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Abstract

The hole argument purportedly shows that spacetime substantival-
ism implies a pernicious form of indeterminism. Here we attempt to
answer the question: what is the mathematical fact that is supposed
to underwrite the hole argument? We identify two relevant mathemat-
ical claims. The first claim is trivially true, and Weatherall (2018) has
convincingly argued that it cannot support the hole argument. The
second claim would support the hole argument, but we prove that it
is false. Therefore, there is no basis for the hole argument.

1 Introduction

In terms of generating discussion, few articles in the philosophy of physics
can parallel John Earman and John Norton’s (1987) article on the “hole ar-
gument” for local spacetime theories. Recall that the early twentieth century
saw a revival of relationalist views of space and time, where the latter are
conceived of as non-fundamental entities whose existence depends on that of
their material contents. It is not surprising, then, that when metaphysical
and scientific realism came back into vogue in the late twentieth century, then
so did spacetime substantivalism. One might fairly say that by the 1980s,
the dominant view was that four-dimensional spacetime is an independently
existing substance.

Then, in a judo like maneuver, Earman and Norton (1987) put forward
the hole argument, according to which a substantivalist must be committed
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to a pernicious form of indeterminism.1 Earman and Norton’s argument
appears to be based on a subtle mathematical fact about gauge and general
covariance — a fact that even Einstein had been confused about. In one
fell swoop, Earman and Norton tilted the balance of power back towards
relationalism, and they inaugurated a new golden-age in the philosophy of
spacetime physics.

In this paper we argue that the hole argument seems plausible only be-
cause it confuses two distinct mathematical claims. The first of these claims
— viz. that there are distinct but isomorphic models — is trivially true,
and Weatherall (2018) has convincingly argued that it does not support the
hole argument. However, some philosophers may have confused this math-
ematical triviality with another mathematical claim, which, if true, would
imply that General Relativity is indeterministic. We prove that this second
claim is false, and we conclude that there is no mathematical fact that could
underwrite the hole argument.

2 Preliminaries

In this section we accomplish two things. First, we review the general struc-
ture of the hole argument. Second, we clarify some basic mathematical facts
that are relevant for an evaluation of the hole argument. Most importantly,
we clarify the distinction between diffeomorphism and isometry, and what is
invariant under each of these kinds of mappings — since a failure to under-
stand this distinction has led to many confusions regarding the upshot of the
hole argument.

The hole argument has the following general structure:

(A) Substantivalism: spacetime exists, independently of the contents inside
it.

(B) Some mathematical fact(s)

(C) Pernicious indeterminism

1For general reviews of the hole argument, see (Earman, 1989; Stachel, 2014; Norton,
2019; Pooley, 2021). For pre-history of the argument, see (Weatherall, 2020), which also
gives some insight into how the trivial fact (that there are distinct but isomorphic models)
could have been confused for a substantive fact about the existence of hole isomorphisms.
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The upshot, of course, is supposed to weaken the attraction of substantival-
ism.

Many previous discussions of the hole argument have focused on clari-
fying what substantivalism means, or on what it means for a theory to be
deterministic. We focus instead on pinpointing the claim made in (B), and
on checking whether it is true. It seems that there are two mathematical
claims that might be relevant here. The first claim is that there are distinct
but isomorphic models. But that fact is not strong enough to support the
rest of the argument. The second claim is that there are isomorphisms that
only move elements inside a hole. But that claim — as we show — is false.
In either case, the hole argument fails.

The hole argument is set in the framework of local spacetime theories.
The models of such theories have the form (M,O1, . . . , On), where M is a dif-
ferentiable manifold and the Oi are tensor fields on M . However, saying that
makes it immediately sound like the hole argument depends on some deep
mathematical subtleties that a typical philosopher would not understand.
We do not believe that to be the case, and we will give several analogies for
what is going on with the mathematics in the hole argument. The first anal-
ogy is to the kind of simple “theory” that one encounters in a logic course.
Such a theory consists of a language Σ with various symbols, and some ax-
ioms in that language. For simplicity, consider the case where Σ consists of a
single predicate symbol P . Then a Σ-structure consists of a set M and some
subset PM of M , the combination of which can be written as (M,PM).

One important difference between a local spacetime (M,O1, . . . , On) and
a logical model (M,PM) is that in the former M is a differentiable manifold,
whereas in the latter M is a bare set, with no structure relating its elements.
(For more details on the theory of differentiable manifolds, see (Lee, 2013;
Malament, 2012).) Roughly speaking, an n-dimensional manifold M consists
of a set (which we again call M) and a family {(U, χ)} where U ⊆ M and
χ maps U one-to-one into a subset of the n-dimensional real numbers. This
family of “charts” gives M enough structure, in the first place, to make
sense of the notion of a smooth map from M into Rk. In particular, a map
f : M → Rk is smooth at point p ∈ M just in case for any chart (U, χ)
with p ∈ U , the composite map f ◦χ−1 is an infinitely differentiable function
from χ[U ] to Rk (this latter notion already being defined in the theory of
real numbers). More intuitively, each chart (U, χ) endows a little patch of M
with the structure of Rn, and a smooth map f : M → Rk is one such that,
restricted to each such patch, is infinitely differentiable. Now if M and N
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are both differentiable manifolds, then we can also make sense of the idea of
a smooth map from M to N . In particular, a function f : M → N is said to
be smooth just in case for any function g : N → Rk, the composite g ◦ f is
smooth.

Definition. Let M and N be manifolds. A function ϕ : M → N is called a
diffeomorphism just in case ϕ is smooth and has a smooth inverse ϕ−1.

It will be important for what follows to be precise about which structures
are, and which structures are not, invariant under diffeomorphisms. Like
homeomorphisms of topological spaces, diffeomorphisms need not respect
metric structure, and hence they can stretch and deform objects. For exam-
ple, a diffeomorphism can turn a circle into an ellipse, or a hyperbola into
a line. However, diffeomorphisms cannot transform smooth (i.e. infinitely
differentiable) curves into lines with kinks. For example, there can be no
diffeomorphism ϕ : R2 → R2 that takes the parabola {(x, y) : y = x2} to the
bent line {(x, y) : y = |x|}.

If M is an n-dimensional manifold, then for each point p ∈ M , there is
an associated n-dimensional real vector space Tp called the tangent space at
p. Intuitively, the tangent space at p represents the possible instant states
of motion at p in terms of vectors emanating from p. Note, however, that Tp
is a bare vector space, which means that the notion of the magnitude of a
vector v ∈ Tp is undefined, as is the notion of the angle between two vectors
v, w ∈ Tp. Similarly, if v ∈ Tp while w ∈ Tq with p 6= q, then “v is the
same length as w” and “v points in the same direction as w” are undefined.
In order to define notions like these, one needs further structure, such as a
metric on the manifold.

Definition. If V is an n-dimensional vector space, then a Minkowski inner
product η on V is a mapping that takes pairs of vectors and returns real
numbers. We assume, as usual, that there is a one-dimensional subspace of
V on which η is positive definite, and a n− 1 dimensional subspace of V on
which η is negative definite.

