
A lesson from subjective computing:
autonomous self-referentiality and social interaction

as conditions for subjectivity
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Abstract. In this paper, we model a relational notion of subjectivity
by means of two experiments in subjective computing. The goal is to
determine to what extent a cognitive and social robot can be regarded
to act subjectively. The system was implemented as a reinforcement
learning agent with a coaching function. To analyze the robotic agent
we used the method of levels of abstraction in order to analyze the
agent at four levels of abstraction. At one level the agent is described
in mentalistic or subjective language respectively. By mapping this
mentalistic to an algorithmic, functional, and relational level, we can
show to what extent the agent behaves subjectively as we make use
of a relational concept of subjectivity that draws upon the relations
that hold between the agent and its environment. According to a rela-
tional notion of subjectivity, an agent is supposed to be subjective if it
exhibits autonomous relations to itself and others, i.e. the agent is not
fully determined by a given input but is able to operate on its input
and decide what to do with it. This theoretical notion is confirmed by
the technical implementation of self-referentiality and social interac-
tion in that the agent shows improved behavior compared to agents
without the ability of subjective computing. On the one hand, a re-
lational concept of subjectivity is confirmed, whereas on the other
hand, the technical framework of subjective computing is being the-
oretically founded.

1 INTRODUCTION
The mental phenomenon called ‘subjectivity’ has been up to present
days one of the central topics of philosophical discussion. Even be-
fore the proclamation of the ‘subject’ as a principal of knowledge,
one might regard the relation of an epistemic and practical agent to
the world and itself as one of the most notorious issues even in an-
tique and medieval philosophy. However, in these days, ‘subjectivity’
enjoys great popularity as phenomenal consciousness, as the individ-
ual first-person perspective.3 But ‘subjectivity’ needs not necessarily
be related to consciousness. Instead, recent developments in robotics
show that ‘subjectivity’ can also be related to intelligence. Actually,
the idea to analyze ‘subjectivity’ as intelligence is not that new [8],
[9]. One obvious advantage of decoupling ‘subjectivity’ from con-
sciousness is that intelligence can be analyzed without making use
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3 [24] and [19] are just two of the most prominent examples for phenomenally
based accounts. [22] follows a cognitive science approach to subjectivity in
terms of a phenomenal perspective to the world and the agent itself.

of the most difficult concepts of (phenomenal) consciousness. From
this perspective, ‘subjectivity’ is conceptualized as a relational con-
cept, i.e. subjectivity comprises certain relations of an agent towards
itself and its environment [16]. The question of phenomenal con-
sciousness is then subordinated in favor of the agent’s self-relation
and relations to others. An agent then is supposed to be subjective
if it exhibits autonomous relations to itself and others, i.e. the agent
is not fully determined by a given input but is able to operate on its
input and decide what to do with it. This relational perspective also
allows us to take into account social relations. Accordingly, intelli-
gence is not solely a product of internal processes but is constituted
in the course of social interaction and therefore builds on the notions
of Aufforderung [2] and recognition [18].

To narrow down and as an attempt to verify this philosophical and
quite abstract notion of subjectivity, we refer to two experiments in
subjective computing [17], [14]. Subjective computing aims at uti-
lizing insights from human subjectivity in general, the perceptual
process, and human-human interaction for the design of algorithms
and human-robot interaction (this concept was initially proposed in
[21]). From an engineering perspective it is not the goal to give an
account on subjectivity, but rather to utilize certain aspects of human
cognition to solve specific problems. One major problem concerns
reinforcement learning (RL). Even if an agent is able to decide au-
tonomously about the modification of its behavior, the agent still has
to learn what kind of behavior is well suited in order to accomplish
a certain task. In order to evaluate the agent’s behavior a coaching
function has been implemented into a RL agent so that the agent can
receive a trainer’s feedback. The crucial point regarding the poten-
tial subjectivity of this agent is that this feedback does not modify
the agent’s behavior directly, but the agent interprets the feedback
and decides about the subsequent modification of its behavior by it-
self. Thus, with regard to the relational notion of subjectivity, the
agent relates to itself while interpreting feedback and at the same
time socially relates to a human trainer. For the implementation of
this robotic system both relations, the self-relation in the course of
interpretation and the relation to others (the human trainer) enable
the robotic agent to successfully accomplish a difficult learning task.

In our relational analysis of the robotic agent we draw upon the
ascription of mental abilities to the robotic agent that is supposed to
observe, interpret, and reflect the feedback. The question is to what
extent this mental behavior is finally algorithmically implemented.
By means of an analysis of levels of abstraction [10], we relate the
algorithmic to the mentalistic level. The focus lies on an interme-
diate relational level where it can be shown that the robotic agent
exhibits an autonomous self-relation and a social relation to others.



Even if the robotic agent cannot be conceived of as a full-blown
subject (compared to humans), the successful implementation of au-
tonomous self-referentiality and a social relation to others allows us
to ascribe subjective states to the robotic agent. Even if the robotic
agent cannot be regarded as a full-blown human subject, the suc-
cessful engineering implementation of this relational structure can
be seen as a confirmation for the philosophical notion of subjectivity
as increased intelligent behavior has been gained.

In section 2 we will start by shortly introducing the relational con-
cept of subjectivity and by explaining our case study, “coaching a
robot based on human affective feedback”. After describing the al-
gorithm and the coaching function as well as the experimental layout
and results, in section 3, we introduce Floridi’s method of levels of
abstraction by explaining what this method consists in and how we
use it to analyze the robotic agent. By means of four levels of ab-
stractions we will then analyze the robotic agent with a focus on its
relational structure. Section 4 begins with an informal analysis that
is followed by a formal treatment of the levels of abstraction and
their relations. Finally, we evaluate to what extent mental subjective
abilities can be ascribed to the robotic agent.

2 PHILOSOPHICAL AND TECHNICAL
BACKGROUNDS

2.1 Relational subjectivity
To introduce the concept of relational subjectivity, it is helpful to
refer to the current philosophical debate, especially to phenomenal
and first-person accounts of subjectivity which enjoy great popularity
(see note 3). According to the general idea of this framework, sub-
jectivity consists in phenomenal consciousness so that a phenomenal
subject is able to experience its mental states. These mental states re-
fer to environmental entities (or their features, respectively) or states
of the agent itself. The experience of these states is subjective to the
extent that this experience is only accessible for the agent who has it.
Furthermore, such accounts are often representationally or, at least,
realistically based, i.e. the experience refers to an objectively exist-
ing (independently of the agent) world that becomes conscious in the
agent’s mind. Although there are plenty of different versions of phe-
nomenal and first-person, representational and realistic accounts, the
crucial point for our investigation lies in decoupling subjectivity from
the any kind of phenomenal consciousness (for further explanation of
the methodological arguments for this decoupling see [16]).

