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Abstract

Given a class of linear order types C, we identify and study several different classes of trees, naturally associated
with C in terms of how the paths in those trees are related to the order types belonging to C. We investigate and
completely determine the set-theoretic relationships between these classes of trees and between their corresponding
first-order theories. We then obtain some general results about the axiomatization of the first-order theories of
some of these classes of trees in terms of the first-order theory of the generating class C, and indicate the problems
obstructing such general results for the other classes. These problems arise from the possible existence of non-
definable paths in trees, that need not satisfy the first-order theory of C, so we have started analysing first-order
definable and undefinable paths in trees.
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1 Introduction

Trees occur naturally in many mathematical settings as important partial orders. Every tree
is naturally associated with a set of linear orders representing its paths. Conversely, with
every set C of linear order types one can associate various classes of trees, the paths of which
belong, or are related, to C. Trees are far more complex structures than linear orders, and
it is interesting and important to analyse the structural and logical relationships between
trees and their sets of paths. While much is known about some important classes of trees and
their first-order theories, such as finite trees [1], well-founded trees [2], and finitely branching
trees [4, 7], the only systematic study so far, of which we are aware, of classes of trees that
naturally arise from a given set of linear order types is [5], in the context of temporal logics.
The objective of this article is to continue and extend that line of research by investigating
the variety of classes of trees, the paths in which are naturally associated with a given class
of linear orders and of the first-order theories of these classes. In a subsequent work, we
apply present results to obtain complete axiomatizations of the first-order theories of some
important classes of trees.

The article is structured as follows: after a preliminary Section 2, we introduce in Section 3
several classes of trees associated in terms of the paths in those trees with a given class
of linear orders. Then, in Section 4 we analyse and completely describe the set-theoretic

*E-mail: ruaan.kellerman@up.ac.za

Vol. 19 No. 1, © The Author 2010. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093 /jigpal /jzq043 Advance Access published 5 October 2010

TTOZ ‘0T JequinoN uo Ariqi NLd e /Blo'sfeuinolpioxoedbifj/:dny woiy pepeojumoq


http://jigpal.oxfordjournals.org/

218 Classes and theories of trees

relationships between these classes of trees, whereas in Section 5 we completely describe
the relationships between their respective first-order theories. In Section 6, we discuss the
problem of axiomatizing these theories given a first-order axiomatization of the generating
class of linear orders. In Section 7, we take a closer look at the different types of paths
emerging in trees associated with a given class of linear orders and how they are related with
the first-order properties of such trees. We end with brief concluding remarks summarizing
the article and discussing the arising open problems and further research directions.

2 Preliminaries

Let 20 be a structure and let ¢(zi,...,2,) be a first-order formula. The domain of 2 is
denoted as || or simply as A. Let ¢i,..., ¢, €] and put 2= (z1,...,2,) and ¢=(cy,..., ¢,).
Then ¢(z,...,2,) is also written as ¢(z). When evaluating the truth of ¢ in 2 when the
elements ¢; are substituted for z; for every i (1<i<n), we also denote the expression
A=p(a/z,...,cn/z,) as A=e(c/z). When enriching the signature of 2 with ¢i,..., ¢, as
parameters, we also denote (2; ¢y,...,¢,) as (U;¢) and (A;¢) =e(cy,...,cn) as (A ¢) =o(e).

For a=(a,...,a;) and b=(by,...,b,), the notation ac indicates the (k+1)-tuple
(ay,..., a, c) and ab indicates the (k+n)-tuple (ai,..., ag, by, ..., by).

The quantifier rank of a formula ¢ is denoted as qr(¢). Elementary equivalence between
structures is denoted by = and n-equivalence (equivalence with respect to all sentences of
quantifier rank at most n) by =,.

2.1 Relativizing first-order formulas

Relativizations give a neat method for imposing first-order properties on definable substruc-
tures of a structure. The following definition and results are taken from [6, pp. 259-260].

Let 2 be any structure and let ay,...,ar€|A|. Fix 2= (21,...,2,), y=(v1,---,yx) and a=
(ar,...,ap).

DEFmNITION 1 [6]
Let ¢(z) and 0(u,y) be any first-order formulas. The relativization of ¢ to 6, denoted ¢’
(where ¢ =¢?(Z,7)), is defined as follows:

) if ¢ is atomic then ¢’:=g;

) if == then ¢’ :=—(y’);

iii) if g =1 %y then ¢”:=y{xy), where  is any of Vv, A, > or <;
)
)

iv) if 9=3zy then ¢’:=3z(6(z,y) Ay¥’); and
(v) if p=Vazy then ¢’ :=Vz(0(z,y) — ¥*).

