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Abstract   
When the editors of Basic and Applied Social Psychology effectively banned the use 
of null hypothesis significance testing (NHST) from papers published in their journal, 
it set off a fire-storm of discussions both supporting the decision and defending the 
utility of NHST in scientific research.  At the heart of NHST is the p-value which is the 
probability of obtaining an effect equal to or more extreme than the one observed in 
the sample data, given the null hypothesis and other model assumptions.  Although 
this is conceptually different from the probability of the null hypothesis being true, 
given the sample, p-values nonetheless can provide evidential information, towards 
making an inference about a parameter.  Applying a 10,000-case simulation 
described in this paper, the authors found that p-values’ inferential signals to either 
reject or not reject a null hypothesis about the mean (α =  0.05) were consistent for 
almost 70% of the cases with the parameter’s true location for the sampled-from 
population.  Success increases if a hybrid decision criterion, minimum effect size plus 
p-value (MESP), is used. Here, rejecting the null also requires the difference of the 
observed statistic from the exact null to be meaningfully large or practically 
significant, in the researcher’s judgment and experience.  The simulation compares 
performances of several methods: from p-value and/or effect size-based, to 
confidence-interval based, under various conditions of true location of the mean, test 
power, and comparative sizes of the meaningful distance and population variability.  
For any inference procedure that outputs a binary indicator, like flagging whether a 
p-value is significant, the output of one single experiment is not sufficient evidence 
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for a definitive conclusion. Yet, if a tool like MESP generates a relatively reliable 
signal and is used knowledgeably as part of a research process, it can provide useful 
information.  
 

Keywords: NHST; minimum effect size plus p-value criterion; MESP; statistical evidence; 

meaningful distance; true power; true Type 1 error rate.    

  

1 Introduction   

There has been ongoing discussion of the use and misuse of p-values ever since R.A 

Fisher introduced the concept in Statistical Methods for Research Workers (Fisher 1925).  

However, in February 2015, it seemed a line had been drawn in the sand when the editors 

of Basic and Applied Social Psychology (BASP) effectively banned the use of null hypothesis 

significance testing (NHST) in manuscripts submitted for publication (Trafimow and Marks 

2015).  Blogging websites lit up as the news was spread; some met it with fanfare (Siegfried 

2015; Woolston 2015), while others stoically attempted to defend NHST’s continued use 

(Nuzzo 2015; Leek and Peng 2015), albeit with the understanding that p-values alone are 

not adequate and are prone to misuses.    

In March 2016, the American Statistical Association released a policy statement on p-

values outlining their context, the process by which they should be used and their purpose 

in scientific literature and research (Wasserstein and Lazar 2016a, p. 129).  In this 

statement the authors noted that “the statistical community has been deeply concerned 

about issues of reproducibility and replicability of scientific conclusions,” and echoing Peng’s 

concerns (2015, p. 30), stated that the “misunderstanding or misuse of statistical inference 

is only one cause of the reproducibility crisis.” The ASA’s policy statement was met with 

mixed emotions from the statistical community at large. Shortly following the release of this 

policy statement, the publishers of The American Statistician, Taylor & Francis Group, made 

available a supplement of statements from 23 well-respected statisticians from around the 

world (Wasserstein and Lazar 2016b).  Even those who still consider p-values a tool for 

separating results that warrant more study from those likely to be due to random chance 
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generally concurred that p-values are useless if not assessed in the proper context and 

derived from properly designed studies.  Recently added to this literature have been three 

multi-author position papers, whose signatories either recommend (Benjamin et al 2017) 

or oppose (Trafimow et al 2018, Lakens et al 2018) salvaging p-values by lowering the 

common P < 0.05 criterion to P < 0.005.   

While some researchers favor using alternative statistics, such as confidence intervals, 

effect sizes or Bayes factors, there is evidence to support that these methods are not that 

different and often provide similar interpretations of uncertainty (Wetzels et al. 2011).  

However, there are cases where statistical methods do not clearly align.  Closer inspection 

of these cases is likely to reveal problems with sample size, study design or implementation 

of protocols.  Therefore, the problem starts with research design and continues through 

educating non-statisticians on how to interpret and present the volumes of information that 

result from analyzing their research data.  These requirements do not disappear if effect 

size measures like Cohen’s (1988) d are utilized—stripped of references to their 

‘significance’.   What does this all mean for researchers going forward?   

The response of this paper is to step back from discussions on theoretical grounds about 

p-values’ relative utility (if any) as evidence for a hypothesis, and to seek empirical evidence 

to help address the issue.   How often does it occur in practice that a null hypothesis (H0) 

that is really consistent with the population parameter is rejected by conventional testing?  

And what factors affect that error rate?  Conceptually, the question “How often are true null 

hypotheses rejected?” is familiar to statisticians, as asking for a Type I error rate.   However, 

that rate is usually not derived from observations but is calculated based on abstract 

models; that is, the calculations do not compare the true values of the parameters of interest 

with corresponding p-value-based inferences for what those values might be.  

This omission of what we have called using empirical evidence to assess p-value’s 

success is understandable, because in practice, a researcher seeks the value of a parameter 

when it is not known and likely not directly observable.  He or she can hypothesize, collect 

data, and compare samples to hypotheses, while other researchers do the same.   Yet none 

of them has privileged access to the objectively real answer, to definitively confirm their 
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own or others’ work.   Excellent papers by Howard et al. (2000) and Wetzels et al. (2011) 

compare results by different methods such as conventional NHST, meta-analysis of 

replicated studies, and Bayesian techniques, when applied to the same sets of data.  Their 

implication is that various method’s results could be triangulated to maximize confidence 

in one’s findings.  This approach is certainly worth considering, yet those papers still do not 

directly compare methods’ outputs, collectively or individually, to the actual population 

parameters.   To get around the verification problem described here, this paper adapts a 

simulation method proposed by Goodman (2010), which provides a way that the actual 

values of parameters can be known and directly compared with inferences made about 

those parameters pursuant to hypothesis testing—or other methods—applied to simulated 

samples.   

Simulations are also used in a recent, thought-provoking paper by Krueger and Heck 

(2017) to assess the success of p-value-based inferences.  However, their approach does not 

directly compare inference results for the simulated cases against the cases’ corresponding 

true parameters.    They assess what they call “hits” and “misses” (p. 5) through comparing 

each case’s simulated p-value-based inference (to reject the null or not) with the 

corresponding posterior probability that the case’s null hypothesis is false or not.    But the 

posterior probability itself is an inference, with the p-value being an input to it; so, their 

method does not present a direct comparison of p-value-based inferences with the 

corresponding true values of the parameters.  (The authors acknowledge that Krueger and 

Heck’s simulation generates, when setting up each iteration, population values to sample 

from; but it is not clear in their paper if the true parameters remain stored and accessible 

for making direct comparisons with the inferences.)   