Instead, subjectivity can be grounded in action. In a Kantian and
therefore transcendental perspective, this action is conceived of as
a condition of the possibility of subjectivity. The main purpose of
this action is to structure and construct the subject’s reality by means
of schematic capacities.4. These schematic capacities generate the
subject’s attitude towards a given reality in which the subject can
act. Hence, subjectivity has, secondly, to be decoupled from the no-
tion of a psychological subject. The distinction between different in-
dividual subjects is not based on different individuals. Instead, the
schematic processes make the difference as these exhibit necessary
features that apply for every individual subject. Accordingly, subjects
usually share the same space-time dimension. On the other hand,
schematic processes are not completely determined and thus allow
for voluntary action that depends on individual decisions, e.g. on the
individual use of cognitive abilities as perception or action. An indi-
vidual subject can voluntarily focus its visual attention to a certain

4 See historically [20] and, in the sense of an extended schematism, [9]; in
the following we refer to an updated schematic account in [16]

position in space and decide to move in this direction or to hold its
current place. In turn, these voluntary actions depend on determina-
tions that are out of reach for the individual subject, i.e. when visual
attention has been focused to a certain position, then the content of
the visual experience is determined.

Accordingly, subjectivity is relationally generated by simultane-
ous processes of determining and voluntary schematic activity. One
and the same cognitive action underlies this twofold schematism so
that subjectivity is conceived as a relational momentum that is gen-
erated in opposition to an objective or determining momentum in an
agent’s information space. This twofold structure also applies for the
individual agent that acts in the social context of other individual
agents: On the one hand, the agent relies on its autonomous capaci-
ties. At the same time, it depends on social interaction as social inter-
action constrains its autonomy and therefore provokes a reaction. A
reaction here is understood as a self-determination of the agent’s ac-
tions provoked by some external constraint. Again, a subjective agent
is conceived of as relationally constituted. This mutual interdepen-
dency of voluntarily determining and necessarily being determined
forms the basic framework for a relational concept of subjectivity.
In the following we are going to investigate two experiments in cog-
nitive and social robotics in order to evaluate if and to what extent
this relational concept of subjectivity can be computationally mod-
eled and implemented. This serves to narrow down and concretize the
quite abstract relational notion; at the same time, the framework of
subjective computing can be made more explicit; especially we hope
to clarify what it can mean for a robotic agent to behave subjectively.

2.2 Case study: coaching a robot based on human
affective feedback

Generally, interaction and henceforth social intelligence are regarded
as a constitutive part of intelligence at all [5]. Based on an interactive
learning algorithm reciprocal interaction between a robotic agent and
a human instructor is facilitated. This way of situated learning en-
ables the coach to scaffolding acts of providing feedback [23], while
the robot demonstrates its mastery of the task continuously by means
of improved behavior. In this kind of peer-to-peer human-robot inter-
action the robotic agent has to perceive emotions and learn models
of its human counterpart [11]. Hence the robot needs to be at least
socially receptive, i.e. socially passive in order to benefit from in-
teraction, or coaching respectively [1], and socially embedded, i.e.
situated in a social environment and interacting with humans. If the
agent is structurally coupled with the social environment, he will be
able to be partially aware of human interactional structures [7]. In
order to socialize robots have to be compatible with human’s ways
of interacting and communicating. On the other hand humans must
be able to rely on the robot’s actions and be allowed to have realistic
expectations about its behavior.

In the context of embodied cognition, we are able to model subjec-
tivity as an interactional (social) and therefore relational issue. This
means that subjectivity is realized in the course of social interaction
which is investigated in the field of social robotics. One core issue
in designing social robots consists in socially situated learning. New
skills or knowledge are acquired by interacting with other agents. Be-
side robot-robot interaction (so-called “swarm intelligence” or “col-
lective intelligence”), human-robot interaction displays another ma-
jor approach [6], [12]. We focus on the case of teaching a robot [28],
[29] by means of coaching. Unlike teaching the coaching process
does not depend on an “omniscient” teacher that guides the agent to-
ward the goal, but the instructor only gives hints and clues in terms



of a binary feedback, i.e. positive or negative. It is then the robot’s
cognitive task to process this feedback and control its actions au-
tonomously.

Our approach to subjective computing is based on two experi-
ments on coaching a robot. These experiments were conducted at
the Artificial Intelligence Laboratory (University of Tsukuba) previ-
ously to this investigation. The coaching process itself bears on two
relational aspects that are the focus in these experiments:

1. the cognitive process of autonomous interpretation of the feedback
by the agent [17]

2. the social interaction between the human instructor and the robot
[14]

In the following we will, firstly, describe the problem that under-
lies the implementation of the coaching RL agent and of affective
feedback, respectively. Secondly, we illustrate the experimental se-
tups and results.

The first experiment [17] was conducted by Hirokawa and Suzuki
and consists in a reinforcement learning (RL) agent with an imple-
mented coaching function so that the robotic agent is open to human
feedback during its behavior learning. While coaching had already
been implemented before [25], [26], RL offers a significant advan-
tage. A coaching RL agent is able to learn automatcially by its own
internal values. RL is a commonly used method for autonomous ma-
chine learning based on the idea that an agent autonomously adapts to
the specific constraints of an environment [27]. While often a learn-
ing algorithm is predefined regarding the parameters of an environ-
ment, an RL agent is able to adjust its learning process continuously
during acting. This is done by continuously updating the expected
reward of an action (state-value) by means of a reward function. The
agent learns automatically when it conducts an action that matches
the reward function and can subsequently shape its behavior in order
to increase future rewards. The feature that is most relevant for our
analyses is that the reward function defines which action can count
as a successful action and therefore as a learning progress.

Yet, one central problem consists in the initial reward as the RL
agent has to exploit a state space randomly by trial and error in or-
der to discover the first reward. To avoid a time-consuming random
search the reward function has to be carefully designed. However,
this limits the flexibility of the algorithm. In order to bypass an exclu-
sively trial-and-error search or a complicated design process, coach-
ing is implemented in the RL agent by adding an interface to the
RL agent that allocates a feedback signal [17]. RL then allows for
coaching in that the human trainer gives feedback, and the learning
agent adjusts its reward function and its action rules according to the
feedback. Thus, the behavior is not directly instructed or trained, but
the robot modifies its behavior by itself. At the same time the reward
function does not need to be designed in advance. This autonomous
estimation of the reward function then complements the standard RL
based on a direct interaction with the environment.

