although much more needs to be
said for Quine’s view to be plausible, given that it is inconsistent to say that for any
things there is a set containing exactly them). What’s important for the argument is
that the relevant principles of plural reasoning hold, whether or not they amount to
claims about set theory in the end.

The standard assumptions governing plural reasoning generally are those of
Comprehension and Extensionality:
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Comprehension If anything is any given way, then there are some things that are
all and only the things that are that way.2

(∃xϕ) → ∃Y∀x(Y x ↔ ϕ)

(We use capital letters for plural variables, and write “Y x” for “x is one of the
Ys”.)

Extensionality If these things are all and only those things, then these things and
those things are the same.

∀XY (∀z(Xz ↔ Y z) → X = Y )

For example: since there is a set that is not a member of itself, there are some things
that are all and only the sets that are not members of themselves.

The arguments given for the Determinacy of Identity and Converse Barcan For-
mula carry over immediately to establish the obvious analogues of these principles
for plural reasoning. Things get slightly less clear when considering more com-
plicated interactions of plural reasoning with determinacy. Suppose that it can be
indeterminate which musician is a bandmate of which other. For example, suppose
that at some point in 1955 it was indeterminate whether it was Sonny Rollins or
John Coltrane who was in the same band as Miles Davis. In that case, we wish to
conclude that it was indeterminate which people where bandmates of Davis’. That
is, for any people, it was not determinate at that time that they were all and only
the people in the same band as Davis. For this inference to be valid, we require
pluralities to have their members determinately. Otherwise, there might be some
people such that it is indeterminate whether Coltrane is one of them, and so for
all that has been said it could be that those people determinately were all and only
Davis’ bandmates. That is, we require at least the following principle:

Persistence If something is one of some things, then it is determinately one of
them.

∀X∀y(Xy → ∆Xy)

Persistence might be objected to by turning the previous reasoning on its head.
Wasn’t there a time where it was indeterminate whether Coltrane or Rollins was one
of the members of the Miles Davis Quintet? So shouldn’t we conclude that there is

2In the formal logic we will allow an “empty plurality”—some things that are zero in number.
Nothing substantive hangs on this.
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a plurality that has some indeterminate members, namely those people who were in
the Miles Davis Quintet at that time?

This reasoning is tempting, but flawed. Those very people who the Miles Davis
Quintet consisted of at that time were either Davis, Garland, Chambers, Jones, and
Rollins, or the first four and Coltrane. There are no other options. And there can
be no indeterminacy regarding whether Coltrane is among either lot of five people.
There is absolutely nothing special about determinacy in this regard: clearly, who
was a member of theMiles Davis Quintet changed over time, but being one of Davis,
Garland, and so on is a property you have eternally, if at all. Similarly, who joined
which band was contingent; but you are one of some people necessarily if you are
one of them to begin with.

Persistence says that pluralities cannot lose members. Also crucial is the idea
that they cannot gain members either. This idea is not obviously captured by the
converse of Persistence:

Converse Persistence For any things, everything that is not one of them is deter-
minately not one of them.

∀X∀y(¬Xy → ∆¬Xy)

Converse Persistence is missing something crucial in the absence of the Barcan
Formula (for the first-order universal quantifier). For suppose the Barcan Formula
fails in this way: everything is determinately not a unicorn, but it is indeterminate
whether there is a unicorn. In a sense, it is indeterminate what things exist, but
not because anything exists only indeterminately. Rather, there are ways the world
could be for all that is determinately the case, and had the world been one of those
ways there would have been more things, including a unicorn. Converse Persistence
fails to entail the obvious truth that even in these cases, Davis, Garland, Chambers,
Jones, and Coltrane would not have counted any unicorns among them. What we
need instead is the principle of Inextensibility:

Inextensibility If any things are all determinately some way, then it is determinate
that they are all that way.3

∀X(∀y(Xy → ∆ϕ) → ∆∀y(Xy → ϕ))

When indeterminate cases of distinctness are ruled out, Inextensibility entails Con-
verse Persistence. If each of Davis, Garland, Chambers, Jones, and Coltrane is
determinately distinct from Rollins, then by Inextensibility it is determinate that

3See Linnebo 2013, pp. 211-212.
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Rollins is not one of those people. But here we avoid presupposing the Determinacy
of Distinctness. If, somehow, it were indeterminate whether Coltrane and Rollins
were distinct, then it would surely also be indeterminate whether Rollins was one of
Coltrane and the others. So for the sake of being ecumenical, we will also avoid the
assumption of Converse Persistence.

It might seem like deniers of arithmetical determinacy have antecedent reason to
reject Inextensibility. Some proponents of arithmetical indeterminacy draw paral-
lels between determinacy and formal provability in some recursively axiomatisable
theory such as Peano arithmetic; and provability in any sufficiently strong recur-
sively axiomatisable theory has no property parallel to Inextensibility. For example,
if Peano arithmetic is consistent, then you can prove of each number that it doesn’t
encode a proof of the inconsistency of Peano arithmetic, but there is no proof that
no number encodes a proof of inconsistency. Thus, the proponent of arithmetical
indeterminacy may think the following pair of sentences consistent:

(i) Each of the natural numbers determinately does not encode a proof of the
inconsistency of Peano arithmetic.

(ii) It is indeterminate whether one of the natural numbers encodes a proof of the
inconsistency of Peano arithmetic.

And Inextensibility seems to rule out this situation from the get-go. In fact, this
is not the case. The sentence (ii) contains a scope ambiguity that prevents conflict
with (i). It can be disambiguated as follows:

(ii.a) It is indeterminate whether there is a natural number that encodes a proof of
the inconsistency of Peano arithmetic.

(ii.b) Those very things that are the natural numbers are such that it is indeterminate
whether one of them encodes a proof of the inconsistency of Peano arithmetic.

