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Abstract

A crucial question for artificial cognition systems is what meaning is and how it arises.
In pursuit of that question, this paper extends earlier work in which we show the
emergence of simple signaling in biologically inspired models using arrays of locally
interactive agents. Communities of “communicators” develop in an environment of
wandering food sources and predators using any of a variety of mechanisms: imitation
of successful neighbors, localized genetic algorithms and partial neural net training
onsuccessful neighbors. Here we focus on environmental variability, comparing results
Jor environments with (a) constant resources, (b) random resources, and (c) cycles of
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“boomi and bust.” In both simple and complex models across all three mechanisms of
strategy change, the emergence of conmmunication is strongly favored by cycles of
“boom and bust.” These results are particularly inmtriguing given the importance of
environmental variability in fields as diverse as psychology, ecology and cultural
anthropology.

Introduction

Meaning is crucial to cognitive systems. [L can be expected to be as crucial for artificial
cognitive systems as it is for the ones we find occurring naturally around us, or indeed
for the cognitive systems that we ourselves are. A crucial question for artificial cognition,
then, is what meaning is and how it arises.

This paper is a development of earlier work in which we study the emergence of simple
signaling in simulations involving communities of interacting individuals. Crucial to the
model is an environment of wandering food sources and predators; our agents are
“embodied” in an artificial environment and subject 1o its spatial and temporal contin-
gencies. Crucial to the model is also the fact that it is not a single individual but a
community of potentially interacting individuals that are embedded in such an environ-
ment. Qurindividuals develop coordinated behavioral strategies in which they make and
respond to “sounds” in their immediate neighborhoods. Crucial to variations of the model
explored here are different updating mechanisms of strategy change, all of which key to
the behavior of most successful neighbors.

What our earlier work has shown, using any of various updating mechanisms in such a
model, is the consistent emergence of communities of communicators using simple
patterns of signaling. In an environment in which food sources and predators wander in
a random walk, communities of individuals emerge that make a particular sound on
successfully feeding, and respond to that seme sound from neighbors by positioning
themselves to feed. They make a different sound when hit by a predator, and respond
to that sound from immediate neighbors by “hiding.” Our models are biologically inspired
in emphasizing strategy changes across a community of individuals embodied in a
common environment. What consistently emerges are coordinated sirategies of behav-

ior that look a lot like simple signaling, and thus offer at least one clue to one kind of
meaning.

What we introduce in this paper is a further characteristic of environments: variability.
Our essential question is what role environmental variability — and environmental
variability of what type — may play in the emergence of simple communication, Our
inspiration comes from the role that environmental variability seems to play in a range
of apparently disparate phenomena, from species diversity to individual learning.

In behavioral psychology, environmental variability has long been established as an
important factor in operant conditioning. Intermittent schedules of reinforcement prove
far more effective than constant reinforcement; variable-ratio schedules of reinforcement
generally produce the highest number of responses per time period, establishing
behavior most resisiant to extinction (Reynolds, 1975; Honig & Staddon, 1977). “"A
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pigeon may peck the key 50 to 100 times after reinforcement has been cut off if it
previously was on a schedule of continuous reinforcement. After some lypes of
intermittent reinforcement, the bird will peck from 4,000 to 10,000 times before responding
extinguishes™ (Nye, 1992,p.31).

In ecology and evolution, rates of environmental fluctuation have been proposed as a
major factor in inter-species dynamics. A number of different mechanisms have been
proposed linking environmental fluctuation to increased species diversity (Hutchinson,
1961; Harris, 1986; Huston, 1979; Hubbell & Foster, 1986: Chesson & Huntly, 1989, 1997).
It has recently been proposed that Pleistocene climatic fluctuations are responsible for
the evolution of larger brained mammals in general and higher primates in particular, with
suggested links to social learning (Polts, 1996; Opdyke, 1995; Odling-Smee, Laland, &
Feldman, 2000; Boyd & Richerson, 1985, 1989, 2000). .

In cultural anthropology, variable environments appear to play a major role in the
transition from foraging cultures to incipient agriculture. Ina comprehensive computer
model for archaeological data from the Guild Naquitz cave site, R. G. Reynolds charac-
terizes climate in terms of wet and dry years. Wet years show a wider range of food-
acquisition behaviors with more new strategies, while dry years show a concentration
on compelitive and efficient strategies, with more critical pressure on strategy choice.
Reynolds explains the role that environmental variability may play in the emergence of
agriculture:

The selective pressure placed on the group can vary unpredictably, and it is this
variation that may be an important factor in determining the rate of change within the
system. If, for example, the group was exposed only to a sequence of dry years that
constantly put selective pressure on the group, the wet-year strategies that introdice
most of the variation into the system would disappear or never be used. The resource
scheduling system as a whole would be extremely conservative... On the other hand, an
overbalance of wet years would introduce a good deal of variability into the system,
but the group would seldom have an opportunity to test the worth of these adaptations
in a more strenious environment. (Reynolds, 1986, p. 499)'

What our results here show is that environmental variability of a very specific sort plays
apositiverole in the simulational emergence of communication as well. Within spatialized
models of self-serving individuals in an environment of wandering food items and
predators, where each individual can hear and reac! to arbitrary sounds from immediate
neighbors, a sine-wave variable environment with cycles of “boom and bust” promotes
the development of communication. This effect appears regardless of important differ-
ences in how strategies are updated: Variable environments promote communication
whether strategy change is by imitation of most successful neighbor, by genetic
algorithm recombination with strategies of locally successful neighbors or by neural net
training on successful neighbors.

Our previous work relied on biologically-inspired factors of environmental embodiment,
emphasis on a community of individuals and development of coordinated behavior over
lime. What the results outlined in this paper indicate is that environmental variability of
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a particular kind may be a further factor of importance in the development of meaning
crucial to cognition syslems.

More tentatively, we also want to offer a more speculative suggestion. It is tempting to
think that the appeals to environmental variability across disciplines may have some-
thing in common. Perhaps there is some central mechanism of variability and selection
which, in different forms, is responsible for aspects of individual learning, of species
diversity in ecological communities and of the development of cultures.” That specula-
tive suggestion is one that we will not pursue further here. It is an additional point in its
favor, however, that environmental variability of a particular kind turns out to be of
importance even in simulations of the emergence of simple patterns of meaning.

The Basic Model

We work throughout with a 64x64 two-dimensional cellular automata array of 4,096
individuals, each of which follows a particular strategy. [Initially these are chosen at
random from our sample space of strategies (Figure 1). All action and reproduction are
local within this spatialized array: Individuals interact only with their eight immediate
neighbors, the cells that touch them at each side and at their comers. The array asa whaole
forms a torus, “wrapping around” so that individuals on the bottom edge have neighbors
at the top edge and those at the left have neighbors on the right.

Individuals in the array alter their behavior in terms of what is happening immediately
around them, but they do not move. In our simplest models, what move are food sources,
which migrate in a random walk across the array. In our more complicated models we use
both wandering food sources and wandering predators.

If a food source lands on an individual with its mouth open, that individual “feeds” and
gains points. Individuals feed from food sources, but the sources are not consumed and
don’tdisappear. Like a cloud of plankton or a school of fish, perhaps, they continue their
random walk across the array. In more complicated models, we include wandering
predators and an appropriately more complicated reperioire of behaviors; individuals can
open their mouths, “hide” or coast in nevtral. An individual is “hurt” by losing a point
ifapredator lands onit when itisn’t hiding. In*neutral,” an individual fails to gain points
from food sources but is still hurt if hit by a predator.