Definition. Let M be an n-dimensional manifold with n ≥ 2. A Lorentzian
metric g on M is a smooth assignment p 7→ gp of points in M to Minkowski
inner products on the corresponding tangent spaces.

Definition. We say that (M, g) is a Lorentzian manifold, or alternatively a
relativistic spacetime, if M is an n-dimensional manifold and g is a Lorentzian
metric on M .
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Definition. Suppose that (M, g) and (M ′, g′) are relativistic spacetimes and
let ϕ : M →M ′ be a diffeomorphism. Then ϕ is said to be an isometry just
in case it preserves the metric structure — i.e. ϕ∗g′ = g where ϕ∗ is the map
which “pulls back” the metric from M ′ to M (see Malament, 2012, p 36).

It is immediate that if two spacetimes (M, g) and (M ′, g′) are isometric,
then their underlying manifolds are diffeomorphic. However, as the following
example shows, two spacetimes can fail to be isometric even if their under-
lying manifolds are diffeomorphic.

Example. Let (M, g) be Minkowski spacetime in two dimensions where M =
R2 and g = dt2 − dx2. Now let (M ′, g′) be the t > 0 portion of (M, g), that
is, let M ′ = {(t, x) ∈ M : t > 0} and g′ = dt2 − dx2. We find that the
manifolds M and M ′ are diffeomorphic since the bijection ϕ : M → M ′

defined by ϕ(t, x) = (et, x) is both smooth and has a smooth inverse. But
the diffeomorphism ϕ fails to be an isometry because, when pulling back
the metric g′ from M ′ to M , we find that ϕ∗g′ = (e2t)dt2 − dx2 6= dt2 −
dx2 = g. That the two spacetimes have diffeomorphic manifolds but fail to
be isometric makes good sense given that they represent radically different
physical situations: the truncated Minkowski spacetime (M ′, g′) contains
“singularities” in the sense that it is geodesically incomplete while Minkowski
spacetime (M, g) is, of course, geodesically complete (Wald, 2010, p 149). �

One can also find non-isometric spacetimes that have quite different
causal structures and yet have diffeomorphic underlying manifolds. For
a simple example, consider the causally well-behaved (globally hyperbolic)
Minkowski spacetime and the causally misbehaved (achronal) Gödel space-
time; each has R4 as its underlying manifold (see Hawking and Ellis, 1973,
p 168; Malament, 2012, p 195). Stepping back, we see that while diffeo-
morphisms preserve all manifold structure, they need not preserve the most
fundamental physical features of a spacetime including its geodesic and causal
structure. These sorts of considerations suggest that relativistic spacetimes
should be represented by Lorentzian manifolds, and two spacetime models
are physically equivalent only if they are isometric.

3 Invariance: substantive and trivial

Since there are metrics g and g′ on M = R4 such that (M, g) is geodesi-
cally complete and (M, g′) is singular, it follows that the property of “being
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singular” is not invariant under diffeomorphism. In fact not much at all is
invariant under diffeomorphism; for example, causal structure is not typically
preserved by diffeomorphisms, and tensorial quantities are not typically pre-
served by diffeomorphisms. These facts might come as a surprise, seeing how
often one hears the phrase “diffeomorphism invariance”, and how often one
hears that only diffeomorphism invariant quantities are physically significant.
It would be good, then, to give a more precise accounting of what it means
to say that a certain kind of structure is invariant under a certain kind of
morphism.

If there is one key fact to understanding claims of invariance, it is the
following:

Any meaningful claim of the form “morphisms of class ∆ preserve
structure S” presupposes a prior standard of cross-model identity
for S.

Conversely, the claim “the morphism ϕ preserves S” collapses into triviality
if ϕ itself was used to generate the standard of cross-model identity, e.g. by
pulling SN back along ϕ : M → N . Unfortunately, it is the latter, trivial
kind of invariance that is at play in claims to the effect that “diffeomorphism
invariance” has some special role to play in spacetime physics. In order to
see that such claims are trivial, we begin with a couple of simple examples.

Example. Consider a language Σ that contains a single constant symbol c,
so that a Σ-structure M includes the assignment of an element cM ∈ M . If
(M, cM) and (N, cN) are Σ-structures, then a function f : M → N preserves
the relevant structure iff f(cM) = cN . What is crucial here is that we have
an independent grasp of the denotation of c in both M and N . If we did not,
then we might be tempted to say that any function f : M → N preserves
the extension of c, because f maps f−1(cN) to cN , and so we could just let
cM := f−1(cN). To speak that way is to muddle and trivialize the concept of
invariance. �

Example. For a slightly more sophisticated example, suppose that V is a
vector space, and let L : V → V be a linear isomorphism. It might be
tempting to say that L preserves inner products, because if m is an inner
product on V , then so is the pulled back inner product L∗m given by

(L∗m)(x, y) = m(Lx, Ly).
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But that way of speaking is deeply confused, because “L preserves inner
products” only makes sense if L is a mapping whose domain and range are
inner product spaces, i.e. if inner products on both spaces have already been
identified. In particular, if mV is an inner product on V , and mW is an inner
product on W , then L : V → W preserves inner products just in case

mW (Lx, Ly) = mV (x, y), (∀x, y ∈ V ),

which is the same as saying that mV = L∗(mW ). To press the point further,
note that the definition of L∗m above does not even depend on L being a
linear map. Indeed, any bijection of V can be used to define a new linear
structure on V , and L∗m will be linear relative to this new structure, and
the resulting inner-product space will be isomorphic to (V,m). But this does
not show that inner products are invariant under arbitrary bijections! �

The same lesson applies to the case of diffeomorphisms and tensorial
quantities: the phrase “diffeomorphisms always preserve tensorial quanti-
ties” is either meaningless or false. First of all, to speak meaningfully about
invariance of tensorial quantities presupposes a fixed standard of cross-model
identification of tensorial quantities. (It might help here to remember that
a covariant 2-tensor is essentially an indexed family of inner products.) For
example, if we define gM to be the metric tensor of M and gN to be the met-
ric tensor N , then it does makes sense to ask whether some diffeomorphism
ϕ : (M, gM) → (N, gN) preserves the metric. And for a general diffeomor-
phism ϕ, the answer will be no. In contrast, the fact that an arbitrary
diffeomorphism ϕ : N → M can be used to pull back a tensor field gM on
M to a tensor field gN := ϕ∗gM on N is no more significant than the fact an
arbitrary bijection L : V → W can be used to pull back the structure of an
inner-product space (W,mW ). In both cases, the claim that the morphism
preserves the structure is trivial, because the structure was defined in terms
of the morphism.

To further clarify this point, let’s consider the general case of two cate-
gories D and C of mathematical objects, where the objects of D have “more
structure” than the objects of C. This relation between D and C can be
captured by saying that there is a “forgetful” functor U : D→ C, i.e. a func-
tor that is faithful but not necessarily full. That is, if f and g are distinct
morphisms between M and N in D, then U(f) and U(g) are distinct mor-
phisms between U(A) and U(B) in C. However, there may be morphisms
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between U(A) and U(B) that are not of the form U(f) for some morphism
f : A→ B.

