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Abstract   
It is widely accepted that the way information transfers across 
networks depends importantly on the structure of the network. 
Here, we show that the mechanism of information transfer is 
crucial: in  many respects the effect of the specific transfer 
mechanism swamps network effects.  Results are demonstrated 
in terms of three different types of transfer mechanism: germs, 
genes, and memes.  With an emphasis on the specific case of 
transfer between sub-networks, we explore both the dynamics 
of each of these across networks and a measure of their 
comparative fitness.  
 Germ and meme transfer exhibit very different dynamics 
across linked networks.  For germs, measured in terms of time 
to total infection, network type rather than degree of linkage 
between sub-networks is the primary factor.  For memes or 
belief transfer, measured in terms of time to consensus, it is the 
opposite: degree of linkage trumps network type in importance.   
The dynamics of genetic information transfer is unlike either 
germs or memes.  Transfer of genetic information is robust 
across network differences to which both germs and memes 
prove sensitive.   
 We also consider function: how well germ, gene, and meme 
transfer mechanisms can meet their respective objectives of 
infecting the population, mixing and transferring genetic 
information, and spreading a message.  A shared formal 
measure of fitness is introduced for purposes of comparison, 
again with an emphasis on linked sub-networks.   Meme 
transfer proves superior to transfer by genetic reproduction on 
that measure, with both memes and genes superior to infection 
dynamics across all networks types.  What kinds of network 
structure optimize fitness also differ among the three. Both 
germs and genes show fairly stable fitness with added links 
between sub-networks, but genes show greater sensitivity to the 
structure of sub-networks at issue.  Belief transfer, in contrast to 
the other two, shows a clear decline in fitness with increasingly 
connected networks. 
 When it comes to understanding how information moves on 
networks, our results indicate that questions of information 
dynamics on networks cannot be answered in terms of networks 
alone.  A primary role is played by the specific mechanism of 
information transfer at issue.  We must first ask about how a 
particular type of information moves.  
 

Information Transfer Mechanisms: 
Dynamics and Fitness 

Questions about how information is transferred on 
networks are of importance in many disciplines.  
Biologists seek to understand how signals are transferred 
across animal groups (Strandburg-Peshkin, Twomey, 
Bode, Kao, Katz, Ioannou, Rosenthal, Torney, Wu, Levin 
& Couzin 2013, Handegard, Boswell, Ioannou, Leblanc, 
Tjøstheim & Couzin 2012).  They also ask how genetic 
information is transferred between individuals and 
populations in sexual and reproductive networks 
(Chowdhury, Lloyd-Price, Smolander, Baici, Hughes, Yli-
Harja, Chua, & Reibeiro, 2010; Holland 2012).   
Computer scientists ask how to optimally transfer 
information across computer networks and between 
networks of sensors (Wooldridge 2002, Tanenbaum 2006, 
Science Publishing Group, 2013-).    Most public health 
interventions are information-based; public health 
professionals need to know the optimal ways of targeting 
and delivering that information (Hawe & Potkin 2009; 
Grim, Reade, Singer, Fisher, & Majewicz, 2010a, 2010b; 
Grim, Thomas, Fisher, Reade, Singer, Garza, Fryer & 
Chatman 2012).  Marketing executives want to know how 
information spreads by word of mouth and over social 
networks and the effect that has on acceptance of 
innovation and product adoption (Valente 1995; Achrol & 
Kotler 1999; Gordon 1999; Easley & Kleinberg 2010).  
Policy makers are interested in information flow across 
social communication networks with an eye to policy 
formulation, promulgation, and enforcement (Atkinson & 
Coleman 1992; Peterson 2003).  
 Questions about the dynamics of information are also of 

importance in philosophy, most clearly in philosophy of 
information (Floridi 2003, 2011; Adriaans & van Bnethem, 
2008) but in other areas as well.  Social epistemologists 
and philosophers of science ask how the transfer of 
information and the social structure of science affect the 
knowledge of the community (Grim 2009; Grim, Singer, 