Note that if ¢ is quantifier free then ¢° contains the variables ¥, ..., y; vacuously, while if
¢ contains quantifiers then the variables y,..., y; will appear explicitly in ¢°.

Define

(A a)":={belA: (A;a) =0(b/u,a)).
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ProposITION 2 [6] B
Let ¢(Z) and 6(u,7) be any first-order formulas. For any by, ..., b, € (2;a)” and with b=
(bla"'abn)7

A=¢? (b/7,a/7) & (Aa) Ee(b/7).

COROLLARY 3 [6]
Let 2 be a structure, let o be a first-order sentence and let 6(u, y) be a first-order formula.
Then

Ao’(a/7) « (A a) =o.

COROLLARY 4 [6]

Let 2 be a structure, let o be a first-order sentence and let 6(u) be a first-order formula.
Then

A=o’ & Wi=a

2.2 Characteristic formulas

Characteristic formulas give a syntactic formalization of the Ehrenfeucht—Fraissé game
played on a pair of structures. The following definition and results are borrowed from [2].
An excellent account of characteristic formulas can also be found in [3].

Fix structures 2 and B. Let a=(ay,...,a;) and Bz(bl,...,bk), where ay,...,q,€|2| and
biy....,bp€lB|. Put z=(21,...,2%).

DEFINITION 5 [2]
For neN we define the formula [(2;a)]" (with [(2;a)]"=[(;a)]" (Z)) inductively as fol-
lows:
(i) (2L &)ﬂozzA{(p(:Z') 1@ an atomic or negated atomic
formula with A=ep(a/z)};
(i) [ = Ay oo [(% da41)]" A
Vi \/akHe\Ql\ [(R6; aars)]™.

The formula [(2;@)]" is known as the n-characteristic of a in 2.

The formula [(2(;a)]" describes any (the first conjunct in clause (ii) of Definition 5) and
all (the second conjunct in clause (ii) of Definition 5) ways to relate n-tuples of elements
from 2 to the elements in a.

LemMA 6 [2]
(i) 2A=[(a)]" (a/z); and
(ii) the formula [(2;a@)]" has quantifier rank n.

THEOREM 7 [2]
For neN the following conditions are equivalent:

(i) (@)=, (B:0);

(il) BE[(A:a)]" (b/z); and )
(iii) the formulas [(A;a)]" and [(B;b)]" are equivalent.
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COROLLARY 8
Let neN. The following conditions are equivalent:

(i) A=,B;
(i) BE[A]"; and
(iii) the formulas [A]" and [B]" are equivalent.

Hence, the n-characteristics of empty tuples are canonical objects associated with classes
of structures which are n-equivalent.

When working with a finite signature, there will be only finitely many n-characteristics
of k-tuples.

THEOREM 9 [2]

Let {2;},c; be a class of structures over the same finite signature. Let n,keN and let a; be a
k-tuple from 2, for every i€ I. The set of pairwise non-equivalent formulas [(2;;a;)]" (i€ )
is finite.

2.3 Trees
A tree is a partially ordered set (T'; <) satisfying the following two properties:

(i) for every ze T the set {ye T:y<ux} is totally ordered, and
(ii) for every z,ye T, there exists z€ T such that z<x,y.

Thus, the class of trees can be defined in the language containing the binary relation <
together with the usual equality relation =, using the first-order theory consisting of the
following sentences:

A Va(—z<z);

Ao: VaVyVz(z<yAy<z— z<2z);

As: VaVyVz(y<znz<z— (x<yvVze=yVvy<z));
Ay Vavydz((z<zvz=z)A(z<yVz=y)).

We will denote the first-order theory axiomatized with the four sentences above by Tree.

When the context allows we will simply write T for (7T;<). Also, we write 2 <y as a
shorthand for z <yVvz=y. The elements of a tree are called nodes. If a <b then a is called
the predecessor of b and b is called a successor of a; if there is no ¢ with a<c<b then
a is called the immediate predecessor of b and b is called an immediate successor of a.
A tree is called binary if every node in it has precisely two immediate successors. A <-
maximal node is called a leaf. The set of leaves can be defined using the first-order formula
leaf(z):=Vy(z<y—> z=y).

A maximal totally ordered set of nodes is called a path. Using Zorn’s Lemma, it is easy
to see that every totally ordered subset of a tree is contained in a path. For any order type
a, a path A in a tree is called an a-path if A is isomorphic with «. The binary tree in which
every path is an a-path will be denoted B,. As usual, we denote by w the order type of the
positive integers, by @* the order type of the negative integers, and by ¢ the order type of
all integers.