On any given round, an individual’s strategy may dictate that it opens its mouth or does
not, where mouth-opening carries a particular cost in energy. In our more complex models,
the strategy also dictates whether the individual hides or not, where “hiding” carries an
energy cost as well. In all models, individual cells are capable of making sounds heard
by theirimmediate neighbors. Sound-making, like mouth-opening and hiding, exacts an
energy cost, but sounds come without any hard-wired significance: Nothing is built into
the model in order to make a particular sound take on a particular meaning, or indeed to
take on any meaning at all.

For even these simple individuals in this simple environment, there are behavioral
strategies that seem to qualify as elementary forms of signaling or communication.
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Figure 1. Initially randomized 64x64 array of 16 strategies

Strategies for different cells are shown in different colors, with open mouths shown as bluck central
squares and migrating food sonrces as small white dots.

Imagine a spatially contiguous community of individuals that share the following
sirategy:

. They make a sound when they are successfully fed.

They react to hearing a sound from their neighbors by opening their mouths.

When an individual in such a community feeds, it makes a sound. Its immediale
neighbors, which share the same strategy, open their mouths in response. Since the food
source continues its random walk, it will then fall on an open mouth on the next round.
That individual, feeding successfully, will in turn make a sound and its neighbors will
open their mouths in response. The result, in a community sharing such a strategy, is a
chain reaction in which the food source is successfully exploited on each round (Figure
2). We term individuals with such a strategy “Communicators.”

I our more complex models the environment contains both food sources and predators,
and individuals can open their mouths, hide or coast in neutral on each round. In these
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Figure 2. Migration of a single food source in a random walk across a hypothetical
array of Communicators
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In the left frame, a food seurce dot lands on an epen mouth, indicated by gray shading. That central
individual makes a sound * heard by its immediate neighbors, which in the second frame open itheir
months in response, One of them feeds successfully, making a sound heard by its immediate neighbors.
which are shown opening their mouths in the third frame. The result in a community of Communicators
is a chain reaction of efficient feeding

models our agents have two sounds at their disposal, and a more complex form of
communication is possible. Our “Perfect Communicators™ are those that follow the
following strategy:

They make sound 1 when they are fed.

They react to hearing sound 1 by opening their mouths.
They make sound 2 when they are hurt.

They react to sound 2 by hiding.

In previous work we have shown that these simple forms of communication can emerge
from initially randomized arrays using any of several mechanisms for strategy change.
In our earliest studies we used strategy change by simple imitation. At each “generation”
— each 100 rounds of gain and loss from food capture and predation — each celisurveyed
its immediate neighbors in order to see if any had garnered a higher score. If so, it changed
to the strategy of its most successful neighbor (Grim, Kokalis, Tafti, & Kilb, 2000). In later
studies we used strategy change by local genetic algorithm. Here the strategy of a less
successful cell was replaced with a hybrid formed from its strategy and that of its most
successful neighbor (Grim, Kokalis, Tafti, & Kilb, 2001). Most recently, we have
instantiated strategies in the weights of simple neural nets, and have used strategy
change by partial training on the behavior of more successful neighbors (Grim, St. Denis,
& Kokalis 2002). Using any of these mechanisms in a wide variety of environments, we
have been able to show that communities of Communicators will emerge and grow.} Figure
3, for example, shows a typical emergence of two forms of Communicators in an array of
randomized neural nets over 300 generations. One of these Perfect Communicators uses
sound 1 for food and sound 2 for predators; the other uses sound 2 for food and sound
1 for predators. Figure 4 plots the same results in terms of percentages of particular
strategies within the population as a whole (Grim, Kokalis, Alai-Tafti, Kilb, & St. Denis,
2004).
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290 Grim & Kokalis

Figure 3. Emergence of two dialects of Perfect Communicators, shown in solid black
and white, in a randomized array of simple neural nets with partial training on
successful neighbors
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Initially each of the 4,096 individuals in the array is randemly assigned one of seven discrele weights
between -3.5 and + 3.5 for each of its 12 weights and hioses. Cells are coded for different behaviors
using background and doi calor, with no visual represeatation Jor food sources, predaters or reactions
of vpening mouths or hiding. Generations 1, 10, 50, 100, 200 and 300 are shown.
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Figure 4. Emergence of communication in a randomized array of simple neural nets with
partial training on successful neighbors

100

fPerfect Communicators
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Percent of Population
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Percentages of population graphed over 300 generations.

In all of our earlier studies, however, we considered sample spaces of sirategies that came
most easily with the strategy updating mechanism at issue, As a result we ended up with
data on imitation runs, localized genetic algorithms and neural nets for quite different
sample spaces of behaviors in a way that made it impossible to compare them side by side.
In the current work we have deliberately structured our coded strategies and neural nets
so as to produce the same range of possible strategies, allowing for a more direct
comparison.*

In previous studies, we also used a constant environment of food sources and predators:
Although each of these migrates in a random walk across the array, the total number of
food sources and predators remains constant from generation to generation. Here, we
focus instead on the role of a variable environment. [s change in the environment a factor
of importance in the emergence of communication? Does the pattern of change matter,
and does it perhaps have a different impact when different mechanisms of strategy
change — imitation, localized genetic algorithms and spatialized neural nets — are in
play?

The results that follow indicate that a variable environment does indeed have a major
impact on the emergence of communication. The pattern of variability is crucial: Sine-
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wave variation in resources, with waves of boom and bust, has an effect that entirely
random changes in resources with the same mean do not. In our studies that effect holds
regardless of whether the basic mechanism of strategy change at issue is one ofimitation,
genelic recombination or neural net learning, and holds in similar ways in both simpler
and more complex environments.

The Simple Studies

Our initial studies use an environment with wandering food sources but without
predators. The behavioral repertoire of our individuals is similarly limited: They can open
their mouths or not, and can make a single sound heard by their immediate neighbors or
remain silent. Individuals know only whether they have been successfully fed — whether
a food source has landed on them when their mouth was open — and whether they or
an immediate neighbor has made a sound on the previous round. Mouth opening carries
an energy cost of .95 points, with an energy cost of .05 points for sounding.’

We code the behavior of these simple individuals in terms of four-tuples <f, ~f, 5, —5=.
Variable fdictates whether an individual makes a sound or not when it is fed, ~f'whether
it makes a sound when it is not fed, s dictates whether it opens its mouth when it hears
a sound from itself or an immediate neighbor and ~5 whether it opens its mouth when it
hears no such sound.

