Skip to main content
Log in

The Origin of Cellular Life and Biosemiotics

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Recent successes of systems biology clarified that biological functionality is multilevel. We point out that this fact makes it necessary to revise popular views about macromolecular functions and distinguish between local, physico-chemical and global, biological functions. Our analysis shows that physico-chemical functions are merely tools of biological functionality. This result sheds new light on the origin of cellular life, indicating that in evolutionary history, assignment of biological functions to cellular ingredients plays a crucial role. In this wider picture, even if aggregation of chance mutations of replicator molecules and spontaneously self-assembled proteins led to the formation of a system identical with a living cell in all physical respects but devoid of biological functions, it would remain an inanimate physical system, a pseudo-cell or a zombie-cell but not a viable cell. In the origin of life scenarios, a fundamental circularity arises, since if cells are the minimal units of life, it is apparent that assignments of cellular functions require the presence of cells and vice versa. Resolution of this dilemma requires distinguishing between physico-chemical and biological symbols as well as between physico-chemical and biological information. Our analysis of the concepts of symbol, rule and code suggests that they all rely implicitly on biological laws or principles. We show that the problem is how to establish physico-chemically arbitrary rules assigning biological functions without the presence of living organisms. We propose a solution to that problem with the help of a generalized action principle and biological harnessing of quantum uncertainties. By our proposal, biology is an autonomous science having its own fundamental principle. The biological principle ought not to be regarded as an emergent phenomenon. It can guide chemical evolution towards the biological one, progressively assigning greater complexity and functionality to macromolecules and systems of macromolecules at all levels of organization. This solution explains some perplexing facts and posits a new context for thinking about the problems of the origin of life and mind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht-Buehler, G. (2009). ‘Cell intelligence’. Available at http://www.basic.northwestern.edu/g-buehler/FRAME.HTM [15 July 2012].

  • Barbieri, M. (2008). Life is semiosis. The biosemiotic view of nature. Cosmos and History: The Journal of Natural and Social Philosophy, 4(1–2), 29–52. http://cosmosandhistory.org/index.php/journal/article/view/99/198.

  • Barbieri, M. (2012). The paradigms of biology. Biosemiotics, April 2012, 1–27.

  • Bauer, E. (1967). Theoretical biology. Budapest: Akadémiai Kiadó. in Hungarian. 1967; in Russian, 1935, 1982, 1993, 2002.

    Google Scholar 

  • Beckner, M. (1969). Function and teleology. Journal of the History of Biology, 2, 151–164.

    Article  Google Scholar 

  • Ben-Jacob, E., Shapira, Y., & Tauber, A. I. (2006). Seeking the foundations of cognition in bacteria: from Schrödinger’s negative entropy to latent information. Physica A, 359, 495–524.

    Article  CAS  Google Scholar 

  • Berridge, M. J. (2012). Cell Signalling Biology, doi:10.1042/csb0001001.

  • Boi, L. (2010). Méthodes mathématiques, processus biologiques et philosophie de la nature. Eikasia. Revista de Filosofía, VI(35), 267–297.

    Google Scholar 

  • Bouchard, T. J. (2004). Genetic influence on human psychological traits: a survey. Current Directions in Psychological Science, 13, 148–151.

    Article  Google Scholar 

  • Buller, D. J. (2002). Function and teleology. In Encycl. Life Sci. (p. 393). London: Macmillan.

  • ‘code’, 2012, entry, Oxford English Dictionary.

  • Cruzeiro-Hansson, L. (2001). How do proteins work? Proc. First European Workshop on Exo/Astro-Biology. Frascati 21–23 May 2001. ESA SP-496.

  • Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: on the deceptive determinism of DNA. Psychological Bulletin, 137(5), 800–818.

    Article  PubMed Central  PubMed  Google Scholar 

  • Davies, P. (1999). The fifth miracle. The search for the origin of life. London: Penguin.

    Google Scholar 

  • Grandpierre, A. (2007). Biological extension of the action principle: endpoint determination beyond the quantum level and the ultimate physical roots of consciousness. Neuroquantology, 5, 346–362.

    Google Scholar 

  • Grandpierre, A. (2008). Cosmic life forms. In J. Seckbach & M. Walsh (Eds.), From fossils to astrobiology (pp. 369–385). Berlin: Springer.

    Chapter  Google Scholar 

  • Grandpierre, A. (2012). “Genuine biological autonomy: How can the spooky finger of mind play on the physical keyboard of the brain?” Athens: ATINER’S Conference Paper Series, No: PHI2012-0197. http://www.atiner.gr/papers/PHI2012-0197.pdf.

  • Grandpierre, A., & Kafatos, M. (2012). Biological autonomy. Philosophy Study, 2(9), 631–649.

    Google Scholar 

  • Green, E. R. (2012). Entry: “Biology.” Encyclopædia Britannica. Encyclopædia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica.

    Google Scholar 

  • Harold, F. M. (2001). The way of the cell. Molecules, organisms and the order of life. Oxford: Oxford University Press.

    Google Scholar 

  • Hoffmeyer, J. (1998). Surfaces inside surfaces: on the origin of agency and life. Cybernetics and Human Knowing, 5(1), 33–42.

    Google Scholar 

  • Hoffmeyer, J. (1999). Order out of indeterminacy. Semiotica, 127, 321–343.