The familiar concrete categories — such as groups, rings, and fields — fit
this mold: if A is an object of D then U(A) is its underlying set, an object
of the category Set whose objects are sets and whose arrows are functions.
If A and B are objects in D, then there will typically be more morphisms
between U(A) and U(B) than there are between A and B. To say that a
function f : U(A) → U(B) preserves the structure from the category D is
equivalent to saying that there is a morphism g : A→ B such that U(g) = f .
Note, however, that this condition is not equivalent to saying that there is
some morphism h of D such that U(h) = f , as the following example shows.

Example. Let D be the category of pointed sets, whose objects are of the
form (X, p) with X a set and p ∈ X; and where f is a morphism from (X, p)
to (Y, q) just in case f : X → Y is a function such that f(p) = q. Let C be
the category of sets and functions, and let U be the forgetful functor that
takes a pointed set (X, p) and returns the set X.

Now let X = {a, b}, and let f : X → X be the function that permutes a
and b. Then f is the image under U of a morphism h in D; in particular, f
itself is a morphism from (X, a) to (X, b). However, although f is a morphism
from U(X, a) to U(X, a), there is no morphism g : (X, a)→ (X, a) such that
U(g) = f . Thus, f does not preserve the structure of pointed sets. �

The schematic of a forgetful functor U : D → C can also be applied in
the case where the category C itself has interesting structure. For example,
C might be the category of topological spaces, while D is the category of
metric spaces, and U is the functor that constructs a topology from a met-
ric. Similarly, D could be the category whose objects are manifolds with
Lorentzian metrics (with isometries as morphisms), while C is the category
of manifolds (with smooth maps as morphisms), and U is the functor that
forgets the metric.

When there is a forgetful functor U : D→ C then an object A of category
D typically has more invariant structure than the corresponding object U(A)
of category C. Nonetheless, there is a trivial sense in which the invariants of
the category D might be said to be preserved by the morphisms of C (and it is
this trivial sense that is at play in Earman and Norton’s Gauge Theorem). In
particular, given any object A of D and any isomorphism f : U(A)→ U(A)
in C, one can pull back the structure of A along f to create another object
B of D and an isomorphism h : B → A such that U(h) = f . But this
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construction does not show that the structure of objects in D is invariant
under the morphisms of C; if it did, then any structure that can be built on
top of sets would be invariant under all set-theoretic functions. In short, this
kind of reasoning would utterly trivialize the concept of invariance.

In summary, if some structure S can be identified across models, then
there is a substantive sense in which S might or might not be invariant
under some class ∆ of morphisms. In contrast, given some structure SM

on a particular model M , any reasonable class of morphisms can be used
to pull SM back to other models, thereby trivializing the claim that S is
invariant under that class of morphisms. It is only in this trivial sense that
tensorial quantities are invariant under diffeomorphisms. In the substantive
sense of invariance, tensorial quantities are not invariant under arbitrary
diffeomorphisms.

In fact, most the physically interesting features of spacetime models vary
under diffeomorphisms. For example, none of the following notions is in-
variant under diffeomorphism — or to put it more accurately, none of these
notions is definable in terms of manifold structure alone.

• The length of a curve γ in M . In particular, if ϕ : (M, g)→ (M ′, g′) is a
diffeomorphism, then the length of γ (measured by g) is not necessarily
the same as the length of ϕ[γ] (measured by g′).

• The property of a vector v ∈ Tp being timelike. In particular, the
pushforward vector ϕ∗v ∈ Tϕ(p) might be spacelike (according to g′)
even if the vector v is timelike (according to g).

• The fact that q is in the causal future of p. In particular, if ≤ is the
causal ordering on (M, g) and � is the causal ordering on (M ′, g′), then
it is possible that p ≤ q while not ϕ(p) � ϕ(q).

• The property of M being flat. In particular, a manifold M can be
equipped with two metrics g and g′, such that (M, g) is flat, but (M, g′)
is not.

Each of these notions can be defined only relative to some further structure
(e.g. a metric g); and in such a case, the notion is invariant under morphisms
that preserve that structure (e.g. isometries). For this reason, there is a
strong prima facie case for taking a spacetime to be a pair (M, g) where M
is a manifold and g is a Lorentzian metric; and in that case, spacetimes are
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physically equivalent (i.e. isomorphic) only if there is an isometry between
them.

4 Representing theoretical commitment

What is it to accept, or believe, the General Theory of Relativity? What is it
to be committed to a substantivalist interpretation of the General Theory of
relativity? These are big questions, and we will not pretend to give them an
adequate treatment in this article. However, we would like to suggest that
some aspects of one’s theoretical commitments can be represented via the
structure of a category of models. This point is by no means novel; indeed,
it is taken for granted in most discussions of the foundations of physics; and
it has been argued explicitly by Weatherall (2016) and Halvorson (2019).
Nonetheless, by emphasizing the point, we can avoid some very basic confu-
sions that arise in the hole argument.

Recall that a category C consists of a set C0 of objects and a set C1 of
arrows between the objects. Each arrow f ∈ C1 has a domain object d0f
and a codomain object d1f . As usual, we write f : A → B to indicate that
d0f = A and d1f = B. Moreover, each object A ∈ C0 has an identity arrow
1A, and if f : A → B and g : B → C are arrows, then so is the composite
g ◦ f : A → C. The structure of the category C is enough to define the
notions of monomorphism, epimorphism, and isomorphism, and it is the last
of these notions that plays a central role in the hole argument.

Consider, for example, the following two similar, but inequivalent, cate-
gories. Let C be the category that consists of two objects A,B, and that
has four arrows: 1A, 1B and a pair f : A → B and g : B → A such that
g ◦ f = 1A and f ◦ g = 1B. Thus, in the category C, the objects A and B
are isomorphic. Now let D be the category that has the same objects as C,
but where 1A and 1B are the only arrows of D. In that case, the objects A
and B are non-isomorphic in D.

Now imagine two theories TC and TD, where the first comes with the
category C (where models A and B are isomorphic) and the second comes
with the category D (where models A and B are not isomorphic). We claim,
then, that these two theories have different commitments: TC recognizes only
one possibility (but two ways of representing it) whereas TD recognizes two
possibilities.

Some philosophers might think that TC would be a defective theory be-
cause it has numerically distinct but isomorphic models. In contrast, we don’t
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see this feature of TC as a defect, nor is it avoidable in practice. Consider,
for example, the theory T in first-order logic that says “there are exactly two
things.” Then T has more set-theoretic models than any cardinal number κ.
However, a person who accepts T is not committing to a claim of the form
“there are more possibilities than any cardinal number κ.” No, she is com-
mitting to no more nor less than the claim “there are exactly two things”.
How many possibilities are consistent with her theory is not itself part of her
theoretical commitment.