  

The simulation described in this paper has three interrelated goals:  

(1) The first goal is to explore whether p-values can have evidential value.  

According to Trafimow et al. (2018, p. 2), they cannot:    P-values give “the probability of the 

finding, and of more extreme findings, given that the null hypothesis and all the other 

assumptions about the model were correct…., and one would need to make an invalid inverse 
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inference [italics added] to draw a conclusion about the probability of the null hypothesis 

given the finding.” This definitively worded claim is refutable, both logically and empirically.  

Krueger and Heck’s paper (2017, p. 11) addresses the logical claim:  Under plausible 

assumptions, the p-value does give information that is relevant to assessing the posterior 

probability of the hypothesis, which they symbolize as (P(H|D))  While it may be imprudent 

to rely only on p-values, ignoring other factors, or to infer a specific probability value for 

P(H|D), it is not logically invalid to incorporate a p-value as a premise or step in the process 

of making an inference about a hypothesis .  An empirical exploration of the question is 

described in this paper:   It is observed that p-values can and do provide evidential 

information that is relevant for making an inference—which, again, does not mean their 

stand-alone application to this end would be fool-proof or advisable, or that there could not 

be better alternatives.    

(2) If p-values do have demonstrated value as evidence about hypotheses, 

then the paper’s second goal is to explore the nature and limitations of that value.  

 Demonstrating that p-values have evidential value is not to endorse a simplistic 

“bright line” interpretation, whereby just obtaining a p-value < α is sufficient information to 

support a definitive inference.   Even assuming ideal test assumptions are satisfied (not a 

certainty in real research), such as having an unbiased, representative sample and no 

unacknowledged confounders that impact results, nonetheless the true rates of correct 

inference of a test can vary considerably depending on test power and other test 

considerations that this paper will explore.       

(3) Further, if p-values have evidential value, then the paper’s third goal is 

to explore how they compare in that respect with possible alternative approaches, 

including a hybrid approach introduced by the authors.     Is one particular approach 

always the better or the worse one?  Might there be trade-offs among methods’ advantages 

and disadvantages, for different contexts or research goals?  To implement this goal, the 

alternative methods’ inferences are exposed to the same simulation-based, empirical 

assessments as are the p-value-based inferences.  Details of the approaches being compared 

are elaborated in the Methods section (Section 2); but the intent is to plausibly represent 
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four identifiable types of approaches that could be used to provide support for (though not 

definitively confirm) an inference about the true location of a population mean:  A 

Conventional p-value based test (two tailed; “Is p-value < 0.05”); a Distance-Only 

assessment (compare asking: “Is Cohen’s d large or small?”); an Interval-Based  approach 

(i.e., focused on the location of a sample based confidence interval); and lastly a proposed 

hybrid approach, called minimum effect size plus p-value (MESP), which is a hybrid of the p-

value- and distance-based approaches.   Clearly, the designed simulation could not try to 

model or assess every variation of the approaches mentioned; so, this paper’s design 

choices, and their potential impacts on the generality of its conclusions, are discussed in the 

Model Assumptions and Limitations section (Section 4).   

Before describing the study’s methodology in detail, in Section 2, some preliminary 

concepts will be clarified: Namely, (in Section 1.1) meaningful (or “minimum practically 

significant”) effect sizes; and (in Section 1.2) distinguishing an inference technique’s 

inference indication or decision, based on one experiment (which is the focus for this 

paper), from a definitive research conclusion about a parameter (which none of the 

inference techniques compared here can offer as direct output).  

  

1.1 Minimum Practically Significant Distances  

For continuous data in particular, it is mathematically impossible for a real parameter 

to exactly equal a point null hypothesis for that value.  So, the question arises:   How close 

to exactly equal must Ho be to the true parameter to say that Ho is true, or is consistent with 

the true parameter?  

Some writers suggest that null hypotheses would better be viewed as having thickness 

or width (Berger and Delampady 1987).  In fields such as Psychology, a width-less 

hypothesis value may sometimes be difficult to formulate (Nunnally 1960; Meehl 1967; 

Berger and Selke 1987; Chow 1988; Folger 1989). Blume et al. (2018, p. 3 of 17) suggest 

replacing the conception of H0 as an exact single value, with the idea of a range of values they 
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call the “null interval” that contains all values that would be considered practically or 

scientifically equivalent to equalling the null.   Proponents of NHST also acknowledge that 

small differences from the null may not be of practical importance or meaningful; so, for 

example, the calculations for minimum sample size to detect a significant difference include 

an input for a minimum distance—smaller distances being considered not meaningfully 

distinguishable from equalling the null.  

There is no fixed answer for how large a difference must be from the null to be 

considered meaningful; this can depend on context for the particular study.  Paul Ellis (2010, 

p. 35) observes in his Guide on effect sizes that “in the right context even small effects may 

be meaningful”, if for example they could “trigger big consequences”.   Blume et al. (2018, p. 

3 of 17) suggest that their null interval’s bounds should be “constructed by incorporating 

information about the scientific context—such as inherent limits on measurement 

precision, clinical significance or scientific significance.”   

To reflect this issue, a term is introduced in this paper called Minimum Practically 

Significant Distance (MPSD). In the Methods section that follows, the MPSD represents, for 

each pass of the simulation, the value that the simulated study’s researchers would deem 

the smallest observed distance from equalling exactly the null that could be considered 

meaningful large.  It is presumed in the simulation that the value would be decided upon by 

the researchers in good faith, and with competence in their field of expertise.  (For 

discussion of possible risks of, e.g., MPSD “hacking”, see in the Model Assumptions and 

Limitations section (Section 4).)    

Note that the inference-assessing role of the MPSD for this simulation study is distinct from 

the MPSD’s role, if any, within any particular inference methods.   In the simulation, the true 

population parameter’s value, μ, is considered not meaningfully different from equalling an 

exactly-specified null hypothesis value, H0, if and only if μ falls in this range: 

Thick Null:     (H0 - MPSD)   ≤   μ   ≤   (H0 + MPSD) 

In this paper, thick null refers to the range of parameter values that would be deemed not 

meaningfully different from equalling the exactly-specified point null value. 
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  A similar range may be constructed by specific inference methods, as a criterion for 

their inferences. For example, the interval-based and MESP methods make explicit 

reference to an interval around the null mean, which could be depicted as follows in interval 

notation:        

Null Interval:    [(H0 - MPSD) , (H0 + MPSD)] 

The null interval, unlike the thick null, is not explicitly stating a hypothesis about the true 

parameter.  But a method’s procedure may compare and draw conclusions from the relative 

positions of the constructed null interval range and the observed value of the sample mean.   

A conventional p-value based test, on the other hand, does not formally consider null 

thickness, though in practice a researcher might be sensitive to that consideration.   