Inextensibility only says that (i) contradicts (ii.b). But it is (ii.a) that states that
arithmetic is indeterminate, because (ii.a) is made from a sentence stating the
inconsistency of Peano arithmetic prepended with an “it is indeterminate whether”
operator. And (ii.a) is consistent with Inextensibility: if it is indeterminate which
things are all and only the natural numbers; which is to say if it is not determinate for
any things that they are all and only the natural numbers, then for all Inextensibilitys
says it could be that while the things that happen to be the natural numbers are all
determinately some way, it is not determinate that all natural numbers are that way.
And for all that has been said so far, it could be indeterminate which things are
all and only the natural numbers. Presumably, this is exactly the sort of thing that
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the proponent of arithmetical indeterminacy should argue for, and it is what will be
argued against in what follows.

A technical extension of plural reasoning is the final logical component of the
argument. This is the extension of plural reasoning and all of its interactions with the
logic of determinacy to binary plural reasoning. What we want is a quantifier-like
expression, “some pairs of things”, that stands to binary relations just as the plural
quantifier “some things” stands to properties. That is, we require a comprehension
axiom along the lines of: for any way of relating things to things, if at least one
pair of things is related in that way, there are some pairs of things that are all
and only the pairs of things that are related in that way. Similarly, analogues of
Extensionality, Persistence, and Inextensibility must hold for the argument to work.
The cogency of this sort of quantification, and the plausibility of these principles,
can be confirmed by beginning to reason with them. One will quickly realise that
binary plural quantification makes just as much sense as unary plural quantification
does, and that the relevant principles are just as necessary. Those who are still
sceptical will be able to achieve the same effect by coding pluralities of pairs of
natural numbers as unary pluralities, for example by treating the product of the mth

and nth prime numbers as a proxy for the pair of numbers (m,n).4
These principles form the core of the argument for arithmetical determinacy.

Obviously some assumptions must be made about the natural numbers too. For all
that has been said so far, the only natural numbers are certain borderline shades
of blue-green, and to be less than a number is to be green. In that case it might
be indeterminate whether any number is less than any other, but we of course
know better. Here, it will be assumed that the natural numbers have an ordering,
pronounced “is less than”, that determinately obeys the following principles:

Ordering Being less than is a transitive, reflexive, and antisymmetric relation.

Zero There is a least natural number, 0.

Successors Every natural number has a successor—a least natural number that it
is strictly less than.

4Securing the binary plural analogues of Comprehension, Extensionality, Persistence and Inexten-
sibility for this coded binary plural quantification will require the determinate truth of second-order
Peano arithmetic, as well as assumptions to the effect that prime numbers are determinately prime,
composite numbers are determinately composite, and the product of two numbers is determinately
their product. These assumptions, I think, are uncontroversial, but if they are disputed we may
fall back on taking binary plural quantification as primitive, and argue for the relevant principles
of binary plural quantification directly in exactly the same way we established the analogous unary
plural principles.
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Induction If 0 is one of some natural numbers, and the successor of every natural
number among those numbers is also one of them, then every natural number
is one of them.

If you don’t think the natural numbers have these properties at all, thenwemay aswell
not bother talking about them and the whole question of arithmetical determinacy
is moot. That these things hold determinately is less obvious. One argument
in favour relies on a purported connection between determinacy and assertion: it
is inappropriate to go around asserting indeterminate truths; but it is completely
appropriate to assert that the natural numbers satisfy Ordering, Zero, and so on;
so these properties are had determinately. In any case, deniers of arithmetical
determinacy in the literature seem to have little interest in denying the determinacy
of these basic principles, so it is safe to assume them. We will also require the
determinate distinctness of natural numbers:

Determinately Distinct Numbers Distinct natural numbers are determinately dis-
tinct.

Nobody to my knowledge has doubted this principle in print. It would be very
strange if it failed. If numbers m and m+ n were only indeterminately distinct, what
would happen if we put exactly m apples and n oranges together in a basket? Would
it be somehow fuzzy or objectively unclear whether the basket has more fruits in
total than it has apples? Determinately Distinct Numbers does not follow from the
other principles, so it must be left as an assumption here.

4 Deriving Arithmetical Determinacy
With these principles in hand we can now establish the determinacy of any truth
that can be stated with an arithmetical sentence. The proof breaks down into five
components which can be stated informally:

1. If any things ordered in any way satisfy the principles Ordering, Zero, Suc-
cessors, and Induction, then there is an order-preserving one-to-one corre-
spondance (an isomorphism) between those things and the natural numbers
(this is a famous result of Dedekind 1893). Thus, we can keep track of the
structure of the natural numbers by keeping track of the inductive structures,
which are pairs of a plurality of things and a plurality of pairs that together
satisfy Ordering, Zero, Successors, and Induction. (Theorem 2)

2. If there is any inductive structure with determinately distinct members, then
it is determinately an inductive structure. Thus, whichever things are all and
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only the natural numbers, alongside whichever pairs of things are all and only
the pairs of natural numbers with the first less than the second, determinately
form an inductive structure. (Lemma 4)

3. Whether a given arithmetical claim is true depends only on the structure of the
natural numbers. More precisely: whether the chosen claim is true depends
only on which things are all and only the natural numbers, and which pairs of
things are all and only the pairs of natural numbers with the first less than the
second. (Lemma 3)

4. By (1) and (2), the natural numbers with their ordering are determinately
isomorphic to those things that are all and only the natural numbers, ordered
by those pairs that are all and only those pairs of natural numbers with the
first less than the second. In other words, the structure of the natural numbes
is had determinately.

5. By (3) and (4), the given arithmetical claim is either determinately true or
determinately false.

Formally, we work in a language L∆ with:

• Brackets denoting the order of operations.

