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Abstract:  

In order to understand the transmission of a disease across a population we will have to understand not only the 

dynamics of contact infection but the transfer of health-care beliefs and resulting health-care behaviors across that 

population.  This paper is a first step in that direction, focusing on the contrasting role of linkage or isolation 

between sub-networks in (a) contact infection and (b) belief transfer.  Using both analytical tools and agent-based 

simulations we show that it is the structure of a network that is primary for predicting contact infection—whether 

the networks or sub-networks at issue are distributed ring networks or total networks (hubs, wheels, small world, 

random, or scale-free for example).  Measured in terms of time to total infection, degree of linkage between sub-

networks plays a minor role.  The case of belief is importantly different.  Using a simplified model of belief 

reinforcement, and measuring belief transfer in terms of time to community consensus, we show that degree of 

linkage between sub-networks plays a major role in social communication of beliefs.  Here, in contrast to the case of 

contract infection, network type turns out to be of relatively minor importance.  What you believe travels differently.  

In a final section we show that the pattern of belief transfer exhibits a classic power law regardless of the type of 

network involved.   
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INTRODUCTION 

 

Public health has been a primary target for 

agent-based and network modeling.  A 

significant amount of work has been done on the 

role of network structure in the spread of disease 

(Meyers, Pourbohloul, Newman, Skowronski & 

Brunham 2005; Keeling 2005; Ferrari, Bansal, 

Meyers & Bjørnstad  2006 ; Miller & Hyman 

2007; Eubank, Guclu, Kumar, Marathe, 

Srinivasan, Toroczkai & Wang 2004).  But it is 

clear that health-care behaviors are as crucial in 

the pattern of any pandemic as are the biological 

characteristics of the pathogens involved 

(Epstein, Parker, Cummings & Hammond 2008; 

Auld 2003; Del Valle, Hethcote, Hyman, & 

Castillo-Chavez 2005; Barrett, Bisset, Leidig, 

Marathe, & Marathe 2009; Funk, Gilad, 

Watkins, & Jansen 2009; Hallett, Gregson, 

Lewis, Lopman, & Garnett 2007). Those health-

care behaviors are contingent on beliefs.  On 

standard models, these include at least beliefs 

regarding severity, susceptibility, effectiveness 

and the cost of preventive measures (Harrison, 

Mullen, & Green 1992; Janz & Becker, 1984; 

Mullen, Hersey, & Iverson 1987; Strecher & 

Rosenstock 1997).   

 

In order to understand the spread of disease we 

will have to better understand the spread of 

beliefs and behaviors.  Moreover, as public 

health interventions are often targeted to beliefs 

and behaviors we will have to better understand 

the spread of beliefs and behaviors in order to 

intervene effectively.  For a better picture 

ofdisease dynamics and to better the prospects 

for effective intervention we need a better 

understanding of the dynamics of belief 

transmission across social networks.  Although 

important empirical work has been done on 

social networks and the diffusion of beliefs and 

behaviors (Valente 1995, 2010; Morris, 

Podhisita, Wawer & Handcock 1996; Morris 

1997; Valente & Davis, 1999; Kincaid 2000; 

Hamilton, Handcock & Morris 2008), 

significantly less has been done with the tools of 

agent-based modeling toward understanding the 

abstract dynamics of belief (see however 

Centola & Macy 2007 and Golub & Jackson, 

forthcoming).
1
 

 

In what follows we take some steps in that 

direction, with an emphasis on the pervasive 

social phenomenon of sub-network groups or 

clusters.  Our social networks do not form a 

uniform and homogenous web.  Social 

communities are composed of sub-

communities, with varying degrees of contact 

and isolation between them; both in terms of 

the physical contact necessary for disease 

transmission and the informational contact 

crucial to the transmission of belief.  Racial, 

ethnic, socio-economic, demographic, and 

geographical sub-communities offer a clear 

example.  Racial and economic sub-

communities may be more or less isolated or 

integrated with other sub-communities, with 

varying strengths of information transfer, 

communication, and trust.  In the case of a 

pandemic, degree of isolation or integration will 

be crucial in predicting the course of contact 

and therefore the dynamics of disease 

transmission.  But in such a case degree of 

informational isolation or integration will also 

be crucial in tracking changes in health care 

beliefs and behaviors, with both immediate and 

long-range effects on the course of the disease. 