In the experiment an RL agent controls a robotic arm in order to
swing up and keep an inverted pendulum balanced. While carrying
out the task, the RL agent receives continuously feedback in terms of
human subjective cues, i.e. positive or negative [29]. The agent has to
interpret this feedback and adjusts the reward function and therefore
its actions accordingly. Thus, learning the reward function is based
on simple and abstract (binary) feedback that is delivered in social in-
teraction. The feedback itself does not determine the reward function
directly, but allows the robot to modify the latter based on an act of
interpretation that consists in an estimation of the input’s relevancy
to its own behavior. This interpretation depends on two successive

criteria. Firstly, in contingency or causality detection the “agent de-
termines specific states [of its behavior] that motivated the trainer to
give feedback” ([17], p. 5), i.e. the agent identifies the feedback’s tar-
get behavior that depends on a certain time range and a subsequent
time delay specifying the time between the action and the feedback.
This identification of target behavior is, secondly, complemented by
a consistency or error detection, i.e. checking to what extent a given
evaluation corresponds “to current and previous feedback to a simi-
lar behavior” ([17], p. 5f.). If the feedback is inconsistent (contradic-
tory), it is regarded as irrelevant and the reward function will not be
updated. In short, after assigning the feedback to a previous action
and verifying its consistency the evaluation function is updated and
action rules modified accordingly. In this way the robot exhibits an
internal and manipulable model of the trainer’s evaluation instead of
just executing correction commands. Hence, different kinds of feed-
back (coaching strategies) lead to different degrees of rates of learn-
ing and success.

The second experiment [14] was conducted by Gruebler, Berenz,
and Suzuki. At first it has to be noted that we draw on the second
experiment in order to exemplify the significance of social interac-
tion while the behaviorand learning algorithm differs from the RL
agent in the first experiment. However, due to the binary feedback in
both experiments the results can be complemented in the subsequent
investigation of subjective relations. Hence, the second experiment
concerns the it allocation of feedback [14]. Human feedback is de-
livered as a cue based on a binary (positive or negative) signal that
is interpreted as confirmation or correction. Continuous non-verbal
social cues are used as instructive input to help a humanoid robot to
modify its behavior. While the robot is conducting a task, the human
coach gives continuous feedback by means of smiling or frowning.
The facial expression was measured by a wearable device that rec-
ognizes these basal facial movements as expressions of confirmation
(smile) and correction (frown) [15]. In this way a binary feedback
resulted that enabled the robot to modify its behavior continuously
whilst conducting a task. No further specification of the signal is
necessary. In this way the robotic agent is open to human affective
feedback in direct interaction. The cognitive and interactional imple-
mentations of both experiments can be complemented to that effect
that a binary signal is sufficient to instruct a robot while at the same
time this signal can be allocated in a way very natural for humans.

2.3 Experimental layouts and results

Experiments on coaching a robot based on human subjective feed-
back form the ground for an analysis of a subjective agent. Both ex-
perimental setups that were introduced in the previously, are cases of
HRI. The RL agent of the first experiment [17] has been implemented
in a simulated and a real robotic arm whose learning task consisted
in swinging up and keeping an inverted pendulum balanced (see Fig.
1). Instead of predesigning the reward function, the human instructor
assists the RL agent by observing its behavior and giving a binary
(positive or negative) feedback. In the real and the simulational setup
a “significant improvement compared to the conventional RL with
the same reward function” ([17], p. 14) had been measured as the
conventional RL completely failed to achieve the task. The simula-
tional setup additionally showed that the RL agent reflects coaching
strategies of different instructors in that one instructor failed to assist
the RL agent as she gave too many negative feedbacks.

In the second experiment [14] a human instructor assisted a hu-
manoid robot in a sorting game. The goal was to give red balls to
the instructor and to throw green balls away. The affective feedback



was detected by a facial expression reader [15]: smiling (positive) for
confirmation of an action and frowning (negative) for correction (see
Fig. 2 and 3). The robot successfully learned the desired task and
was able to sort the last two balls without assistance. Furthermore, it
proved that coaching by affective feedback leads to a significant im-
provement of HRI as the human instructor can act in a very natural
(human-like) manner [14].

Figure 1. Robotic arm swinging up and keeping a pendulum balanced
(figure taken from [17]).

Figure 2. Interaction with positive feedback (figure made available by
Anna Gruebler).

3 THE METHOD OF LEVELS OF
ABSTRACTION

Floridi proposes the method of levels of abstraction to analyze a sys-
tem at different epistemic levels (cf. [10], ch. 3). This method to ana-
lyze all kinds of systems is inspired by the so-called Formal methods,
a technique of computer science that aims at modeling a computer
system regarding the “initial statement of a customer’s requirements,
through system design, implementation, testing, debugging, mainte-
nance, verification, and evaluation” ([30], p. 8). Floridi utilizes this
approach to evaluate a system technically for an epistemic analysis.
In the line of Kant’s critical philosophy [20], he stresses the epis-
temological issue to consider “the conditions of possibility of the

Figure 3. Interaction with negative feedback (figure made available by
Anna Gruebler).

analysis (experience) of a particular system” ([10], p. 60). This re-
course to the conditions of possibility of an analysis is crucial in
order to avoid the mistake of analyzing a system independently of
any specification of the analysis. These specifications, firstly, com-
prise the goal or purpose of an analysis. Furthermore, based on the
general distinction that we can analyze a given system regarding its
onotological levels of organization (LoO) and epistemological levels
of explanation (LoE), levels of abstraction (LoA) serve to make ex-
plicit the ontological and epistemological commitments of the anal-
ysis. Thus, LoA guide the analysis teleologically towards a certain
goal of interest.

As an epistemic levelism, each LoA depends on a certain obser-
vation or interpretation of a system. Hence, the technical concepts
of the method of levels of abstraction and their formal definitions
mainly comprise typed variables and observables, defined as follows
(following quotations are from [10], ch. 3.2):

1. “A typed variable is a uniquely named conceptual entitiy (the vari-
able) and a set, called its type, consisting of all the values that the
entity may take.” (p. 48)

2. “An observable is an interpreted typed variable, that is, a typed
variable together with a statement of what feature of the system
under consideration it represents.” (ibid.)