Fisher, Bramson, Berger, Reade, Flocken & Sales 2013; 
Zollman 2010, 2013; Alexander 2013).  Questions of ethics 
and the evolution of norms can turn on the dynamics of 
information as well (Alexander & Skyrms 1999; Bendor & 
Swistak 2001; Alexander 2007).   
 Genes, germs, and memes all carry information. 
Viruses and bacteria contain genetic information in RNA 
and DNA.  The genes of higher organisms carry 
information in sexually transferred DNA.  Propositional 
information is represented in memes and beliefs.  Each of 
these forms of information has a characteristic mechanism 
of transfer. Germs use the asexual reproduction 
characteristic of infection, genes of higher organisms use 
sexual reproduction with crossover, and beliefs are 
transferred through learning, reinforcement, and 
accommodation.  In the first part of this paper, we use 
computer-aided simulations to explore the dynamics of 
these three forms of information on linked sub-networks. 
 We model information transfer with information 
pooling models, in the sense of Zollman 2013.  In each 
round of the computer simulation, information for each 
agent or node of the network is affected only by the 
information at points to which it is connected.  It is well 
established for such models that network structure affects 
the amount of time required until a community—until 
information spread across the network is roughly uniform 
(e.g. Zollman 2007).  The main result of part I of the 
paper is that information transfer type is crucial to issues 
of time convergence.  If the timing of spread across a 
community is the concern, whether because we want to 
delay the spread of viral infection or we want to optimize 
scientific consensus, it is crucial that we first ask how the 
particular kind of information at issue moves.    
 Germs, genes, and memes differ in having a distinctive 
mechanism of transfer, but each of these types of 
information also serves certain ends.  A highly fit 
pathogen is one that infects a host population so as to 
optimize reproduction and spread.  A fit gene is one that 
under selective pressure best survives and spreads across a 
population.  A fit meme or belief is one that accurately 
represents the world, optimizes cognitive function, or 
otherwise benefits its agent (Grim 2009). 
 In part II, we take some first steps toward exploring 
differences in fitness between these three types of 
information transfer, again with an emphasis on linked 
sub-networks.  Our results indicate how different types of 
information can be used to optimize different goals, but 
also make clear some of the costs of those optimizations:  
what germs, genes, and memes are distinctively good at, 
but their specific limitations as well.   

In terms of a formally uniform measure of fitness we 
introduce, meme transfer produces generally higher 
results than the other two types of information across all 
network types.  What kinds of network structure optimize 
fitness for each type, however, depends on the specific 
mechanism at issue. The fitness of both sexual and 

asexual reproduction—germs and genes—is fairly 
resilient to the addition of links between sub-networks, 
though sexual reproduction shows more sensitivity to the 
structure of networks that are linked.    Belief, in contrast 
to the other two, shows a decline in fitness with 
increasingly connected networks. 

What our results indicate quite generally is that 
questions of information dynamics on networks cannot be 
answered in terms of network structure alone.  We must 
first know the specific method of information transfer at 
issue.  There are specific things that information transfer 
on the model of germs, genes, and memes is good for, on 
specific kinds of networks, but always with a specific 
cost.  It is only once we restrict ourselves to a specific 
mode of transfer that we can speak of consistent effects of 
network structure per se.   

Information Networks 
 Real social networks aren’t uniform and homogenous.  
Social communities are composed of sub-communities, 
with varying degrees of contact in terms of the physical 
contact necessary for disease transmission, the sexual 
contact necessary for genetic mixing, and the 
communication streams necessary for belief transfer.  For 
animals, sub-communities divided by geographical and 
ecological barriers are crucial in understanding both 
disease transmission and the genetics of speciation.  In the 
case of people, sub-communities are divided along racial, 
ethnic, demographic, and socio-economic lines.  In order 
to understand infection dynamics we need to understand 
physical contact networks, including contact links and 
gaps between sub-communities.  In order to understand 
genetic change we need to understand links of sexual 
contact between sub-communities.  In the case of belief 
we need to understand the impact of linkages between 
sub-communities not only of physical contact but of 
communication and trust.   
 Figure 1 shows a series of four networks related in 
terms of their structure.  The network on the left is a 
single total network. The three pairs on the right form 
paired total sub-networks with increasing numbers of 
connecting links.  
  