Let us return now to the case of interest, viz. local spacetime theories.
Suppose that one theorist, Carsten, has commitments represented by the
category Man of smooth manifolds and diffeomorphisms, while another the-
orist, Ditte, has commitments represented by the category Lor of manifolds
with metric and isometries. In that case, if g and g′ are non-isometric metrics
on a manifold M , then Ditte will take (M, g) and (M, g′) to represent dis-
tinct possibilities, whereas Carsten will take these two models to be different
representations of the same possibility. We argued above that Ditte has a
better theory than Carsten, because Carsten cannot even speak coherently
about things like causal structure and geodesics. In fact, Carsten considers
Minkowski spacetime to be physically equivalent to Gödel spacetime, and also
to the Friedman-Robertson-Walker cosmological spacetimes. Thus, Carsten
cannot speak coherently about whether the universe is expanding, or whether
there are closed timelike curves, etc. Once again, diffeomorphism is far too
liberal to be taken as a standard of physical equivalence.

We can now apply this lesson to rule out one last possibility for the struc-
ture of the models of GR: let Mang be the category whose objects are pairs
(M, g) with M a manifold and g a Lorentzian metric, but whose morphisms
include all the diffeomorphisms. While the models in Mang have metric
structure, the morphisms of Mang disregard this structure. In fact, the cat-
egory Mang is equivalent to the category Man of manifolds and smooth
maps. Thus, insofar as theoretical commitment is captured by the structure
of the category of models, Mang has the same fatal flaw as Man, viz. its
isomorphisms relate situations that are intuitively physically inequivalent.

In summary, a mature physical theory typically comes equipped with a
category of models and morphisms between those models. We have argued
that the category of models of GR is not Man, because the differentiable
manifolds do not have enough structure to be called spacetimes. We have
also argued that the category of models of GR is not Mang, because the iso-
morphisms in this category ignore physically relevant features of the models.
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The remaining possibility is that category of models of GR is Lor, i.e. the
category of Lorentzian manifolds and isometries.

We can imagine, however, an objection to our claim that isometry is
the standard of physical equivalence for relativistic spacetimes: don’t sub-
stantivalists and relationalists employ different standards of physical equiva-
lence? In particular, it is often suggested that substantivalists deny Leibniz
equivalence, which suggests that their standard of physical equivalence is
more conservative than relationalists’ standard of physical equivalence. But
how exactly would a substantivalist define an isomorphism between space-
times? One possibility is that the substantivalist theory includes constant
symbols for picking out spacetime points, and so a function ϕ : X → Y is
a substantivalist-isomorphism only if ϕ(cX) = cY for each constant symbol
c. But that can hardly be the intention of the substantivalist, because in
that case he would be committed to Minkowski spacetime having no symme-
tries. Thus, we see no reason why a substantivalist would adopt a criterion
of physical equivalence that is stricter than isometry.

To summarize, the truth of the second premise of the hole argument — i.e.
“there are hole isomorphisms” — depends on how one defines “isomorphism”,
i.e. on which category one considers to be the category of models of GR.
We have argued that bare manifolds are far too unstructured to count as
spacetimes; and diffeomorphisms ignore far too much structure to count as
isomorphisms. While we leave open the possibility that there may be an even
better alternative, for the remainder of this paper, we assume that spacetimes
are Lorentzian manifolds, and isomorphisms are metric-preserving maps, i.e.
isometries.

5 The non-existence of hole isomorphisms

We return to the original question of this paper: what mathematical claim
is supposed to serve as the second premise of the hole argument? To state it
abstractly, the claim is:

(B1) There are relativistic spacetimes X and Y , a proper open subset O of
X, and an isomorphism ϕ : X → Y that changes things in O but not
outside O.

(Here we use X instead of (M, g) to remain neutral, for the time being,
about the category in which X is considered to be an object.) We first
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point out a problem with the statement of B1: how are we to formalize the
phrase “changes things”? To see this point more clearly, consider an arbitrary
function ϕ : X → Y between mathematical objects X and Y , and imagine
being asked to write “ϕ changes things” in mathematical notation. Normally
we would say that “ϕ changes things” means that there is an x ∈ X such
that ϕ(x) 6= x. But if X 6= Y then the equality relations on X and Y cannot
be used to compare ϕ(x) with x, and so it is unclear what “ϕ changes things”
could mean.

At this point, we have two options. The first option is to introduce an
auxiliary morphism ψ : X → Y to serve as the standard of comparison
between elements of X and elements Y .2 Then, “ϕ changes things” could be
cashed out as ϕ 6= ψ, and B1 could be re-expressed as:

(B2) There are relativistic spacetimes X and Y , a proper open subset O
of X, and isomorphisms ψ : X → Y and ϕ : X → Y such that
ϕ|X\O = ψ|X\O but ϕ|O 6= ψ|O.

The idea behind B2 is that ϕ|X\O = ψ|X\O expresses “ϕ does not change
things outside O”, while ϕ|O 6= ψ|O expresses “ϕ changes things inside O”.

The second option is to restrict to the special case Y = X, where the
identity morphism 1X : X → X can serve as the standard of comparison.3

In that case, B2 simplifies to:

(B3) There is a relativistic spacetime X, a proper open subset O of X, and
an isomorphism ϕ : X → X such that ϕ|X\O = 1X\O but ϕ|O 6= 1O.

We will soon prove (Theorem 1) that B2 is false, from which it follows that
B3 is false (Corollary 3). However, we first compare B3 with the central
mathematical claim of Earman and Norton’s paper:

Gauge Theorem (General Covariance). If (M, g) is a model of a local space-
time theory and ϕ is a diffeomorphism from M onto M , then the carried along
tuple (M,ϕ∗g) is also a model of the theory.

2The function ψ : X → Y can be thought of as specifying a “counterpart” relationship
(see Butterfield, 1989).

3In the hole argument, the relevant spacetime models are of the form X = (M,ϕ∗g)
and Y = (M, g). In this case, one might propose the map 1M : X → Y as the default
for “does not change things”. However, 1M is a morphism in the category Lor only if
g = (1M )∗g = ϕ∗g, in which case X = Y . If X 6= Y , then 1M : X → Y is not even a
physical equivalence, and so it is not a good standard for “does not change things.”
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The idea here is that ϕ establishes an isomorphism between (M,ϕ∗g) and
(M, g); and since the latter is a model of the theory, so is the former. Is this
morphism ϕ the sought for hole isomorphism that establishes the truth of
B3?

We claim that the morphism ϕ constructed in the proof of the Gauge
Theorem is a hole isomorphism only if ϕ is an isometry. We argue by cases,
depending on which category C the morphism ϕ is supposed to be an iso-
morphism in: (1) the category Man of manifolds and smooth maps, (2) the
category Mang of manifold-metric pairs with smooth maps, or (3) the cate-
gory Lor of manifold-metric pairs with isometries.

Case 1: suppose that “ϕ is a hole isomorphism” means that ϕ is an
isomorphism in Man. That claim is true, but it is simply not relevant:
no reasonable person thinks that a diffeomorphism ϕ : X → Y establishes
that X and Y are physically equivalent. Similarly, no reasonable person
thinks that a diffeomorphism ϕ : X → X shows that there are nomologically
possible changes of the situation represented by X. But in any case, there
is no good reason to think that Earman and Norton intended the Gauge
Theorem to show the existence of an isomorphism in Man, because they
used the fact that there is an isomorphism in Man to establish the existence
of an isomorphism (but in what category?) between (M,ϕ∗g) and (M, g).
At the very least, the notation of the Gauge Theorem suggests that (M, g) is
intended to have more structure than just that of a differentiable manifold.