3. “A level of abstraction (LoA) is a finite but non-empty set of ob-
servables.” (p. 52)

Different LoAs of a system are integrated in a Gradient of abstraction
(GoA), i.e. a LoA allows to specifically model a system, whereas in
a GoA we can switch between different LoAs. To facilitate such a
leveled analysis of a system, certain relations on a LoA and between
all LoAs of a GoA must hold. The LoA-specific constraint is defined
in terms of behavior:

4. “the behaviour of a system, at a given LoA, is defined to consist of
a predicate whose free variables are observables at that LoA. The
substitutions of values for observables that make the predicate true
are called the system behaviours. A moderated LoA is defined to
consist of an LoA together with a behaviour at that LoA.” (p. 53)

Based on moderated LoAs, the GoA is defined as follows:

5. “A gradient of abstractions, GoA, is defined to consist of a finite
set {Li | 0 ≤ i < n} of moderated LoAs Li, a family of relations



Ri,j ⊆ LiLj , for 0 ≤ i 6= j < n, relating the observables of each
pair Li and Lj of distinct LoAs in such a way that:

(a) the relationships are inverse: for i 6= j, Ri,j is the reverse of
Rj,i

(b) the behaviour pj at Lj is at least as strong as the translated
behaviour PRi,j (pi).” (p. 55)

The GoA applied in our analysis of the coaching RL agent will be a
nested GoA, i.e. its “non-empty relations are those between Li and
Li+1, for each 0 ≤ i < n − 1, and moreover the reverse of each
Ri,i+1 is a surjective function from the observables of Li+1 to those
of Li.” (p. 56)

Observations at one LoA can generally be related to observations
at another LoA, but there are different ways of relating LoAs. Most
prominently are hierarchical GoAs that propose one detailed LoA
that serves to explain the observations at a more abstract LoA. This
is for example the case in neurophysiological models of cognitive
abilities where the biochemical reactions form the basic LoA. Cog-
nitive abilities are modeled at more abstract or higher levels so that
the observables at a higher level (e.g. phenomenal experience) can
be translated to observables at a lower level (neurophysiological re-
actions). Whereas a hierarchical GoA can imply a reductionist ap-
proach, we make use of a net of abstractions, i.e. it is not our goal
to reduce mental abilities to computational processes. Hence, we do
not follow an ontological approach in order to determine the nature of
mental or subjective states. Instead, we follow a functional approach
in order to make explicit the functional organization of the coaching
RL agent’s information space [10], ch. 3.4.7. Accordingly, different
LoAs are related by simulation, i.e. one LoA simulates the behav-
ior of another LoA. The simulation relation connects different LoAs
by a mapping relation R that relates the observables of two LoAs
mutually. Unlike a hierarchical GoA or even a reductionist model
of explanation, there is no basic or foundational LoA that realizes
other LoAs unidirectionally. Instead, one system (here the coaching
RL agent) is considered in terms of different functional realizations
that are mutually related by a simulation relation. In a nested GoA,
for every single observable at one LoA, it can be shown how this
observable behaves at another LoA. In this way, different LoAs can
be connected and serve as mutual explanation of their behavior. Ac-
cording to this mutual explanation of behavior the GoA serves to link
different epistemic LoAs.

Our analysis of the coaching RL agent is placed in the broader
context of subjective computing that was used to solve a learning
task (see section 2.2 and 2.3). More precisely, we want to determine
to what extent the algorithmic implementation can be related to a
mental description of the agent’s behavior. As mental abilities pre-
suppose a subject that acts mentally, our analysis concerns the rela-
tional structure of the agent’s information space. By means of this
relational analysis, firstly, the kind of relations that hold between the
agent and its environment (relation to others) and within the agent
(self-referentiality) can be made explicit. By means of this relational
account, we can, secondly, decode mentalistic terms (observing, con-
sidering, interpreting) in terms of the other LoAs and finally deter-
mine to what extent the coaching RL agent can be accounted for as
exhibiting mental and therefore subjective abilities.

This way of analyzing subjective abilities of a robotic agent might
force the straightforward objection that mental or subjective abilities
are haphazardly imposed on a system that does not really possess
these. This objection is grounded in the method of LoA as every LoA
is based on an abstraction of the system under consideration: an ab-
straction of certain features is only possible if certain other features

are neglected. E.g., we can analyze a robotic system regarding the
mechanics of its components, the programming framework, the costs
of its production, or, as in our case, its relational structure. Taking
into consideration one perspective onto a system, implies neglecting
other possible perspectives. Regarding the coaching RL agent, we
neglect any phenomenal description of its behavior as we focus on
the relational structure. Accordingly, we may not expect to analyze
the agent’s (potentially) mental behavior in human-like psychologi-
cal terms. In the face of full-blown human subjectivity, it has to be
admitted that the ascription of mental or subjective states cannot be
completely justified by means of a relational GoA as its observables
are defined regarding the system under consideration (here the coach-
ing RL agent). To compare with a human subject we would have to
define observables that also cover human cognition. But a GoA is
always related to a certain system, and our goal is not to compare
the coaching RL agent with a human subject (a futile undertaking
in that the robot is without any doubt less subjectively and cogni-
tively equipped), but to investigate certain relational aspects that are
constitutive for subjectivity in general. If these relational aspects of
cognition are utilized for the design of an agent and this agent shows
a significantly improved and more intelligent behavior than without
these subjective features, the technical implementation of certain re-
lational aspects of subjectivity may be interpreted as a confirmation
for the underlying philosophical concept of subjectivity. The method-
ological presupposition that justifies this ascription of mental abili-
ties in favor of relational subjectivity, is based on a constructionist or
design approach in philosophy [10], p. 72, 76ff.: a theoretical con-
cept is validated and, at its best verified, if it is possible to design and
implement a technical system according to this concept. Or, as in our
case, if a technical implementation is shown to utilize this concept
successfully.5

4 LEVELED ANALYSIS OF THE COACHING
RL AGENT

Based on the method of LoAs we defined four LoAs in order to ana-
lyze the coaching RL agent:

1. Algorithmic level. This level depends on the algorithm that is im-
plemented in the coaching RL agent. Whereas the computational
level is fully covered by the original experiment [17], we focus on
the cognitive abilities that are facilitated by the algorithm.

2. Functional level. The basic algorithm instantiates certain func-
tions and therefore enables the agent to fulfill certain computa-
tional tasks; accordingly the agent determines, compares, and pro-
cesses given feedback.