 

What we offer is an abstract model of this very 

real phenomenon.  We track the role of degree 

of linkage between sub-networks in the transfer 

of disease and the transfer of information, with 

contrasting results in the two cases.  Linkages 

between sub-networks have also been termed 

'bridges,' analogous to a concept of bridges in 

                                                 
1
 Centola and May consider 'complex contagions', in 

which more than one neighbor is required for 

infection.  This is not strictly speaking a 

reinforcement effect, but does show dynamics similar 

to that studied for belief reinforcement here—and a 

similar contrast with simple infection.  Golub and 

Jackson outline analytic results on 'homophily' in 

random networks, with a similar emphasis on the 

contrast between diffusion and belief averaging.  Our 

work here, part analytic and part from agent-based 

simulations, extends that work and shows that the 

central contrast holds across networks of various 

types. 

 



computer networking and identified in Trotter, 

Rothenberg and Coyle (1995) as a key area for 

future work in network studies and health care. 

L. C. Freeman (1977) speaks of degree of 

linkage in terms of segregation and integration 

between sub-networks.  Ours is a formal study 

of networks, however, and such a terminology 

may carry distracting connotations.  

Homophilous networks, in which nodes link 

preferentially with others with similar 

characteristics, often take the form of clustered 

sub-networks with limited degrees of linkage; 

precisely the type we study here.  Our focus is 

on the implications of a network structure, 

however, not how a network may have acquired 

that structure.   

 

We focus on the structure of contact and 

informational networks and the impact of that 

structure on the dynamics of infection and 

information.  In the first section we outline 

simple analytic results and a wider spread of 

agent-based simulation results regarding the 

impact of degree of linkage between sub-

networks on the spread of infection across a 

community.  Those results regarding simple 

diffusion serve as a base of comparison for the 

very different results regarding the effects of 

degree of linkage on the transmission of beliefs. 

 

The dynamics of belief turns out to be very 

different from the dynamics of contact 

infection.   For infection, measured in terms of 

average time to total infection across a network, 

it is the structure of the network or its sub-

networks that is of primary importance—

whether the basic network or networks at issue 

form rings, total networks, hubs, wheels, small 

worlds, scale-free or random networks.  The 

degree of linkage between sub-networks of 

such a type is of relatively minor importance 

for infection.  For belief transmission on the 

model we construct, in contrast, measured in 

terms of average time to total consensus, 

network structure is of minor significance.  

Where the dynamics of belief is at issue, it is 

the degree of linkage between sub-networks 

that is of primary importance.  The effect of 

degree of linkage on belief change, we show, 

regardless of network type, shows the pattern of 

a classic power law. 

Our effort here is to emphasize a basic point 

regarding the different dynamics of belief and 

infection across networks.  More complete 

details of both analytic results and results from 

simulation are available in an on-line appendix 

at www.pgrim.org/connections.  

 

Infection Dynamics across Linked Sub-

Networks 

 

First Example of Ring and Total Networks 

 

Figure 1 shows a series of four network 

structures, clearly related in terms of structure. 

The network on the left is a single total 

network, also known as a complete network or 

maximal graph. The three pairs on the right 

form paired sub-networks with increasing 

numbers of connecting links.  We will use 

degree of linkage in a relative sense to refer to 

increased connecting links or bridges of this 

sort.  A quantitative measure is possible in 

terms of the number of actual linkages between 

nodes of distinct groups or sub-networks over 

the total possible.
 2
  

 

We focus on varying degrees of connection 

between sub-networks of varying structure.  For 

simplicity we use just two sub-networks of 

equal size, concentrating on ring sub-networks, 

total or connected networks, small worlds, 

random and scale-free sub-networks.  How does 

the degree of connection between two sub-

networks affect the dynamics of diffusion or 

infection across the network as a whole?  How 

do results on degree of connection between sub- 

networks of a specific structure compare with 

results on a single network of the same 

structure to which the same number of links are 

added?  Here theoretical fundamentals trace to 

Granovetter 1973; and an early example of  

                                                 
2
  Full linkage between total sub-networks, such that 

every node in one sub-network will connect to every 

node in the other sub-network, will result in the 

single total network on the left.  But of course it will 

not hold in general that full linkage between sub-

networks of type x will result in a single network of 

type x: full linkage between ring networks will not 

result in a single ring.   