Case 2: suppose that “ϕ is a hole isomorphism” means that ϕ is a mor-
phism in Mang. We already urged against taking Mang as the category
of spacetime models, since it is unclear whether the intention would be to
represent spacetime as having metric structure or not. But in any case, if ϕ
is a hole isomorphism, then ϕ has the same domain and range:

(M,ϕ∗g) = d0ϕ = d1ϕ = (M, g).

But then ϕ∗g = g, which means that ϕ is an isometry. In this case, the
Gauge Theorem establishes the existence of a hole isomorphism ϕ only if
ϕ : (M, g)→ (M, g) is an isometry.

Case 3: suppose that “ϕ is a hole isomorphism” means that ϕ is a mor-
phism in Lor. Once again, ϕ is a hole isomorphism only if ϕ has the same
domain and range, and this implies (as in the previous paragraph) that ϕ
is an isometry. Therefore, the Gauge Theorem establishes the existence of a
hole isomorphism ϕ only if ϕ : (M, g)→ (M, g) is an isometry.

14



We will soon demonstrate that ϕ could not be an isometry, because there
are no isometries that move things around inside a hole, but not outside of
it. But let us first pause to develop our intuition for why the Gauge Theorem
does not guarantee their existence. Consider the following example.4

Example. Let M consist of the following three points of the Euclidean plane
a = (0, 0), b = (1, 0), c = (0, 2), and let d be the Euclidean metric. Then
the metric space (M,d) is rigid in the sense that its only automorphism
is 1M . (Thus, there most certainly cannot be a hole automorphism ϕ :
(M,d) → (M,d), since there are no non-trivial automorphisms of (M,d).)
In particular, there is no isometry of (M,d) that permutes a and b. However,
if ϕ : M →M is the map that permutes a and b, then we may define a new
metric (ϕ∗d)(x, y) = d(ϕ(x), ϕ(y)), and then ϕ is an isometry from (M,ϕ∗d)
to (M,d). Nonetheless, as we saw above, the automorphism group of (M,d) is
trivial. Thus, the fact that there is an isometry from (M,ϕ∗d) to (M,d) does
not show that there are any non-trivial automorphisms of (M,d). In fact, we
would be within our rights to call the isometry ϕ : (M,ϕ∗d)→ (M,d) trivial,
since both (M,ϕ∗d) and (M,d) are rigid, and ϕ is the only isomorphism
between them. It would be very strange to say that ϕ “changes things” in
(M,ϕ∗d), when that structure has no non-trivial automorphisms. �

The Gauge Theorem does not yet settle the question of whether hole
isomorphisms exist, because it does not show that the map ϕ : (M, g) →
(M, g) is an isometry. The mathematical fact needed for the hole argument
to go through is the following:

Conjecture. There is a relativistic spacetime (M, g), a proper open subset
O of M , and an isometry ϕ : (M, g)→ (M, g) that changes things in O but
not outside of O.

If this conjecture were true, it would indeed have profound consequences
for our understanding of GR. It would entail that everything that happens
outside, and in particular in the past, of a tiny region is not sufficient to
determine what happens inside that region. If such were true, then GR
would display a pernicious form of indeterminism — regardless of whether it
was given a substantivalist or relationalist interpretation.

4Technically this example falls outside the bounds of the Gauge Theorem, which applies
to local spacetime theories. However, a similar example can be constructed by choosing a
spacetime (M, g) that has a trivial isometry group. It is easy to find such spacetimes (see
Mounoud, 2015).
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However, this claim is provably false. Before proving that it is false,
we should pause to clarify the sense in which the existence of this kind of
hole isomorphism would imply indeterminism. Intuitively, if things in O
can be moved around without moving anything in the past of O, then there
are two spacetimes (M, g) and (M, g′) that agree on an initial segment, but
that disagree at some later point of time. The existence of such spacetimes
would show that GR violates the Montague-Lewis-Earman (MLE) criterion
for deterministic theories (see Montague, 1974; Lewis, 1983; Earman, 1986):
if possible worlds W and W ′ agree on some initial segment, then W = W ′.

There is, however, a problem with the MLE definition, in that it relies
on an unclear notion: “two worlds are the same”. Does “two words are the
same” mean that these worlds are equal qua set-theoretic structures, or does
it mean that these worlds are isomorphic in some other sense? The former
proposal is wildly implausible, because it would entail that every theory is
indeterministic. Indeed, given a theory T and any model W of T , let W ′ be
the model that replaces the spatial points Σt at time t with primed versions
(or any other set Σ′t 6= Σt of the same cardinality as Σt). Then W and W ′

agree at all times before t, but W 6= W ′. Therefore, T is indeterministic.
(We repeat this argument more formally in the next section.)

We propose to make the MLE definition more precise by replacing the
unclear notion of “two worlds are the same” with the unambiguous notion
of equality of isomorphisms between models: if a theory is deterministic,
then for any two models of that theory, if there is an isomorphism between
initial segments of those models, then that isomorphism extends uniquely
to the entire models.5 Here we give a slightly weaker condition which does
not guarantee the existence of an extended isomorphism, but does guarantee
uniqueness.

Definition. We say that theory T has Property R just in case for any two
models W and W ′ of T , and initial segment U ⊆ W , if f : W → W ′ and
g : W → W ′ are isomorphisms such that f |U = g|U , then f = g.

We will not give a general definition of an “initial segment” of a model,

5Our Property R is similar to Definition 3 of Belot (1995), which he rejects as inad-
equate. Since our Property R invokes a comparison morphism ψ, it would appear to be
based on the notion of “counterparts”, whereas Belot suggests — as do Melia (1999) and
Teitel (2019) — that no such definition of determinism can capture the full (i.e. haecceitis-
tic) concept. In Section 6 we argue that the kind of determinism they are seeking is a fata
morgana.
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which presupposes that models are equipped with some kind of dynamical
structure (but see the next section). For globally hyperbolic spacetimes,
the case of primary interest here, an initial segment can be taken to be a
Cauchy surface, or the causal past of a Cauchy surface. In any case, the
idea behind Property R (“rigidity”) is that isomorphisms between spacetime
models cannot agree in the past, but disagree in the future.

We will now show that General Relativity (if its models are Lorentzian
manifolds) has Property R; and hence, GR admits no hole isometries. We
prove, in fact, something stronger: if two isometries agree on any open set,
no matter how small, then they agree everywhere.6

Theorem 1. Let (M, g) and (M ′, g′) be relativistic spacetimes. If ϕ and ψ are
isometries from (M, g) to (M ′, g′) such that ϕ|O = ψ|O for some nonempty
open subset O of M , then ϕ = ψ.