A tree T is called well-founded when every non-empty set of nodes from 7T contains a
minimal node.
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A tree is called downwards discrete when every non-root node in T has an immediate
predecessor. T is called weakly upwards discrete when every non-leaf node has an immediate
successor, and upwards discrete when, for every path X in T, every non-leaf node in X has an
immediate successor belonging to X. T is called weakly discrete when it is both downwards
discrete as well as weakly upwards discrete, and discrete when it is both downwards discrete
and upwards discrete. Note that all these properties are first-order definable.

A discrete tree is called finitely branching when every node in that tree has finitely many
(possibly none) immediate successors.!

Given a tree T and ae T, define

a. = {zxeT:x<a},
a> = {zeT:z<al},
a. = {zeT:a<z},
ag = {zeT:a<z}.

The sets a., a>, a. and ag will also be treated as substructures of 7. The sets a. and a>
are always linear orders, while the set ag is always a tree—the generated subtree of T rooted
at a.

For keN and ¢(z,2) any formula with z=(z,..., z), define the formula

7,(Z) :=3zp(z,2) AVaVy (p(z, 2) A@(y,2) > (s <yVe=yVy<z))A

VaVy(z<yre(y,z) = ¢(z,2)) A—=F2Vy(e(y,2) > y < z).

Note that, if ¢ has quantifier rank n, then m, has quantifier rank n+2.
The formula 7, formalizes the claim that the formula ¢ defines a path. Verifying that is
straightforward, thus obtaining the following.

ProprosiTion 10
Let T be a tree with ¢,...,c; € T and put ¢=(cy,..., ¢;). The formula ¢(z, ¢) defines a path
in (T;¢) if and only if TEm,(c/Z).

By the proposition above, if T)= T, then a formula ¢ defines a path in T} iff it defines a
path in T5.

A substructure S of a tree T which is itself a tree is called a subtree of T. S is called
upwards closed in T when it satisfies the property that for all z,y€ T, whenever z €S and
<y then yes.

ProrosiTion 11 [4]

Let T'=(Ti;<7,) be a tree and let {(S;;<g):1€ I} be a pairwise disjoint set of upwards
closed subtrees of T3, where the order <g, is the order <7, restricted to the domain S;. For
every i€, let Sy =(Sy); <s,,) be a tree with S;=, Sy(;). Let T, be the tree obtained from
T, by replacing every subtree S; with the tree Sy;). Formally, we define Th=(T5; <7r,) as
follows:

o | Tol:=(T1\U,er )Y Uics Sy, and

!This definition of finite branching is not the most general, nor necessarily the most intuitively acceptable, but
it is sufficient for the purposes of this article. For further details and discussion on finite branching see [7] and [4].
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o for z,ye Ty, <,y if and only if one of the following conditions are satisfied:
(i) z,ye T'\U,; Si and z <7, y, or

(ii) =,ye Sy for some i and z <g,, y, or

(ili) ze T1\S; and ye Sy, for some i, and z <7, z for some z€S;.

Then T, =, Ts.

3 Classes of trees associated with a given class of linear orders

Here, we define several classes of trees naturally associated, from the viewpoint of first-order
logic, with a given set of linear order types C. We will call these classes of trees C-classes.

DEFINITION 12
A tree T is called a:

(i) C-tree when every path in T is an a-path for some o €C;

(ii) wniformly C-like tree (U-C-like tree) if T=S for some C-tree S;

(iii) C-like tree if, for every neN, there is a C-tree S such that T=, S;

(iv) pathwise uniformly C-like tree (PU-C-like tree) if, for every path X in T, there exists
aeC such that X =q;

(v) pathwise C-like tree (P-C-like tree) if, for every path X in T and for every neN, there
exists @ €C such that X =, «;

(vi) definably C-tree (D-C-tree) if every parametrically definable path X in T is an a-path
for some o €C (dependent on X);

(vii) definably uniformly C-like tree (DU-C-like tree) if, for every parametrically definable
path X in T, there exists « €C such that X=a«;

(viii) definably C-like tree (D-C-like tree) if, for every parametrically definable path X in
T and for every neN, there exists @ €C such that X =,«. Equivalently (since the
language of trees has finite signature), if every parametrically definable path in T is
a model of the first-order theory of C.

If C={a} then T is simply called an a-tree, a uniformly «-like tree, etc.
We follow with a few examples that will be used further, in the proof of Theorem 19.

