
A case for pursuing Lattice Schemes in Fundamental Physics, by Rowan Grigg 

 

Research has shown that many of us hold intuitive beliefs about the way physical systems behave, 
which turn out to be contrary to reality.i  For example, subjects are given a depiction of a billiard ball 
being drawn in an arc across a table.  Asked what happens when the ball is released, some have the 
ball continuing along the arc, while others have the ball proceeding in a straight line tangential from 
the arc. 

From as early as Zeno in the 5th century BCE, we have known intuitively that for any division of one, 1    , there will always be a fraction, 1 ( + 1) , that is smaller.  This general idea has been rigorously 

formalized in the Continuum Hypothesis, a proposal that the real number line is infinitely divisible.1  
Yet since Leucippus, a contemporary of Zeno, we have intuitively recognised that any division of 
matter should eventually arrive at fundamental particles which cannot be divided any further.  
Mathematics has been routinely and effectively used to model physical systems, yet unreasonably 
so, for since Zeno and Leucippus, our most primitive assumptions about mathematics have been in 
fundamental disagreement with our most basic assumptions about matter. 

General Relativity (GR) is a so called ‘classical’ theorem, for it assumes a direct correlation between 
mathematics and the physical world.  GR suggests that both space and time, like the real number 
line, are infinitely divisible, and just as in division of real numbers by zero, GR too breaks down when 
the dimensions of space and time fall to zero at the ‘singularity’, predicted by GR to have been the 
starting point of the universe.  In an attempt to incorporate GR within Quantum theory, many 
researchers are considering the possibility that time and space are not continuous, but rather arise 
in discrete ‘quanta’.ii 

We have long known the scales at which GR and Quantum theory should theoretically merge.  Max 
Planck simply substituted his equations within those of Einstein, from which emerged fundamental 
units, among them the Planck length and the Planck time.  The Planck length (~10-35 metres) is the 
distance light travels in a vacuum in one interval of Planck time (~10-43 seconds), so that in 1043 
Planck intervals (1 second), light travels 10-35.1043 metres or 108 metres.  In the theory of Quantum 
Loop Gravityiii, space itself is thought to consist of ‘atomic’ spheres of space each having a diameter 
of one Planck length.  The GR model is now being thought of as having been a useful approximation 
to what is a fundamentally quantized reality. 

Our ancient intuition of reality’s discrete quantization is thus winning favour over our equally ancient 
intuition of a mathematical continuum.  Yet we have known since its inception that the Quantum 
model is also incomplete, for it can only predict the probabilities, rather than the actuality, of 
matter’s behaviour, and it is unable to decouple the ‘observer’ from objective external reality. 

At the time Quantum theory was introduced, physicists still held great hope for discovering what the 
philosopher Emanuel Kant called “the thing in itself” – discovering what physical reality actually is, 
rather than merely learning how to effectively model its behaviour.  This hope has however been 

                                                             
1 Formally, the hypothesis states that there is no intermediate cardinality between the set of rational numbers 
and the set of real numbers. 



consistently dashed by experiments which have unequivocally demonstrated non-locality.iv  
Entangled particles, separated from each other in space and time, influence each other faster than a 
signal travelling at the speed of light could be passed between them.  Quantum theory, in its most 
commonly followed guise, implies that objects at the farthest reaches of space can (somehow) 
exchange information with each other instantaneously, in apparent violation of Special Relativity. 

The prospect of returning to realism emerged in the late 1960s with the publication of Calculating 
Spacev by computing pioneer Konrad Zuse.  Zuse proposed that reality was comprised of machines 
which he called ‘cellular automata’.  He envisaged all material reality to be a cubic lattice of these 
cellular automata, each one connected to its neighbours on all sides. 

Displays such as those seen at the opening of the Beijing Olympics provide a useful illustration of his 
idea.  Participants are arrayed across an arena, each holding a selection of coloured cards, one of 
which they raise above their heads at any given time.  Each person is responsible for just one 
element of the two-dimensional composite picture that emerges above them.  For the purpose of 
the display, each person assumes the role of a cellular automaton.  The music playing in the arena 
provides a universal ‘clock’ that precisely synchronizes the ongoing changes in the display. 