Proof. Suppose that ϕ and ψ are isometries and that ϕ|O = ψ|O where
O ⊆M is nonempty and open. Consider an arbitrary vector ξa at any point
p ∈ O. Let α : V → R be any smooth map where V = ϕ[O] = ψ[O]. Because
ϕ|O = ψ|O, we find that

(ϕ∗(ξ
a))(α) = ξa(α ◦ ϕ) = ξa(α ◦ ψ) = (ψ∗(ξ

a))(α),

where ϕ∗ and ψ∗ are push forward maps at p (see Malament, 2012). Thus
ϕ∗(ξ

a) = ψ∗(ξ
a) for all vectors ξa at p. Let {ξa1 , . . . , ξa4} be an orthonormal

tetrad at the point p. It follows that {ϕ∗(ξa1), . . . , ϕ∗(ξ
a
4)} = {ψ∗(ξa1), . . . , ψ∗(ξ

a
4)}

is an orthonormal tetrad at the point ϕ(p) = ψ(p). From Geroch (1969) we
have: If (M, g) and (M, g′) are relativistic spacetimes and {ξa1 , . . . , ξa4} and
{ηa1 , ..., ηa4} are orthonormal tetrads at points p ∈M and q ∈M ′ respectively,
then there is at most one isometry θ : (M, g) → (M ′, g′) such that θ(p) = q
and {θ∗(ξa1), . . . , θ∗(ξ

a
4)} = {ηa1 , . . . , ηa4}. So there is at most one isometry

θ : (M, g)→ (M ′, g′) such that θ(p) = ϕ(p) = ψ(p) and

{θ∗(ξa1), . . . , θ∗(ξ
a
4)} = {ϕ∗(ξa1), . . . , ϕ∗(ξ

a
4)} = {ψ∗(ξa1), . . . , ψ∗(ξ

a
4)}.

Since ϕ and ψ are both isometries of this kind, it follows that ϕ = ψ.

6The results of this section hold for all Lorentzian manifolds, and not just those satis-
fying stronger causality conditions, such as global hyperbolicity. However, if a spacetime
is not globally hyperbolic, then the notion of an “initial segment” may not even be appli-
cable; and so our results fall short of establishing that GR is a deterministic theory (cw.
Smeenk and Wüthrich, 2021).
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If we take M ′ = M , g′ = g, and ψ = 1M , then the previous result yields:

Corollary 2. Let (M, g) be a relativistic spacetime. If ϕ : (M, g) → (M, g)
is an isometry that is the identity on some nonempty open subset O of M ,
then ϕ = 1M .

Since the complement of a hole O in M contains a nonempty open subset
of M , the previous result entails that there are no hole isomorphisms.

Corollary 3 (Non-existence of hole isomorphisms). Let (M, g) be a rela-
tivistic spacetime, and let O be a subset of M such that M\O has non-empty
interior. If ϕ : (M, g)→ (M, g) is an isometry that is the identity outside of
O, then ϕ is also the identity inside O.

6 Indeterminism: substantive and trivial

We can anticipate what some philosophers will say in response to the results
of the previous section. They will say that this kind of result does not
really bear upon the hole argument, since that argument is not about the
qualitative determinism of GR, but about whether it is fully deterministic,
i.e. in a haecceitistic sense. For example, according to Teitel (2019), laws L
are fully deterministic just in case:

For all metaphysical possibilities W and W ′ where L is true, if
there is a time t at both W and W ′ such that t has the same
intrinsic properties at both W and W ′, then W and W ′ agree on
the truth value of every proposition.

If the worlds W and W ′ agree only on the qualitative propositions — those
that do not mention individuals — then the laws are merely qualitatively
deterministic.7

This kind of distinction between full and qualitative determinism is, un-
fortunately, too vague to be of much use for testing whether theories are
deterministic. What does it mean, for example, to say that a proposition
mentions individuals? Suppose that there is a property φ that is instanti-
ated by exactly one individual. Then does the proposition ∃xφ(x) mention

7Teitel’s “fully deterministic” and “qualitatively deterministic” correspond, respec-
tively, to the notions Dm1 and Dm2 from Butterfield (1989), which in turn correspond
to Det1 and Det2 from Pooley (2021).
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that individual? Or does a proposition have to contain a proper name in
order for it to mention individuals? In that case, what are we to do about
the fact that most theories in physics do not have such names? Should we
say that, for these theories, qualitative determinism automatically implies
full determinism? Or should we say that these theories simply cannot be
fully deterministic?

Getting caught up on the question of which propositions are qualitative is
unlikely to help us to understand GR better, or to understand how GR bears
on the substantivalism-relationalism debate. The results of the previous sec-
tion decisively show that the hole argument does not work for GR, because
GR — whether interpreted substantivally or relationally — has dynamically
rigid models. Why is it, then, that there has been, and will surely continue to
be, a feeling that there is some remaining open question about whether GR is
fully deterministic? Our conjecture is that the worry here arises from the fact
that GR, just like any other theory of contemporary mathematical physics,
allows its user a degree of representational freedom, and consequently dis-
plays a kind of trivial semantic indeterminism: how things are represented
at one time does not constrain how things must be represented at later times.

To see this point more clearly, we consider a few examples from (many-
sorted) first order logic (see Halvorson, 2019).8

Definition. Let I be a linear order. We say that T is a dynamical theory
just in case T has sort symbols {σi : i ∈ I}, and a set (possibly empty) of
relation or function symbols δij of sort σi → σj specifying transitions from
time i to time j.

Of course, this definition of a dynamical theory could be generalized in
various ways, e.g. by allowing I to be a partial order, or by allowing the δij to
be relation symbols instead of function symbols. However, the simple type
of dynamical theory specified here will be sufficient for our argument.

If T is a dynamical theory, then in any model M of T , the set Mi = M(σi)
will be understood as the individuals, or spatial points, that exist at time
i. We can now generalize the definition of a theory with Property R to any
dynamical theory.

Definition. Let I be a linear order. We say that U ⊆ I is an initial segment
if U is nonempty and for any j ∈ U , if i ∈ I and i ≤ j, then i ∈ U .

8Recall that every theory with finitely many sorts can be converted to a single-sorted
theory (see Barrett and Halvorson, 2017); so the examples we use here could be rewritten
as single-sorted theories.
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Definition. Let T be a dynamical theory. We say that T has Property R
just in case for any two models M and N of T , and any two isomorphisms
f, g : M → N , if fi = gi for all i in some initial segment U , then f = g.

Let us compare Property R with the Montague-Lewis-Earman definition
of a deterministic theory. First of all, if M and N are complete histories,
i.e. models of T , then we cash out “M and N agree on intrinsic properties
throughout some initial segment U” as: for all i ∈ U , the domains Mi and
Ni are identical, and for any relation R between individuals at time i, we
have RM = RN . (Here we can cash out the idea that R is a relation between
individuals at time i by specifying that R is of sort σi × · · · × σi.) We will
write M |U = N |U to express that M and N agree on the initial segment U ,
which case MLE determinism can be defined as follows:

Definition. Let T be a dynamical theory. We say that T is deterministic in
the sense of Montague-Lewis-Earman just in case for any two models M and
N of T , if there is an initial segment U such that M |U = N |U , then M = N .

But in this case, we have the following result:

Proposition. No dynamical theory is deterministic in the sense of Montague-
Lewis-Earman.