This gives us only sixteen possible strategies, coded in binary as follows:

<0,0,0,0> Never makes a sound, never opens ils mouth

<0,0,0,1> Never makes a sound, opens its mouth only when it hears no
sound

=(,0,1,0= Never makes a sound, opens its mouth only when it hears a sound

=0,0,1,1= Never makes a sound, mouth always open

<0,1,0,0= Makes a sound when not fed, never opens its mouth

<(,1,0,1= Makes a sound when not fed, opens its mouth only when it hears no
sound

<0,1,1,0= Makes a sound when not fed, opens its mouth only when it hears
a sound

=0,1,1,1> Makes a sound when not fed, mouth always open

<1,0,0,0= Makes a sound when fed, never opens its mouth

=1,0,0,1> Makes a sound when fed, opens its mouth only when it hears no
sound

<1,0,1,0> Makes a sound when fed, opens its mouth only when it hears a
sound

<1,0,1,1= Makes a sound when fed, mouth always open

Copyright 1 2007, ldea Group Inc. Copying or distributing in print or clectronic forms without written
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<1,1,0,0> Always sounds, never opens its mouth

=1,1,0,1> Always sounds, opens its mouth only when it hears no sound
<1,1,1,0> Always sounds, opens its mouth only when it hears a sound
<L L= Always sounds, mouth always open

Those cells that carry strategy <1,0,1,0> are our “Communicators.” They make a sound
when fed, and open their mouths when they hear a sound. A hypothetical community of
Communicators will therefore behave as illustrated in Figure 2. We should also note that
we use “imperfect” worlds throughout. All cells follow their programmed stralegies
subject to a 5% measure of error. In 5% of those cases in which the strategy specifies
mouth opening, the mouth fails to open; in 5% of cases where it is specified as opening,
it stays shut. Nowak and Sigmund (Nowak & Sigmund, 1990, 1992) have argued that a
measure of stochastic “noise” makes for a more realistic model of cooperation. In
previous work we have outlined its importance for the emergence of communicalion as
well (Grim, Kokalis, Tafti, & Kilb, 2000).

This sample space of behaviors remains the same across our simple studies. These
behaviors are instantiated in different ways in different cases, however — as coded
behaviors or as operating neural nets. This allows us to compare different mechanisms
for stralegy change side by side: strategy change by imitation, by localized geneltic
algorithm and by localized training of neural nets.

In one series of runs our individuals carry behaviors coded as series of binary digits and
follow an imitation algorithm for stratepy change. Afier 100 rounds of food gathering,
point gain and energy loss, each cell surveys its immediate neighbors and sees ifany has
garnered a higher score. If so, it adopts the strategy of its highest-scoring neighbor in
place of its own.

In a second series of runs, we use the same coding for behaviors bul employ a localized
genetic algorithm for strategy change. After 100 rounds, each cell surveys its immediate
neighbors (o see if any has garnered a higher score. [f not, it retains its current strategy.
If it has a more successful neighbor, however, that cell’s strategy is replaced with a
genetic algorithm hybrid formed from its current strategy and that of its most successful
neighbor. We use two-point crossover, choosing one of the otfspring at random to
replace the parent (Figure 5).

Genetic algorithms are usually applied globally to a population, breeding from only a
small number of those strategies that perform most successfully on some uniform fitness
function. Qurs in contrast is a localized genelic algorithm. All genetic recombination is
local: Cells with locally successful neighbors change their strategies to local hybrid
recombinations. Unlike global genetic algorithms, localized genetic aigorithms seem
promising here not merely as asampling device — the sample space in our simple studies
is only 16 strategies — but as a means of facilitating strategy similarity and thus the
possibility of behavioral coordination between neighbors.

In athird series of runs we generate the same sample space of behaviors using very simple
neural nets (Figure 6). On each round, an individual has either heard a sound from one
of its immediate neighbors or it has not, coded as a bipolar input of +1 or-1. It has also
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Figure 5. Genetic recombination of simple strategies
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successfully fed on that round or not, again coded as a bipolar +1 or -1. Our neural
structure involves just two weights and two biases, each of which carries a value between
-3.5 and +3.5, “chunked” at one-unit intervals. A bipolar input at “hear sound,” for
example, is mulliplied by weight wl. To that product is added the bias value, whichmight
equivalently be thought of as a weight on an input of +1. The two values are summed at
the output node. If the result is greater than a threshold of 0, the output is treated as
+1; the individual opens its mouth, for example. 1f it is less than or equal to 0, the output
is treated as -1 and the individual keeps its mouth closed.

These simple nets generate the same range of behaviors as their coded counterparts, but
they allow for a different mechanism of strategy change. For our neural nets, stratepy
changeis by partial training on successful neighbors. After 100 rounds, each cell surveys
its immediate neighbors (o see if any has garnered a higher score. If so, it does a partial
training on the behavior of its most successful neighbor. A single training consists of
a random pair of inputs for both the “trainee™ cell and its more successful neighbor. If
the two nets give the same oulput, no change is made in the trainee’s weights. If the
outputs are not the same, the trainee’s weights are nudged a single unit toward what
would have givenits neighbor’s response on that run. Biases are shifted in the same way.
With bipolar coding and within the limits of our value scale, using “target” for the

Figure 6. Simple neural nets

open mouth make sound

bias 1 bias 2
wl w2

hear sound  fcd

Simple neural nets with bipolar inputs of +1 or -I ar “hear sound” and “fed, ™ multiplied by weights
wi and w2 “chunked” at onc-unit intervals between -3.5 and +3.5. Biases carry similar weights. If
the total af the owput node > 0, the output is treated as +1 and the individual opens its mouth, for
example. If the total owiput is £ 0, the output is treated as -1 and the individual keeps its mouth closed
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neighbor’s output, we can calculate the delta rule as simply w,_
and bias__ = bias , + target.

L= W, +(target x input)
Our aim was to compare these three different mechanisms — imitation, localized genetic
algorithm and neural net training — across a range of different environments. In one
series of runs, we used environments constant with regard to food resources: Exactly 50
food sources migrated across the array each generation. In a second case, we used
randomly variable environments. Here the average was again 50 food sources each
generation, but the specific number of food sources at any given generation was arandom
number between 0 and 100. In a third form of variability, we assigned food sources by
sampling at regular intervals along a sine wave oscillaling between O and 100. This again
gave us an average of 50 food sources each generation, bul in waves of increasing and
decreasing resources each generation.

The core question was whether these differences in environmental variability would
makea difference in the emergence of communication, We also wanted to know whether
any such difference would depend on a particular mechanism of strategy change.

Environmental Variability and the
Emergence of Communication

Constant Environment

Our constant environments contained exactly 50 food items each lime. We used the gain
allotted for successful feeding as an independent variable: Tests were run with gains from
1 to 140 points for each successful feeding. What we wanted to plot was what strategy
an array would evolve to for particular gains — to Communicators or otherwise — and
in what number of generations. We could then compare resulls across mechanisms of
imitation, localized genetic algorithms and neural nets.