• The standard Boolean truth-functional connectives: ¬, →, ∧, ∨, ↔. We
adopt the convention of associating strings of→s to the right: φ → χ → ψ
is an abbreviation for φ→ (χ → ψ).

• Typed variables, of types e, 〈e〉, and 〈e, e〉. e is syntactic type of names
of numbers, 〈e〉 and 〈e, e〉 of plural variables and binary plural variables
respectively. Where ambiguity is possible, a variable’s type will be denoted
with superscript, as in X 〈e,e〉.

• Universal quantifiers over each type, always denoted with ∀x where x is
a variable of the type quantified over. The existential quantifier ∃x is an
abbreviation for ¬∀x¬. We also use ∀xy to abbreviate ∀x∀y, when x and y

have the same type.

• An equality connective =, which is used ambiguously to denote equality
between individuals, between unary pluralities, and between binary pluralities.

• A sentential operator ∆, to be interpreted as it is determinate that.
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PC Theorems of classical propositional logic
UI (∀xϕ) → ϕ[x/a]
LL x = y → ϕ→ ϕ[x/y]
Ext1 ∀XY (∀z(Xz ↔ Y z) → X = Y )
Ext2 ∀XY (∀zz′(Xzz′↔ Y zz′) → X = Y )
Comp1 ∃X∀y(Xy ↔ ϕ), where X is not free in ϕ
Comp2 ∃X∀yz(Xyz ↔ ϕ), where X is not free in ϕ
K ∆(ϕ→ ψ) → ∆ϕ→ ∆ψ
T ∆ϕ→ ϕ
Per1 ∀X∀y(Xy → ∆Xy)

Per2 ∀X∀yz(Xyz → ∆Xyz)
Inex1 ∀X(∀y(Xy → ∆ϕ) → ∆∀y(Xy → ϕ))
Inex2 ∀X(∀yz(Xyz → ∆ϕ) → ∆∀yz(Xyz → ϕ))

MP If ` ϕ and ` ϕ→ ψ, then ` ψ
Gen If ` ϕ→ ψ where x (of any type) is not free in ϕ, then ` ϕ→ ∀xψ
Nec If ` ϕ then ` ∆ϕ

Table 1: Axioms and rules of Rig.

Formulae are formed recursively. The atomic formulae are equalities x = y for x
and y of any one type, as well as applications Xy and W yz where y and z are of
type e, X of type 〈e〉, and W of type 〈e, e〉. Intuitively, Xy states that y is one of
the X , and W yz that the pair (y, z) is one of the W . The rest of the formulae are
then generated by Boolean combinations of formulae and the prepending of ∆ and
quantifiers. The axioms and rules of our formal system Rig are listed in Table 1.

To begin with we require three definitions.

Definition 1 (Total ordering). Some pairs of things ≤ totally order some things X
if ≤ is reflexive, connexive, transitive, and antisymmetric when restricted to X . In
symbols:

Order(X 〈e〉,≤〈e,e〉) :=∀xy((X x ∧ Xy) →

x ≤ x
∧ (x ≤ y ∨ y ≤ x)
∧ ((x ≤ y ∧ y ≤ z) → x ≤ z)
∧ ((x ≤ y ∧ y ≤ x) → x = y)).

Definition 2 (Inductive structure). Some things X and some total ordering of them ≤
form an inductive structure (and we say Ind X≤) just in case (a) there is a ≤-minimal
X thing, (b), every X thing has a unique ≤-successor, and (c), if the ≤-minimal thing
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is one of some things that always includes the successor of any X thing that is one
of them, then every X thing is one of them. Formally:

Ind(X 〈e〉,≤〈e,e〉) :=
∃0(X0 ∧ Order X≤

∧ ∀x(X x → 0 ≤ x)
∧ ∀x(X x → ∃y(Xy ∧ SucX≤ xy))

∧ ∀Y 〈e〉(Y0 ∧ ∀y(Y y → ∀z(Suc yz → Y z)) → ∀y(Xy → Y y))).

(where ‘SucX≤ xy’ abbreviates ‘X x ∧ Xy ∧ x < y ∧ ∀z(x < z → y ≤ z)’, and the
subscript X≤ is omitted where obvious.)

Definition 3 (Isomorphism/Isomorphic). Some pairs of things ι form an isomor-
phism between S〈e〉,R〈e,e〉 and S′〈e〉,R′〈e,e〉 if ι bijectively relates the S things and the
S′ things so that the R pairs (i.e., “R-related things”) are mapped to the R′ pairs, and
vice-versa. That is,

Iso(S,R,S′,R′, ι) := ∀xy(ιxy → Sx ∧ S′y)
∧ ∀x(Sx → ∃y(S′y ∧ ιxy))
∧ ∀y(S′y → ∃x(Sx ∧ ιxy))
∧ ∀xyz(ιxy → ιxz → y = z)
∧ ∀xyz(ιxy → ιzy → x = z)
∧ ∀wxyz(ιwy ∧ ιxz → (Rwx ↔ Ryz))

Say S,R and S′,R′ are isomorphic if there is an isomorphism between them.

Next up is Dedekind’s (1893) categoricity theorem carried out in Rig.

Theorem 2 (Rig). Any two inductive structures are isomorphic.

Proof. Take inductive structures consisting respectively of S and R and S′ and R′.
Let κ be those pairs of things coextensive with the condition being an S thing and
an S′ thing respectively whose predecessors are isomorphic. The existence of κ
follows from Comp; I will now show that κ is an isomorphism between S and S′.