  

1.2 Inference Methods’ Outputs as Indicator Signals    

A valid concern about the use of p-values addresses what some call “bright line”, binary 

interpretations of what they signify (Wasserstein and Lazar 2016a, p. 131).  The present 

authors agree that conducting a single test that just barely passes a bright line criterion 

(such as p-value < 0.05), without replication and without thoroughly checking of its design 

assumptions, is not appropriate to count as significantly confirming a conclusion about a 

population parameter.   In this sense, binary interpretations of p-values are problematic.  

But that consideration does not mean that any binary output, per se, is necessarily 

objectionable.  While a single result of p-value < 0.05 does not justify drawing a final 

conclusion, it could still have value as what Krueger and Heck (2017, p. 1) call a “heuristic 

cue,” within a larger process for drawing an inference.   An indicator would have such value 

if there is a confirmed, general association between its outputs and the corresponding true 

values of the parameter, such that, obtaining a specific signal would provide relevant but 

not definitive evidence in support making an inference about the true value.  
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2 Methods   

The simulation applies to just one-sample tests for the mean, but the same methods 

could be adapted for other testing situations.  Key details are described in this section; 

supplemental discussions relating to design decisions are also found in Sections 1.1, 1.2, 4, 

and Appendices A1 and A2.    

2.1 Set-up Values and Sampling for Each Pass 

Set-up Values 

      Prior to running each iteration (pass) of the simulation, set-up values were randomly 

generated for each of four main elements that impact the next sample and its test results:  

µ, σ, n, MPSD.  These elements are described here, along with boundary ranges for their 

random specifications (shown in italics).  Ranges of possible values were used when setting 

up these elements for each pass, so that sensitivity of the test results to these factors and 

their interactions could be assessed.   

 Two true parameters for an actual, normally distributed population:  the mean (µ) and 

standard deviation (σ).  These values are henceforth referred to as the real mean and 

real standard deviation, respectively.   (75 ≤ µ ≤ 125; 4 ≤ σ ≤ 60)    

 Size n for a random sample to be drawn from the population whose true parameters 

are the real mean µ and the real standard deviation σ.   (5 ≤ n ≤ 100)                      

 A value for Minimum Practically Significant Distance (MPSD).   MPSD is the minimum 

effect size (distance between the exact null mean and the observed sample’s mean) 

that a simulated researcher conducting that pass would consider, reflecting 

competent professional practice, sufficient to deem the effect size scientifically or 

practically meaningful or non-trivial.   (2 ≤ MPSD ≤ 20)      
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For each pass of the simulation, the set-up values for each of μ, σ, n, and MPSD were 

determined independently by randomly selecting an integer from that set-up value’s 

corresponding range of equiprobable integer values that was pre-specified.    For example, 

the value n determined for any given pass was equally likely be any integer in the range 

from 5 to 100, inclusive.   

The ranges specified for these set-up values were intended to ensure that statistically 

interesting and realistic scenarios were generated; but this could not be foolproof.    For 

example, the true means were designed to never be farther than 25 from the null hypothesis 

(always equal 100); yet, for random combinations of large n’s and small σ’s, even a distance 

of 25 could represent many standard errors from the null.  Would a researcher seriously 

test a null hypothesis that far off base?  Such unusual combinations, however, were found 

to be relatively infrequent among the simulated cases actually generated (see Appendix A1); 

and no attempt was made to screen the set-up values or their combinations that were 

generated.  
 

Sample Statistics 

Once the set-up values for μ, σ, n, and MPSD were generated for a pass, a random sample 

of data was taken for the pass.   The sample was drawn by making n independent random 

selections of values from a presumed-normally distributed population having the mean µ 

and the standard deviation σ.  From that sample, these statistics were calculated:  sample 

mean (x̄) and sample standard deviation (s).   
 

Null Hypothesis  

 For every pass in the simulation, it was presumed that a simulated researcher is 

assessing a hypothesis that μ = 100.  For the conventional tests, this represents a null 

hypothesis H0: μ = 100, with the null mean equalling exactly 100.   For the methods where 

a null interval is considered when making the inference, the null interval for each pass is 

constructed (for two-tail tests) as the interval from (100 - MPSD) to (100 + MPSD).  
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Case Generation 

A case refers in this paper to one unique scenario, with its set-up values and sample 

statistics, produced by one pass of the simulation, together with its derived results, such as 

the observed distance of x̄ from the null mean and a corresponding p-value.   All the results 

and figures reported in this paper are based on a dataset of 10,000 cases generated by the 

procedures described in this section.   

  

2.2 Inference Indications by the Compared Methods for 
Each Pass  

  

For each pass of the simulation, the population parameters and other elements 

generated for the case were recorded, and a corresponding, two-tailed conventional p-value 

was calculated.   Based on the data generated in the pass, the simulation identified the 

finding that would be returned by each of the several compared test approaches, as to 

whether a hypothesis that the population mean equals the null mean should be rejected.   

  For each case generated by the simulation, the true state of affairs (fact) about the 

parameter is compared with the corresponding inference indications (decisions) that would 

be produced by the methods listed below:  

  

• Fact: The true location of the population parameter relative to the thick null.   The  

thick null refers to the range of possible locations of the real parameter bounded by 

((exactly equal 100) ± MPSD).   A method’s decision is deemed consistent with the true 

location of the parameter (or correct) if the method rejects the null in a case where the 

real mean’s value falls beyond the range of the thick null, or if the method does not reject 

the null in a case when the real mean’s value falls within the range of the thick null.  

• Decision by Conventional p-value method.  This decision is generated by calculations for 

a one sample, 2-tailed t-test for the mean, with α = 0.05.   The method indicates to Reject 
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H0 for cases where p-value < 0.05; otherwise the method indicates: Do not reject the null.  

This approach’s focus is on sampling error:  It aims to avoid concluding that an observed 

distance from null mean is significant if the distance could be plausibly explained just 

by sampling error.    

o To experiment with NHST variations, two additional p-value-based decisions 

were also considered: For (a) a P < 0.005 criterion (two-tailed test), and (b) a 

one-tailed test (P < 0.05) (discussed in the Appendix). Separately, for each of 

these variations of a t-test for the mean, it is noted whether a test conducted 

by that particular method would indicate to reject or not reject the null.   

• Decision by Minimum Effect Size Plus p-Value (MESP) method.  This decision is the output 

of calculations for a hybrid method proposed and recommended by the authors.  The 

method indicates to Reject H0 for cases which satisfy these two conditions: (1) p-value < α 

= 0.05, and (2) the observed effect size (i.e., absolute value of (sample mean – null mean)) 

≥ MPSD; otherwise the method indicates: Do not reject the null. This method, with a 

proposed acronym MESP, considers the meaningfulness of the observed effect size 

while also accounting for sampling-error.    

• Decision by Distance-Only method. This method considers only the absolute value of the 

effect size, without reference to sampling error.  The method indicates to Reject H0 for 

cases where |observed effect size| ≥ MPSD; otherwise the method indicates: Do not reject 

the null.  