Proof. Let T be a dynamical theory, let M be a model of T , fix a non-trivial
initial segment U ⊆ I, and choose i 6∈ U . Now let Ni be a set that has the
same cardinality as Mi, but that is not identical to Mi, and let N be the
model of T that is just like M except where Mi is replaced with Ni. Then
M |U = N |U but M 6= N , showing that T is not MLE deterministic.

The construction in the foregoing proof is not very interesting: it just
uses the fact that for any set Mi, there is an isomorphic but non-identical
set Ni. However, it is not difficult to construct more interesting examples
of theories that have dynamically rigid models (i.e. that satisfy Property R)
but that fail to be MLE deterministic.

Example. Let Σ = {σ0, σ1, δ}, where σ0 and σ1 are sort symbols, and δ is
a function symbol of sort σ0 → σ1. Thus, a Σ structure M consists of two
sets M0 and M1 and a function δM : M0 → M1. Now let T be the theory in
signature Σ that says that:
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1. There are exactly two things of sort σ0 and exactly two things of sort
σ1, and

2. δ is a bijection.

Intuitively, T says that there are two times (t0 and t1), and that at each
time, there are two spatial points, such that each point at t0 is connected
to a unique point at t1. So, if M is a model of T , then we can think of
a pair 〈a, δM(a)〉 with as the unique “geodesic” passing through a ∈ M0.
Furthermore, geodesics are invariant under isomorphism in the sense that if
h : M → N is an isomorphism of models, then

〈h(a), h(δM(a))〉 = 〈h(a), δN(h(a))〉.

There is a precise sense, then, in which the models of T have determinate
dynamical structure. The models of GR have similarly determinate dynam-
ical structure: for each globally hyperbolic spacetime (M, g), and for each
p ∈ M , there is a unique inextendible geodesic γ passing through p; and if
h : (M, g) → (M ′, g′) is an isometry, then h[γ] is the unique inextendible
geodesic passing through h(p). �

To make the previous example a bit more interesting, we could add the
following:

Example. Suppose that T+ is the extension of T that includes a predicate
symbol P , and axioms that say that one and only one object is P at each
time, and that P is preserved by δ. That is,

∀x(P (x)→ P (δ(x))).

(Technically, there should be a predicate P0 of sort σ0, and another predicate
P1 of sort σ1. But we omit that complication.) Then T+ is deterministic in
the following sense: in any fixed model M of T+, if a is P at time 0, then
δ(a) is P at time 1. �

This theory T+ is an interesting test case for one’s intuitions about deter-
minism. First of all, T+ is indeterministic in the sense of Montague-Lewis-
Earman: it has models M and N that agree at the initial time t0 but then
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disagree at time t1. For example, let:

M0 = {a, b} N0 = {a, b}
M1 = {c, d} N1 = {c, d}
M0(P ) = {a} N0(P ) = {a}
M1(P ) = {c} N1(P ) = {d}
δM(a) = c δN(a) = d

Thus, M and N agree on all facts at time t0, but M and N disagree on which
object has property P at time t1.

But it would be strange to call the theory T+ “indeterministic”, especially
since it is a categorical theory, i.e. it has a unique model up to isomorphism.
In fact, for any two models M and N of T+, there is a unique isomorphism
f : M → N . This fact leads us to think that the models M and N described
above only apparently disagree about the facts at time t1. The object d ∈ N1

is the isomorphic image of c ∈ M1, which suggests to us that “c” (in M1)
names the same object as “d” (in N1). So perhaps we need not take the
element c in the model M to be representing the same physical object as the
element c in the model N .

The question before us is whether a theory’s failing the Montague-Lewis-
Earman criterion is a sign that that theory is not as deterministic as a theory
could be. We think not. As we have seen, a theory can fail to be MLE deter-
ministic simply because the language of set-theory allows the same situation
to be described in different ways. (That is precisely what set theory is good
at doing: constructing new sets.) In particular, the theories T and T+ display
this trivial semantic indeterminism even though both of them are determin-
istic in the following precise sense:

Proposition. The theories T and T+ have Property R.

Proof. We treat the case of T ; an analogous argument works for T+. Suppose
that M and N are models of T , and that f, g : M → N are isomorphisms
such that f0 = g0. By the definition of homomorphisms of models (Halvorson,
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2019, p 180), the following diagram commutes.

M1 N1

M0 N0
g0

f0

δM δN

f1

g1

Since f0 = g0, it follows that δN ◦ f0 = δN ◦ g0, and hence f1 ◦ δM = g1 ◦ δM .
Since δM is an epimorphism, f1 = g1. Hence, if M and N are models of T ,
and f, g : M → N are isomorphisms, then f0 = g0 only if f = g. It follows
that T has Property R.

Of course, there are dynamical theories that lack Property R; and these
theories, we claim, are genuinely indeterministic. For example, let T ′ be
the theory that is just like T , but that drops the assumption that there is
a dynamical map δ connecting objects at time 0 to objects at time 1. To
be precise, let Σ′ = {σ0, σ1}, and let T ′ be the theory in Σ′ that says that
there are two objects of each sort. Unlike T , this theory T ′ is genuinely
indeterministic in the following sense: there are models M and N of T ′, and
isomorphisms f, g : M → N such that f0 = g0 but f 6= g. Indeed, any
bijection f0 : M0 → N0 can be combined with any bijection f1 : M1 → N1

to give an isomorphism f : M → N . This shows that models of T ′ do not
have determinate dynamical structure that connects earlier states of affairs
to later states of affairs.

Note that the difference between the deterministic T and the indeter-
ministic T ′ has nothing to do with the latter being substantivalist. The two
theories make exactly the same existence claims, and the deterministic the-
ory T actually posits more structure than the indeterministic theory T ′. (In
general, a theory posits more structure if its category of models has fewer
morphisms.) The lesson here is that indeterminism does not arise from the
claim that spacetime is a substance, but from the claim that spacetime lacks
objective dynamical structure. If the hole argument undercuts any position
regarding the metaphysics of spacetime, it is the sort of metric anti-realism
that was championed by Reichenbach and Grünbaum (see Putnam, 1963).

On the reading that we have urged, GR is a metrically realist theory, i.e.
its models have determinate metric structure. And in that case, GR is as
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deterministic as a theory can be.9 Why is it, then, that some philosophers
still are not convinced? What exactly is it that they want, but that our
Property R does not provide? We have thought long and hard about this
question, and have come to the conclusion that our opponent is not thinking
about the theory GR, but about GR+ZFm, where the latter is ZF set theory
read in the “material mode” as a theory about concrete possibilia. Let us
explain.

Consider a simple theory T that says “there is exactly one thing,” and
consider two models: {a} and {b}. Now there are two very different ways to
think about these models:

(material mode) ZFm implies that a 6= b, and so {a} 6= {b}.

(formal mode) a and b are names, and either one could be used
to name the unique thing that exists, according to T. The latter
theory does not say that a 6= b, or that {a} 6= {b}. In fact, T
does not make any assertions about the identity or distinctness
of models.