3. Relational level. The agent’s information space depends on differ-
ent kinds of relations to given input. For the following analysis it
will be crucial to distinguish between a straightforward determina-
tion by direct world-coupling and a self-determination by means
of a social relation that allocates feedback.

4. Mentalistic level. This level comprises the mentalistic description
of the agent’s actions. The goal of this analysis is to investigate to
what extent the algorithmic, functional, and relational level allow
for a mentalistic and therefore subjective characterization of the
coaching RL agent.

Before we go into a formal treatment in order to bring forward a
nested GoA of the coaching RL agent, we offer an informal treatment

5 The constructionist approach asks for a continuative justification that ex-
ceeds the scope of this paper; see [10] for further discussion.



of coaching a robot. This serves to make clear at which levels we an-
alyze the agent and how we relate the cognitive and interactional ca-
pacities to the mentalistic description of the agent’s behavior. Based
on this informal and the subsequent formal treatment it will be pos-
sible to evaluate to what extent the ascription of mental abilities is
justified.

4.1 Instantiating a subjective agent in social
interaction

The task of coaching a robot offers an instructive way to study the
behavior of an autonomous agent that interacts with humans. One
special feature consists in the mutual exchange between the robotic
agent and the human trainer. The agent is not only supposed to deliver
a computational result as for instance in the case of search engines,
but its actions provoke the trainer’s feedback that itself serves the
agent to modify its actions. Even if the exchange between robot and
human does not take place on a linguistic level, the trainer’s feedback
is answered by the robot’s behavior whereas the behavior provokes
new feedback. To improve the learning abilities of the robotic agent
a RL agent was complemented with a coaching function (see sec-
tion 2.2). This functional follows two central purposes: By means of
the feedback the RL agent can adjust the learning parameter (reward
function) that defines the success of an action during the learning
process. On the other hand the coaching function enables a human
trainer to interact with a robotic agent in a very natural (i.e. affective)
manner. The trainer just gives positive or negative feedback that is
to be processed autonomously (interpreted) by the robotic agent. By
allocating the feedback by means of a facial emotion reader [15] the
mental workload for the human trainer decreases to a minimum level
that does not differ significantly from a human-human interaction.

Our case study [17] is based on a robot arm platform (see Fig.
1). The robot has to solve the task of keeping a pendulum balanced.
In order to accomplish this task the agent can modify the joints of
its arm to handle the pendulum. But it has to learn how to mod-
ify its joints. In the coaching framework a human trainer gives a
two digit feedback (positive or negative) while the agent is trying
to keep the pendulum balanced. Accordingly, the robot must be able
to process the feedback. The final goal is that the agent processes
the feedback and adjusts its actions autonomously. As we deal with
a robotic system we basically have to take into account the algo-
rithmic implementation of the cognitive abilities required to process
the feedback. So the basic LoA comprises of the algorithmic imple-
mentation.6 Accordingly, at this level we should not conceive of an
agent that acts, but of algorithmic processing. In our case study the
robotic agent is able to react to feedback in a twofold manner. The
algorithm enables the robot to determine which of its behavior refers
to a feedback. This step of determining the feedback’s target behav-
ior (causality detection) is crucial for the processing of the feedback
as the robot must be able to relate a feedback to its behavior. Even
in human-human learning we know the common misunderstanding
that the trainee sometimes allocates the feedback to a different be-
havior as the trainer aimed at. Furthermore, the algorithm allows the
coaching RL agent to compare a feedback with previous feedbacks
related to the same action. This test for consistency serves to iden-
tify contradictory feedback as an action cannot be conceived of as a
successful action based on positive feedback when at the same time

6 The study of a robotic system, or more generally, of an algorithm guar-
antuees that the system is controllable and implementable, i.e. we deal with
a white box so that all parameters and internal operations can clearly be
specified (cf. [13]).

the action was evaluated negatively earlier. Again, the consistency
of feedback is even crucial for human-human learning as a trainee
can benefit from unambiguous feedback whereas contradictory feed-
back already presupposes a certain level of expertise if the trainee is
supposed to profit in the same way as in the case of unambiguous
feedback. Finally, when a feedback was assigned to a certain target-
behavior and the feedback is consistent with previous feedbacks of
this behavior, then the algorithm leads to a modification of the reward
function and subsequently to adapted behavior. This final adaption of
behavior can count as a successful learning process as the robot’s be-
havior improved in order to accomplish the task to a higher degree
than before the learning process.

In our example the learning process goes like this: When trying
to balance the pendulum, the robotic arm platform starts with the
initial posture of the pendulum as vertically downward. The robot
decides how many degrees it moves its joint at every time step ac-
cording to the current situation. Furthermore, it remembers the his-
tory of its actions. While balancing the pendulum, a human trainer
gives positive or negative feedback. Via an interface this feedback is
allocated as a reward value for the RL agent. Then every single feed-
back is processed according to the algorithm, i.e. the robot, firstly,
determines the target behavior of a feedback. The target behavior of
the feedback is the movement of the robot’s joints within a certain
time range. Hence, when the feedback is given from the trainer, the
robot is able to estimate which of its actions the trainer actually eval-
uated by referring to a certain time range of the history of its actions.
Whereas this time range, which the feedback refers to, can in princi-
pal also be learnt. In the experiment the time range was defined based
on the measurement of human’s delay of cognition. How much time
passes before a human trainer gives feedback was measured: the re-
sults show that the minimum and maximum delay lies within 300 to
800[ms] (cf. [17], p. 11). According to this data, the coaching RL
agent mapped a feedback to its behavior 300 to 800[ms] ago. After
the determination of target behavior the agent, secondly, compares
the feedback to previous feedbacks of the same behavior. If the pre-
vious acceptance or denial of this behavior is confirmed, the robot
modifies its reward function accordingly. Based on this adjusted re-
ward function the agent prefers the actions that were evaluated pos-
itively and changes its action rules. Thus, when the feedback con-
firmed a certain modification of the joints, then the agent will mod-
ify its behavior in order to move its joints according to the confirmed
behavior. If, for example, the position of one joint within a certain
range provoked positive feedback, then the robot will not exceed this
range. Or if a certain joint angle provoked only negative feedback,
the robot will not move this joint any more to this degree.7