ExAmMPLE 13

The tree B, is uncountable. Let T; be any countable elementary substructure of B, and
let C; ={w+1}. T} is a binary tree not containing any finite paths, so that every path in T)
is either an w-path or an (w+1)-path. Moreover, T} does actually contain both w-paths and
(w+1)-paths (and the former are not even 2-equivalent to w+1). Thus, T} can be seen as
the result of removing an uncountable set of leaves from B,.;.

Suppose now, that ¢(z,¢) defines a path A in (77;¢) for some tuple ¢ of nodes from T.
Then (11, ¢) Em,(¢), 80 (Byt1, ¢) Em,(¢), hence ¢(z, ¢) defines a path in (B,41; ¢). Now, since
every path in B,;; is an (w+1)-path then we get that (B,y1, ¢) =3z (leaf(z) Ap(z,¢)) and
so (Ty,¢) =3z (leaf(z) A@(x,¢)). Hence, A will contain a leaf. Thus, every parametrically
definably path in T; will contain a leaf, and since every path in T} containing a leaf is
parametrically definable (using that leaf as parameter) it follows that the parametrically
definable paths in T} are precisely its (w+1)-paths.

Thus, T; is a uniformly (w+1)-like tree, as well as a definably (w+1)-tree, but neither
an (w+1)-tree, nor a pathwise (w+1)-like tree.
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ExampLE 14

Let T, be the tree indicated in Figure 1 and let Cy={w}. Each of the two paths in T}
is parametrically definable and elementarily equivalent with w. In any w-like tree, every
parametrically definable set contains a minimal node. The set of nodes in T, defined by the
formula

p(r)=VyVz(z<yrz<z— (y<zVy=zVvz<y))

contains no minimal node. Thus, T5 is a definably uniformly w-like tree, but not w-like.
Let o7 be the sentence

01 :=Tug(u) = Ju(p(u) AV (w < u— —p(w)).

where ¢(z) is defined as above. This sentence will be used further.

ExampLE 15

Let T3 be the tree indicated in Figure 1 and let C3={n:n eN}. Both paths in T3 are para-
metrically definable. It is known (e.g. [6]) that for every m there exists some sufficiently
large n such that w+w*=,,n. However, w+w* #n for every n. In any DU-C;-like tree, the
set defined by the formula ¢(z) from Example 14 will contain a minimal node. However,
the subset of T3 defined by ¢(z) does not contain a minimal node. Thus, T3 is a definably
Cs-like tree, even a pathwise Cs-like tree, but neither a Cs-like tree nor a definably uniformly
Cs-like tree.

ExamvpLE 16
Let T, be the linear order w+w* and let Cy={n:neN}. As noted above, there exists, for
every m, some sufficiently large n such that w+w*=,,n, but w+w*#n for every n.

ExamvpLE 17
Let T5 be the tree B, and take C; ={w+1}. Note that B, contains no parametrically definable
paths. Let oy be the sentence

oy:=VrAy(z < yAleaf(y)).

This sentence will be used further.

ExamvpLE 18
Let Ts be the linear order w+¢ and take Cs={w}. It is known that o=w+¢.

Fic. 1. The trees Ty and T3 described in Examples 14 and 15.
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4 Relationships between the C-classes of trees

THEOREM 19
Let C be a class of linear orders. The set-theoretical inclusions and non-inclusions that hold
between the various C-classes of trees are presented in Figure 2.

Proor. To begin with the inclusions, we will show that the class of C-like trees is contained in
the class of D-C-like trees. The argument to show that the class of U-C-like trees is contained
in the class of DU-C-like trees is similar. The remaining inclusions are quite easy to verify.

Let T be a C-like tree and let A be a path in T defined in (7T';¢) by the formula ¢(z,¢)
for some tuple of nodes ¢ from 7. Suppose that A has n-characteristic t. Then T =1, (¢/z)
and T'=1%(¢/z) so that Tl=3z(m,(Z) At¥(2)). Since T is C-like then there exists a C-tree
S for which S 3z (m,(2) At¢(2)). Thus, ¢(z,d) defines a path B in (S; d) for some tuple d
from S, and BEt. But B is isomorphic with some linear order C in C and so A=, C. It
follows that T is a D-C-like tree.