            

 
 

 

Figure 1. A Single Total Network and Increased Degrees of Linkage between Total Sub-networks 

 

 

 

network analysis regarding infection appears in 

Klovdahl 1985. 

 

Some results are simple and analytic, but also 

indicate the variety that can be expected.  

Consider, at one extreme, a network composed 

of two totally connected sub-networks with a 

single link between them, as in the second 

network in Figure 1.  How many steps will be 

required to total infection, starting from a single 

random infected node?  Assuming a 100% 

infection rate, where n is the total number of 

nodes, the average number of steps to total 

infection is: 

  

 
 

where n is the total number of nodes.  From any 

node other than those on the ends of our 

connecting link, there are three steps to total 

infection: (1) to all nodes of the immediate 

connected networks, (2) across the one 

connecting link, and (3) from there to all nodes 

of the opposite connected network.  If the 

initially infected node is one of those on the 

ends of our connecting link, there are merely 

two steps to total infection, giving us the 

formula above. 

 

Adding further links has no dramatic effect in 

such a case.  Because our sub-networks are 

totally connected, a first step in every case 

infects all nodes in a sub-network; from there 

any number of links between sub-networks 

merely transfer the infection to the second sub-

network.  For a network with two sub-networks 

of equal size, therefore, again assuming an 

infection rate of 100% rate and incorporating n 

nodes and m discrete links between sub-

networks (links sharing no nodes),
3
 the average 

time to total infection will be simply: 

 
 

 
 

As n increases relative to m ≠ 0, time to 

infection approaches a limit of 3.  As m 

increases relative to n, with a limit of m = .5 n, 

time to infection approaches a limit of 2.  For a 

single total network, like that on the left in 

Figure 1, any 'added' linkages would simply be 

redundant, with no effect at all: infection will in 

all cases be in a single step.   

 

Where sub-networks are total, variance in 

infection time is necessarily just between 2 and 

3 steps.  At the other extreme is the case of a 

network with rings as sub-components.  Here 

variance in infection time is much greater.  The 

maximal number of steps to full infection from 

a single node across a ring sub-network is s/2 

                                                 
3
 In order to keep the outline of basic relationships as 

simple as possible we ignore the complication that 

links can share a single node at one end.   



with s as the  number of  nodes for that sub-

network where s is even, or (s – 1)/2 in the case 

of odd numbers of nodes.  The longest time for 

diffusion across a network of two equal-sized 

rings each with an even number of nodes n/2 is 

therefore: 

  

 
 

Where the number of nodes n/2 in each sub-

network is odd the maximal number of steps is: 

 

 
 

If the source of infection is one of the nodes on 

the end of a bridge between sub-networks, time 

to infection will be minimal: where n/2 is even 

the minimal time to infection will be 

where n/2 is odd, time to infection will 

be  

 

Variance between maximum and minimum 

times to total infection is therefore extremely 

sensitive to the structure of sub-networks.  In 

the case of total sub-networks, that variance is 

simply 1 regardless of the number of nodes.  In 

the case of ring sub-networks, the variance is 

close to n/4.  The consequences for prediction 

are clear: to the extent that a social network 

approaches a total network, point predictions of 

infection times can be made with a high degree 

of confidence.  To the extent that a social 

network approaches a ring, on the other hand, 

point predictions will not be possible without 

wide qualification.   

 

The structure of sub-networks is crucial for 

other factors as well.  We have noted that 

increasing links between sub-networks has a 

minimal effect where those sub-networks are 

total.  Where sub-networks are rings of 50 

nodes, in contrast, the effect is dramatic.  The 

top line in Figure 2 shows results from a 

computer-instantiated agent-based model in 

which we progressively increase the number of 

links between random nodes of those sub-

networks from 1 to 50.  For each number 

between 1 and 50 we create 1000 networks with 

random links of that number between sub-

networks, taking the average over the 1000 

runs.  For ring sub-networks the time to full 

infection decreases from an average of 38.1 

steps for cases in which there is a single link 

between ring sub-networks to 7.6 for cases in 

which there are 50 links.     

 

Similar simulation results for added links 

between total sub-networks, in contrast, show a 

relatively flat result with decline in average 

time to infection from only 2.98 to 2.35.  