• Decision by Interval-Based method.    This approach avoids conventional hypothesis 

testing, while being sensitive to sampling error, as well as (in some versions) thick null 

issues.   The method indicates to Reject H0 only if there is no overlap between these two 

intervals: (1) the thick null interval bounded by (null mean ± MPSD), and (2) a 95% 

Confidence Interval, centered around the observed sample mean; otherwise the method 

indicates: Do not reject the null.     
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More details about the algorithms used in this study for these approaches are provided 

in the Supplemental file: “Key Algorithms Implemented.”  In practice there can be many 

variations for implementing similar approaches.   For example, both conventional and MESP 

tests could set a larger or smaller value for α; a distance-only approach could be framed in 

terms of seeking a large Cohen’s d value; and an interval-based approach could be 

implemented with different specific formulas for constructing the intervals around the null 

mean and/or the sample mean.  Nonetheless, patterns very similar to those in Figure 1, 

illustrating some ways the four basic approaches described can compare with each other 

and with the (usually not known directly) real value of the parameter, would arise 

regardless of specific calculation details utilized.  The five example cases illustrated in the 

figure were not generated in the main simulation run but were generated separately by the 

same algorithms for purposes of this illustration.   

  

    

Figure 1: Example comparisons of methods’ inferences with the actual parameter.   
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The real, but not directly observable, population mean for each example case is shown 

with a lightning bolt.  The blue rectangle for each case (labeled “’Thick’ Null Hypothesis” in 

the key) represents the range of values for the scenario that would be considered not 

meaningfully different from equaling the null mean, identified as the central blue line.  Based 

on a case’s random sample drawn from the true population, the sample mean is shown as a 

vertical red line, with a surrounding red rectangle to signify a sample-based confidence 

interval for the estimate.  Example Case #4 illustrates what is needed for all four methods 

to output the same inference indication that the evidence goes against the null:  The p-value 

is low, and the sample mean and confidence interval around the sample mean lie beyond 

the thick null interval.  #5 illustrates a scenario where the sample mean is beyond the thick 

null, which triggers a correct decision to Reject by Distance-only, yet the methods looking 

for a low enough p-value or for no overlap of thick null with the sample confidence interval 

estimate, do not reject in this instance.   On the other hand, Example Case #1 shows a p-

value-based decision to reject that is inconsistent with the mean’s true location (which is 

within the thick null).     

 

3 Results   

Figure 2 highlights a particular weakness of the p-value-based inference method 

compared to some alternatives, when the inference decision is to reject a null hypothesis 

that the population mean equals a specific value. If the true parameter is not meaningfully 

different from the null value (i.e., if the thick null is true), then a decision to reject the null 

would be in error.  The left panel of Figure 2 shows that when the thick null was really true, 

the p-value-based method erred by rejecting it in 40% of the cases—often on its own 

(second bar) and sometimes it erred along with other methods (3rd and 5th bars).  The 

alternative methods all performed better in this regard.  The right panel shows that the p-

value-based inferences were much more successful when the thick null was actually false:   

Alone, or with other methods, the conventional p-value’s call to reject the null was correct 

in about 80% of the cases (represented in the 7th, 10th, and 11th bars).    
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Figure 2: Inference-success rates for four alternative methods.   
  

These reported percentages were moderately sensitive to sample size, but much more 

influential was how large was the thick null range for the inference (determined by the 

Minimum Practically Significant Distance) relative to the variability in the underlying 

population.  These sensitivities were explored further in Tables 1 to 3.     

Table 1 compares the overall success rates of the alternative methods, controlled for the 

nominal power of the cases’ inference conditions. Nominal power values were determined 

for each case in the simulation, based on conventional power calculations for a one-sample 

z-test for the mean, given: α = 0.05, σ equal the case’s true population standard deviation, n 

= the case’s sample size, and minimum detectable difference equal to the case’s MPSD.  These 

power values are nominal, since even the p-value-based approaches were not z-tests (since 

researchers would not know the true σ), and the z-test power calculations do not apply 

directly to the other methods.  Nonetheless, the power-based distinctions in the table reflect 
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differences in sample sizes and relative MPSD and variance sizes, etc., that would be relevant 

in general for making successful inferences.    

 

Table 1: Impacts of power and method on overall inference success rates  

 

A fifth method, proposed by some to address the false discovery problem for novel 

discoveries, is included in the above comparison; this bases its results on a smaller-alpha 

version of a conventional t-test (α = 0.005).  (See Appendix A2 for more discussion on false 

discovery rates.) Success rates based just on method can be calculated from Table 1 by 

dividing each method’s case count by the total number of cases: 10,000.  Distance-Only 

appears to perform the best by all these measures, followed by MESP.    The authors caution, 

however, that depending on one’s research goals and context, a researcher may be more 

concerned with the risks of (true) Type I error or of (true) Type II error.  Table 1 masks those 

distinctions by averaging the two error risks into a single number.    

 Table 2 breaks down the results of Table 1, based on whether the true mean falls within 

the thick null or falls beyond the thick null.  Figure 3 displays this information graphically.  
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 Table 2: Impact of power, method, and true location of the null on inference success. 

 

 
Figure 3: Graph of impact of power, method, and true location of the null on inference 
success. 
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In the following discussions, names of the methods being focused on are bolded for 

clarity; and power refers to nominal power unless true power is specifically indicated.  A 

method’s true power is the proportion of really-false thick nulls that the method correctly 

signals to Reject. 

The various methods’ true powers are revealed by the success rates in the bottom half 

of Table 2.  In all these cases, rejecting the null is the correct inference, since the real mean’s 

location is outside the thick null range.    The conventional test stands up well against the 

alternatives in its true power to detect a difference from the null when there is a difference.  

For high nominal-power cases, it correctly rejected the false null almost 99% of the time 

and was correct 86% of the time for mid-power cases.   When the null should be rejected in 

low -power cases, the conventional test does falter, as expected; in that scenario, only 57% 

of its inferences are correct.  Interestingly, however, in low power cases, the only method 

that out-performs the conventional, α = 0.05 test is the distance-only approach, with a 

success rate of 88%.   

Replacing the P < 0.05 criterion with P < 0.005 (small-alpha method) shows a 

considerable cost in true power for lower nominal-power cases. For the lowest-power 

cases, it only detects 35% of cases where there is really a meaningful difference from the 

null.   However, when interpreting the small-alpha findings, a caution is that Benjamin et 

al.’s (2017) proposal for P < 0.005 is specifically addressed to “novel discoveries”, that is, 

tests for rejecting the null where there is low prior probability for the alternative hypothesis 

being true.   The simulation does not explicitly manipulate or control for that prior 

probability, when applying methods for comparison; so, the small-alpha results may not 

model an implementation of Benjamin et al.’s specific proposal with complete fidelity.  