If, for example, a blue ‘dot’ needs to move across the picture from left to right, a simple rule would 
be for each automaton to get its cue for the next pixel from its current neighbour to the left.  Then 
with each beat of the music, the dot would proceed smoothly across the display.  One can imagine 
providing each automaton with a simple set of rules to follow on each beat, also taking into account 
its neighbours to the front, back and right, such that intricate and unique patterns emerge. 

If such a system is extrapolated out into three dimensions, Zuse suggested that cellular automata 
could generate complex and unique realities, such as that which we now inhabit, rather than merely 
their representations.  We must ask however, what are these ‘cellular automata’ themselves made 
of, where are they, and where did their rules of engagement come from, just as we might ask what 
atoms are made of, or where the laws of Nature come from. 

Ed Fredkin, long time champion of ‘computational physics’, argues that the ‘automata’ are 
constructed out of an abstract substance he calls ‘pure information’.vi  Stephen Wolfram avoids the 
issue of a substrate altogether, for he does not see cellular automata and their interactions as an 
actuality, somehow lurking behind our perceived reality.  Rather, in his “New Kind of Science”, he 
employs the theory of cellular automata as an analytical tool for merely modelling reality, just as 
mathematics is employed for more conventional modelling of physical systems.vii  Max Tegmark 
however, like Fredkin, wants to know what Kant claimed we can never know – what we are 
ultimately made of.  In his “Ultimate Ensemble”, he argues that physical reality is not merely 
modelled by mathematics, but that physical structures and mathematical structures are one and the 
same thing – reality is made of mathematics, just as Fredkin’s world is made of information.viii  This is 
an attractive idea, for we can easily see what mathematics is (an abstract series of relationships), 
and just as easily see that all of mathematics in itself has no material substance.  Thus in Tegmark’s 
scheme, we have something (physics) which is constructed out of nothing (mathematics). 

Tegmark argues further that the universe is composed entirely of mathematical structures which are 
computationally decidable.  The concept of computability arose out of Alan Turing’s work on a 
scheme for algorithmically generating mathematical relationships, and then deciding if those 



relationships were valid.ix  His imaginary ‘machines’ could compute each candidate function for as 
long as it took to decide its validity.  Functions which are both computable and decidable are vital to 
a quantized model of reality, because like quanta themselves, these functions are finite.  The entire 
computation of such functions, as well as the Turing machines that compute them, can be 
represented by a finite string of binary digits, and ultimately by a single integer – a Turing machine is 
fundamentally an abstraction.  Turing discovered that a particular class of his machines were 
‘universal’ – a Universal Turing machine could simulate any other Turing machine including itself.2  
Such machines have since become a practical reality – today’s general purpose computers. 

Nick Bostrom has argued that the substrate of our reality, for example the ‘cellular automata’ of 
Zuse’s lattice scheme, is in fact a much larger computer that lies outside our perceived reality.x  The 
drawback of this idea, a darling of science fiction, is that it merely shifts the substrate of existence 
back one step.  We are left wondering what the “big” computer itself is made out of.  This notion 
does however provide a useful framework for thinking about computer simulation, as does its 
practical application in the virtual ‘realities’ that now pervade the Internet.3 

Putting aside the simulation of the entire universe, consider just one of Zuse’s cellular automata.  If 
the automaton is a Turing machine, then it is a ‘computer’ capable of simulating all the properties – 
vacuum energy, gravitational potential, and so on – of a single atom of space, a sphere with a 
diameter of 10-35 metres.  The machine is not ‘contained’ inside this sphere, nor does it occupy any 
other volume of space, because space itself does not come into existence until the automaton 
simulates it. 

What then is the automaton?  The automaton is itself a virtual machine 
that is being simulated by another automaton.  And what then is this 
automaton?  It too is being simulated by an automaton, but none other 
than the original automaton.  The idea of this self-referential loop (known 
as a “strange loop”) is superbly illustrated in the famous M.C. Escher 
woodcut “Drawing Hands”.  In the physical world, of course, such a scheme 
would represent perpetual motion and be thermodynamically outlawed.  However, these machines 
are not part of the physical world, but rather belong to the abstract world of mathematics, which is 
removed from physical law – these machines are initiating the very existence of physical law itself.  
Each machine is processing a string of binary digits in a “desultory manner” (as Turing originally 
described it), and in so doing is simulating the other machine, which is an (identical) string of binary 
digits.  Because the strings are finite in length, the process of stepping through each computation 
represents a cycle which returns to its starting point in a finite period.  This then is the automaton’s 
internal ‘clock’, the fundamental quantum of time, or 10-43 second in absolute terms. 