As an example of a non-inclusion demonstrated by a counterexample, we show that the
class of P-C-like trees is not always included in the class of C-like trees. Note, that the tree
Ty from Example 14 is a P-Cy-like tree, but not a Cs-like tree. This is because every Co-like

D-C-like
trees
Ty,Cy x L TG
C-like T5.C5  T4:C4|  DU-C-like Ty.Cy  T1.Cr P-C-like
trees trees trees
x X X
U-C-like ||\ D-Cotrees |- PU-C-like
trees T5.C5  T5.Co T5.Co T1.Cy trees
75.Cy : TG
X
C-trees

Fic. 2. Relationships between the C-classes of trees (see Theorem 19). Inclusions X CV
are denoted as X — Y. Non-inclusions are indicated by specifying a counterexample drawn
from Examples 13-18 or, when obtained through completion of diagrams, by x. There are
no downwards directed inclusions between classes separated by more than one level.
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tree satisfies the sentence oy as defined in Example 14, while T5 does not. Hence, the class
of P-Cs-like trees is not contained in the class of Co-like trees.

As an example of a non-inclusion obtained through transitive completion in Figure 2,
consider the claim that the class of P-C-like trees is not generally a subclass of the class of
PU-C-like trees. If, to the contrary, the class of P-C-like trees were a subclass of the class
of PU-C-like trees for all classes of linear orders C, then since the class of PU-C-like trees
is also a subclass of the class of DU-C-like trees for all classes C, we would get that the
class of P-C-like trees is a subclass of the class of DU-C-like trees for all classes C. But this
contradicts the fact that the tree Ty from Example 16 is a P-Cy-like tree, with C, as defined
in Example 16, but T} is not a DU-C,-like tree. This establishes the non-inclusion.

The remaining non-inclusions are easily verified. |

The verification of the claims in the following proposition is routine.

ProposrTion 20
When the class C consists of a single linear order, the following additional inclusions hold:

(i) the class of P-C-like trees C the class of PU-C-like trees,
(ii) the class of D-C-like trees C the class of DU-C-like trees.

Consequently,

(iii) the class of C-like trees C the class of DU-C-like trees,
(iv) the class of P-C-like trees C the class of DU-C-like trees.

5 Relationships between the first-order theories of C-classes of
trees

THEOREM 21
Let C be a class of linear orders. The set-theoretical inclusions and non-inclusions that hold
between the first-order theories of the various C-classes of trees are presented in Figure 3.

Proor. Let o € TH(P-C-like trees) say with qr(o)=n. Let T be a C-like tree. Then T=, T}
for some C-tree Ty. But T} is also a P-C-like tree hence Ty =0 and so T =o. It follows that
o € TH(C-like trees) and so TH(P-C-like trees) C TH(C-like trees).

The following inclusions can be proven using a similar argument:

TH(DU-C-like trees) C TH(C-like trees),
TH(D-C-trees) € TH(C-like trees),
TH(PU-C-like trees) € TH(C-like trees),
TH(U-C-like trees) € TH(C-like trees),
TH(PU-C-like trees) € TH(U-C-like trees),
TH(P-C-like trees) € TH(U-C-like trees),
TH(D-C-trees) C TH(U-C-like trees).

The inclusion TH(C-trees) € TH(U-C-like trees) is immediate.

The remaining inclusions follow from Theorem 19 and the accompanying diagram in
Figure 2.

We briefly discuss the non-inclusions shown in Figure 3. Consider, for example, the
non-inclusion TH(DU-Cs-like trees) € TH(P-Cs-like trees). To see this, let T' be a definably
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D-C-like
trees
X X
X
C-like X[ DU-Clike C5.02  Cy.01 P-C-like
trees trees trees
X X X

Cs,09

. Cs, Co, i
U-C-like -— D-C-trees 592 % 2:01 PU-C-like
trees trees

C-trees

Fia. 3. Relationships between the first-order theories of the C-classes of trees (see
Theorem 21). Inclusions X C Y are denoted as X — Y. Non-inclusions are indicated by speci-
fying a counterexample drawn from Examples 1318 or, when obtained through completion,
by the symbol x. Except for the obvious cases, there are no upwards directed inclusions
between the theories of classes separated by more than one level.

uniformly Cs-like tree and suppose that T lE=¢(a/z) for some a€ T, where ¢(z) is as in
Example 14. Then a belongs to a parametrically definable (being ‘singular’, see next section)
path A, with A=n for some neN. Hence, A will be finite. It follows that T =07 (where
o1 is as in Example 14) and so o1 € TH(DU-Cs-trees). However, T3 is a P-Cs-like tree with
Ts =0y, so that o ¢ TH(P-Cs-like trees). This serves as a counterexample to establish the
non-inclusion TH(DU-C;-like trees) € TH(P-Cs-like trees).

It can be shown, using an argument similar to the one in the preceding paragraph, that
TH(D-Cy-trees) £ TH(PU-Cy-like trees).

The non-inclusions which use the class C5 and the sentence o5 from Example 17 as coun-
terexample are easily verified.