Figure 7 shows results across different gains for the imitation algorithm, in which
strategies simply switch to those of their most successful neighbors. Starting from the
left of the graph, we sample gains of 1 through 9, shown in narrow bars. From that point
we switch to sampling gains at 10-point spreads, with the wider bars representing gains
from 10 through 140, Runsare to 1,500 generations; the height of each bar indicates how
many generations were required for fixation on a single strategy across the entire array.
Should no single strategy occupy the entire array by 1,500 generations, the bar tops oul.
For bars below 1,500, then, color indicates the strategy in total occupation of the array.
For bars that reach 1,500, color indicates the dominan strategy across the array at that
point. Dominant strategies at each gain are also indicated by their codes in the list at the
left. In a constant environment, the initial winner at most gains below 9 isthe null strategy
<0,0,0,0=, which neither sounds nor opens its mouth. Strategy <0,0,1,0>, a “free rider”
which responds to sound by opening its mouth but reciprocates with no sound in return,
makes a brief appearance at gains of 6 and 8 points. Starting at a gain of 7, however, and
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Figure 7. Results across different gains for strategy replacement by imitation
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Strategy replacement by imitation of most successful weighbor in a constant environment aof 50 food
sources, showing runs up to 1,500 generations with gains from 1 o 140 points for each successful
Seeding, Columns below 1,500 generations show total conguest by strolegy: those at 1,500 show
dominant strategy af that point, Al Eat conguers or proves dominant at gains of 100 and above.

then from gains of 9 through 90, it is our Communicators <1,0,1,0> to which the array
converges.®

Itis immediately obvious from the graph, and somewhat surprising, how large the window
for communication is. Communicalors dominate the array from the point at which each
successful feeding is worth 10 points to the point at which it is worth 9 times as much.
But it is also clear that communication has an upper terminus: Above a gain of 100 points
it is a strategy of All Eat proves dominant. Beyond this point all arrays are dominated
by <0,0,1,1=, which doesn’t bother to communicate at all: It sits with a constant open
mouth, ready to catch passing food sources, but never making a sound.

Strategy change by localized genetic algorithm in the same constant environment and
for the same set of gains gives us the results shown in Figure 8. For genetic algorithm
recombination, as for imitation, there is a clearly circumscribed window for communica-
tion. Here the window is somewhat smaller, extending only from gains of 20 to gains
of 80. Below that dominance goes to the null strategy <0,0,0,0> or the “free rider”
<0,0,1,0>. At gains of 90 and above dominance again goes to the incommunica-
tive All Eat.

Though the overall pattern is similar, the genetic algorithm runs take several times longer.
This is perhaps not too surprising. In an imitation model, a successful strategy is imitated
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Figure 8. Strategy replacement by localized genetic algorithm
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Strategy replacement in an environment by localized genctic algorithm combination with most
successful neighbor in a constant environment of 30 food sources, showing runs up to 1,500
generations with gains from 1 1o 140 points for each successful feeding. Columns below 500
generations show total conguest by strategy; those at 1,500 show dominant strategy at that point.
Al Eat conguers or proves dominant at gains of %0 and above.

immediately by its neighbor. In a localized genetic algorithm, complete cloning to a
successful neighbor may take a significant number of hybrid recombinations. Where a
large number of possible stralegies is at issue, one advantage to genetic algorithm
recombination is that it can explore a larger portion of the strategy space: Strategies will
be produced which don’t existin either parent. Where we are dealing with a sample space
of only 16 strategies, that general advantage doesn’t show to effect.

The window for communication in an array of neural nets with constant environment is
closely comparable to arrays updating strategy by imitation and localized genetic
algorithm. Here the null strategy <0,0,0,0> dominates at gains of 8 and below for each
successful feed. Communicators dominant for gains between 9 and 80, but All Eat proves
dominant at gains of 90 and above.

Despite greater complexity and partial training, our neural nets reach fixation in this
simple environment at about the same rate as mere imitators where Communicators
dominate, and much faster where dominance is by All Eal.” It should be noted, however,
that speed is comparable only when measured in numbers of generations; actual
computer time for each run was significantly longer in the case of neural nets.
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Figure $. Strategy replacement by partial neural net training
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Strategy replacememt by partial neural net training on most successful neighbor in a constant
enviromment of 50 food sources, showing runs up to 1,500 generations with gains from [ to 140 points
Jor euch successful feeding. Columns below 1,500 generations show total conguest by strategy; those
at 1,500 show dominant strategy at that point. All Eat congners or proves dominant at gains of 90
and abhove.

Random Environment

What if, instead of a constant environment of 50 food sources, we use a changing
environment? In a second series of sludies we assigned a random number of food sources
between 0 and 100 each generation, The average number of food sources remained at 50,
but the particular number of food sources on any generation might be anywhere between
O and 100. The amount of gain allotted for successful feeding was again our independent
variable: Tests were run with gains for each successful feeding from 1 to 140 points for
each successful feeding. Figure 10 shows results in a random environment for strategy
change by imitation, localized genelic algorithm and neural nets.

With any of our mechanisms of strategy change, it tumns out, resuits in a randomized
environment show at most a slight increase in the upper limit for Communicators. With
constant food sources, we found an upper limit of 90, 80 and 80 as the gains at which
Communicators proved dominant for strategy change by imitation, localized genetic
algorithm and neural nets respectively. With a randomized number of food sources that
lifts slightly to upper limits of 100, 90 and 90 for the three cases. In both consiant and
randomized environments, however, the window for Communicators closes at a gain of
90 or 100 and All Eat proves dominant from that point on.
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Figure 10. Strategy replacement in an environment of randomized food sources
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(a) Imitation in a random environment
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Figure 10. continned
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(c) Neural nets in a random environment

Strategy replucement in an enviroanient of randumized Sfood sources with a mean of 50 by {(a)
imitation of most suceessful neighhor, (b} localized genetic algorithm combination with most
successful neighbor and (¢) partiol newral net training on most successful neighbor. Runs are shown
up tw 1,500 generations with gains from 1 to 140 peints Jor each successfil Jeeding. Columns below
1,500 generations show feial conguesi by strategy. those at 1,500 show dominant strategy ol that
paint. Al Eat conguers vr proves dominant ar gains of 100 or 110 and above in each case.

Sine-Wave Variable Environment

An environment with a random number of food sources produces much the same effects
as one with a constant number of food sources. But what if we use an environment which,
though variable, shows greater regularity? What if there is a cycle of “boom and bust,”
for example — will this make a difference in the emergence of communication?

The decision to test environments with “boom and bust” cycles still leaves a great deal
of latitude, since there may be very different patterns qualifying as “boom and bust.” We
conceived of different patterns in terms of different intervals marked out on a regularsine
wave oscillating between 0 and 100. With values of that wave taken at intervals of 1, we
get one pattern of numbers for our food sources. With values taken at intervals of 2, we
get a different series.
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Figure 11. Different patterns of variation in the number of food sources in the
environment over tine
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More formally, our number of food sources each time was dictated by a regular series x,,
b SRS I where each x_adds some constant ¢ to its predecessor x_,. We take our number
of food sources as [sin(x) +1] * 50 for this series, giving us some number of food sources
between 0 and 100 for each generation. The distance ¢ we choose between elements of
our series then dictates the particular form of “boom and bust.”

Figure 11 shows different patterns of variation. Each data pointin the first graphis [sin(x)
+1]* 50 foraseries x, x, ... X, that increments by units of one. In the first graph, in other
words, x ,, = x_+ 1. In the second graph our series increments by units of two: X, = X,
+2. Inthe third graph we increment by units of three: x =X+ 3. Although we average
50 food sources in each case, the differences in boom and bust patterns are clear. A sine
value for a series which changes by increments of + | gives a fairly gradual change
between boom and bust, with one or two intermediate points between a high and a low.
Sine value for a series which changes by increments of two show a more polarized boom
and bust, with a midpoint present in only half of the transitions from top to bottom. Sine
values for a series which changes by increments of three swing instantaneously from
boom (o bust without any midpoints, though the interval distance between boom and
bust progressively enlarges and narrows in cycles over time. Because of their more
dramatic shifis, we used the second and third patterns of variation as our samples,
referring to these patterns simply as sin+2 and sin+3.