In trying to reduce Type 1 error (discussed next paragraph), the interval-based method 

pays a considerable price in true power:  We see that for all levels of nominal power under 

the simulated conditions, the interval-based method has the worst or second-worst 

inference success when the null is really false.  It outperforms only the small-alpha method 

when nominal power is low, with inference success of 41% in those cases compared to 
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small-alpha’s 35%.   The proposed MESP approach also has its main advantages regarding 

Type 1 error rather than for true power; yet we see that its benefits have little cost in terms 

of true power compared to the conventional test.  For all nominal powers, MESP’s true 

power is comparable to the conventional approach’s.     

The top half of Table 2 shows methods’ rates of inference success (i.e. decisions to 

correctly not reject the null) when the real parameter is not meaningfully different from the 

null value (i.e., the thick null is true).  A true Type 1 error occurs when the thick null is true 

yet is rejected (or a non-meaningful effect size is deemed meaningful, etc.); so, a method’s 

true Type 1 error rate (or true α) is the complement of its inference success rate for this half 

of the table.  The table confirms the well-known limitation of conventional p-value tests 

when sample size (hence power) are large: For high-power cases where the thick null is 

really true, the conventional method’s true Type 1 error rate is a sobering 63% (based on 1 

– (successful inference rate = 37%)); for mid-power cases, its true α is 1 – 77% = 23%.   The 

“α” in the conventional method’s “α = 0.05” criterion is clearly nominal; we see that the true 

α—the empirical Type 1 error rate for the method—is much higher.   The small alpha 

approach predictably improves true Type 1 error rates, though they are still very poor for 

high-power cases, where the true α is 1 – 53% = 47%.   The distance-only method, on the 

other hand, performs best under the simulated conditions for higher power cases:  Its true 

α ranges from 1 – 90% = 10% for high-power cases to 1 – 57% = 43% for low-power cases.  

The interval-based method implemented for this study outperforms all the displayed 

alternatives, with respect to true Type I error: never higher than 1 – 98% = 2%.  But as 

mentioned with respect to the bottom half of the table, the method pays a considerable price 

in terms of true power.   

MESP appears to offer a good compromise:  Its true α stays comparatively low for all 

nominal power levels (ranging from 8% to 17%), while we observed its true power remains 

roughly comparable to conventional tests.   

MESP’s combined use of a p-value and a distance criterion results in a notable pattern in 

Table 2:  For both true and false thick nulls, MESP and distance-only methods perform 
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identically when power is high, while the MESP and conventional methods perform 

identically when power is low.   The reason is, when nominal power is high, MESP’s 

indication to reject or not-reject essentially hinges on the distance criterion’s signal (since 

getting a low p-value will be relatively easy to attain, and not the deciding issue).   So, when 

the distance criterion leads to error in such cases (either rejecting a true null or not-

rejecting a false one), the MESP shares in the error.  But when nominal power is low, effect 

sizes tend to need to be larger to trigger the p-value reject signal (so attaining minimal 

distance is not the deciding issue); instead, MESP’s indication to reject or not reject tends to 

hinge on the p-value signal—so those methods share the same success and error rates.       

A deeper analysis of the power breakdown in Table 2, with more power categories, is 

provided in Appendix A2, in Table A1.   

All methods’ success rates are sensitive to relative MPSD, i.e., the magnitude of the 

minimum practically significant distance (MPSD), relative to population standard deviation.  

These sizes ranged from (< 0.04 x σ) up to (5 x σ), and Table 3 breaks this size range into 

deciles.   The discussion below focuses on Deciles 2 to 9 within each column.  (Potential 

reliability issues of the outer deciles are discussed in Section 4.2 and Appendix A1).    

In the top entries of the fourth column of Table 3, we see that the true Type 1 error rate 

(true α) for the conventional method is not a large concern when relative MPSD 

magnitudes are in the lowest deciles.   In decile 2, true α was only about 10% (i.e., 1 – 90% 

successful inference rate for when thick null is true).  But as relative MPSD increases, the 

conventional method’s true error rate increases consistently in tandem—reaching (1 – 35% 

successful = 65%) by the 9th decile.      This occurs because the conventional method does 

not consider practical importance; a larger relative MPSD results in more cases where a 

value is rejected based on the null mean alone, yet is getting included in the expanded thick 

null, so it is an error to reject the null.   
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Table 3: Impact of relative MPSD and method on inference success.  
  

The conventional method’s true power to correctly reject a false null (bottom half of 

fourth column), increases consistently as relative MPSD increases.   This is because, for 

subsets of the false-null cases which have wider thick null intervals, the p-value approach is 

assessing effect sizes that tend to be larger, and so is more likely to correctly reject the null 

for those cases.    

The small-alpha approach’s success rates (5th column) show similar directions of 

sensitivity to relative MPSD as for the conventional approach, across all deciles, for the same 

reasons as explained in the previous two paragraphs.   The interval-based method that was 

modeled appears insensitive to relative MPSD size and is almost always correct when the 

thick null is true (top half of right column). Its generally poor true power to reject a false 
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null improves a bit (about 70%) when MPSD is relatively large compared to σ (perhaps 

because this method is also sensitive to having a small σ, for reasons not related to MPSD.)  

The distance-only method appears comparatively insensitive to relative MPSD size for true 

power (bottom half of 7th column). However, for small relative MPSD’s (top of 7th column), 

the method’s true α rate is very poor:  In the second decile, (1 – (52% success rate when the 

null is true) = 48%.  This occurs because small differences that the method deems 

meaningful are often due simply to sampling error, which this method does not account for.   

The MESP method generally maintains strong relative performance regardless of the 

size of MPSD/σ.  The method’s true power is comparable, for all relative MPSD levels, with 

the conventional method’s; while its true α rates (top half of 6th column) never exceed 15% 

(in the sixth row, based on 1 - 85% success).  

Table A2 in the Appendix shows how the effects of power and relative MPSD size 

combine.  For example, the lowest inference success rate (37%) displayed in Table 2 is for 

the conventional test, when nominal power is high and the thick null is true.  If that context 

is subdivided based on relative MPSD size, then consistently with Table 3, the lower success 

rates are more specifically occurring as relative MPSD increases:  62% success for the 

second quartile but down to 49% for the 3rd quartile, etc.  Because some of the simulated 

combinations of power and relative MPSD in Table A2 would, if they occurred in practice, 

reflect conditions of poor study design or execution, such cases may be overrepresented in 

the simulation, which could affect the reported findings.   