Finally, the non-inclusions obtained through completion are trivial. For example,
TH(C-trees) is mnot generally a subtheory of TH(D-C-trees), for if it were, then
using the fact that TH(PU-C-like trees) CTH(C-trees) for all classes C, this would
give TH(PU-C-like trees) € TH(D-C-trees) for all classes C, contradicting the fact that
TH(PU-Cs-like trees) € TH(D-Cs-trees).
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Likewise the theory TH(C-like trees) is not generally a subtheory of the theory
TH(D-C-trees), for if it were, then the theories TH(D-C-trees), TH(C-like trees) and
TH(U-C-like trees) would coincide for all classes C. But this would contradict the fact
that TH(C-trees) C TH(U-C-like trees) for all classes C, while there exist classes C for which
TH(C-trees) € TH(D-C-trees).

The remaining non-inclusions can be proved using similar reasoning. ||

ProprosiTION 22
If C consists of a single linear order, the following additional inclusions hold between the
first-order theories of C-classes of trees:

(i) TH(DU-C-like trees) C TH(D-C-like trees),
(ii) TH(DU-C-like trees) C TH(P-C-like trees),
(iii) TH(PU-C-like trees) € TH(P-C-like trees).

The other non-inclusions remain the same.

6 Axiomatizing the first-order theories of the C-classes of trees

As shown in the previous section, every class of linear orders generates eight naturally
associated classes of trees, which in general have up to six different first-order theories.
In this section, we discuss the following problem: given a class of linear orders C, can we
determine the first-order theories of the respective C-classes of trees in terms of the first-
order theory of C? In principle, this is a rather difficult problem, because C may consist of a
quite arbitrary collection of linear order types. Here we will obtain some general results, for
some of the associated classes of trees; more specific results will be included in a follow-up
work.

A natural family of axioms for the class of trees constructed from C arises as follows: every
parametrically definable path in every such tree must satisfy all axioms of the theory of C.
To be more precise, for any theory of linear orders X, let Dey denote the scheme consisting
of all sentences

Vz(r,(Z)— 0?(7))

for every formula ¢(z,z) (including formulas ¢(z) for which the tuple z is empty) and for
every sentence o € 3. If ¥ ={o} then Dey is written simply as De,. The scheme Dey states
that every parametrically definable path satisfies the theory X.

This axiom scheme axiomatizes the class of definably C-like trees:

ProposITION 23
Let C be a class of linear order types axiomatized by the theory X. The class of definably
C-like trees is precisely the class of models of the theory TreeUDesy.

Proor. Let T be a definably C-like tree. It is immediate that T satisfies Tree. Let ¢(z,z) be
a formula with z=(z,...,2;,) (z may be empty), let ¢=(cy,..., ¢;) be a tuple of nodes from
T, and let T'=m,(¢/Z). Then there is a path A defined in (T';¢) by ¢(z,¢). But Al=o for
every 0 € X and A=(T;¢)?, so TEo?(¢/z) for every o0 € E. Thus, T =Des.

Conversely, let T be a structure such that T =TreeUDey. Then T is a tree. Let ¢ be a
(possibly empty) k-tuple of nodes in T, let ¢(z,2) be a formula with 2=z, ..., 2,), and let A
be a path definable in (T'; ¢) using the formula ¢(z,¢). Then T [=m,(c/z) hence T'l=0%(c/z)
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for every o€ X. But A=(T;¢)* so Ao for every o€ X. Hence, 4 is a model of TH(C).
Thus, T is a definably C-like tree. |

When C is an axiomatizable class of linear order types, the classes of definably C-like trees
and definably C-trees coincide, hence the following holds.

COROLLARY 24
Let C be an axiomatizable class of linear order types, axiomatized by the theory X. Then
the class of definably C-trees is precisely the class of models of the theory TreeUDesy.

Likewise, if C consists of finitely many linear order types, then the classes of definably
C-like trees and definably uniformly C-like trees coincide, hence the following holds.

COROLLARY 25
Let C be a finite class of linear order types, axiomatized by the theory X. Then the class of
definably uniformly C-like trees is precisely the class of models of the theory TreeUDesy.

As is well known (see e.g. [6]), for every ordinal o with o <w®, there exists a first-order
sentence &, which axiomatizes the first-order theory of o, and ®,=®y if and only if a=g.
Hence, we have the following corollary.

COROLLARY 26
Let « be an ordinal with o <w®. The class of definably (uniformly) a-like trees is precisely
the class of models of the theory TreeUDeg, .