Obviously, the previous description of the algorithmic level does
not capture a mental or subjective ability. It entails the description
of data processing and the transformation of data into modified be-
havior. But when we conceive this algorithmic processing at a func-
tional level, we can take into account the functions instantiated by
the algorithm. The functional description refers to the causal role of
a component and specifies how an agent is empowered to act [4], [3].
The functional level allows to abstract from the algorithmic as com-
putational processes and conceive the latter as cognitive functions of
an agent. This shift of our investigation is crucial as on the algorith-
mic level there is strictly speaking no agent acting, but an algorithm
is processing data. The fact that the algorithm enables an agent can-
not be made explicit until we shift our attention to a functional level.
Here it is that the computational reward value becomes a feedback as
7 In the actual experiment, the ability of interpretation was limited to the

extent that the robot could not process prevailing negative feedback.



a feedback is only possible in the mutual exchange of agents, i.e. be-
tween the human trainer and the robotic agent. The trainer primarily
interacts with the robotic agent and not with the algorithm. Whereas
in a strictly computational perspective one might say that the human
trainer interacts with the algorithm, this does not make sense if we
investigate the coaching process from a cognitive perspective. Cogni-
tively speaking the computational reward is a feedback that has to be
translated into a computational format. But again, the human trainer
is not directly giving a computational reward value but an affective
feedback [15]. Thus, the whole importance of the difference between
function and algorithm lies in the transformation of an affective re-
action (positive/smile or negative/frown) into a binary reward value.
Or, correspondingly, i.e. seen from algorithm to function, in the em-
powerment of an agent to operate on affective feedback. Hence, in
a functional perspective we can actually conceive of a robotic agent
that receives feedback. Functionally speaking, it is an agent that de-
termines target behavior, compares and finally processes feedback.
We shifted from an algorithmic description of computational pro-
cesses to a functional characterization of an agent.

Whereas we proceeded from algorithmic processing to the capac-
ities of an agent, the functional characterization still does not allow
for a mental or subjective description of the coaching RL agent. Cer-
tain functions can be instantiated by many different systems that are
obviously far from being mental or subjective. A thermostat fulfills
the function of adjusting temperature or a search engine ranks data
according to some specified criteria. So we have to take into account
a further LoA that helps to identify if and to what extent the coaching
RL agent is supposed to act subjectively. This is the relational LoA
that models the agent’s relations to itself and others. When conceiv-
ing of mental abilities (implied in the use of mentalistic language),
we expect an agent that acts autonomously and is not just respond-
ing automatically to some input data. Hence, the agent’s relations to
some given input is crucial for evaluating its behavior [16].

Based on a relational analysis we can distinguish between differ-
ent kinds of relations between the agent and its environment. On the
one hand the agent’s behavior is forced by standard RL that is based
on direct world coupling. In standard RL, the behavior gets auto-
matically modified by environmental constraints. This modification
depends on the reward function as the criteria which actions count as
a success and which actions fail to accomplish the task. In fact, our
example displays an extreme case as when the pendulum fell down
no further adjustment or modification of behavior is possible. The
task inevitably failed. But in more flexible tasks, e.g. as in the case of
navigation, environmental constraints could force an agent to change
its direction when it encounters an obstacle. The crucial point here is
that the agent’s relation to an input (the obstacle) is determined, i.e.
the agent’s behavior changes automatically without that the agent
does have any control of this modification of its behavior. Further-
more, all modifications depend on the predefined reward function. In
the case of the coaching RL agent, this way of direct world-coupling
is complemented by an autonomous self-relation. The robotic arm
not only reacts automatically to external events (here that the pendu-
lum falls down). The agent is able to operate on the automatic learn-
ing process so that this process is not any more comletely determin-
ing the agent’s behavior. Based on the algorithmic causality and error
detection, or the functional capacity to determine target behavior and
compare feedback respectively, the agent is able to process a binary
feedback and decide by itself whether and to what extent its behavior
should be modified. Both relations, the direct world-coupling and the
interpretation of feedback, contribute to the agent’s performance.

One might object that the robotic arm does not engage in full-

blown decision making, but that is not the point here. Here it is
crucial that the agent’s behavior is significantly improved in that
the final modification of the behavior is left to the agent itself. The
agent operates autonomously on feedback and therefore relates au-
tonomously to its own internal model of the trainer’s evaluation.
Thus, autonomous self-referentiality comprises that an agent oper-
ates on its own internal states whereas these operations do not com-
pletely underlie any external constraints [16]. The underlying con-
cept of autonomy does not aim at complete self-determined behav-
ior. Instead, autonomous behavior can be generated in opposition to
determined behavior, i.e. the determination of the agent gets limited,
or, correspndingly, the agent’s autonomous capacity has to be con-
strained in order to bring forward successful behavior. The theorem
of ‘realization by means of restriction’8 clarifies the role of social in-
teraction. In our case, social interaction lies between the autonomous
interpretation and direct world-coupling, i.e. it is a partial determi-
nation of the agent’s information space as the agent is constrained by
the feedback values, but is autonomous regarding their further pro-
cessing. Due to the difficulties to define a suitable reward function
a priori (see section 2.2), the coaching function and the feedback
were introduced in order to assist the robot with updating the reward
function. Accordingly, the subjective momentum of the agent’s infor-
mational space depends on a mutual dependence of the autonomous
self-relation and the social interaction: in order to evaluate its behav-
ior autonomously the agent depends on a certain input (feedback)
that confines his capacity to interpret the feedback to some reason-
able options. Otherwise, the agent would have no criteria how to eval-
uate its actions, i.e. how to move its joints.

The autonomous and at the same time partially determined be-
havior lies at the ground of a subjective agent and serves to iden-
tify the final LoA. The coaching RL agent can be regarded as acting
mentally in that it interprets the feedback based on an autonomous
decision making: the agent considers contingency, observes the con-
sistency of given feedback which results in an interpretation. Mental
states of considering, observing, and interpreting that presuppose a
subjective agent are based on the mutual relationship of autonomous
self-referentiality and social interaction in that the straightforward
determination of behavior by direct world-coupling is interrupted.
We can call the agent’s interpretation ‘mental’ or ‘subjectiv’ as this
behavior is finally determined in the agent’s information space by
the agent itself and not primarily by some external constraints. The
robot, being socially receptive for direct interaction with a human and
its autonomous decision making, qualifies the coaching RL agent as
a basically subjective agent. Again, one might object that this kind of
subjectivity is less than what we usually ascribe to full-blown human
subjects. But despite these obvious restrictions, the leveled analysis
of the robotic agent offers us an account of subjectivity that does
not rely on intractable phenomenal or psycgological states. We can
instead follow the generation of a subjective agent from scratch. Fur-
thermore, we are forced to include social interaction, which easily
gets lost in phenomenal accounts. The main purpose of the following
formal treatment lies in the need to make explicit the relations within
and between every LoA, as subjectivity is here primarily seen under
a relational viewpoint.