To show that κ is a bijection, use induction: 0 and 0′—the R-minimal and R′-
minimal things respectively—are such that there is a isomorphism between things
less than them, namely the empty plurality of pairs. For the inductive step, suppose
that ι is an isomorphism between the things less than x and the things less than
x′, then by Comp let ι+ be coextensive with ιyz ∨ (y = x ∧ z = x′). ι+ is then an
isomorphism between the things less than the successors of x and x′ respectively.
Isomorphicness is obviously transitive, so by double induction, κ is a bijection.
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To show that κ maps R-related things to R′-related things, use induction again.
The base case (i.e., if κxx′ then if 0 ≤ x if and only if 0′ ≤ x′) is again trivial, and
the inductive step follows immediately from the above observation that κ preserves
successorhood in both directions. �

Next up is to show that the way some pairs of things R relate some things S
is never indeterminate, if the S things are determinately distinct. To state this idea
precisely, we require the following definition:

Definition 4 (SR-first-order formula/sentence). The class of SR-first-order formulae
is defined recursively as follows:

• x = y and Rxy (where x and y are any variables of type e) are SR-first-order
formulae.

• If ϕ and ψ are SR-first-order formulae, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ,
and ∀x(Sx → ϕ), where x is any variable of type e.

An SR-first-order sentence is an SR-first-order formulae whose only free variables
are S and R.

Notice that replacing ‘S’ and ‘R’ in the definition with predicates for being
a natural number and being less than would yield an adequate definition of the
first-order arithmetical formulae.

We will now show that when the S things are determinately distinct from one an-
other, every SR-first-order sentence expresses something determinate. As remarked
in Section 3, this is not surprising: indeterminacy should arise, if at all, from it being
indeterminate which things the natural numbers are, and which pairs are coextensive
with the natural number ordering.

Lemma 3 (Rig). Where Dist S abbreviates ∀xy(Sx → Sy → x , y → ∆x , y),

Dist S → ∀x1 . . . xn(Sx1 → · · · → Sxn → (∆ϕ ∨ ∆¬ϕ)),

where ϕ schematically ranges over SR-first-order formulae with at most x1 through
xn free.

Proof. By induction on the complexity of ϕ. The base cases are when ϕ is of the
form x = y or Rxy. In the first case we use either the determinacy of identity or
Dist S; in the second we use either Inex and Dist S or Per.

Now suppose that ϕ is a Boolean combination of formulae for which the result
holds. It is easy to check that a Boolean combination of either determinately true or
determinately false things is either determinately true or determinately false, so the
result will hold for ϕ too.
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If ϕ is of the form ∀x(Sx → ψ)with exactly x1 through xn (distinct from x) free,
and we have proved the result for ψ, then on the assumption that Sx1 ∧ · · · ∧ Sxn we
have ∀x(Sx → (∆ψ ∨ ∆¬ψ)) by hypothesis. Any counterexample to ∀x(Sx → ψ)
is therefore a determinate counterexample, because if Sx ∧ ¬ψ holds then so does
∆Sx∧∆¬ψ by Per and the inductive hypothesis. Modal logic then yields∆(Sx∧¬ψ).
ByConverseBarcan Formula, then, if there is a counterexample to ϕ then∆¬ϕ holds.

On the other hand, if there is no counterexample, then we have ∀x(Sx → ∆ψ) by
the inductive hypothesis, which by Inex applied to S entails ∆∀x(Sx → ψ), which
is ∆ϕ. Discharging the assumption that Sx1 ∧ · · · ∧ Sxn and that Dist S gives

Dist S → ∀x1 . . . xn(Sx1 → · · · → Sxn → (∆ϕ ∨ ∆¬ϕ))

as required. �

Lemma 4 (Rig). Dist S → Ind(S,R) → ∆ Ind(S,R).

Proof. The first three components of S and R forming an inductive structure—that
R totally orders S; that there is an R-minimal S thing; and that every S thing has
an R-successor—are all statable by SR-first-order formulae. Thus, they all hold
determinately of S and R, if at all, by Lemma 3.

The final component of being a determinately inductive structure is satisfying
the induction principle determinately:

∆∀n(Sn→ ∀X 〈e〉(X0 ∧ ∀x(X x → ∀y(Suc xy → Xy)) → Xn)).

By Inex applied to S, this is entailed by

∀n(Sn→ ∆∀X 〈e〉(X0→ ∀x(X x → ∀y(Suc xy → Xy)) → Xn)).

Informally, this is the claim that every S thing is determinately such that it can be
reached from the first S thing by a finite chain of successors. This will be established
by induction.

The base case is trivial. For the inductive step, notice that the following is a
theorem of Rig:

Sucmn→ ∀X(X0→ ∀x(X x → ∀y(Suc xy → Xy)) → Xm→ Xn)

Necessitating, and then distributing the ∆ over the conditional, we get

∆Sucmn→ ∆∀X(X0→ ∀x(X x → ∀y(Suc xy → Xy)) → Xm→ Xn)

Supposing for induction that the claim holds for an arbitary m, we get

∆Sucmn→ ∆∀X(X0→ ∀x(X x → ∀y(Suc xy → Xy)) → Xn)

So suppose Sucmn. Then∆Sucmn by Lemma 3, so n has the required property. �
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Theorem 5 (Rig).
∆(∃SR(Ind SR ∧ Dist S) → (∆∀SR(Ind SR→ ϕ) ∨ ∆∀SR(Ind SR→ ¬ϕ))),

where ϕ schematically ranges over SR-first-order formulae.
Proof. Assume Ind SR and Dist S. Then ∆ Ind SR (Lemma 4); so determinately if
Ind S′R′ then S and S′ are isomorphic (Theorem 2). By Lemma 3, this entails

∆∀S′R′(Ind S′R′→ ϕ→ ϕ(S′,R′)),

where ϕ(S′,R′) is the result of replacing every S in ϕ with an S′ and every R with
an R′. Also by Lemma 3, ϕ is determinately true if it is true. Since S′ and R′ are
not free in ϕ, we can conclude

ϕ→ ∆∀S′R′(Ind S′R′→ ϕ(S′,R′)).