Difference in network structure clearly makes a 

major difference in time to total infection.  That 

difference is not due to degree of linkage 

between sub-networks, however.  A graph of 

results in which links are added across a single 

ring and not between ring sub-networks  shows 

a result almost identical to that in Figure 2.   

 

The lesson from ring and total networks is that 

it is not the degree of linkage between sub-

networks that affects time to total infection but 

overall network structure itself, whether 

characterizing a single network or linked sub-

networks.  Changes in infection rates with 

additional random links (1) across a single 

network and (2) between two smaller networks 

with the same structure show very much the 

same pattern.  Degrees of linkage between sub-

networks interact with the structure of those 

sub-networks in order to generate patterns of 

infection, but it is the structure of the networks 

rather than the degree of linkage that plays the 

primary role.  Analytical and simulation results 

for hub and wheel networks, very much in line 

with conclusions above, are available in an 

online appendix (www.pgrim.org/connections). 

 

 



 
 

Figure 2.  Average Time to Total Infection with Increasing Links between Sub-networks 

 

 

 

Infection Across Small World, Random, and 

Scale-Free Networks     

 

For patterns of infection, the importance of 

general structure type over degree of linkage 

between sub-networks holds for small world, 

scale free, and random networks as well.   

Results for small world networks are shown in 

the second line from the top in Figure 2 with 

roughly a 9% probability of rewiring for each 

node in an initial single ring (see Watts & 

Strogatz 1998).
4
  Increasing linkages between 

sub-networks from 1 to 50 results in a decrease 

in steps to total infection from 22.5 steps to 

                                                 
4
  Our probability is 'roughly' 9% because in each 

case we add minimal links so as to assure a 

connected network.  Without that assurance, of 

course, infection is not guaranteed to percolate 

through the network as a whole.   

 

7.45.  Increasing links within a single small 

world follows virtually the same pattern, with a 

decrease from 19.8 to 7.2. 

 

Similar results for random and scale-free 

networks appear in the third and fourth graphed 

lines of Figure 4.  For random networks, roughly 

4.5 percent of possible connections are 

instantiated within each sub-network, with 

minimal links needed to guarantee connected 

networks.  Our scale-free networks are 

constructed by the preferential attachment 

algorithm of Barabási and Albert (1999).   

 

Here as before there is little difference where 

additional links are added within a single 

network, whether small-world or scale-free.  In 

each case the number of initial steps is slightly 

smaller, but only in the first 10 steps or so is 

there any significant difference and convergence 



is to the same point.  In the case of random 

networks, times decrease from 9.79 to 6.45.  In 

the case of scale-free networks, times decrease 

from 7.9 to 6.08.  

 

In all the cases considered, it is not degree of 

linkage between sub-networks but the network 

structure involved in both single and linked 

sub-networks that produces network-specific 

signatures for infection. This largely accords 

with analytic results by Golub and Jackson 

(forthcoming) on diffusion dynamics across 

linked random networks.
5
  Golub and Jackson 

find that in the limit degree of linkage between 

random networks has no effect on time to total 

infection.  What our results indicate is that such 

a result is by no means restricted to random 

networks, holding across network types quite 

generally.  Where infection is concerned, a 

prediction of time to total infection demands a 

knowledge of the general structure of the 

contact network at issue—ring or total, for 

example, scale-free or random, but does not 

demand that we know whether it is a single 

network or a linked set of smaller networks of 

that same structure that is at issue.   

 

Infection on Networks: Qualifications and 

Provisos 

 

Results to this point have been calculated with 

an assumption of 100% infection—a disease 

guaranteed to be transmitted at every time-point 

of contact between individuals.  More realistic 

assumptions regarding rate of infection affect 

the rates calculated above, more pointedly 

emphasizing the importance of structure.  Here 

we again use ring and total networks as an 

example.   

 

Where sub-networks are total, probability of 

infection from single contact really makes a 

                                                 
5
  Golub and Jackson characterize their results using 

the term 'homophily', defined in terms of the relative 

probability of node connection within as opposed to 

outside of a group or sub-network.  For random 

networks, though not for other network structures, 

this corresponds to the degree of linkage between 

sub-networks that is our focus here.   
 

difference only at the link between sub-

networks: as long as the probability of infection 

exceeds 2/n, a quick infection of all individuals 

in the total sub-networks is virtually 

guaranteed.  Simulation results indicate that 

with a single link between total sub-networks 

the average time to full infection shifts only 

from an average of 3.8 steps to an average of 

2.98 with a change of infection rate from 100% 

to 50%.  For ring sub-networks, on the other 

hand, the same change in infection rate roughly 

doubles the time to full infection across all 

numbers of linkages.  