 
 

Fig. 1  A single total network and increased degrees of 
linkage between total sub-networks 

 
   We can measure connectedness of sub-networks in 
terms of the number of linkages between nodes of distinct 



groups or sub-networks as a percentage of the total 
possible.  Linkages between sub-networks of this type 
have also been termed 'bridges,' analogous to a concept of 
bridges in computer networking and identified in Trotter, 
Rothenberg and Coyle (1995) as a key area for future 
work in network studies and health care. L. C. Freeman 
(1977) speaks of the same phenomena in terms of 
segregation and integration between sub-networks.   
 Figure 2 shows the types of linked sub-networks we 
concentrate in the present study: linked total networks, 
rings, small worlds, random and scale-free networks.  For 
simplicity we use just two sub-networks of 50 nodes each 
(Figure 2 uses a smaller number of nodes for visibility).  
Our rings use just one connection to a single neighbor on 
each side.  For small worlds we work with single rings in 
which roughly 9% of nodes have been re-wired at 
random.  In our random networks roughly 4.5% of 
possible connections are in each sub-network.  Our scale-
free networks are constructed by the preferential 
attachment algorithm of Barabási and Albert (1999).  
Where needed, we add a minimal number of links to 
assure a connected network in each case; hence the 
'roughly' of 9% rewired nodes and 4.5% of possible 
connections in the case of small world and random sub-
networks.   
 

 
Fig. 2  The network types at issue.  Simulation runs used 
sub-networks of 50 nodes; smaller numbers of nodes are 

shown here for visibility.  
 

In the course of our investigation we vary both the 
types of sub-networks and the number of links between 
them.   

An important part of the work also calls for a 
comparison between results for linked networks of a given 
type and results for a single 100-node network of that 
type.  We compare results for ring sub-networks with a 
particular number of links between them and a single ring 
with the same number of added links.  Such a method 
allows us to focus on the effects of two distinct aspects of 
network structure:  

 (a) network type—ring, wheels, hubs, small worlds, 
 random or scale-free, and  

 (b) degree of linkage between sub-networks. 

The idea is to use differences between results on single 
networks and on linked sub-networks to tease out those 
aspects of over-all network structure that crucial for 
particular results.  Similar results between a single 
network of a particular type and linked sub-networks of 
that type is evidence that it is the network type rather than 
details of linkage that is important for the result.  Different 
results between a single network and linked sub-
networks—particularly where differences carry across 
different networks types—is evidence that it is degree of 
linkage between the sub-networks that is doing the work.   

Part I: Network Dynamics for Germs, Genes, 
and Memes 

Infection	
  
Germs offer the simplest case.  Here we vary (a) the 
structure of sub-networks involved—whether sub-
networks at issue are rings, small worlds, random, scale-
free, or total—and (b) the degree of linkage between those 
sub-networks.  What effect do each of these have on the 
dynamics of infection? 

Regardless of the infection rate, time to total infection 
turns out to be importantly sensitive to network structure.  
It is not sensitive, however, to whether that structure is 
instantiated in a single network or in linked sub-networks.  
Figure 3 shows results from simulation for increased 
linkages between sub-networks. For each number between 
1 and 50 we create 1000 networks with random links of 
that number between sub-networks, starting with a single 
infected node.  Figure 3 shows the average steps to total 
network infection with over the 1000 runs, here using a 
100% infection rate.  Figure 4 shows results in which 
links are added not between sub-networks but within a 
single large network of each structure.   
 



 
Fig. 3  Average time to total infection with increasing 

links between ring, small world, random, scale-free, and 
total sub-networks 

 

 
 

Fig. 4  Average time to total infection with increasing 
links added in single ring, small world, random, scale-

free, and total networks 
 

 Results in the two cases are virtually identical.  The 
difference in plotted lines in each figure shows that 
network structure does make a significant difference in 
time to total infection, but the fact that such a structure is 
instantiated in sub-networks rather than a single network 
does not make a difference.  In all the cases considered, it 
is not degree of linkage sub-networks but the network 
type of either single or linked sub-networks—whether 
ring, small world, random, scale-free, or total—that  
produces network-specific signatures for infection. 1  
 If one wants to either plot or predict, explain or 
understand the course of an epidemic—or of information 
transfer analogous to an epidemic—what one needs to 
know is first and foremost not the degree of linkage 
between sub-networks but the characteristic structure of 
the sub-networks themselves.       

Memes and beliefs  	
  
Like germs, memes spread across social networks, but in 
this case the dynamics of information diffusion are 
dramatically different. Some earlier work has trumpeted 
similarities in infection dynamics and the spread of ideas 
                                                
1 This largely accords with analytic results by Golub and Jackson 
(forthcoming) regarding the role of linkage in diffusion dynamics. 