Since all the same would clearly go for ¬ϕ, it follows that
∆∀S′R′(Ind S′R′→ ϕ(S′,R′)) ∨ ∆∀S′R′(Ind S′R′→ ¬ϕ(S′,R′))

which is modulo a change of variables the very same claim as
∆∀SR(Ind SR→ ϕ) ∨ ∆∀SR(Ind SR→ ¬ϕ)).

To reach this conclusion we assumed Ind SR and Dist S for an arbitrary S and R, so
we can prove with no assumptions that

∃SR(Ind SR ∧ Dist S) → (∆∀SR(Ind SR→ ϕ) ∨ ∆∀SR(Ind SR→ ¬ϕ)).

The result is then given by the rule Nec. �

Theorem 1 (Rig). Where ϕ schematically ranges over first-order arithmetical sen-
tences: if the natural numbers are determinately distinct from one another and
each axiom of second-order Peano arithmetic is determinately true, then either it is
determinate that ϕ or it is determinate that ¬ϕ.
Proof. Immediate from Theorem 5 once the language L∆ is augmented with pred-
icates for being a natural number and is less than. �

This completes the argument for the determinacy of arithmetic. An interesting
question is whether a similar argument carries through to establish the determinacy
of mathematics more generally, for instance by yielding the determinacy of analysis
or set theory. It turns out that the situation is much more complex. Whereas various
reasonable-seeming additions to Rig suffice for the determinacy of set theory, Rig
alone does not, even when augmented with generous assumptions to the effect that
membership is always had determinately if it all, and that the sets determinately
satisfy the second-order ZFC axioms.5 Theorem 1 therefore constitutes only the
beginning of the investigation of mathematical indeterminacy more generally.

5Proof of this claim is in unpublished work.
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5 Generalising the Determinacy Theorem

PC Theorems of classical propositional logic
UI (∀σxϕ) → ϕ[x/a]
LL x = y → ϕ→ ϕ[x/y]
βη ϕ↔ ψ, when ϕ and ψ are βη-equivalent
Eq ϕ = ψ and λz̄.φ = λz̄.ψ, when H ` ϕ↔ ψ
Rigidity ∀Xσ1→···→σn→t∃Y (RigidY ∧ ∀z̄(Xz̄ ↔ Y z̄)), where

Rigid := λXσ1→···→σn→t .�∀Y (∀z̄(Xz̄ → �Y z̄) ↔ �∀z̄(Xz̄ → Y z̄))
MP If ` ϕ and ` ϕ→ ψ, then ` ψ
Gen If ` ϕ→ ψ and xσ is not free in ϕ, then ` ϕ→ ∀xψ

Table 2: H is the logic whose axioms are PC, UI, LL, and with the rules MP and
Gen. C, or Classicism, extends H by the axiom schema Eq. C + Rigidity extends
Classicism by the axiom schema of Rigidity.

The conclusion of Theorem 1 can be avoided by denying that the natural numbers
have their expected properties determinately. However, Theorem 5 establishes a
result that is almost as good: that it is determinate which sentences of arithmetic
inductive structures satisfy, when considered as models of arithmetic.

Theorem 5 assumes that there is an inductive structure whose members are
determinately distinct. Nominalists who deny the existence of an inductive structure,
as well as those who expect distinctness facts to be modally fragile, have reason
to deny the philosophical relevance of Theorem 5. Frege 1884 suggested that
the quantifiers themselves can, in some sense, play the role of natural numbers.
Following through with this suggestion in a natural higher-order logic will allow us
to explicitly define and prove the existence of a witness to the existential antecedent
of Theorem 5, thereby defusing both worries.

Let us now switch languages to the relational simply typed λ-calculus, which
has types defined recursively starting from base types e and t and combining types
σ and τ, with τ , e, into the higher type σ → τ. The concatenation of a term of
type σ → τ to a term of type σ is a term of type τ, and free variables of type σ in a
term of type τ are bound by λ-abstraction to create terms of type σ → τ. e is again
the type of names, now t is the type of sentences, e → t of unary predicates, and
so on. The constants of the language are the truth-functional connectives as well as
universal quantifiers and identity for each type. Call this languageH .

Our logic of choice is Classicism with the additional axiom schema of Rigidity.
Both Classicism and Rigidity are first isolated by Bacon and Dorr (forthcoming).
The axioms and rules of this logic are collated in Table 2; in the following paragraphs
I will describe the logic informally. Classicism is an extension of the logic H, which
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is introduced in Bacon 2018 (H is a weakening of Church’s (1940) simple theory of
types). H is the minimal logic in which

• The material conditional → behaves in the classical way (⊥ is defined as
∀t p(p), negation as λp.(p → ⊥), and so on for the other truth-functional
connectives).

• Universal quantifers of all types obey analogues of universal instantiation and
universal generalisation. So, for instance, you can infer Fa from ∀X(Xa).

• βη-equivalent expressions are intersubstitutable. This amounts to the follow-
ing two claims about how λ-expressions behave:

– When x is a type σ variable and M an arbitrary expression of type
σ → τ with x not free, λx.M x is intersubstitable with M .

– Where x is any variable and a is an arbitrary expression of the same type,
(λx.M)a is intersubstitutable with M[a/x], when a does not contain any
variables that become bound when substituting a for x in M .

InH , one can define a notion of identity for each type, =σ:

(=σ) := λxσy.∀Z(Z x → Z y)

Classicism extendsHwith some claims about how these identity connectives behave.
For all H says, conjunction is not symmetric, in the sense that λpq.(p ∧ q) might
not be equal to λpq.(q ∧ p). Classicism rules out this sort of situation by upgrading
all provable equivalences to identities. So, for instance, since (p ∧ q) ↔ (q ∧ p)
is a theorem of the propositional calculus, Classicism is to include the identity
λpq.(p ∧ q) = λpq.(q ∧ p). This effect can be achieved by the addition of the
axiom schema Eq. The instances of Eq are identities of the form ϕ = ψ and
(λx1 . . . xn.ϕ) =σ1→···→σn→t (λx1 . . . xn.ψ), where ϕ↔ ψ is a theorem of H.