 

For more realistic infection rates, therefore, it is 

more important rather than less to know the 

structure of social networks.  If those sub-

networks approximate total networks, neither 

infection rate nor additional links between sub-

networks make much difference.  If sub-

networks approximate ring networks, both 

number of links and infection rate will make a 

dramatic difference in the course of an 

infection.   

 

Where average time to infection is our measure, 

degree of linkage between sub-networks as 

opposed to additional links within a single 

network of that structure is not of particular 

significance.   But here we need to add an 

important proviso: this does not mean that the 

course of an epidemic across a single network 

and across sub-networks with various degrees 

of linkage is not significantly different.  That 

dynamic is often very different—in ways that 

might be important for intervention, for 

example—even where average time to total 

infection is the same.  The typical graphs in 

Figure 3 show the rate of new infections over 

time for (a) a single network and (b) linked sub-

networks of that type.  Single networks show a 

smooth normal curve of increasing and 

declining rates of new infection.  Linked sub-

networks show a saddle of slower infection 

between two more rapid peaks.   

 

Despite uniformity of predicted time to total 

infection, therefore, sparsely linked sub-

networks will always be 'fragile' at those links, 

with temporal saddle points in the course of an  



  

 
 

Figure 3.  Contrasting Dynamics of Infection in Single and Linked Sub-networks 

 

 

 

epidemic to match.  Those weak linkages and 

saddle points offer crucial opportunities for 

targeted vaccination in advance of an epidemic, 

or intervention in the course of it. 

 

Information Dynamics across Linked Sub-

Networks 

 

What you believe travels differently.  In what 

follows we use a simple model of belief 

updating to show the crucial importance of 

degree of sub-network linkage in belief or 

information transmission across a network.  

Some earlier results have noted similarities in 

infection dynamics and the spread of ideas 

(Newman 2001, Redner 1998, Börner et. al. 

2003).  Our purpose is to emphasize crucial 

differences between them.  

 

In this first model our agents' beliefs are 

represented as a single number between 0 and 

1.  These are beliefs in the severity of a disease, 

perhaps, the probability of contracting the 

disease, or the effectiveness of vaccination. 

(Harrison, Mullen, & Green 1992; Janz & 

Becker, 1984; Mullen, Hersey, and Iverson, 

1987; Strecher & Rosenstock, 1997).  Agents 

are influenced by the beliefs of those around 

them, updating their belief representation in 



terms of the beliefs of those with whom they 

have information linkages.     

 

To this extent we can argue that the model is 

relatively realistic: some beliefs can be 

represented on such a scale, and people are 

influenced to change those beliefs by, among 

other things, the expressed beliefs of those with 

whom they have contact.  What is admittedly 

unrealistic is the simple form of belief updating 

we use in the model: an averaging of current 

beliefs with those with whom one has network 

contact.  No-one thinks that averaging of beliefs 

in an informational neighborhood captures the 

real dynamics of belief change.  Such a 

mechanism does, however, instantiate a pattern 

of reinforcement: the more one's beliefs are like 

those of one's network neighbors, and the more 

they are like more of one's network neighbors, 

the less inclination there will be to change those 

beliefs.  The more one's beliefs are out of sync 

with one's neighbors, the greater the pressure 

there will be to change one's beliefs.   