Figure 12. Triumph of Communicators at all gains above 10 in an environment of food
sources between 0 and 100 varving in the pattern of sint2
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Figure 12. continued
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What impact does a sine-wave variable environment have on the emergence of commu-
nication? Figure 12 shows emergence of communication in an environment changing on
the patiern of sin+2 for each of our three mechanisms of strategy change. The surprising
result is that a variable environment allows conquest by Communicators all the way up.
Unlike constant and random environments, increased gains in a variable environment on
the pattern of sin+2 do not favor All Eat at any point within the scope of the graph. We
have sampled larger gains, beyond the scope of the graph; up to gains of 500 and 1,000
it is still the Communicators that succeed.

The result is sensitive to patterns of variability — the more gradual changes of a sin+]
pattern do not show as dramatic a result. The effect on communication is by no means
confined to the pattern of sin+2, however. Similar results for resources following the
pattern of sin+3 are shown in Figure 13.

Across all of our modes of'strategy change, sine-wave variable environments of these
patterns show a dramatic widening of the window of gain values in which Communicators
appear and flourish. Although the average number of food sources remains the same as
in our constant and randomly variable environments, cycles of “boomand bust™ strongly
favor the emergence of communication.”

Figure 13. Triumph of Communicatorsat all gains above 10 in an environment of food
sonrces between 0 and 100 varying in the patiern of sint3
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The ComPlex Studies

We extend the model into a range of more complex studies in which environments contain
not only food sources but predators. Here we use 75 food sources and 1 50 predators, each
of which wanders in a random walk across the array.’

In this second series of studies, our individuals have a larger behavioral repertoire. On
any given round they can open their mouths, hide or coast in neutral. An individual is
awarded a particular gain if it “feeds” — if its mouth is open when a food source lands
onit, but also loses a point when “harmed” — when it is hit by a predator and is not hiding,.
Mouth-opening and hiding each carry an energy cost of .05 points.'® Coasting in neutral
carries no energy cost, but when in neutral an individual can neither benefit by feeding
nor avoid predation by hiding. Here our individuals also have two arbitrary sounds at
their disposal rather than one. Sound-making, like mouth-opening and hiding, carries an
energy cost of .05 points.

We again compare three mechanisms of strategy change: imitation, localized genetic
algorithm and partial training of neural nets. Inthe case of imitation and genetic algorithm,
we encode our strategies as ternary six-luples <o, f, h, 1,52, s0>. The first three variables
specify what sound an individual makes when neither fed nor hurt & (no sound, sound
1 or sound 2), what sound it makes when fed /' (the same three options) and what sound
it makes when hurt /i {the same three options). The second three variables specify what
action an individual takes when it hears sound 1 (coast in neutral, open its mouth or hide),
when it hears sound 2 and when it hears no sound se (the same three options in each case).

Forsimplicity, we allow our individuals to respond only 1o being fed, hurt or neither; there
is no provision for responding to being both fed or hurt. We also have our individuals
respond to only one sound or neither, again with no provision for both. If an individual
is both fed and hurt, or hears both sounds | and 2, we randomize which input it responds
to. We structure individuals so that they can make only one sound at a time and can
engage in only one action — mouth-opening or hiding. With these restrictions we can
keep our specifications to six-tuples <o, f, h, s/, 52, so>, with a sample space of 729
possible strategies. Here, as before, we should also mention that an element of “noise”™
is built in: An individual will open its mouth in a random 5% of cases even if its code
specifies otherwise, and will similarly hide in a random 5% of cases.

Where strategy change is by imitation, each individual looks around to see if a neighbor
has acquired a higher score afier 100 rounds of point gain and loss. 1f so, it adopts the
strategy of its most successful neighbor. Should there be more than one neighbor with
equal higher scores, the strategy of one is chosen randomly.

Using a localized genetic algorithm, here as before, we hybridize the strategy of an
individual with that of its highest scoring neighbor, should any neighbor prove mote
successful. We use two-point crossover on our ternary six-tuples, choosing one of the
offspring at random (Figure 14).

Cur neural nets are structured as the simple perceptrons shown in Figure 15, This two-
lobe structure for communication has been re-invented or re-discovered repeatedly in the
history of the literature. Since De Saussure (1916}, many have noted an intrinsic
distinction between (1) making sounds or sending signals, and (2) responding to sounds
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Figure 14. Genetic recombination applied to strategies of six variables
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orsignalsreceived. It seems natural to embody that distinction in the neural architecture
of the individuals modeled.! Here we use eight weights with four biases, each of which
carries & value between -3.5 and +3.5, “chunked™ at one-unit inlervals. We use a bipolar
coding for inputs, so that “hear sound 1" takes a value of +1 if the individual hears sound
1 from an immediate neighbor on the previous round, for example, and takes a value of
-1 if it does not. Each input is multiplied by the weight shown on arrows from it, and the
weighted inputs are then summed with the weight of the bias at the output node. Were
we operating these nets “pure,” their inputs at “hear sound 1™ and “hear sound 2,” for
example, could both be +1. Their outputs at “open mouth™ and “hide” could also both
be +1. In order to allow comparison with our coded behaviors in imitation and genetic
algorithm runs, we constrain inputs and outputs. In operation, we “cripplie” our nets, We
program our simulation so that only one sound or neither can be fed into a net as input
on any given round, with a similar constraint on “fed” and “hurt” inpws. Where there
are two sounds in the environment, or a cell is both fed or hurt, one input is chosen at
random much as in the imitation and genetic algorithm models. Even with these input
limitations, however, il would be possible for nets with particular patterns of weights to
give & positive output for both “make sound 1" and “make sound 2,” for example, or for
both “open mouth” and “hide.” Here we change our threshold for outputs. Should neither
output give a weighted sum >0, both are treated as outputtling -1, with the result that no
sound is made, for example. Should only one output give a sum >0, that output is treated
as the sole output of +1. Should both outputs give a sum =0, we treal that with the greater
sum as +1 and the other as -1; when both are >0 and equal, we pick one at random. Here,
as in the other cases, we also build in an element of “noise™; in a random 5% of cases
individuals will open their mouths regardless of weighis and inputs, hiding in a random
% of cases as well.

We must admit that these constraints on our neural nets are in some way “unnatural™;
without those constraints they would show a greater range of behaviors in a greater
variety of input situations. We also speculate that these constrainis contributed to the
slowness with which our nets operated and the slowness with which large arrays of such
nets evolved."”

In our neural net runs, as in the others, our individuals total their points over the course
of 100 generations. Ifany of their eight immediate neighbors has garnered a higher score,
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Figure 15. Neural nets in the more complex model, using eight weights and four biases
Jor each individual

open mouth hide maoke sound | makc sound 2
N A S 2
bias 1 w2 3 \binﬁ 2 bias 3 '\hias 4
wlj wd \ /

w wb w7
)\ s )& w
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Bipolar inputs of +1 or -1 are taken af “hear sound 1,7 “hear sound2,” “fed” and “hurt,” and are
mdtiplied by the weights on avvows from them. Biases carry similar weights. “Open mouth,” “hide,”
“make sound 1" and “make sonnd 27 are the output nodes. If the total at an output node > 0, the
ouipnt is treated as +1 and the individual “opens its mowth™ or “makes sound 2.” for example. If

the total ontput is £ 0, the ontput is treated as <1 and the individual keeps its mouth closed or dves
not make sound 2.

the cell’s highest-scoring neighbor is taken as its “target.” For a set of four random
inputs, with no provision against duplication, the cell then compares its outputs with
those of its target. At any point at which outputs differ, each weight and bias in the
“trainee” is nudged a single unit toward what would have given its neighbor’s response
on that run. With bipolar coding, we can calculate changes in weights and biases as w

=w,,+ (larget x input) and bias _ = bias  + target. Any such training will clearly be
partial. Only four sets of inputs are sampled, rather than the full 16 possible, and indeed
the same set may be sampled repeatedly. The delta rule is applied using each set of inputs
only once, moreover, leaving no guarantee that each weight will be shifted enough to
match the target behavior, The idea of partial training is deliberately built into the model

in order to allow behavioral strategies to emerge that might not have existed in either
{rainee or tlargel.