The effect of including Eq is that sentences that are provable in Classicism all
state the same thing (this is a result of Bacon and Dorr). In particuar, if you can
prove ϕ in Classicism, you can also prove ϕ = >, where ‘>’ is your favourite
tautology (e.g., ∀p.(p) → ∀p.(p)). From this we can show that being identical to >,
λp.(p = >), has a QuantifiedKTmodal logic, just like determinacy and other notions
of necessity. Thus, it is helpful to think of λp.(p = >) as a notion of necessity itself.
We will denote it with ‘�’ and pronounce it as necessarily. Clearly, everything that
is necessary in this extremely demanding sense is determinate, because there is only
one thing that is necessary, >, and > is a determinate truth. Another important
but not immediately obvious consequence of Classicism, also established by Bacon
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and Dorr, is that necessarily coextensive properties, propositions, and relations are
identical.

A commitment to Classicism is implicit in orthodox treatments of propositions
as sets of possible worlds and properties as functions from individuals to sets of
possible worlds.6 Of course, the tenets of Classicism remain uncertain, and no
argument can be made decisively in their favour here, but Classicism’s status as an
orthodox starting point should not be controversial.

For the present argument to work, Classicism must be extended by the axiom
schema of Rigidity. One instance of the schema says, roughly, that every property
is coextensive with a rigid property, which we define as a property satisfying
analogues of Extensionality, Persistence, and Inextensibilitywith necessity replacing
determinacy (the official definition, stated in Table 2, collates these three properties
into a single condition; proving that they hold is an instructive exercise). The other
instances say the same thing but for higher-order properties and relations of all types.
Rigidity is motivated by an appeal to plural reasoning, just as the original Peristence
and Inextensibility principles were motivated in Section 3. The idea is this: we
should countenance plural quantifiers, and analogues of plural quantifiers for all
types (just as we have countenanced analogues of first-order singular quantifiers
for all types), and pluralities at any type must satisfy analogues of Extensionality,
Persistence, and Inextensibility for the present notion of necessity. Notice that by
adding Rigidity to Classicism we do not presuppose that Rigidity is necessary, nor
even that it is determinate. The mere truth of Rigidity is sufficient for present
purposes.

We will show in Classicism plus Rigidity that, if it is not possible for there
to be any finite number of things, then the finite cardinality quantifiers, being
zero in number, being one in number, and so on, play the role of natural numbers
necessarily, and their structure is had necessarily. Interpreting arithmetical language
as implicitly higher-order, so that quantification over numbers is in fact higher-order
quantification over finite cardinality quantifiers, every arithmetical sentence will
thereby state either > or ⊥; which is to say that there is no arithmetical contingency
in the broadest possible sense. Arithmetical determinacy follows.

Inwhat follows letσ be any type, to be held fixed throughout (e is themost natural
option, but nothing formal hangs on this). We require the following definitions to
get started (as well as obvious translations of Definitions 1, 2, and 3 intoH ).

Definition 5 (That many plus one). For there to be some number plus one of some
things is for there to be that number of those things and then one left over. In

6See, for instance, Stalnaker 1976 and Lewis 1986.
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symbols:

·+ := λQ(σ→t)→tλXσ→t .∃y(Xy ∧Q(λz.Xz ∧ z , y)).

Definition 6 (Finite cardinality quantifier). The finite cardinality quantifiers are
those properties of properties that have every property that (a) apply to being zero in
number, and (b), apply to Q+ whenever they apply to a given cardinality quantifier
Q. Intuitively, the finite cardinality quantifiers are generated from being zero in
number by repeatedly applying the that many plus one operation. Formally:

FinCardσ := λQ.∀Y (Y∃0 → ∀P(σ→t)→t(Y P→ Y P+) → YQ),

where ∃0 := λF .(¬∃xFx).

The finite cardinality quantifiers, we will find, play the role of natural numbers
at the type of quantifiers, whenever it is possible for each finite number that there
are at least that many things. In symbols:

∀Q(FinCardQ→ ^∃X(QX))

Call this propositionUnboundedness. Fewhave the courage to denyUnboundedness,
but it is instructive to see what hangs on this assumption. If Unboundedness
fails, then one of the finite cardinality quantifiers necessarily applies to nothing.
This is to say: starting with ∃0, and repeatedly applying ·+, you will eventually
reach the property λX .⊥. So, for instance, it might be that being two in number,
λX .(∃yz(y , z ∧ Xy ∧ Xz)), which is ∃++0 , is just λX .⊥. Since (λX .⊥)+ = λX .⊥, it
will turn out that applications of ·+ eventually reach a fixed point. In that case, there
will only be finitely many finite cardinality quantifiers, and they will not be suited
to playing the role of natural numbers.

The result is a consequence of the following sequence of lemmas. We begin
with two helpful results that are on the easier side:

Lemma 6 (C). Finite cardinality quantifiers are necessarily so.

∀Q(FinCardQ→ �FinCardQ)

Proof. That �FinCard(∃0) is trivial, and by definition we have �∀Q(FinCardQ →
FinCardQ+). Now suppose that �FinCardQ. Then �FinCardQ+. So by induction,
∀Q(FinCardQ→ �FinCardQ). �

(It follows that Unboundedness is true if it is so much as possible: if it is possible
that every FinCard is possibly instantiated, then every FinCard is possibly possibly
instantiated by Lemma 6. But possible possibility in Classicism is just possibility,
so every FinCard will be possibly instantiated.)
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Lemma 7 (C). Finite cardinality quantifiers are cardinality quantifiers, in the sense
that equinumerous properties always have the same finite cardinality quantifiers in
common:

∀P(FinCard P→ �∀XY ((X ≈ Y ) → PX → PY )),

where ≈ is the relation of equinumerosity; of there being a bijective functional
relation between X things and Y things.