 

That beliefs will change in accord with some 

pattern of reinforcement along those lines is 

very plausible, backed by a range of social 

psychological data, and is therefore an aspect of 

realism in the model.  What is unrealistic is the 

particular form of reinforcement instantiated 

here—the particularly simple pattern of belief 

averaging, applied homogeneously across all 

agents.  In order to be informative regarding an 

exterior reality, a model, like any theory, must 

capture relevant aspects of that reality.  In order 

to offer both tractability and understanding, a 

model, like any theory, must simplify. This first 

model of belief transmission is intended to 

capture a reality of belief reinforcement; the 

admittedly artificial assumption of belief 

averaging is our simplification.
6
   

 

Our attempt, then, is not to reproduce any 

particular pattern of realistic belief change but 

to emphasize the impact of certain predictable 

                                                 
6
  For background on both the importance and limit of 

realism in different forms of models, see Grim, 

Rosenberg, Rosenfeld, Anderson, & Eason 2010 and 

Rosenberg, Grim, Rosenfeld, Anderson & Eason 

2010.   

characteristics of belief change—with 

reinforcement a primary component—on the 

dynamics of belief.  In particular, we want to 

emphasize the major differences between the 

dynamics of belief change across information 

networks and the dynamics of infection 

diffusion across contact networks, outlined 

above.  What you believe travels differently.   

 

Given belief averaging, and regardless of initial 

assignment of belief representations, all agents 

in this model eventually approach the same 

belief value.  We can therefore measure the 

effect of network structure on belief 

convergence by measuring the number of steps 

required on average until all agents in the 

network are within, say, a range of .1 above or 

below the mean belief across the network as a 

whole.  In what follows we use this range of 

variance from the mean as our measure of 

convergence, averaging over 100 runs in each 

case.   

 

We begin with polarized agents.  Half of our 

agents are drawn from a pool with belief 

measures that form a normal distribution 

around .25, with a deviation of .06.  The other 

half are drawn from a pool with belief measures 

in similar normal distribution around .75.  In 

studying linked sub-networks our agents in one 

sub-network are drawn from the .25 pool; those 

in the other are drawn from the .75 pool.  In the 

case of single networks agents are drawn 

randomly from each pool.  We found belief 

polarization of this form to be necessary in 

order to study the effects of sub-network 

linkage in particular; were beliefs of all our 

agents merely randomized, convergence to an 

approximate mean could be expected to occur 

in each sub-network independently, and time to 

consensus would not then be an adequate 

measure of the effect of sub-network linkage. 

 

Belief Diffusion across Ring and Total 

Networks  

 

In outlining the dynamics of infection we 

contrasted linked sub-networks of particular 

structures—ring, small world, random, total, 

and scale-free—with single networks of the 

same structure.  In exploring the dynamics of 



belief we will again study these types side by 

side.  As we add additional links between sub-

networks, how does the dynamics of belief 

diffusion change, measured in terms of time to 

consensus across the community.   

 

We progressively add random links (1) between 

belief-polarized ring sub-networks, and (2) 

within a single ring network of belief-polarized 

agents.  Average times to consensus are shown 

in Figure 4.   

 

Increasing linkages between polarized ring sub-

networks makes a dramatic difference.  

Average time to consensus for a single linkage 

in such a case is 692.44. The average time to 

consensus for 50 linkages is 11.59, with a 

distinct and characteristic curve between them.  

For infection, we noted, there is virtually no 

difference between added links within a single 

ring network and added links between ring sub-

networks.  In the case of belief, in contrast, 

there is a dramatic difference between the two 

graphs. 

 

Within a single total network, all agents will 

achieve a mean belief in a single step; 

additional linkages in such a case are merely 

redundant.  Results in total sub-networks, in 

contrast, parallel those for rings above.  

Average steps to belief convergence with a 

single link approximate 700 steps in both cases; 

with 50 links, average time to convergence is 

12 in the case of rings and 16 in the case of 

total sub-networks.  The overall pattern of the 

two graphs is also very much the same.  What 

that similarity shows is the striking effect of 

degree linkage in each case: an effect that in the 

transmission of belief overrides the fact that we 

are dealing with totally distributed ring 

networks in one case, totally connected 

networks in the other. 

 

Belief Transmission across Small World, 

Random, and Scale-Free Networks 

 

The same contrasts between single and linked 

sub-networks in the case of belief transmission 

hold for other network structures as well.   

The effect of added linkages within a single 

small-world network closely parallels that for 

the single ring shown above.  Results for added 

linkages in small-world sub-networks are 

dramatically different.  In absolute terms the 

results for small worlds differ from those shown 

for rings, declining from 481 steps to 11.4.  The 

shape of the curve for small worlds, however, is 

very much that shown for rings above.   