4.2 Nested GoA of the coaching RL agent

According to the previous stated method of levels of abstraction and
the informal treatment, the RL agent is now to be analyzed formally

8 See the chapter on schematism in [20], and [10].



at four LoAs. Each LoA comprises three observables (interface, in-
terpretation, learning) with specific variables related to the observ-
ables. The relational LoA forms an exception, in that not the observ-
ables themselves but the relational structure of the agent’s processing
describes the behavior of this LoA. The following formalization does
not depend on any specific mathematical standard but merely seeks
to make clear the different levels of the agent’s cognitive activity and
especially the relations between the agent and the trainer’s feedback
at L2.

The nested GoA is based on the following levels (L), comprising
the observables interface, interpretation, learning, and corresponding
variables:

• L0: algorithmic level

– Interface: reward value V

– Interpretation: estimation of reward function EF

– Learning: updating reward function and action rules U

• L1: functional level

– Interface: feedback F

– Interpretation: estimation of relevance ER

– Learning: processing feedback Fp

• L2: relational level

– Agent’s self-referentiality: As

– Agent’s social relation (interaction): Ai

– Direct world coupling (standard RL): Ad

• L3: mentalistic level

– Interface: social receptivity S

– Interpretation: interpreting feedback Fi

– Learning: reflecting feedback Fr

These observables and corresponding variables form a nested GoA
of the coaching RL agent (see table 1). The GoA consists of four
LoAs specified in the first column and beginning with the algorithmic
level. Due to the epistemic foundation of LoAs, the epistemic regard
according to which the coaching RL agent is interpreted is given at
each level. Each LoA consists of three observables: interface, inter-
pretation, and learning. On L0 the system is analyzed regarding its
algorithmic processing. This computational level is fully covered by
the original experiment [17]. In the following analysis we therefore
solely focus on those aspects concerning the instantiation of an infor-
mation space which is computationally implemented as a continuous
state-action-space: a certain signal, the reward value V is delivered
by an interface and gets processed in the course of causality and error
detection. In the course of interpretation, these processes of detection
are regarded as an estimation of the reward function EF . Learning at
the algorithmic level consists of an updated reward function and cor-
respondingly updated action rules U . The system’s behavior can be
specified by the use of the following predicates: V delivers a binary
value corresponding to a positive (smile, V +) or negative (frown,
V −) evaluation of the instructor. EF delivers a value under or above
the current reward function and leads in the first case to an update
U of the reward function and the action rules so that U contains the
updated and modified reward function that will result in adapted be-
havior.

At the subsequent LoAs these processes remain the same, but are
analyzed differently. Considering the functionality of the algorithm

at L1, the algorithm enables an agent to fulfill certain computational
tasks: the agent determines, compares, and processes given feedback.
This functional mapping serves to identify the cognitive processes of
the agent (cf. section 4.1) as follows: The algorithmic observables at
L0 are mapped to L1 as follows: V functions as feedback and takes
the values of ’confirmation’ V + or ’correction’ V −, i.e. the function
of the computational values consists in allocating positive or negative
feedback. Hence, the meaning of the computational value V for the
agent’s behavior is identified by its function. The same counts for the
estimation of the reward function ER: EF fulfills the cognitive func-
tion of specifying the feedback according its relevancy for the agent’s
behavior. ER is the result of estimating V , i.e. ER = EF (V ). Fi-
nally the cognitive function of U is processing feedback by updating
the reward function and the action rules in order to increase learn-
ability, i.e. Fp = U(EF ).

L2 contains the crucial relational analysis. The agent’s informa-
tion space depends on two kinds of relations that hold between the
previous observables and the agent’s capacity to operate on them.
On the one hand the agent underlies two determining relations to
others: Based on the implementation of standard RL the coaching
RL agent depends on external and automatic determination of be-
havior through direct world coupling Ad and a subsequent adaption
to the environment. Secondly, in the course of social interaction Ai

the trainer allocates feedback F . Whereas the feedback contains a
fixed value (positive or negative) that cannot be altered by the agent,
the further processing of the feedback is subject to an interpretation
by the coaching RL agent that decides if its behavior gets modified.
Hence the degree of determination of the agent’s behavior decreases
significantly in the course of social interaction. The subjective mo-
mentum of the agent’s information space is generated by the sec-
ond kind of relation, i.e. the agent’s autonomous relation to its own
internal model of the trainer’s evaluation. The RL agent is able to
modify the reward function and action rules autonomously and there-
fore indirectly its behavior. This relation to the incoming feedback is
autonomous as the latter does not determine the agent necessarily
or immediately as is the case with standard RL. Opposed to exter-
nally determined behavior as the result of Ad, subjectively modified
behavior is instantiated by autonomous acts of interpretation by the
agent itself. Thus, the agent’s subjective information space depends
on these simultaneous relations as can be made explicit by mapping
the observables at L1 onto L2: According to standard RL the agent is
determined directly through direct world coupling Ad. At the same
time feedback is allocated by social interaction Ai[F ] that constrains
the autonomous modification of the reward function: F is processed
by ER to Fp depending on the agent’s own, i.e. subjective, inter-
pretation of the feedback As[ER(F ) → Fp]. The agent’s autonomy
consists in its ability to modify its own learning process by adjusting
the reward function by itself. From a relational viewpoint, the agent’s
subjective determination of the reward function is constituted simul-
taneously with an objective determination of its behavior by direct
world-coupling (see section 4.1).

The complete behavior of the coaching RL agent at L2 depends
on these parallel processes. Whereas determined behavior alone is
not a special characteristic of subjective behavior, autonomous self-
referentiality (As) and social interaction (Ai) are relevant for the
final LoA, the mentalistic level. The subjective ability to modify
the automatic learning process by autonomously processing feed-
back forms a necessary condition for subjective computing. At the
same time autonomous self-referential behavior can only be effec-
tively utilized in the course of social interaction as the agent has to
learn how to modify its learning process. Hence, autonomous self-



Table 1. Nested GoA of the coaching RL agent.