Now, what about the other C-classes of trees, characterized in terms of the entire struc-
tures, or the sets of all paths in them, not only the parametrically definable ones? To get
a grip on the axiomatizations of such classes one has to analyse the non-definable paths
emerging in them. We will consider that question in the next section, where we will take a
closer look at first-order parametrically definable and undefinable paths in trees.

7 First-order parametrically definable and undefinable paths in
trees: zooming in

7.1 On parametrically definable paths

For a an ordinal and T a well-founded tree, a node a in T is said to have level @ when « is
the order type of the set a.. The supremum of the set of all levels of nodes in T is called
the height of T. The set of nodes having level « can be defined using the formula

level, (y) := @Z“’”y) (),

where 6(z,y):=z < y.
The next result shows that in well-founded trees T of height less than »®, the ability of
nodes to define subsets (in particular, paths) of T, improves with the level of those nodes.

ProposiTion 27

Let T be a well-founded tree of height less than w®. Let ¢=(¢y,..., ;) be a tuple of nodes
from T and let ¢(z,Zz) be a formula, with z2=(z,..., 2;), such that ¢(z,¢) defines the set A
in (T;¢). For every i (1<i<k), let d;e T with ¢;<d;. Then there is a formula ¥(z, z) such
that 1/f(:1:, EZ) defines 4 in (T; El), where (_1=(d1,..., dy.).
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Proor. For every i, suppose c¢; has level «;. Then ¢; can be defined in (T; (_i) using the
formula y;(y, d;):=y < d; Alevely, (y). Hence take

i=1

k
V(z, 21,00, 2) :=Vy1...Vyp </\yi(y¢,zi)—><p(x, yl,...,yk)).
|

In particular, in well-founded trees of height less than w® for which every non-leaf node
has a successor which is a leaf, every parametrically definable set of nodes can be defined
using leaves for parameters.

PrOPOSITION 28

Let T be a finitely branching tree in which every node has finite level and let A be a path
in T. Suppose A is definable in (7T';¢) for some tuple of nodes ¢=(cy,...,¢;) from T. Then
there exists d € A such that A is definable in (T d).

Proor. We first show that the parameter ¢, can be replaced with a parameter d;, from A
itself. Let ¢(z,z) be a formula (with z=(z,...,2)) such that ¢(z,¢) defines 4 in (T;¢).
Suppose ¢ has quantifier rank n and that ¢ has level [. Let

B::{be T:TE[(T; E)]]"”(cl/xl,...,ck_l/mk_l,b/azk)
and b has level l}.

Since ¢, € B we have that B is non-empty. From the fact that T is finitely branching and that
every node in T has finite level it follows that B is finite. B can be defined in (T ¢y, ..., ¢4—1)
using the formula &(z, ¢, ..., ¢4—1), where

E(z, 2150 201) = [(T; E)]]"H(zl,...,zk_l,x)/\levell(x).

Since (T;¢)Em,(c) and (Tsci,....c)=p12(Tscr,...,ch-1,b) for every beB then
o(x,c1y...,0-1,0) defines a path in (T;c¢,...,¢-1,b) for every be B. Hence, the for-
mula ¢(z, ¢, ..., cg—1), where

C(@o 21,y zim1) =3y (E(Ys 210wy 211 ) ANQ(ZL 214wy 25215 1) ) s

defines in (T;¢y,...,c—1) a subtree Ty of T containing only finitely many paths, amongst
which is A.

Now, choose any dj € A such that d;, does not belong to any path in Tj except for A. Then
A can be defined in (T ¢y, ..., cx—1, di,) using the formula x(z, ¢, ..., cx_1, di,), where

x(@,21,02) =¢(z, 21,z )N (< VZ=2 V2 < ).

Hence, we have succeeded in replacing the parameter ¢; with a parameter d; from A.
Repeating this procedure for the parameters c;_1,...,c;, we eventually obtain nodes

dy,...,dy€ A and a formula x'(z, 2, ..., 2;) such that x'(z,d,,...,d;) defines A in (T; dy,..., dy).

Suppose without loss of generality that d; <d; for every i>2 and that the level of d; is ;.
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Then d; can be defined in (T'; d;) using the formula z < d; Alevel, (z). It follows that A can
be defined in (T d;) using the formula ¥ (z, d;), where

!
Y(z,2):=V2n...Vz, (/\ (zl <zAlevel, (zz)) —x(2,2,2,..., zk)> .

=2

Now, take d=d;. [ |

7.2 Singular and emergent paths

It is generally not possible to formalize in the first-order language of trees with equality the
requirement that all paths in a given tree satisfy the first-order theory of some class C of
linear orders, and subsequently to axiomatize the first-order theory of the class of C-trees.
This is because not all paths in a tree need to be parametrically definable, so we need to
analyse deeper the nature of non-parametrically definable paths in trees, too. The behaviour
and structure of such paths can be better understood by considering two types of paths:
singular and emergent.