Thus, for a person who accepts only T and its ideology, the question “are {a}
and {b} the same world?” cannot even be formulated. In a similar way, for
a person who accepts only GR and its ideology, the statement “p can have
different metric properties in different models” cannot even be formulated.
Clearly, then, GR+ZFm and GR are different theories, with different expres-
sive capacities; and GR+ZFm might fail to be deterministic even when GR
itself is deterministic.

Why is it then that our opponent wants to talk about GR+ZFm in-
stead of just GR? Or is it the spacetime substantivalist who is committed to
GR+ZFm? We argued earlier that spacetime substantivalists do not need to
enrich GR with names for spacetime points. For similar reasons, spacetime
substantivalism can get along just fine without the tendentious theory of pos-
sibilia supplied by ZFm. The theory GR already quantifies over spacetime
points, and that should be enough for substantivalists.

To be fair, it is not just in discussions of the hole argument that ZFm
gets smuggled in the back door. In fact, it has become something of a habit
of analytic philosophers to translate the formal-mode claims of set-theoretic

9To be clear, our claim here is meant only to apply to GR with globally hyperbolic
spacetimes.
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model theory into material-mode claims of modal metaphysics. And why
do philosophers do this? The reason, we think, is because they worry that
if semantic ascent is not halted at the point of set theory, then no positive
assertions will ever be made.

We agree about the need to halt semantic ascent, but we would propose
halting it one step earlier in the sequence. That is, instead of using the
language of ZFm to express assertions of metaphysical interest, let’s use the
language of physical theories themselves. And what can be said with the
language of GR? As a rough guide, the language of GR allows us to say the
sort of things that expert users of GR say about the external world — e.g.
“there is an inextendible geodesic of finite length” or “if the mass increases
beyond a certain bound, then a singularity will form.” If one worries that
this account is too vague, then we could, of course, engage in a project of
regimenting GR. What that project would show is that the language of GR
has words such as “metric” and “geodesic”, but no names for spacetime
points. So, when a philosopher starts talking about spacetime points having
different properties in different possible worlds, then they have already gone
beyond the language of GR.

7 Metric essentialism

We are not the first ones to suspect that the hole argument can be blocked
by metric realism, i.e. the claim that spacetime has metric structure. In fact,
to give credit where it is due, we got the idea from reading Maudlin (1988;
1990), where he says:

Earman and Norton’s difficulty arises from asserting that the sub-
stantivalist must regard space-time as represented by the bare
topological manifold. (Maudlin, 1990, p 545)

The substantivalist’s natural response to the hole dilemma is to
insist that spacetime is represented not by the bare manifold but
by the manifold plus metric, by the metric space. (Maudlin, 1990,
p 546)

We agree with Maudlin that spacetime should be represented by a manifold
with metric, but we disagree with his motivation for this claim. Maudlin’s
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motivation for this claim is metric essentialism, according to which “space-
time points possess their metric properties essentially.” However, metric es-
sentialism is not needed to motivate metric realism; indeed, we believe that
metric essentialism yields a worse theory than simple metric realism.

Consider the following simple analogy. Suppose that I have a theory T
according to which there are exactly two people, and exactly one of those
people has blond hair. According to standard model-theoretic semantics,
T has many different models, but all of these models are isomorphic. For
example, T has a model where Alice has blond hair and Bob does not; and
T has another (isomorphic) model where Bob has blond hair and Alice does
not. The theory T has just the right amount of structure to say that a
person’s hair color is an objective fact, without committing to extraneous
claims, such as the claim that hair color is an essential property.

Suppose now that Tim has a theory T ′ that is just like T , except that T ′

includes the claim that hair color is an essential property. But then if T ′ has
a model where Alice has blond hair, then it cannot have a model where Bob
has blond hair; because if Alice has blond hair in one model, then she has
blond hair in all models. However, Tim is now in an awkward position: he
does not know what the models of his theory are until he determines which
person has blond hair. So, to the extent that knowing a theory is knowing
what possibilities it permits, Tim does not even know his own theory. In
contrast, I know exactly which possibilities my theory permits.

Of course, Tim could double down and complicate his theory: he could
say that T ′ has two collections of models that are, in some sense, mutually
inaccessible. It would be perfectly coherent to develop this idea, but one
wonders what advantage is to be gained. Why do we need essential properties
when regular properties will do the work?

Returning now to the case of local spacetime theories, and specifically to
GR: on the most obvious reading, GR makes no claims to the effect that if a
point p has a metric profile φ in one world, then it has profile φ in all worlds.
To make such a claim, GR would either need names for points (to identify
them across worlds), or it would need modal operators to say things like
∀x(φ(x) → �φ(x)). Lacking both of these resources, GR makes no claims
about spacetime points possessing their metric properties essentially.10

10There is, however, a truth in the neighborhood of what Maudlin is saying: isomor-
phisms preserve a theory’s predicates, and ascriptions of metric values are among the
predicates of GR. In particular, if h : (M, g) → (M ′, g′) is an isomorphism, then for any
a ∈ M , (M, g) � φ(a) only if (M ′, g′) � φ(h(a)). But this latter mathematical fact falls
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To summarize, Maudlin correctly intuited that the hole argument gains
plausibility by ignoring the metric structure of spacetime. We have validated
his intuition by showing that if spacetime does have metric structure, then
there are no hole isomorphisms. However, the claim that spacetime has
metric structure is a good deal weaker, and more plausible, than the claim
that spacetime points have their metric properties essentially. We see no
need for the latter claim; and indeed, we see it as a superfluous addition to
the content of the General Theory of Relativity.

8 Conclusion

The hole argument is supposed to show that spacetime substantivalism im-
plies indeterminism. What’s more, the notion of indeterminism at play is
that of Montague, Lewis, and Earman: there are possible worlds that agree
on an initial segment but then later diverge. However, what it means to say
that possible worlds are the same, or that they agree on an initial segment,
was not specified precisely. In fact, there are distinct notions of isomorphism
at play; and the hole argument is seductive only because it equivocates be-
tween these different notions of isomorphism.

No reasonable person would adopt a theory where spacetime only has the
structure of a differentiable manifold — for in that case, there would not be
enough structure to define the most basic spatio-temporal notions. Similarly,
no reasonable person would adopt a theory where spacetime has some struc-
ture, but where two spacetime models can be “physically equivalent” even
while differing with respect to that structure. Thus, the existence of a dif-
feomorphism between spacetime models fails to establish that those models
are physically equivalent.

Our own preferred regimentation of GR is that spacetime models have
metric structure, and that physical equivalence of models is established by
isometry. In that case, there are no hole isomorphisms, and hence, no math-
ematical fact that can support the hole argument.

Acknowledgments: For helpful feedback on earlier drafts, we thank Thomas
Barrett, Brendan Kolb, Chris Smeenk, Jim Weatherall, and two anonymous
referees. HH thanks Des Hogan for discussion about metric essentialism.

short of establishing that φ is an essential property of a. For one, the relation between a
and h(a) is not one of identity; indeed, h is one of possibly many isomorphisms between
(M, g) and (M ′, g′), and a cannot be identical to all of its images under isomorphism.
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