(Newman 2001, Redner 1998, Börner et. al. 2003).  Our 
purpose is to emphasize crucial differences between them. 
   In our models, agents' beliefs are represented as a single 
number between 0 and 1, which we can think of an 
estimate of a fixed quantity.  Perhaps these are beliefs in 
the severity of a disease, the probability of contracting the 
disease, or the effectiveness of vaccination. (Harrison, 
Mullen, & Green 1992; Janz & Becker, 1984; Mullen, 
Hersey, and Iverson, 1987; Strecher & Rosenstock, 1997).  
Agents are influenced by the beliefs of those around them, 
updating their beliefs in terms of the beliefs of those with 
whom they are informationally linked.   
 Though simple, we regard this model of belief as 
sufficiently realistic for our purposes.    Some beliefs can 
be represented on such a scale, and it is clear that people’s 
beliefs are influenced, among other things, by the beliefs 
of those with whom they have contact.  What is 
admittedly unrealistic is the simple form of belief 
updating we use: an averaging of beliefs with those with 
whom one has network contact (French 1956, Harary 
1959, DeGroot 1974, Golub & Jackson 2010).  Averaging 
of beliefs in an informational neighborhood certainly does 
not capture the full complexity of belief change.  What an 
averaging mechanism does mimic, however, in a 
conveniently simple way, is the pattern of reinforcement 
often characteristic of belief change.  The more one's 
beliefs are like those of more of one's network neighbors, 
the less inclination there will be to change those beliefs.  
The more one's beliefs are out of sync with one's 
neighbors, the greater the pressure there will be to change 
one's beliefs (Asch 1952, 1955, Bond & Smith 1996; 
Cialdini & Golstein 2004).    
 Using belief averaging, and regardless of initial 
assignment of belief values, all agents in this model 
eventually approach the same belief value.  We can 
therefore measure the effect of network structure on belief 
convergence by measuring the number of steps required 
on average until all agents in the network are within, say, 
a range of .1 above or below the mean belief across the 
network as a whole.  In what follows we use this range of 
variance from the mean as our measure of convergence, 
averaging over 100 runs in each case.   
 We begin with polarized agents.  Half of our agents are 
drawn from a pool with belief measures that form a 
normal distribution around .25, with a standard deviation 
of .06.  The other half are drawn from a pool with belief 
measures in similar normal distribution around .75.  In the 
case of single networks agents are drawn randomly from 
each pool.  In studying linked sub-networks our agents in 
one sub-network are drawn from the .25 pool; those in the 
other are drawn from the .75 pool.   Belief polarization of 
this form is necessary to study the effects of sub-network 
linkage in particular; were beliefs of our agents 
randomized within each sub-network, convergence to an 
approximate mean could be expected to occur in each sub-



network independently.  Time to consensus would not 
then be a measure of the effect of sub-network linkage. 
 In outlining the dynamics of infection above, we 
contrasted linked sub-networks of particular structures—
ring, small world, random, total, and scale-free—with 
single networks of the same structure.  In exploring the 
dynamics of belief we again study these side by side.  
Figure 5 shows graphs indicating times to belief 
convergence for each of our network types.  Times to 
consensus with increased linkages between sub-networks 
of a given type are shown in blue.  Times to consensus 
with increased linkages within single networks of that 
type are shown in red.   
 
  

 

 

 
Fig. 5  Times to belief convergence in various networks 

for increasing links between sub-networks (shown in blue) 
and within single networks of that type (shown in red). 

 
 Notice two important features of these graphs: (1) the 
extreme divergence between rates of belief convergence 
between linked sub-networks and single networks in each 
case, and (2) the remarkable similarity of the curves for 
linked sub-networks in each case. That similarity is 
emphasized by plotting results for all sub-network types 
together in log-log form in Figure 6, revealing the classic 
signature of a power law.   
 What these results indicate is that where information is 
transferred in the manner of memes rather than germs, the 
dominating effect of increased linkage between sub-
networks is independent of the structure of the sub-
networks themselves.  For meme transmission, unlike 
infection, the degree of linkage between sub-networks 
trumps network type.  If one wants to trace the course of an 
epidemic, we noted, it is crucial that one knows the 
structure of networks involved.  To plot or predict, explain 
or understand the course of belief transmission, in contrast, 

it is degree of linkages between sub-networks, of whatever 
type, that is crucial.   
 