Proof. Clearly ∃0 has this property. Now suppose that an arbitrary FinCard P does.
Then, if P+X holds and ι is a bijective relation between the Xs and Ys, then for
some x, Pλz.(Xz ∧ (x , z)) and λx.(ιyz ∧ (y , x)) is a bijection between the
X things besides x and the Y things beside whatever ι maps x to, y say. Thus
Pλz.(Y z ∧ (y , z)), so P+Y . Applying Eq and Gen makes this reasoning universal
and necessary. �

The next few lemmas are more complex, but the general idea of repeatedly using
proof by induction is the same.

Lemma 8 (C). If Unboundedness is true, ·+ is injective on FinCard. Moreoever, its
inverse can be defined explicitly as

·− := λQ.λX .∀P(FinCard P→ (P+ = Q) → PX).

Proof. We first show that ·+ is injective, which is to say that distinct FinCards have
distinct successors. Suppose for reductio that, for some distinct FinCards P and Q,
P+ = Q+, so that �∀x(P+x ↔ Q+x). By Unboundedness, ^∃X(P+X ∧Q+X), and
by the definition of ·+ we have

�∀X((P+X ∧Q+X) → ∃y(P(λz.Xz ∧ z , y) ∧Q(λz.Xz ∧ z , y))

It follows that if P+ = Q+, then it is possible for P and Q to have an instance in
common, which is to say that it is possible for there to be some things that have
cardinality P and cardinality Q simultaneously.

We prove by induction that this is contradictory. That is, we will show by
induction that for distinct FinCards P and Q, it is impossible for P and Q to both
apply to the same property. In the base case, we must show that ∃0 does not possibly
have any members in common with any other FinCard. This is so because each
FinCard besides ∃0 is of the form P+ for some FinCard P, and P+ can only ever
apply to properties with at least one instance. This completes the base case for our
inductive argument.

For the inductive step, suppose that an arbitrary FinCard P is such that it does
not possibly have any member in common with any other FinCard. We will show by
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induction that P+ therefore also has this property, completing the argument. For the
base case, we already have that P+ does not possibly have any members in common
with ∃0. For the inductive step, let Q be a FinCard that necessarily has no members
in common with P+. Suppose that P+ and Q+ possibly have a member in common:

^∃X(∃y(Qλz.(Xz ∧ (y , z))) ∧ ∃y′(P(λz.(Xz ∧ (y′ , z))))))

Since λz.(Xz ∧ (y , z)) and λz.(Xz ∧ (y′ , z)) are always equinumerous, it follows
by Lemma 7 that

^∃X(∃y(Qλz.(Xz ∧ (y , z)) ∧ P(λz.(Xz ∧ (y , z))))

which is to say that possibly, P and Q have some member in common. Thus, P = Q,
so P+ = Q+ as required.

We have thus established that ·+ is injective given Unboundedness. It remains
to show that ·− is the inverse of ·+. To show that Q = Q+−, use the definition of
·− and the fact that FinCards are necessarily FinCards to show that Q and Q+− are
necessarily coextensive and are therefore identical. In the other direction, it is easy
to check that ∃−+0 = ∃0, and where Q+ is a successor FinCard, use the fact that
Q = Q+−, so that (Q+)−+ = (Q+−)+ = Q+ as required. �

We will show that the finite cardinality quantifiers form an inductive structure
when ordered by

≤ := λXY . FinCard X ∧ FinCardY ∧ �∀Z(Y Z → ∃Z′∀x(Z′x → Z x) ∧ X Z′).

(Also define < := λXY .(X ≤ Y ) ∧ (X 6≤ Y ).)

Lemma 9 (C). If Unboundedness is true, then Order(FinCard,≤).

Proof. Reflexivity is obvious. For transitivity suppose that X ≤ Y ≤ Z , then
necessarily for any things that are Z in number, there are some of those that are Y
in number, and for any things that are Y in number, there are some of those that
are X in number. So X ≤ Z . For antisymmetry, suppose X ≤ Y ≤ X . Then
�∀zz′(Xz → Y z′→ (z ≈ z′)), so X = Y by the argument in the proof of Lemma 8.

For totality of ≤, notice first that if X ≤ Y , then X < Y+, and if X < Y ,
then X+ ≤ Y . By induction, then, ∃0 can be compared with any FinCard by ≤.
Furthermore, if X can be compared with any FinCard by ≤, then X+ is greater than
everything that X is at least as great as, and at least as small as everthing X is strictly
smaller than. By Induction again, ≤ is total. �

Lemma 10 (C). If Unboundedness is true, then Ind(FinCard,≤), and the successor
of any finite cardinality quantifier Q is Q+.

23



Proof. Lemma 9 establishes Order(FinCard,≤). That ∃0 ≤ X is evident, and
induction holds by definition. It remains to show that SucQQ+ for a given FinCard
Q.

For this, notice that Q ≤ Q+ by taking some things that are Q+ in number, and
excluding one of them to get a subclass of things that areQ in number. ThusQ < Q+

because Q , Q+ (Lemma 8). Suppose for contradiction that Q < P < Q+, then
if any things are Q+ in number then there is a strict subclass that are Y in number
and not Q+ in number. But then those things besides at least two of them are Q in
number, a contradiction. �

Lemma 11 (C). LetU stand for Unboundedness. Then if FinCard X and FinCardY ,
then

�(U → (X < Y )) ∨ �(U → (X = Y )) ∨ �(U → (Y < X)).