In each form of strategy change we are now dealing with the same 729 behaviors,
representable in ternary notation as six-tuples <o, f, i, 51, 52, s0>. Ofthese, there are only
two that qualify as “Perfect Communicators.” <0,1,2,1,2,0> makes no sound when neither
fed nor hurt, makes sound 1 when fed and makes sound 2 when hurt. It correspondingly
responds to hearing sound 1 by opening its mouth, and responds to hearing sound 2 by
hiding. <0,2,1,2,1,0>, on the other hand, uses sound 2 when fed and sound | when hurt,
responding to sound 2 by opening its mouth and to sound 1 by hiding.

In this more complicated environment, however, with a significantly wider range of

possible behaviors, a number of broader calegories of behavior turned out 1o be
important:

All Eat: Atotal of 27 of our coded behavioral strategies fell in this category: Any

with a string of three 1s on the right-hand side of the code. These strategies vary
in the sounds they produce when they are fed or hurt. But they don’t vary in the
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four biases action they take in response to any sound pattern; regardless of whether they hear

sound 1, sound 2 or neither, they sit with open mouths. Our All Eat strategies #
therefore include:

000111 100111 200114
001111 100111 20K111
go211t 102111 202111
010111 110111 210111
orntnr 1111y 211111

bias 4

wt,” and are

wh, " “hide,” QGI2810 112111 212111
ade > {), the 020111 120111 220111
- example. If

osed or does 021111 121511 221111

022111 122111 222111

¢ All Hide: These 27 strategies differ in that their final three digits are 2s rather than
ur random 1s:
itputs with

bias in the
'S response 000222 100222 200222
isesasw__ 001222 101222 201222
clearly be 002222 102222 202222
:{‘:;:L‘:f:l‘i 010222 110222 210222
enough to 011222 111222 211222
1 the model | (12222 112222 212222
TGS ‘ 020222 120222 220222
e i 021222 121222 221222
ehaviors,
sre areonly i 022222 122222 222222
hen neither
iponc(ijuzlg;y *  Eart Default Communicators: These eight strategies have some signal operating
:.0]|;m h y as a predator warning — sending sound 1 when hurt and responding to sound 1
when hurt, by hiding, for example — but only against a background default to “open mouth”
_ in the absence of any signals. They therefore have a *“1” in the furthest column to
T range of the right. This category includes communicators that use and respond to symbols
out to be for both food and predators, but only against an “open mouth” defauit.

001201 001211
:gory: Any 001221 002021

egie
Eies vary 002121 002221
vary in the
012121 021211
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e Hide Default Communicators: Here it is “hiding” that is the default, with at least
communication signals for the presence of food.

010102 010112
010122 012122 .
020012 010112 |
020212 021202

U Food Communicators: These six strategies communicate perfectly with each
other, including a no-action “neutral” in the absence of signals, but communicale
only about the presence of food. Their code may specify a response to a signal that ;
is “idle” in the sense that they don’t send it, but there is no signal sent in the 1
absence of feeding and no default action in the absence of signals.

010120 020010

|
010100 010110 l
020110 020210 !

|

) Predator Communicators: These six strategies communicate perfectly, but only
about the presence of predators.

001200 001210
001220 002020
002120 002220

s Perfect Communicators: Two strategies send and receive signals about both food
and predators, coasting in neutral in the absence of any signals.

012120 021210

In our simple studies, we used the gain allotted for successful feeding as the independent
variable with which to measure the “window™ for communication in different environ-
ments. We use the same measure in our more complex studies, keeping “loss™ for
predation constant at 1 point but varying the “gain” for successful feeding from 010 150.

in a first series of runs, across all modes of strategy change, we used a constant
environment of precisely 75 wandering food sources and 150 wandering predators. Ina
second series, we used an environment with the same averages for food sources and
predators, but with the number of food sources picked as a random number between 1
and 150 each generation and the number of predators picked at random between 1 and
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300. In a third series, we used an environment with the same average for each but with
coordinated sine-wave variation for numbers of food sources and predators. Here, as
before, the question was whether these differences in environment would make a
difference in the emergence of communication.

Constant Environment

Gain for feeding is again our independent variable, butis sampled at larger intervals than
before: hereat 1, 5, 10, 25, 50, and 150 points for each successful feeding. Because of
the complexities of a larger sample space of stralegies, we concentrated not on particular
strategies but on which calegory of sirategies proved dominant at each gain. Results for
strategy change by simple imitation in a constant environment are shown in Figure 16.

With a gain of 1, Perfect Communicators occupy the entire array of 4,096 cells in 375
generations. For gains of 10,25, 50, 100, and 150, however, the array goes to fixation with
all cells playing All Eat. The fact that our bar goes to the top ol the graph for a gain of
5 indicates that no single strategy category occupied the entire array by our limitof 1,500
generations. In this case the color of the bar indicates only the category dominant in the
arvay at that point: In this case, for example, Eat Default Communicators occupied 3,842
cells of the 4,096. All Eat occupied 254 cells, A graph of the particular dynamics in that
case is shown in Figure 17,

For strategy change by imitation, then, a constant environment favors All Eat forall gains
over 5. All Eat also proves dominant when strategy change is by localized genetic
algorithm (Figure 18).

Figure 16. Dominance by All Eat with strategy change by imitation

| =

15 18 5

00 max

B Al Eat
@ Eat Default Comm
[l perfect Comm

Generations to single strategy, 15

50 109 150

Gain

Dominance by Al Eat with strategy change by imitation of most successfil neighbor in a constant
environment of food sowrces and predotors. Generations o conguest by o single strategy category
shown for differemt gains, 1,500 generations maximum.
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Figure 17. Competition berween All Eat and Eat Default Communicators Jor a gain of
5: 1,500 generations of strategy change by imitation in a constant environment
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What of neural nets? Throughout our trials, arrays of the more complex but constrained
neural nets took significantly longer to come to fixation. For none of our gain settings
did we arrive at a single strategy category within 1,500 generations. Figure 19 is thus
remarkably dull, showing merely that All Eat was the dominant calegory at 1,500
generations for all gains greater than 1. Here, another way of graphing results proves
more informative. Figure 20 shows relative populations for different categories estab-
lished by generation 1,500 at each gain. Bars don’t extend to the end, it should be noted,
because of an assoriment of strategies that don’t fall into any of our listed categories.

Despite the slowness of our nets, this too appears to be a relative victory for All Eat. At
1,500 generations, and for gains of 5 and above, All Eat is the only one of our behavioral
calegories that has established itself in a significant proportion of the population, Perfect
Communicators and Food Communicators appear only for very small gains.