 
Fig. 6   Log-log plots of times to belief consensus with 

increased linkages between sub-networks of various types  

Genes	
  
 Genetic information transfer in higher organisms is 
characterized by crossover in sexual reproduction.2  To 
simulate this form of information transfer, we gave each 
agent a genetic code consisting of a binary string of length 
100.  Half of the population starts out with a genetic code 
of all ones, the other with all zeroes.  In the case of linked 
sub-networks, each sub-network begins with a uniform 
genetic code of either zeroes or ones.  In the case of single 
networks, we randomize the two codes in the population.   
 On each time step of the model, each agent pairs off 
with an unpaired agent she is connected to, if there is such 
an agent.  Each pair then mates and two new genetic 
codes are formed.  Each new code is a crossover of the 
two parents’ codes, code from one parent to the left of a 
random crossover point and code from the other parent to 
the right.  The two new codes will generally differ 
because each code is produced with a random crossover 
point.  The two parents are then replaced by offspring 
bearing the new genetic codes but with the same network 
connections.   
 In the limit, in connected networks, we can expect this 
form of genetic updating to produce a uniform genetic 
code across the population. As the network converges, 
genetic information will become more uniformly spread. 
We can therefore use convergence within a given threshold 
of similarity as a measure of the dynamics of genetic 
information.  We take as our convergence measure that 
point at which two agents drawn randomly from the 
population can be expected to differ in less than 20% of 

                                                
2 Both asexual organisms and viruses transfer genetic information by 
reproduction as well.  Here we use ‘genetic’ to refer solely to the 
crossover characteristic of sexual reproduction.   



their genetic code.  For our binary strings of length 100, 
this measure represents a Hamming distance of less than 
20.   
 For belief transfer, we’ve seen, degree of linkage 
between sub-networks is the major factor in time to 
convergence.  For infection, the crucial factor is  network 
and sub-network type rather than degree of linkage.  
Genetic information transfer exhibits a mixture of these 
features, but it doesn't match either of the other patterns in 
all respects.   
 

 
Fig. 7 Generations to genetic convergence with a 

Hamming distance of 20 for increased linkages between 
sub-networks of various types. 

 
 Figure 7 shows genetic dynamics results for linked sub-
networks of each of our types.  Here, like in the case of 
belief, network type tends to make very little difference.  
The data from our scale-free preferential attachment 
networks are outliers; we remain unsure why.  When that 
case is removed, the proximity of results for increased 
linkages and regardless of the types of sub-networks 
linked is even clearer.  Those results are shown in a re-
scaled graph in Figure 8 and in log-log form in Figure 9. 
 

 
Fig. 8 Generations to genetic convergence with a 

Hamming distance of 20 for increased linkages between 
total, ring, small world and random sub-networks. 

 

 
 

Fig. 9  Log-log plot of genetic convergence for increased 
links between total, ring, small world and random sub-

networks. 
 

 Our results indicate that if information is being 
transferred via a genetic mechanism, the number of links 
between sub-networks trumps the structure of the sub-
networks themselves when it comes to time to 
convergence.  This is a feature genetic information shares 
with meme or belief transfer.  Here as in that case we 
again have the signature of a power law, though the slope 
or scaling exponent is very different.  Genes therefore 
share some notable features with memes.   
   In the case of memes, however, we found a major 
difference between results for linked sub-networks and for 
single networks of a given type.  That difference did not 
appear in infection dynamics: there convergence times on 
linked networks of a given type closely paralleled those 
for single networks with the same number of added links. 
In this respect, genetic information transfer turns out to be 
more like infection.  Figure 10 shows comparisons for our 
graph types between added linkages between networks 
(shown in blue) and within a single network of the same 
type (shown in red).  Total networks stand out, but that is 
because ‘added’ links in a total network are redundant.  In 
all other cases single networks start with a lower time to 
convergence, but after just a few added links, the times to 
convergence for single and linked sub-networks are nearly 
identical.  In this respect genes are more like germs.   
   

  

 



 
Fig. 10  Times to genetic convergence in various networks 
for increasing links between sub-networks (shown in blue) 

and within single networks of that type (shown in red). 
 