DeriNiTION 29

Let T be a tree and let A be a path in T. A is called singular if there exists a € A such that
ag is total. Otherwise the path A is called emergent. If B is a set of paths from T with A¢B
and with AC|JB then A is said to emerge from 5.

For a more detailed analysis of singular and emergent paths, the reader is referred to [5].

ExampLE 30

Let T be the tree obtained by taking the linear order A:=w and at each point in A, we
adjoin a copy of @ (see Figure 4). Thus, every path in T will be isomorphic with w. The
path A is an emergent path, while every other path in T is singular.

Clearly, every path containing a greatest node is singular.

F1c. 4. Singular and emergent paths (see Example 30).
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Every singular path is parametrically definable. Indeed, let A be a singular path in a tree
T and let a€ A such that ag is total. Then A can be defined in (T'; a) using the formula

r<avr=aVa<<z.

It hence follows that, given any tree T, the set of paths in T which are not parametrically
definable forms a subset of the set of emergent paths.

Note, however, that not all emergent paths need be undefinable. For example, the path
A in the tree T from Example 30 is definable in T using the formula

2 2
e <y1 ;éyQ/\/\(x<y,;)/\/\(—-Elz(x<z/\z< y7))>

=1 1=1

7.8 On non-definable paths

First, we will show that if a path A in a tree T is not parametrically definable, then there
exists a ‘ladder’ of paths in T, different from A, such that A cannot be distinguished from the
path corresponding to the n-th step of the ‘ladder’ by using first-order formulae of quantifier
rank n.

Lemma 31
Let T be a tree and let A be a path that is not parametrically definable in T'. For every
a€ A and for every neN, there exists be A and ce T\ A with b, ¢> a and such that b< =, c<.

Proor. Let a€ A and let neN but suppose to the contrary that z¢ #, y< for every z€ A and
for every ye T\ A with z,y>a. Let 1q,...,7, be all n-characteristics of empty tuples over
the language of ordered sets. Let U={i: 2< =1, for some z € A with 2> a}. Then for every
satisfying = > a, we have that z< =1, for some i€ U if and only if z€ A. Let 6(u,y)=y< u.
Then A can be defined in (T'; a) using the formula

o(z,a):=z<avVzZan (\/rf(”"’)>7
ieU

a contradiction. [ |

PRrOPOSITION 32

Let o be a linear order containing a greatest element and suppose the first-order theory of
« can be axiomatized using the sentence o. Let T be a definably (uniformly) o-like tree
containing only finitely many paths which are not parametrically definable. Then for every
n €N, there exists a pathwise uniformly «-like tree S such that S=, T.

Proor. It suffices to prove the result for large n, so let n>qr(o)+1. Let Ay,..., Ay be the
paths in 7T that are not parametrically definable and for every 4, let a;€ A; be such that
a; ¢ A; for all j (j#i). By Lemma 31, for every i, there exists b;€ A; and ¢;€ T\ 4, with
b;, ¢; > a; and such that (b;)<=, (¢;)<.

Let S be the tree obtained by taking the tree T and, for every i, replacing the subtree (b;)<
with the tree S;:=(¢;)<. From the way S is constructed, every path in S will contain a leaf

node and hence every path in S is definable using that leaf as parameter. Let 6(z,y):=z<y
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and define 7:=Vy(leaf(y) — 0?*¥)(y)). Note that qr(r)=qr(c)+1. By Proposition 11, we
get T'=, S and since T satisfies v then S also satisfies t. Since every path in S contains
a leaf then it follows that every path in S satisfies 0 and hence S is pathwise uniformly
a-like. |

8 Concluding remarks

In this article, we have started a systematic study of the classes and first-order theories
of trees, naturally associated, in terms of the paths occurring in those trees and the first-
order theories of those paths, with a given class C of linear orders. We have identified eight
generally different C-classes of trees and have classified their set-theoretic relationships and
the respective relationships between their first-order theories in the general case, i.e. without
any specific assumptions about the class C. We have then obtained some general results about
the axiomatizations of the first-order theories of some C-classes of trees and have indicated
the problems obstructing such general results for the other classes. These problems arise
from the possible emergence of non-definable paths in the trees, that need not satisfy the
first-order theory of C, so we have started analysing definable and undefinable paths in
trees. In a follow-up paper, we will apply these, and further results, to establish complete
axiomatizations of the first-order theories of the classes of C-trees for some important classes
C of linear orders.
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