Random Environment

For the random runs, we set food sources at a random number between | and 150 each
time, with predators at a random number between i and 300. These averaged to 75 food
sources and 150 predators over the course of a run, but of course varied unpredictably

from generation to generation. Results for each mode of strategy change are shown in
Figure21.
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Figure 18. Dominance by All Eat with strategy change by localized genetic algorithm

B Al Eat
B Food Comm

Generations to single strategy, 1500 max

15 1 5

50 Gain 169 158

Dominance by All Eat with strategy change b focalized genetic algorithin combination with most
suiccessful neighbor in a constant environment of food sources and predators.

Figure 19. Dominance by All Eat with strategy change by localized nenral net training

Neural Nets in a Constant Environment

B Al Eat
[C] Perfect Comm
=5 sa 108 158

1S Gain

Generations to single strategy, 1500 max

Dominance bv All Eat with strategy change by localized newral net training on most successful
neighbor in a constant environment of food sowrces and predators. Colors of bars at 1,300 indicaie
strategy dominance but not necessarily full conguest
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Figure 20. Domination by All Ear: Populations of strategy categories

150 WAl Eat
: 100 QA Hide
' 50 EEal Default Comm
'E 25 Hide Default Comm
© Ll B Food Comm
e EPred Comm
! I . J OPerfect Comm

0 1000 2000 3000 4000
Strategy Populations

Domination by All Eat: Peopwlations of strategy categories ai differemt gains for partial newral net
fraining on most successfil neighbor in constant environment of food svurces and preduators.
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Figure 21. Categories dominant in an environment of randomized numbers of food
courses and predators
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Figure 21. continued

B Al Eat
Food Comm
O Perfect Comm

3
|
i
|
8

Genemtions o single strategy, 1500 max

10 25 ] . 188
Gain

{¢) Neural ncts in a random cnvironmeni

Categories dominant in an environmeni of randomized numbers of food sonrces and predators
Strategy replacement by (a) imitation of most successful neighbor, (b) localized genetic algorithm
combination with most successful neighbor and () partial newral nets training on most successful
neighbor, Colors of bars at 1,500 indicate strategy deminance but not necessarily full conguest.

Figure 22. Populations of strategies in major categories at different gains for partial
neural net training in an environment with random numbers of food sonrces and
predators

150 [ WAl Eat
100 OAIl Hide
5¢ B Eal Default Comm
% 25 BHide Defaull Comm
© 10 DOFood Comm
5 BPred Comm
g I QPerfact Comm
0 1000 2000 3000 4000
Strategy Populations
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Inthe imitation runs, Perfect Communicators take over witha gain of 1, but at greater gains
the general winners are Eat Default Communicators. This is a family of strategies that
qualify as “Communicators” because of reciprocal signaling regarding predators, Like
All Eat, however, the winner al a gain of 50, they maintain an open mouth in the absence
of any signal.

In the genetic algorithm runs, Food Communicators prove dominant with gains of 1 and
5, though they don’t completely occupy the array within 1,500 generations. Food
Communicators resemble Perfect Communicators in that they send no signal when
neither fed nor hurt, and take no action when no signal is received. But their communi-
cation is limited Lo the presence of food. Beyond a gain of 5 it is All Eat that takes over.

Populations of strategies in major categories at different gains for partial neural net
training in an environment with random numbers of food sources and predators.

In no case did our neural nets reach fixation on a single stralegy category within 1,500
generations. Here again results for neural nets are clearer in Figure 22. Perfect Commu-
nicators are dominant ata gainof 1, with Food Communicators at a gain of 5. Beyond that,
the dominant category is All Eat, with the peculiar exception of close competition
between Food Communicators and All Eat at a gain of 150.

In an environment of randomized numbers of food sources and predators, there do seem
to be important differences in the outcomes of our models depending on whether we use
imitation, localized genetic algorithm or partial training of neural nets. 1n the case of
imitation, in particular, Eat Defauit Communicators make a significant showing that
doesn’t appear wilh either of our other modes of strategy change. In neural nets and
genelic algorithms, Food Communicators also make a more significant showing than they
did in a constant environment. All Eat, however, is still the most significant category for
gain levels above 5 in both neural nets and genetic algorithms.

Sine-Wave Variable Environment

In our simple studies, communication was strongly favored in sine-wave variable
environments. Will the same hold for the more complex model?

With one major qualification, the answer is “yes™; Here again, cycles of “boom and bust”
strongly favor the emergence of communication. The major qualification has to do with
the precise form of communication that is favored. Our more complex models include both
food sources and predators, with the possibility of communicative strategies regarding
either or both. Numbers of both food sources and predators vary together in cycles of
“boom and bust.”™? The variable we use to test the “window™ for communication,
however — level of gain for successful feeding — is clearly relevant only to communi-
cation regarding food.

Communication regarding food, it turns out, is strongly favored in sine-wave variable
environments: Food Communicators dominate, unthreatened by All Eat, at very high
levels of gain. Because loss for predation remains constani at one penalty point across
our runs, on the other hand, communication regarding predation does not appear. With
up to 150 points to be gained by successful feeding, the one point that might be lost by
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predation proves insufficient to produce either Pred Communicators or fully Perfect
Communicators,

Here, as before, we explored two patterns of sine-wave variability, shown in Figure 23.
In this case, data points represent both numbers of food sources between | and 150 and
predators between 0 and 300. In the sin+2 graph, our food sources are plotted as [sin(x)
+ 1] * 75 for a series X, X,, ... x, which increments by units of two; predators are plotted
as [sin(x)+ 1] * 150 for the same series. In the second series, our increments are by units
ofthree. Although we compiled full data for both forms of variation, the final results prove
nearly identical. We therefore exhibit only the results for the sin+2 series as represen-
tative of both."

Because almost all runs failed to reach fixation by 1,500 generations, results appearina
less informative form in Figure 24. What these graphs do make clear is the complete
dominance by Food Communicalors for all modes of sirategy change and all gains preater
than one. Proportions of populations in each case are shown in Figure 25.

Figure 23. Patterns of variation for food sources and predators
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[sinfx} + 1] * 75 for food sowrces and {sinfx) + 1] * 150 for predators with different incremental series
Xy X . x Inthe top series, x,,, = x + 2. In the second series, x, = x, + 3,
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Figure 24. Full dominance by Food Communicators across all modes of strategy
change in a sine-wave variable environment
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(¢) Neural nets in a Sin+2 environment

Resulis shown are for sin+2. Sin+3 results are nearly identical
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- of strategy Figure 25. Full dominance by Food Communicators across all modes of strategy
change in a sint-2 variable environment
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We take these results as clear evidence that sine-wave variable environments of at least
the “boom and bust” form of sin+2 and sin+3 strongly favor the emergence of commu-
nication. In constant and random environments dominance at gains above 5 goes 1o
either All Eat or Eat Default Communicators. Food communicators play a subsidiary role.
With a variable environment of the forms explored here, on the other hand, dominance
is by Food communicators for gains from 5 to 150.

Our more complex simulations therefore underscore the lesson of the simpler models
above. Across a range of modes of strategy change, sine-wave variable environments
can play a major role in the emergence of communication.