Figure 4 illustrates how p-values combined with a distance criterion can be informative 

for inference as heuristic cues, as discussed in Section 1.2—even though p-values on their 

own are noisy as predictors of whether a thick null is really false or true.     The figure plots, 

for each case in the simulation, the true distance of the parameter from the null (Y axis), 

versus the two-tailed p-value that was generated for that case (X axis).   For any case shown 

below the central horizontal line, the distance of the true parameter value from 100 is less 

than the minimum practically significant distance, consistent with the thick null being 

correct; above the line the thick null would not be correct.   (Logarithmic scales for the axes 
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are simply to make the graph’s salient features more visually prominent, with less blank 

space.)    Cases where the MESP inference procedure would signal to reject the null are 

displayed as the red, horizontal lines; this rejection signal is seen to clearly, though 

imperfectly, be associated with cases when the thick null really is false.  In other words, 

obtaining the MESP signal-to-reject provides a heuristic, yet non-definitive, piece of 

evidence towards inferring the mean’s true location.  

  
Figure 4: p-Value’s inference performance, compared to MESP.   

4 Model Assumptions and Limitations     
4.1 Representativeness of the Model  

Although the authors believe that the versions of methods included in the simulation 

model are reasonably generic and representative of the methods discussed, the generality 

of the model has not been formally tested or demonstrated for non-included variations. The 

applicability of the results for one-tailed tests was checked in Appendix A2, Table A4, and 

the simulation results there appear comparable to those in Table 2 for two-tailed tests.   
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Results reported for the Interval-Based method may not fully extend to a recent 

variation of the method proposed by Blume et al.  (2018).   Both versions signal to reject the 

null when the thick null interval and a sample-based 95% confidence interval (CI) do not 

overlap.   But absent that signal, Blume et al. distinguish (a) when the null interval subsumes 

the CI completely versus (b) when the intervals’ overlap is only partial.  The impact if any of 

that added distinction is not modeled in the present study.     

4.2 Generation of Data for Cases  

The design choices made in this study for generating set-up values from particular 

input-ranges can impact the comparative decision results that are reported.  This echoes the 

insight of Bayesians that prior probabilities can impact posterior probabilities.   It is not 

possible to make absolute inferences based on observed data, without some reference to the 

context in which the data are drawn.  For example, combinations of set-up values generated 

by the simulation were not assigned different weights for being more or less likely to be 

encountered, though in some research contexts, perhaps some combinations are more or 

less likely.   Therefore, the exact numbers reported in the Results section for true power and 

true α, etc., cannot be interpreted in absolute terms.    In general, more research is needed 

on the extent and nature of the simulation’s sensitivity to unmodeled differences in actual 

likelihoods, for different combinations of scenarios or extremes of distributions generated 

by the simulation. 

More detailed discussions on the design decisions for the generated set-up values and 

their impacts on the overall distributions of the test cases, and on the plausibility of those 

distributions to represent a realistic example set, are provided in Appendix A1.   

 

4.3 Risks of MPSD “Hacking”   

An acknowledged risk of including a distance criterion within MESP is that researchers 

could potentially “hack” results by setting MPSD sizes that are biased or specified-post-hoc 
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to their own study’s advantage.  The authors believe this issue is important, but that it 

should be viewed as primarily a matter of professional ethics and training, and also that 

risks for such tainting are not inherently different for MESP than those for any inference 

method—for example, one’s selecting a more favorable α or Cohen’s d benchmark post hoc.  

The authors recommended in Section 1.1 that MPSD values should derive from a 

researcher’s reflective professional practice, and be documented along with his or her 

results.  This suggestion is consistent with proposals that research benchmarks of this sort 

be pre-registered in some way before starting one’s study.  The authors also encourage 

efforts for the research community at large to become more sensitive to issues of effect size.  

For example, if the data include strong measures such as amounts of money spent or 

cigarettes smoked over a period of time, unstandardized regression weights can inform 

whether the impact of a one unit increase in the independent variable really has an 

appreciable impact on the dependent variable; such as, is the impact just a small number of 

extra or fewer  dollars spent  or cigarettes smoked over the period, or is the increase or 

reduction in dozens or hundreds of dollars or cigarettes? 

Note that in the simulation, random assignments of MPSDs to cases is not intended to 

imply that MPSDs’ assignments to actual research would or should be random—just as 

sample sizes would not be random in practice but are assigned randomly in the simulation.  

The goal for the simulation was to generate many different combinations of independently 

generated set-up values, to observe the factors’ effects and interactions.   Each simulated 

case is taken to represent data collected by a specific (simulated) researcher who would 

have set that study’s MPSD value competently and appropriately, in the context of his or her 

research specialty.    

  

5 Discussion and Conclusions     

This study confirms, using simulations, that p-values provide some evidential 

information relevant to an inference about a population mean, given a sample.   It examines 
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p-values’ strengths and weaknesses if used as an inference signal in various contexts, and 

compares these with successes and weaknesses of some alternative methods.   Among these, 

an alternative, hybrid inference method is introduced, which uses a criterion called 

Minimum Effect Size Plus p-value (MESP).    

Key findings from the simulation are summarized below:     

• For tests that were high nominal powered (e.g., large samples; small population 

variance), the p-value-only approaches had the worst true Type 1 error rates. 

Specifically, for conventional P < 0.05 tests with high nominal power, true α was 

63%.  For small alpha tests, true α was 47% with nominal high power.   For both 

versions of p-value tests compared, true α increases markedly (i.e., inference success 

drops) as the thickness of the null increases.    

• Both p-value methods have good true power when nominal power is high.   But for 

small alpha, true power drops to under 40% for low nominal power cases, or when 

the relative MPSD is small.  Conventional (P < 0.05) performs better in those 

circumstances.    

• The distance-only method falters in true α (α = 43%) for low-power cases, or when 

relative MPSD is comparatively small.   The method has good true power (> 87%) 

for all nominal power levels and relative thicknesses of the null.    

• A generic interval-based method has consistently good true α for all nominal power 

levels and relative thicknesses of the null—never worse than 2%.  But for all nominal 

powers, its true power is much less than the conventional method’s.  

• MESP balances reasonably consistent true power (roughly equivalent with the (P < 

0.05) at all nominal powers and relative thicknesses of the null, with a true α that 

compares well with other methods—without other methods’ problems with some 

nominal power levels or thicknesses of the null.   

• Changing from two- to one-tailed tests does not appreciably change the 

performance patterns described for the p-value and MESP approaches.     
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• A method that combines p-values with a distance criterion can generate heuristic, 

but non-definitive, evidence towards inferring a mean’s location—even though p-

values on their own are noisy as predictors of the mean’s true location. 

  
The percentages reported could potentially be different under different—yet plausible—

simulated conditions.    

In summary, all of the compared methods have strengths and weaknesses; and none of 

them generates an automatic final answer for a definitive inference, based on one 

application.   In practice, the researcher is blind to the left columns of Tables 2-3, which 

show the true mean, and this makes a crucial difference:   The interval-based method is, for 

example, the best method under the simulated conditions when the null is true, but the 

worst method under those conditions when the null is false.  But the researcher cannot 

know which half of that column he or she is really working in.      