Proof. We have �((X < Y ) ∨ (X = Y ) ∨ (Y < X)) for FinCard X and Y by
necessitating Lemma 9. It suffices to show that if FinCard X and FinCardY , then
if X < Y then �(U → (X < Y )). Suppose for contradiction that X be the first
finite cardinality quantifier that is greater than another, Y , say, that it is possibly not
greater than. Then X− has this property unless X− = Y . Since X is least, X− must
be Y . But �(X− < X) by induction. �

Lemma 12 (C + Rigidity). The rigid thing coextensive with FinCard is such that
necessarily, if Unboundedness is true then it is coextensive with FinCard. Moreover,
the rigid thing coextensive with ≤ is such that necessarily, if Unboundedness is true
then it is coextensive with ≤.

Proof. Let F be rigid and coextensive with FinCard. By Lemma 6, every F thing
is necessarily a FinCard, so it is necessary that every F thing is a FinCard by the
rigidity of F.

In the other direction: suppose for contradiction that possibly, Unboundedness
is true while some FinCard is not F. There would then be a least such FinCard,
X . X would have to be distinct from ∃0 because ∃0 is necessarily F, so X− would
have to be a FinCard that is F, because X was assumed to be least. So if it is
possible for Unboundedness to be true while some FinCard is not F, it is possible
for Unboundedness to be true while the successor of some F thing is not F. By the
rigidity of F, it’s not the case that for every F, the successor of it is necessarily F.
But F is coextensive with FinCard and the successor of every FinCard is F and so
necessarily F, a contradiction.

Let L be the rigid relation coextensive with ≤. Lemma 11 gives us (X ≤ Y ) →
�(U → (X ≤ Y )); and so �(U → ∀XY ((X ≤ Y ) → (LXY ))). In the other direction,
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use the rigidity of FinCard to show that if possibly U is true and for some X and Y ,
LXY but not X ≤ Y , then for some FinCards X andY it is possible that LXY but not
X ≤ Y , all while U holds. But if it is possible that X ≤ Y is false while U is true,
then X ≤ Y is in fact false, so LXY is too. �

These lemmas allow us to reason as in Section 4. Define the SR-σ formulae to
be exactly like the SR-first-order formulae (Definition 4) but with σs replacing es
in the types of all variables. To be precise:

Definition 7 (SR-σ formula/σ-arithmetical formula). The class of SR-σ formulae
is defined by recursion as follows:

• x = y and Rxy are SR-σ formulae for any variables x and y of type σ;

• When ϕ and ψ are SR-σ formulae, then so are: ¬ϕ; ϕ→ ψ; and ∀x(Sx → ϕ)
for any variable x of type σ.

An SR-σ sentence is an SR-σ formula with no free variables besides S and R.
Let a σ-arithmetical formula be an SR-σ formula but with FinCard replacing S

and ≤ replacing R, and define σ-arithmetical sentence analogously.

Theorem 13 (C + Rigidity). Let U stand for Unboundedness, and let ϕ be a σ-
arithmetical sentence. Then

�(U → ϕ) ∨ �(U → ¬ϕ).

Proof. Lemma 11 says that distinct finite cardinality quantifiers are necessarily
distinct while Unboundedness holds, and Lemma 12 that the finite cardinality quan-
tifiers with their defined ordering behave rigidly when Unboundedness is true.
Repeating the proof of Lemma 3 in Classicism plus Rigidity yields the desired
result. �

Corollary 14 (C + Rigidity). Let U stand for Unboundedness, and for an arbitary
type τ let Indτ of type (τ → t) → (τ → τ → t) → t be the higher-order property
of being a τ → t thing and a τ → τ → t thing that form an inductive structure
(Definition 2). Then

�(U → ∀SR(Indτ SR→ ϕ)) ∨ �(U → ∀SR(Indτ SR→ ¬ϕ)),

where ϕ is an SR-first-order sentence.

Proof. Repeating the proof of Theorem 2 in Classicism, we have that necessar-
ily, if Unboundedness is true then every inductive structure is isomorphic to the
finite cardinality quantifiers. Thus, every SR-τ sentence is true if and only if the
corresponding σ-arithmetical sentence is true. �
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The upshot of Theorem 13 is that, given Unboundedness, there can be no
modal variation in the propositions expressed by σ-arithmetical sentences. The σ-
arithmetical sentence stating the analogue of the Goldbach conjecture, for instance,
expresses either > or ⊥. Corollary 14 shows that there can also be no variation
in the first-order satisfaction properties of inductive structures generally. If it is
possible that one satisfies the Goldbach conjecture while Unboundedness is true,
then necessarily all do. It follows that, given Unboundedness, general worries about
the modal strength of distinctness facts do not affect the core argument for the
determinacy of arithmetic.

For the nominalist, the more important point is the observation that given Un-
boundedness, the finite cardinality quantifiers form a modally rigid and necessarily
inductive structure. So the denial of the existence of an inductive structure made
of individuals does not allow for indeterminacy in what such structures would be
like if there were any. Another consequence is that nominalist-friendly paraphrase
schemes for arithmetical language are guaranteed to be modally well-behaved in a
way that is probably the best sort of “arithmetical determinacy” that a nominalist
could hope for. The idea is that the nominalist may paraphrase apparent reference to
numbers and numberhood in a higher-order language, so that she treats the apparent
predicate “is a number” as code for a higher-order operator akin to “is a finite car-
dinality quantifier,” the apparent name “zero” as code for the quantifier-expression
“∃0,” and quantification over “numbers” as higher-order quantification over finite
cardinality quantifiers. The propositions expressed by such higher-order sentences
will all be either necessitated by or incompatible with Unboundedness. Since even
nominalists can think that Unboundedness is determinately true, there is some good
sense in which they can agree that arithmetic is both true and determinate.7
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