LoA Observables

Relations

L0: algorithmic Interface Interpretation Learning

(algorithmic process-
ing)

reward value V causality detection→ error detec-
tion, i.e. estimation of the reward
function EF

updating reward function → up-
dating action rules U

R0,1: R0,1(V, F ) R0,1[EF , ER] R0,1(U,Fp)

mapping algorithm
to functions

F = V + ∨ V − ER = EF (V ) Fp = U(EF )

L1: functional Interface Interpretation Learning

(functions realized
by the algorithm)

feedback F agent determines target behavior
(contingency) → compares feed-
backs (consistency), i.e. specifies
feedback by estimating its rele-
vance ER

agent processes feedback Fp

R1,2: R1,2[(F,ER, Fp), (As, Ai), Ad]

mapping functions to
relations

As[ER(F )→ Fp] ∧Ai[F ] ∧Ad

L2: relational Self-referentiality Relations to other

Social relation Direct world coupling

(relational structure
of agent’s process-
ing)

agent relates (based on au-
tonomous acts of estimating)
to its own internal model of
the trainer’s evaluation, i.e.
an autonomous and subjective
self-relation As

trainer’s evaluation of the agent’s
behavior (feedback F ) is allocated
in social interaction Ai

determined and objective relation
Ad based on direct world coupling
(standard RL)

R2,3: R2,3(As, S) R2,3(As, Fi) R2,3(As, Fr)

mapping relations to
mental abilities

S = As(F ) Fi = As(ER) Fr = As(Fp)

L3: mentalistic Interface Interpretation Learning

(mental abilities) social receptivity S agent considers contingency,
carefully observes consistency
of given feedback, i.e. interprets
feedback Fi

agent learns autonomously, i.e.
agent reflects feedback or differ-
ences of coaching strategies by its
behavior Fr

referentiality and social interaction interdependently enable a sub-
jective agent. Again, subjectivity here means that the robotic agent
is able to modify an ongoing automatic process whereas this modifi-
cation is externally supported (here by feedback) but is finally left to
the agent’s decision. Those subjective and interactional issues arise
in scenarios where a robotic agent is supposed to adopt a task and
to accomplish this task autonomously (e.g. driving assistance, search
and rescue applications, or autonomous control in hybrid assistive
limb [?]). But due to the difficulties of defining the robot’s actions
in advance or to define a suitable reward function a priori, social in-
teraction (coaching) can be utilized in order to support the robot’s
autonomous modification of its behavior and therefore improve its

learnability.
The relational structure and the instantiation of a subjective rela-

tion in the agent’s information space finally allow for a mentalistic in-
terpretation of the coaching RL agent at L3. Usually, we ascribe acts
like considering and reflecting to a full-blown subject. This is, obvi-
ously, not the case here. Full-blown subjectivity depends on further
features like natural language and ethical addressability. But when
taking into account the social interaction of the coaching RL agent,
this agent acts as an autonomous counterpart of the human, i.e. the
agent exhibits a sufficient level of autonomy that we can ascribe men-
tal activity to it as follows: in operating on the instructor’s input, i.e.
autonomously relating to the feedback As(F ), the agent becomes so-



cially receptive S in the course of interaction. The RL agent shows
subjective behavior when individually and situation-dependently in-
terpreting feedback Fi = As(ER) and correspondingly learning
by updating the reward function and action rules according to its
interpretation, i.e. autonomously processing or reflecting feedback
Fr = As(Fp). The social interaction between the trainer and the
robotic agent is crucial for Ai and the mentalistic character of the RL
agent’s behavior as the feedback offers an additional input (binary
cues) opposed to strict world-coupling in standard RL. The subjec-
tive momentum, based on autonomous self-referentiality, occurs as
the RL agent’s non-deterministic consideration of contingency and
observation of consistency of feedback as well as in the subsequent
reflection of differences of coaching strategies by means of more or
less successful learning. There is no predefined reaction or develop-
ment of the coaching RL agent’s behavior, but subjective behavior
due to the internal indeterminacy of the modification of the learning
process. At the same time the agent’s autonomous ability relies on
social interaction that guides its ability to modify its learning pro-
cess. Without this guidance the agent would not be able to execute
its autonomous modification of the reward function as it has no in-
formation how and to what extent a modification might support to
accomplish its task.

5 CONCLUSION

We wanted to investigate what it can mean for a robotic agent to
behave subjectively. We approached this question by analyzing to
what extent mental abilities can be ascribed to a robotic agent. In
the course of analyzing a coaching RL agent at four LoAs we made
explicit a relational level (L2) that shows how mental abilities can
be ascribed to the agent: the coaching RL agent behaves subjectively
in that it is able to modify its own automatic learning processes by
means of feedback that is allocated in social interaction. At the same
time, the agent is still being determined by direct world-coupling.
Hence, the relational level confirms a relational notion of subjectiv-
ity.

On the other hand, this result underlies a certain caveat in that the
nested GoA of the coaching RL agent is based on an abstraction that
focuses on the relational structure of the agent, i.e. we analyzed to
what extent the agent’s actions are self-referential and related to oth-
ers as well as self-determined and externally determined. This rela-
tional account of the robot’s information space does not cover a com-
mon psychologically or phenomenally based description of human-
like cognitive processes as it is mainly decoupled from the concept
of consciousness and linked to intelligence. From a relational view-
point, consciousness is regarded as cognitive product. Hence, it is
necessary to go back to a level of abstraction that does not presuppose
any conscious states if conscious, or less difficult, mental abilities
have to come into reach of an explanation. By modeling relational
features of intelligence by means of a technical implementation, we
gained an analysis of cognitive abilities that is fully tractable and
implementable.

Based on a technical implementation that showed a significant im-
provement of an agent’s behavior by means of the coaching func-
tion, it was relationally justified to conclude that the coaching RL
agent acts subjectively as it makes effective use of autonomous self-
referentiality and social interaction. The agent’s subjectivity is gen-
erated in this course of action as the agent’s self-determined behav-
ior opposed to external determination by direct world-coupling. By
means of this relational abstraction of the coaching RL agent, we can
link the technical implementation with the conceptual foundation of

subjectivity and subjective computing, respectively. With regard to
the further development of subjective agents, the link of the technical
and theoretical domain supports the improvement of subjective abili-
ties. The theoretical framework of relational subjectivity can guide an
extension of self-referential processing in order to allow the coach-
ing RL agent to process ambiguous feedback. Another open ques-
tion concerns social interaction in other modes than binary feedback.
With regard to full-blown human subjectivity, the relational account
does not exclude modeling more complex cognitive abilities as the
use of natural language or ethical addressability. On the other hand,
the theoretical framework of relational subjectivity is being modeled
in the course of technical implementation. This allows us to test and
verify a relational modeling of subjectivity.
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