The authors recommend preferring a tool that (a) is not sensitive to factors that are not 

knowable to the researcher (such as the true mean, and to a lesser extent, the true size of 

MPSD relative to population sigma), and (b) performs well in contexts that the researcher 

can check for.  MESP performs well regardless of whether the unseen real mean happens to 

be within the thick null or not.  Its true power weakens in low nominal power cases; but the 

researcher can know when that applies, and can respond accordingly.    

Added to those advantages for MESP is the ready availability of the p-value component 

of its indicator.   Statistical software can already flag when a correlation or regression 

coefficient or other estimate appears significant, in terms of the p < 0.05 signal.  If a 

researcher also has in mind a reasoned criterion for a meaningful effect size, MESP can be 

directly applied to the case, without requiring any new type of calculations.  In contrast, data 

to implement the procedures for the interval-based method may not be visible on standard 

outputs, and may require additional, unfamiliar calculations.  

As noted in Section 4, the exact success ratios displayed in this paper’s text and tables 

are specific to the design decisions for the simulations.  Choosing a p-value criterion other 

than 0.05 or 0.005, or designing alternative algorithms for distance-only or interval-based 
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decisions, or revising the bounds of possible inputs for the simulation, etc., could all impact 

apparent results.  Yet, the versions of methods compared in this study, and the ranges of 

independently varied random set-up factors for cases, were designed to generate a dataset 

of cases that the authors believe are reasonably representative of real-research cases and 

methods that could be encountered.    Informal, additional checks were also conducted (such 

as adapting the simulation to assess tests for correlation rather than for the mean); and the 

broad patterns of the results reported here appear to be generalizable.   

The usefulness of any inference method’s results depends on the care taken to ensure 

that all fundamental assumptions are satisfied for using that method—not just assumptions 

specific to that method, such as distributional assumptions, but also, more generally, having 

an unbiased, representative sample, with no unacknowledged confounders influencing 

results, or missing variables causing proxy effects, and so on.    The comparisons presented 

in this paper are intended to the compare the findings of the several methods so far as they 

have been carefully and properly implemented, under circumstances that meet their 

assumptions.    

With that proviso, the authors believe that the NHST model can still have a place in 

scientific research and in the journalistic reporting of research findings if results are 

interpreted properly and not taken as automatically justifying final conclusions.  If the p-

value criterion is met, it should also be assessed whether a meaningful minimum effect size 

was observed.   MESP combines the traditional p-value < 0.05 condition with a minimum 

effect size criterion.  The simulations show that even for the traditional method, “α = 0.05” 

is essentially just a nominal trigger, it is not the true α; MESP merely acknowledges this 

heuristic use of the α term and adds the important effect-size criterion.  If the two rejection 

criteria for MESP occur, take that cue and build a convincing story using full disclosure on 

sampling methods, sample size and what is already known, unknown or hypothesized.   
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SUPPLEMENTARY MATERIAL   
1. Title:  Comparative Inference Experiments_Data and Formulas (Excel file)   

Simulation results and formulas.   This Excel file contains the full set of outputs 
(10,000 cases) for the simulation run described in the paper.  It also includes pages 
showing (a) all formulas used within the simulation, and (b) explanations of the 
formulas.     
     Note that for the output columns generated during the simulation run, only the 
resulting numeric values of the outputs are included in the Results spreadsheet; 
whereas for supplemental columns added to the Results spreadsheet—for example, to 
calculate nominal power for each case or to calculate what would have been the one-
tailed p-value for each case—the formulas are retained in the spreadsheet in those extra 
columns.    

2. Title:  Supplemental_Key Algorithms Implemented (PDF file)   
Generic descriptions of algorithms.   This PDF document provides brief, generic 
descriptions of key algorithms and formulas implemented in this paper’s simulation. 
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APPENDIX A 

Additional Analyses and Simulation Details 
 

A1   Distributions of Set-up Values and Their Combinations         

How realistic or generalizable the simulation’s results are could be impacted by the 

distributions of the set-up values that were randomly generated over the 10,000 passes of 

the simulation—or of the relations among those values.  This appendix displays and 

discusses several of those key distributions.    

 Individual Set-up Values   

For each pass of the simulation, set-up values for each of μ, σ, n, and MPSD were 

independently determined by randomly selecting an integer from a specified range of 

equiprobable integer values for that element:  Those ranges were:  75 ≤ μ ≤ 125;  4 ≤ σ ≤ 60; 

5 ≤ n ≤ 100; 2 ≤ MPSD ≤ 20.  Figure A1 shows that—allowing for random variation—the 

distributions are all flat as intended by the study, and bounded within the designed ranges. 

 
Figure A1: Distributions of the Individual Set-up Values 
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 Combinations of Set-up Values   

Each pass of the simulation is intended to model a realistic example of a hypothesis test 

for a population mean that might be conducted, with respect to the actual values that μ, σ, 

n, and MPSD may have when the test is conducted.  The limits bounding an example’s being 

realistic are difficult to define formally; but some potential issues can be intuited and 

addressed in connection with the following results. 

 

Figure A2: Histogram of Absolute Real Distances in Population Standard Deviations 

Since H0 is unvaried in the simulation, the relation between mean and sigma that is 

relevant for the simulated hypothesis tests is the ratio   |μ - H0| / σ, that is, the absolute real 

distance of the population mean from the null mean, in standard deviations.  Figure A2 

shows that most of the simulated true distances had a magnitude of less than one population 

standard deviation, and very few magnitudes exceeded 2.5 standard deviations.  

Occasionally in practice, researchers may be unaware if they have posited a null value that 

far from the true μ (perhaps because an unobserved change occurred in the environment), 

so the few outliers like this generated in the distribution are not necessarily implausible, 

and are useful for comparing the different inference methods’ performance in such cases.     
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Figure A3: Absolute and Cumulative Percent Frequencies for MPSD/σ 

In most cases, the values for relative MPSD—i.e., MPSD standardized relative to 

population standard deviation (MPSD/σ)—were very consistent with effect sizes that, for 

example, researchers would want to power their studies to detect.   Assuming a researcher 

has obtained a reasonable, preliminary estimate for the population standard distribution σ, 

then it may be unrealistic that MPSD would be set deliberately to large values like two or 

more standard deviations.   However, note that large MPSD/σ ratios of this sort in Figure A3 

occur only within the uppermost decile of the distribution.   Also, the lowest decile is of 

interest, since it roughly corresponds to a smaller setting of MPSD—0.1 standard 

deviation—that social scientists sometimes employ.  Table 3 in the main text groups 

MPSD/σ values into deciles, in order to observe the comparative impacts of relative MPSD 

sizes at various levels, including the more extreme categories.  
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Figure A4: Ratio of √n to σ 

The potential distortion that large sample sizes can have on conventional test results is 

often discussed.  However, the derivation on the right panel of Figure A4 clarifies, more 

specifically, that the test statistic is inflated (lowering the p-value) by the ratio of √n to σ.  