Conclusion

In earlier studies we found that communities of Communicators can emerge from an
initially randomized array of strategies in an environment of wandering food sources and
predators. Communication can emerge, moreover, using any of three different mecha-
nisms of strategy change: imitation of successful neighbors, combination by localized
genetic algorithm with most successful neighbors and partial neural net training on the
behavior of most successful neighbors (Grim, Kokalis, Tafii, & Kilb, 2000,2001; Grim, St.
Denis, & Kokalis, 2002).

In our earlier studies, however, we used environments with a constant number of
wandering food sources and predators. Here our atlempt has been to expand those
studies to questions of environmental variation: Is communication about resources more
favored in an environment in which the level of resources are variable than in an
environment in which resources are constant?

For an environment with randomly variable resources, the answer is “no.” In both our
simpler and more complex simulations, random variation in resources showed much the
same effect as constant resources with the same average. In an environment with sine-
wave variable resources, on the other hand — an environment of “boom and bust”
resource cycles — the answer is clearly “yes.” It is thus not merely variability but the
particular pattern of variability that is of importance; communicative sirategies are much
more strongly favored in sine-wave variable environments. That effect holds whether the
mechanism of strategy change at issue is one of imitation, localized genetic algorithm or
partial training on neural nets.

The advantage to communication in a variable environment, we speculate, is that the
behavior of a community of Communicators can be environmentally sensitive. Unlike
many of their competitors, communities of Communicators can take effective advantage
of “boom” cycles and yet harbor their energy resources in times of “bust.” A more
thorough understanding of the mechanisms of environmental variability in this kind of
simulation, however, as well as a wider exploration of different patterns of variation, will
require further work.

Meaning is crucial to cognitive systems, whether artificial or natural. Our earlier work
suggests that a key to undersianding meaning may lie in understanding the development
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of behavioral coordination in communities of agents embodied in an environment. The
current results suggest that environmental variability may also play an important role in
the emergence of meaning. In terms of natural cognition systems, these results offer hints
of a deeper understanding of some of the mechanisms of meaning. They may also offer
hints toward richer development of meaning in artificial cognition.

It is intriguing that environmental variability has been appealed to as an important
explanalory factor in a range of different disciplines. In ecology, environmental fluctua-
tion has been seen as playing an important role in species diversity (Hutchinson, 1961;
Harris, 1986; Huston, 1979; Hubbell & Foster, 1986; Chesson & Hunily, 1989, 1997). In
cultural anthropology, cycles of boom and bust have been linked to the growth of
agriculture (Reynolds, 1986). Pleistocene climatic fluctuations have recently been
proposed as insirumental in the evolution of larger brained mammals in general and
higher primates in particular, with speculative links to social learning and culture {Polts,
1996; Opdyke, 1995; Odling-Smee, Laland, & Feldman, 2000; Boyd & Richerson, 1985,
1989, 2000). The study of particular patierns of environmental variability and theirimpact
is perhaps most developed in decades of careful work on schedutes of reinforcement and
operant conditioning (Reynolds, 1975; Honig, & Staddon, 1977; Nye, 1992). Itis tempting
1o speculate that these appeals to environmental variability across disciplines may have
some central mechanism in common. We take it as a suggestive fact, worthy of further
investigation, that environmental variability turns out to be important even in the simple
simulational studies of communication and meaning we have outlined here.
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Endnotes

! See also Flannery (1986).

ra

Questions of environmental variability are applied to robotics and the evolution
of complexity in Seth (1998).

For earlier work with a similar model regarding cooperation rather than communi-
cation (see Grim, 1995, 1996, and Grimn, Mar, & S1. Denis, 1998).

Although we haven’'t pursued it here, we take direct comparison of different
computational structures to be of both practical and theoretical importance. In
terms ol practical implications, new program optimization algorithms are constantly
being proposed, including new variations on some of those used here. It is to be
expecled that some of these will prove more successful in the optimization of some
kinds of programs, under some conditions, while others prove more successful for
other kinds of programs or under other conditions. Only rarely, however, has there
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been any attempl to “bench test™ eptimization algorithms side by side., Withregard
to theoretical implications, it is clear that animal behavior can be shaped by different
mechanisms, including, for example, genetics and individual learning, Will one
form of mechanism prove optimal for a particular range of behaviors, for a particular
batch of organisms or in a particular sel of conditions, while another mechanism
lurns out to be optimal for other behaviors or organisms in other conditions? Here
a number of theoretical questions seem ripe for simulational studies using direct
comparisons between different mechanisms.

These energy costs were carried over from earlier studies that did not address
environmental variability but in which they proved auspicious for the development
of communication at low gains. Resultsacross different costs are detailed in Grim,
Kokalis, Tafti, and Kilb (2000, 2001), and Grim, St. Denis, and Kokalis {2002),

Because of limited computer resources and the extensive computing time required
for some runs across ranges of gains, particularly those invelving neural net
training, graphs throughout represent results of single runs at each gain. Ina more
comprehensive study, it would clearly be desirable to average multiple runs at each
point. Consistency of results across ranges of gains, however, offers similar
assurance of reliability — the fact Communicators triumph consistently at gaing
from 10 through 90 in Figure 7, forexample.

We do not have a tidy explanation for the quicker convergence to All Eat using
neural nels.

A speculation as to why this result holds is offered in the conclusion.

The reason for using twice as many predators as food sources is detailed in Grim,
Kokalis, Tafti, and Kilb (2000). A bit of reflection on the dynamics of feeding and
predation built into the model shows an imporiant difference between the two. In
an array composed entirely of Communicators, as itlustrated in Figure 2, 2 chain
reaction can be expected in terms of food signals and successful feedings. The
dynamics of a “hurt” alarm are very different. Among even Perfect Communicators,
acell signals an alarm only when it is hurt — that is, when a predator is on it and
itisnt hiding. If successful, that “alarm” will alert a cell’s neighbors to hide, and
thus the predator will find no victim on the next round. Precisely because the
predator then finds no victim, there will be no alarm sounded, and thus on the
following round even a feillow “communicator” may be hit by a predator. Here one
sees not a chain reaction of successful feeding on every round, but an alternating
pattern of successful avoidance of predation every second round. An important
difference between the dynamics of feeding and the dynamics of predation is thus
built into the model. With equal numbers of food sources and predators, that
difference in dynamics would strongly favor communication regarding food over
communication regarding predators. One way to compensate for that difference

is simply to proportion food sources and predators accordingly, as we have done
here.

The .05 “tax” for mouth-opening is significantly less than the .95 tax in the simpler
studies because there is an additional down-side to mouth-opening in this richer

environment. When its mouth is open, an individual cannot be hiding and so is
vulnerable to predators.
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This maps precisely onto the distinction between “emissions™ and “actions” in
MacLennan (1991) and between “transmission behavior” and “reception behav-
ior” in Oliphant and Batali (1997). These two functions are separated between lwo
different sexes in Werner and Dyer (1991), and between two separate sets of
connection weights in the neural nets of Cangelosi and Parisi (1998). Martin Nowak
notes that an active matrix for signal-sending and & passive matrix for signal-
reading can be treated as completely independent in Nowak, Plotkin, and Krakauer
(1999) and in Nowak, Plotkin, and Jansen (2000).

Results below were often compiled using multiple computers running sub-sets of
gains over a period of weeks and months.

The possibility of varying food sources and predators independently, and at
different rates, remains an open question. The initial and limited explorations we
made in this direction gave no clear or decisive results.

Full data for both series are of course available on request.
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