    Google Scholar 

  • Hoffmeyer, J. (2001). Life and reference. BioSystems, 60, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Huang, K. (2007). Fundamental forces of nature. The story of gauge fields. Singapore: World Scientific.

    Book  Google Scholar 

  • Itani, M., Yamamoto, Y., Doi, Y., & Miyaishi, S. (2011). Quantitative analysis of DNA degradation in the dead body. Acta Medica Okayama, 65, 299–306.

    CAS  PubMed  Google Scholar 

  • Kawade, Y. (1992). A molecular semiotic view of biology. Interferon and ‘homeokine’ as symbols. Rivista di Biologia–Biology Forum, 85(1), 71–78.

    CAS  Google Scholar 

  • Kawade, Y. (2009). On the nature of the subjectivity of living things. Biosemiotics, 2(2), 205–220.

    Article  Google Scholar 

  • Kawamura, K. (2012). Drawbacks of the ancient RNA-based life-like system under primitive earth conditions. Biochimie, 94(7), 1441–1450.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. (1998). Mind in a physical world. Cambridge: The MIT Press.

    Google Scholar 

  • Mona, A. E.-H., Sahar, A. E.-D., Sohayla, M. A., Nermin, A. H., & Sobhy, E. H. (2008). The relationship between postmortem interval and DNA degradation in different tissues of drowned rats. Mansoura Journal Forensic Medicine & Clinical Toxicology, XVI, 45–61. http://medfac.mans.edu.eg/english/forensic/july2008/S.%203_.pdf.

  • Nicklas, J. A., Noreault-Conti, T., & Buel, E. (2012). Development of a real-time method to detect DNA degradation in forensic samples. Journal of Forensic Sciences, 57(2), 466–471.

    Article  CAS  PubMed  Google Scholar 

  • Noble, D. (2008a). Claude Bernard, the first systems biologist, and the future of physiology. Experimental Physiology, 93(1), 16–26.

    Article  PubMed  Google Scholar 

  • Noble, D. (2008b). Genes and causation. Philosophical Transactions of the Royal Society A, 366, 3001–3015.

    Article  CAS  Google Scholar 

  • Noble, D. (2010). Biophysics and systems biology. Review. Philosophical Transactions of the Royal Society A, 368, 1125–1139.

    Article  CAS  Google Scholar 

  • Pályi, G., Zucchi, C., & Caglioti, L. (Eds.). (2002). Fundamentals of life. Paris: Elsevier.

    Google Scholar 

  • Pattee, H. H. (1973). The physical basis and origin of hierarchical control. In H. H. Pattee (Ed.), Hierarchy theory: The challenge of complex systems (pp. 73–108). New York: Braziller.

    Google Scholar 

  • Pattee, H. H. (1969) Physical Conditions for Primitive Functional Hierarchies. In L. L. Whyte, A. G. Wilson & D. Wilson (Eds.), Hierarchical Structures (pp. 161–177) New York: American Elsevier.

  • Pattee, H. H., & Kull, K. (2009). A biosemiotic conversation: between physics and semiotics. Sign Systems Studies, 37(1–2), 311–331.

    Google Scholar 

  • Polanyi, M. (1968). Life’s irreducible structure. Science, 160, 1308–1312.

    Article  CAS  PubMed  Google Scholar 

  • Rosoff, P. (2012). M. 2012. The myth of genetic enhancement. Theoretical Medicine and Bioethics, 33, 163–178.

    Article  PubMed  Google Scholar 

  • Shapiro, R. (1986). Origins: A Sceptic’s guide to the creation of life on earth (pp. 186–187). New York: Summit Books.

    Google Scholar 

  • Shapiro, J. A. (2009). Revisiting the central dogma in the 21st Century. Annals of the New York Academy of Sciences, 1178, 6–28.

  • Shapiro, J. A. (2011). Evolution: A view from the 21st century. FTPress Science.

  • Steinman, G., & Cole, M. (1967). Synthesis of biologically pertinent peptides under possible primordial conditions. Proceedings of the National Academy of Science, 58, 735.

    Google Scholar 

  • Swan, L. S., & Goldberg, L. J. (2010). Biosymbols: symbols in life and mind. Biosemiotics, 3, 17–31.

    Article  Google Scholar 

  • Tachibana, C., White, A., Johnson, N. A. (2010). Rediscovering biology. Proteins and Proteomics. http://www.learner.org/courses/biology/textbook/proteo/proteo_4.html.

  • Toepfer, G. (2012). Teleology and its constitutive role for biology as the science of organized systems in nature. In: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 113–119.

  • Witzany, G. (2010). Biocommunication and natural genome editing. Berlin: Springer.

    Book  Google Scholar 

  • Zhang, L., Gurskaya, N. G., Merzlyak, E. M., Staroverov, D. B., Mudrik, N. N., Samarkina, O. N., et al. (2007). Method for real-time monitoring of protein degradation at the single cell level. BioTechniques, 42(4), 446–450.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

It is a pleasure for me to express my thanks to my friend Jean Drew for the galvanizing discussions and for correcting the English of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Grandpierre.

Additional information

Special Issue “Origins of Mind” edited by Liz Stillwaggon Swan and Andrew M. Winters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandpierre, A. The Origin of Cellular Life and Biosemiotics. Biosemiotics 6, 421–435 (2013). https://doi.org/10.1007/s12304-013-9173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-013-9173-9

Keywords

Navigation