 

Given a single random network, using 2.25% of 

possible linkages, additional linkages give a 

decline in time to belief consensus from only 

approximately 6 steps to 4.  Where random sub-

networks are at issue (using 4.5% of possible 

linkages in each sub-network), the curve is again 

that displayed for rings above, though here 

absolute values decline from 244 to 10.15. 

 

For single scale-free networks, additional 

linkages give a roughly linear decline from 20 to 

7 steps.  For scale-free sub-networks, additional 

linkages again follow the curve shown above, 

here with absolute values dipping from 325 to 

11.73. 

 

A similar curve characterizes effects of degree 

linkage in belief transmission regardless of the 

basic structure of the sub-networks involved.  

Although absolute values across that curve differ 

significantly, the shape of the curve does not.  

We emphasize this point in Figure 5 by plotting 

belief transmission results for sub-network types 

in log-log form. 

 

Linkage degree effects follow the same pattern 

regardless of the structure of sub-networks.  If 

one wants to plot the course of an epidemic, we 

noted in section I, it is crucial that one knows the 

structure of the networks involved.  If one wants 

to plot the course of belief transmission, 

knowledge of structure is much less important.   

 

The particular structure of networks is important 

in order to gauge whether a single link between 

sub-networks will allow consensus in 140 steps 

or 700, as indicated for hub and total networks



 
 

 

Figure 4.  Time to Belief Consensus with Increasing Linkages in Single Ring and between Ring 

Sub-networks 

 

 
Figure 5.  Time to Belief Consensus with Increasing Linkages between Sub-networks  

(plotted log-log) 



 

in Figure 5.  The pattern of changes in belief 

transmission with increasing linkages between 

sub-networks from any initial point, however, is 

precisely the same regardless of network 

structure.  That pattern is the classic signature of 

power law distributions, indicating that the 

relationship between increased linkage and time 

to consensus parallels a range of natural and 

social phenomena, including the relationship 

between frequency and size of earthquakes, 

metabolic rate and body mass of a species, size 

of a city and the number of patents it produces.  

Power law distributions also appear in some 

empirically observed characteristics of 

biochemical, protein, citation and sexual contact 

networks (Faloutsos, Faloutsos, & Faloutsos, 

1999; Jeong, Tombor, Albert, Ottvai, & Barbási 

2000; Fell & Wagner 2000; Liljeros, Edling, 

Amaral, Stanley, & Åberg 2001; Newman 2001, 

2005).  The fact that such an effect appears in 

linkage effects on the dynamics of belief 

suggests the possibility of incorporating a range 

of theoretical and methodological work from 

other disciplines in studying behavior dynamics 

in the spread of disease, particularly with an eye 

to the effect of belief polarization, health care 

disparities, and social linkage or integration 

between ethnic and socio-economic sub-

communities.   

 

CONCLUSIONS & FUTURE WORK 

 

Our focus here has been on the structure of 

contact and informational networks and the 

very different impact of aspects of that structure 

on the dynamics of infection and information. 

 

For infection, measured in terms of average 

time to total infection across a network, it is the 

structure of the network or sub-networks that 

trumps other effects.  In attempting to gauge 

time to total infection across a community, the 

primary piece of information needed is whether 

the social network or component networks at 

issue approximate rings, hubs, wheels, small 

worlds, random, scale-free or total networks.  

For time to total infection, degree of linkage 

between sub-networks is of much less 

importance, though we have noted that points 

of linkage continue to play an important role 

with regard to fragility and prospects for 

targeted intervention.   

 

For information, measured in terms of average 

time to belief consensus, the importance of 

general structure and linkage between sub-

networks are reversed.  On the model of belief 

used here, in attempting to gauge the dynamics 

of information flow across a community, the 

primary piece of information needed is the 

degree of linkage between composite sub-

communities, whatever their internal structure.  

The fact that the particular structure of those 

sub-communities is of lesser importance is 

highlighted by the fact that average time to 

belief consensus given increasing linkages 

follows the same familiar power-law pattern 

regardless of networks structures involved.    

 

It is quite plausible that belief transmission 

involves strong reinforcement effects; the 

model of belief used here is designed to capture 

such an effect.  In other regards, however, the 

belief model used is quite clearly artificial.  

Belief change is by simple averaging of 

information contacts, and all agents follow the 

same formula for belief updating.  Our attempt 

in future work will be to test the robustness of 

conclusions here by considering a range of 

variations on the central model of belief 

change.   
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