Genetic information transfer therefore shows features 
of both germ and meme dynamics, but is clearly different 
from either.  For memes, the primary determinant of time 
to convergence is the number of links between sub-
networks, not the structure of the linked networks 
themselves.  For germ transfer, the pattern is reversed: 
network type proves far more important than degree of 
linkage.  For genes, increased network connectivity does 
increase speed to convergence, but with a dynamics in 
which neither network type nor degree of linkage play the 
dominant role characteristic of germs or memes. 

Part II:  Fitness for Germs, Genes, and 
Memes 

 Different forms of information transfer act in the 
service of different ends.  Here, again using linked sub-
networks as a primary tool, we take some first steps 
toward a more rigorous understanding of the comparative 
fitness of different forms of information transfer toward 
different ends.   
 We encode information for asexual and sexual 
reproduction—germs and genes--as binary strings of 
length 21.  In the previous section, we modeled belief as a 
real number between 0 and 1, which creates an obstacle 
for comparison across the three information transfer 
mechanisms.  By encoding real values for belief as binary 
decimals of length 21, however, we have a consistent way 
of representing information across all three transfer 
mechanisms. 
 Our fitness measure will also be the same across the 
three mechanisms.  We use .100000000000000000000 in 
binary, or .5 in decimal, as our 'optimal' code: that genetic 
string most strongly selected for in the environment of 
germs or genes, or that information string most strongly 
selected for in an environment of memes.  In the case of 
belief, our optimal code might be thought of as an 
indicator of truth or action effectiveness.  In all cases, we 
measure fitness by the arithmetic distance between an 
agent’s code and that arbitrary fitness target.    
 We use the same range of networks types as before, 
with increased linkages (i) between sub-networks and (ii) 
within single networks of each type.  In each case we start 
with a randomization of information strings across all 

nodes of the network.  What differs is the dynamics of 
information transfer. 
 For the asexual reproduction of germs, a node is 
replaced by that node with the highest fitness to which it 
is linked in the network.  In these early studies we do not 
include any provision for mutation.   

For sexual reproduction—genes—the information code 
of a node is replaced with a cross-over at a random point 
between it and the code of its fittest neighbor, again 
without mutation.3   

For belief dynamics, the real value of each node is 
averaged with that of its fittest neighbor.   
 With a uniform method of representing both 
information and fitness across the three types of 
information transfer, we can compare fitness dynamics 
across different types of networks, whether single or 
linked sub-networks, and with different degrees of 
linkage.  In each case we measure the number of 
generations required until the network converges; all 
nodes have values within .001 of the average fitness of 
nodes across the network at convergence.  At that point 
we can also measure how ‘fit’ the final convergence is: 
proximity to the optimal target at convergence. We use 
100 runs for each linkage value of each network, deriving 
both mean and standard deviation across those results. 
 The first measure of comparison is time to 
convergence.  In this regard the reproduction of germs is 
clearly the fastest. Updating by meme or belief 
reinforcement is the second fastest, with genetic crossover 
a much slower third.  Figure 11 offers just one example: 
relative speed to convergence with additional links added 
to a single scale-free network.  Slower mechanisms, with 
more generations to fixation, are displayed toward the top.   
Very similar results hold across all networks in our 
sample.  Germs are faster than memes.  Memes are faster 
than genes.   
 

 
Fig. 11  Relative speed to convergence of the transfer 

mechanisms with added links in a single scale-free 
network, typical of relative speed across all networks. 

 

                                                
3 In order to avoid bias at crossover in favor of information toward the 
front of a genetic code, the significance of each position on the string is  
randomly decided at the beginning of each simulation run. 



What of fitness measured as proximity to our optimal 
code at convergence?  Figure 12 shows relative fitness for 
the three information transfer types, again typical of 
results for our networks as a whole.  The more fit, with 
closer proximity to our optimal value, are displayed 
toward the top of the graph 

The asexual information transfer of germs is the fastest 
in terms of time to convergence, but scores worst in terms 
of fitness.  The reinforcement dynamics of memes or 
belief prove the best. The fitness of genetic recombination 
lies in the middle.  On this measure, memes prove fitter 
than genes.  Genes prove fitter than germs.  
  