Even though the simulation has capped the set-up values for n at 100, some cases’ results 

could be distorted if n is large and σ is small; however, according to the histogram in the 

figure’s left panel, this ‘multiplier’ ratio for the test statistic does not appear to have an 

excessive spread for the simulated data.    Larger values could realistically occur if a 

researcher has access to larger sample sizes, and takes advantage of them, while perhaps is 

not certain of the true sigma value when estimating sample size or power.     
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Figure A5: Ratio of Absolute Real Distance to MPSD   

 

Figure A5 shows the distribution of ratios generated by the simulation for absolute real 

distances (i.e., |μ - H0|) over MPSD.  For cases where the true mean falls within the thick null 

(top half of Tables 2 and 3), that ratio is ≤ 1; where that ratio is > 1, the true mean falls 

beyond the thick null (bottom half of Tables 2 and 3).   

The simulation did not exclude any cases based on this ratio, since it was not known, a 

priori, whether it would be realistic for (|μ - H0|)/MPSD to have a ratio as large as, for 

example, 6 or greater.   This suggests questions for further research: (a) How do actual 

researchers set the values they would use for MPSD?  (b) In particular, do they include in 

their reasoning some estimate of how far from the null the true mean could realistically fall?  

(c) If so, how do they derive their belief or expectation about how far that could be, and (d) 

do they generally tend to be accurate in that estimate.      
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A2    Additional Analyses of Methods’ Inference Success  

 Impact of Power and Method on Inference Success 
(Expanded) 

Table A1 deepens the analysis in Table 2, by breaking power into 6 categories instead of 

the three categories used in the main text.   The finer-grain analysis in Table A1 preserves 

the general value trends displayed in Table 2 for each status of the thick null, when scanning 

down the alternative methods’ columns.  However, for the highest or lowest power 

categories, sudden value jumps do occur in some columns.  For example, when the thick null 

is true, the success rate of the conventional method decreases monotonically as power 

increases—yet the drop is 30 percentage points from second-highest to the highest power 

category.  And that method’s success rate drops 20 percentage points at the lowest power 

category, when the thick null is incorrect.  It would useful in future research to investigate 

for any factors, unmodeled in the simulation, that may contribute to these sudden jumps.   

 

Table A1: Impact of Power and Method on Inference Success Rates—Expanded Version. 
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 Impact of Combined Power and Relative MPSD on 
Methods’ Inference Success Rates. 

Tables A2 and A3 supplement the stand-alone analyses in the main text for the impacts 

of Power (Table 2) and relative MPSD (Table 3), respectively, on different methods’ 

inference success rates.   Table A2 looks at the impact of the two factors combined.  To reduce 

the complexity of the table, the sub-classes for MPSD/σ are based on quartiles rather than 

deciles for the distribution.    Table A3 supports using that simplification of classes for 

relative MPSD:   Namely, if values up and down individual columns in Table A3 (Quartile-

based) are directly compared with counterparts in Table 3 (Decile-base), it is observed that 

dividing the data more finely into deciles uncovers no reversals or inconsistency of the 

general trends that can be observed using quartiles.    



40   

 

Table A2:  Impact of Combined Power and Relative MPSD on Methods’ Inference Success 
Rates 
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Table A3: Impact of Relative MPSD on Methods’ Inference Success Rates—using Quartiles 

 

 Impact of Power on Methods’ Inference Success Rates—
One-tailed Cases 

Table A4 and Figure A6 suggest that the results would be very similar for one-tailed 

tests, as for two-tailed tests.     Only the cases of the main simulation where μ > 100 are 

evaluated in this section, presuming contexts where the true mean could not realistically be 

less than that null; and one-tailed p-value calculations were applied where applicable.  The 

small-alpha method was not evaluated for this table. 
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Table A4: Impact of power and method on inference success, for one-tailed cases.   

   

 

Figure A6: Graph of Impact of power and method on inference success, for one-tailed cases.   
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When comparing relative strengths and weaknesses of different methods, broken down 

by whether the thick null is true, and nominal power levels, Table A4 (for one-tail cases) is 

clearly very similar to Table 2 (for two tailed cases).  Apart from small random variations 

(from reducing the set of relevant cases included), Table A4’s differences from Table 2 are 

as expected:  For a given p-value cut-off, a one-tailed test does not require as large an effect 

size (in the one direction of interest) as a two-tailed test does to reject a null hypothesis.  

Therefore, at all nominal power levels, the one-tailed conventional test shows a bit more 

power to reject the null when the thick null is really false yet has poorer success rates (i.e. 

more true Type I error) when the thick nulls are really true.   Because of its extra distance 

criterion, MESP did not display that same increase in true power, for one tailed versus two-

tailed decisions, for the cases with the highest nominal power.  For one tailed tests, for all 

but the lowest powered cases, MESP continues to show better success when the thick null 

is true (smaller true α) compared to the conventional method.   

 

 False Discovery Rates Comparisons and Implications 

Sometimes, many tests are conducted simultaneously, for example in multiple testing of 

biological materials on “microarrays”.  Each of the many tests simulated for this study—

even if they were simultaneous—models a stand-alone hypothesis test, with different set-

up values.  Still, this partial analogy with multiple-testing suggests a useful concept to 

consider, called false discovery rate (FDR), which may also suggest a potential limitation of 

the simulation design.  

In the microarrays analogy, each individual test that rejects the null (i.e., each 

“discovery”) could be interpreted as testing positive for a condition of interest.   The false 

discovery rate (FDR) is a way to quantify, for comparisons and quality assessment, the 

overall rate of false positives across all the simultaneously conducted tests (Colquhoun 

2014). FDR is calculated by dividing the number of false positive test results (when there is 
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really no effect) by the sum of all positive test results (the number of false positives + the 

number of true positives). 

 

Figure A7: Methods’ False Positive Rates Compared.   

 

Figure A7 compares methods’ relative successes by FDR, where a lower value is 

preferable.  There are rough similarities to the results in the upper half of Table 2 (not 

controlling for nominal power); but FDR factors in information from both halves of Table 

2—both Real Effect cases and No Effect cases. 

To calculate FDR in practice, the process (depicted in Colquhoun’s “Figure 2” (2014, p. 

4)) requires the ratio of Real Effects cases to No Effects cases to first be estimated in 

advance; and, from this prior estimate, expected counts of true and false positives to be 

estimated in turn.   In Figure A7, the counts in the boxes are not estimated, but are observed 

directly from the simulation results.  Yet, that said, the counts and ratios of inference 
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successes displayed in Figure A7 do depend on the prior ratio of Real to No effects generated 

by the simulation (in the 2nd column of boxes); and that ratio could have been quite 

different—if for example, the simulated true means were all far from the null, so Real Effects 

were more prevalent.  This reflection echoes the observation made with respect to Figure 

A5, for the simulation’s distribution of (Absolute Real Distance)/MPSD.  Further study of 

what distributions and scenarios would be most realistic to embody in the simulation is 

recommended. 