Constructed from pure mathematics, we have then generated both a fundamental quantum of 
space, AND a fundamental quantum of time.  If we return to our stadium in Beijing, we can see that 
the clock signal (the beat of the music) is delivered to each participant at the speed of sound, 
practically at the same time.  It is not practical however to deliver a simultaneous master clock signal 
throughout the universe, due to the limiting speed of light.  So instead, each element of space 

                                                             
2 These can be extremely simple, for example the recently discovered 2-state 3-colour Turing machine 
described at http://www.wolframscience.com/prizes/tm23/ 
3 eg. http://secondlife.com/ 



(automaton) references its own internal clock, running at a frequency of 1043 Hz.  The much coarser 
‘atomic’ clocks that are routinely used in navigation and communication are based upon physical 
phenomena, and are subject to significant frequency ‘drift’.  The internal clock of the ‘space’ 
automaton however arises from a non-physical computation, and is immune from drift.  Thus all 
space automata across the breadth of the universe remain precisely and indefinitely synchronised 
with each other. 

We can see from this model why the speed of light should be a limiting speed.  Let us suppose that a 
photon of light is likewise a simulated phenomenon, and that its simulation is enacted through a 
modified computational state in one of these ‘space’ automata, like the blue dot moving across a sea 
of white in the Olympic stadium.  We presume that the automaton has an input/output interface 
that can communicate the system state “photon” over to its neighbour, and then change its own 
state back to “vacuum”, within each clock cycle.  If we were to line up 1043 of these automata 
circumference-to-circumference in a straight line, we can see how a photon “state” could be passed 
along this 108 metre long “bucket brigade” of automata over the course of one second.  In this 
model, the photon is not a wave/particle “object” that makes its way through empty space.  Instead, 
the photon is a computational state that gets passed along a ‘solid’ pathway of simulated space 
atoms.  A photon, or any other simulated phenomenon, cannot propagate from one space atom to 
the next in any less than one fundamental clock cycle at a time.  However one can consider 
computational states that take more than one clock cycle to be translated across space, and hence 
propagate at speeds below the speed of light. 

A macroscopic object, such as a proton coupled to an electron, might be enacted through the 
altered computational states of an agglomerated network of space atoms.4  This agglomeration of 
states could likewise propagate (as a whole) through a fixed lattice of space atoms, but at a speed 
fundamentally limited by the diameter and internal clock frequency of the space atoms that are 
hosting it.  Let’s suppose that this hydrogen atom ‘state’ is translating through the lattice of space 
atoms at some (necessarily sub-luminal) speed.  If the energy state of the electron sub-system 
changes and a photon state is exported, we can see that the photon state will intrinsically propagate 
away from the hydrogen atom state, along the frame of the lattice, at precisely the speed of light, 
despite any existing vector of the hydrogen atom state it was sourced from.  However, the existing 
vector of the hydrogen atom state may very well alter the registered energy (colour) of the exported 
photon state.  

The lattice in such proposals returns us to the Newtonian perspective of an absolute frame.  
Relativistic effects then emerge from the interactions between the various computational states of 
the automata that comprise the fixed space-time lattice.  Clearly (experimentally) a state such as 
that representing a photon will routinely be diverted from a straight path, following on from the 
exchange of information with gravitational states (gravitons) that it encounters during its translation 
through the lattice.  Inertia is explained simply as the endless and desultory processing, in the 
absence of any intervening input, of an object’s computational states, as they are transferred 
between the individual automata of the lattice.  With astonishing prescience, Newton tried (albeit 
unsuccessfully) to develop a theory of gravity avoiding non-locality in which “tiny invisible jiggling 
particles fill all of seemingly empty space”xi 
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Where then does the lattice come from?  In the 1940s John von Neumann proposed a ‘universal 
replicator’, a type of cellular automaton that can replicate itself.xii  The code of the space automaton 
is modified so that in each computational cycle, it produces a new automaton.  In this scheme, there 
is an exponential expansion in the number of extant automata once the replication code is enacted.  