 
Fig. 12  Log plotting of relative fitness for the information 

transfer mechanisms 
 
    Orderings in terms of speed and fitness clearly differ 
for our information transfer mechanisms, but those 
orderings are not simply inverted.  The fastest information 
transfer mechanism is also that with the lowest fitness: the 
asexual reproduction of memes.  But the slowest transfer 
mechanism is not that with the highest fitness.  The 
slowest is genetic cross-over, but it is the belief 
reinforcement mechanisms of memes that show the 
highest fitness.   
 Across a sample of networks, Zollman (2007, 2010) 
demonstrates a direct trade-off between speed to 
convergence and accuracy for networks of agents pooling 
information about bandit problems.  Our work here shows 
that such a trade-off does not hold across all types of 
information pooling.  Belief transfer proves both faster to 
convergence and more fit than genetic transfer, for 
example.  This strengthens the lesson from the previous 
section: to understand the dynamics of information across 
networks, we must first ask what mechanism of 
information transfer is under consideration.   
 There are devils in the details, however, and a more 
nuanced story is told by the dynamics of different transfer 
mechanisms on various networks.  Figures 13 and 14 
show patterns for the asexual reproduction of germs 
across linked sub-networks of our various types.  Speed to 
convergence varies widely across network type, 
increasing with increased linkages, but without any sharp 
differences in fitness.   
 

 
Fig. 13  Speed to asexual convergence with added links 

between all types of sub-networks  
 

 
Fig. 14  Asexual fitness at convergence with added links 

between all types of sub-networks 
  

Figures 15, 16 and 17 show comparative results for 
memes. Figure 15 makes it clear that linked total networks 
are clearly the fastest to convergence, with a uniform 
speed.  In the other cases speed increases with added 
linkages, particularly in the case of relatively distributed 
networks like our rings and small worlds.   
 

 
Fig. 15  Speed to belief convergence with added links 

between all types of sub-networks. 
 

Figure 16 shows that the speed to convergence for total 
networks is made up for by very poor fitness.  Figure 17 
shows results for the other networks in a finer resolution, 
indicating decreasing fitness with increased linkages 
between sub-networks in all cases except scale-free 
networks, where the results are unclear.  Meme fitness 
decays with increased linkages between sub-networks.  
These results are in accord with related work on epistemic 
networks (Grim 2009; Grim, Reade, Singer, Fisher & 
Majuewicz 2010).  There too increased linkage between 



sub-networks leads to decay in belief-based information 
transfer.   
 

 
Fig. 16  Belief fitness at convergence with added links 

between all types of sub-networks 
 

 
Fig. 17  Decay in belief fitness at convergence with added 

links between all types of sub-networks 
 

Comparisons regarding speed and fitness for genes are 
shown in Figures 18 and 19.  Though significantly slower, 
genetic information transfer shows the same pattern of 
speeds to convergence on various network types that the 
infection transfer of germs do, with a comparable impact 
of increased linkages and network types.  Like germs, but 
unlike memes, gene fitness also shows relative constancy 
across added linkages within a network type.  Whereas the 
fitness of germs seems essentially random across fitness 
types, however, fitness in the case of genetic transfer does 
appear to be higher for distributed networks such as rings 
and small worlds, in that respect echoing a characteristic 
that also appears with memes.   

 

Fig. 18 Speed to genetic convergence with added links 
between all types of sub-networks 

 

 
Fig. 19  Genetic fitness at convergence with added links 

between all types of sub-networks 
 
 As a whole, our results indicate that the information 
transfer by reinforcement characteristic of memes or 
beliefs is an outlier compared to information transfer by 
either the asexual reproduction of germs or the sexual 
reproduction of genes.  The information transfer 
characteristic of memes quickly produces convergence 
and generates highly fit communities.  But it comes with a 
cost—a marked decrease in fitness with increased network 
linkages that does not appear with either germs or genes.   

Conclusion 
How does information move on networks?  Our attempt 
here has been to show that such a question has no 
answer—no single answer—independent of a specification 
of the particular mechanisms of information transfer at 
issue.   

Germs, genes, and memes represent different 
information strategies, with different dynamics in the case 
of linked sub-networks and intriguingly different 
sensitivities to degree of linkage and network type.  Our 
attempt has been to take some first steps to comparing 
fitness regarding those three types as well.  Different 
methods of information transfer can be expected to 
optimize different kinds of fitness, selected for in different 
environments and measured in terms of different ends. 

The importance of understanding network structure for 
transfer of information has received a great deal of well-
deserved attention.  That understanding remains radically 
incomplete, however, without a similar focus on various 
modes of information transfer as different as germs, genes, 
and memes. 
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