Indeed, some 2     such automata would be produced in the first second of the universe’s 
existence.  If these atoms of space are close packed, like stacked oranges at a fruit market, then the 
universe we currently observe (with a radius of ~45 billion light years) would contain a mere 10185 
such atoms – our visible neighbourhood would be a very small speck indeed, of the totality.  Because 
each and every new atom of simulated space replicates itself in each clock cycle, the nascent 

universe inflates uniformly in all directions from every point within it.  The 
initial creation of space ‘atoms’ would be a turbulent process, so that space 
itself would behave like a gas, and have a ‘temperature’.  The emerging space 
atoms would behave like ping-pong balls bouncing around in a lottery number 
generator.  The surrealist Salvador Dali perhaps anticipated such an atomic 
lattice of spheres in his famous painting “Galatea of the Spheres”.  Through 
the seeding of code that acts to halt this replication, regions then form where 
the ‘temperature’ of space drops to an absolute minimum, an equilibrium that 

will later encompass super clusters of galaxies.  In these regions, additional space is no longer being 
produced, so that the quanta of space bind to become the smooth, flat and rigid foam that we 
encounter in our local region.  The regions between the galactic super clusters may however 
continue to produce new space automata, acting to push the super clusters apart. 

If the automata that encode the lattice, and encode the realities that emerge from it, are merely 
strings of binary digits, where did the initial arrangement of the digits come from?  It is manifest that 
the code responsible for the laws of physics, and the evolution of the universe as we now experience 
it, is not trivial code.  However, Jürgen Schmidhuberxiii, following on from work on algorithmic 
compressibility by Andrey Kolmogorov and Gregory Chaitin, has shown that the code to generate all 
possible automata is simpler than the code which generates one specific automaton such as the type 
which is simulating our local milieu.  This ‘optimally compact’ code produces all possible universes 
(including those like our own universe that have the property of actually “working”).  Raw binary 
states (strings of binary digits independent of any substrate hardware) could randomly assemble 
into this seminal configuration from which all other possible configurations then emerge.  There is a 
finite probability that this initial combination will obtain, for time itself does not come into being 
until the basic clock of a self-simulating string pair first ensues. 

Each automaton does not ‘occupy’ the space lattice; each merely defines one cell within the lattice.  
The strings of binary digits that comprise the automata do not have any dimension in space.  
Likewise, the starting point of this universe, and any universe which has extent in space, is a 
singularity which has no extent in space.  Thus the automata that define our universe, and any other 
universe, all ‘exist’ at one and the same ‘place’, the singularity. 

We usually think of effects being translated across the lattice of space, as we have seen 
experimentally, at speeds up to the limiting speed of light.  However, if these automata can interface 
with each other, then they can presumably do so directly ‘across’ the point of the singularity.  Any 
element in the universal space lattice can therefore instantaneously communicate with any other 



element.  We thus have a mechanism for effects to be non-local in the context of space (simulated 
length), but local (to within one clock cycle of simulated time) in the context of the singularity. 

This prospective space-time lattice, and its implications, remains highly speculative.  The challenge 
before us is to develop a method of interfacing directly with the code of the automata, so that we 
can ‘read’ the code, interpret the code, and potentially (carefully) ‘write’ back modified code.  The 
obvious candidate programme for developing such an interface is our research into quantum 
computing – the ultimate “superposition” of quantum states, as we have just seen, is that of all 
automata at the universe’s singularity.  Obviously no other civilization in our universe has yet written 
back code that causes the universe to evaporate – the code we are currently running on probably 
prevents such an event.  Any candidate universes whose code was not well protected would have 
long since halted and thus been discounted from the pool of viable universes, for it is certain that 
any such exposure in the code would be exploited. 

If we were to learn how to access the singularity, then the prospect emerges for us to visit not just 
the solar system or the galaxy, but any corner of this universe, or any other universe, without ever 
getting up from our living room, as all these realities share that singularity in common.  We should 
view emerging relationships between mathematics and physics, such as the ‘E8 Lie group’ 
correspondences recently discovered by Garrett Lisi, as guiding us to the underlying operational 
codexiv.  It is inevitable that the mathematics to which we have access are a subset of the 
computable functions that gave rise to our universe.  It is possible that the mathematics itself has 
been produced by computing automata.  It is of course also possible that more advanced civilizations 
than ours have already learnt how to access the data at the singularity, and have long since been 
monitoring our progress towards the same. 

For Carl, 1934-1996 
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