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RESUME : La section 1 introduit I'idée de Kant selon laquelle des principes purement
empiriques ne seraient pas appropriés pour la certitude apodictique que les physiciens
mathématiciens, comme Newton, souhaitaient atteindre avec leurs lois de la nature.
Elle introduit aussi un corollaire aux lois du mouvement de Newton qui est central &
la discussion par Michael Friedman de I'entreprise kantienne d'examiner les prin-
cipes postulés par Newton du point de vue de leurs sources a priori. Dans la section 2,
on porte attention & d'autres corollaires des lois du mouvement de Newton qui limi-
tent singuliérement l'intérét de ce que Friedman voit comme une tentative de la part
de Kant d’utiliser I'idée du centre d’une masse I 0t Newton recourait — & tort, selon
Kant — alespace absolu. La section 3 entend montrer que I'argument transcendantal
pour l'universalité de la constante gravitationnelle, qui est attribué & Kant par Fried-
man, n'ajoute rien & la défense gu'en a fournie Newton. On suggére ensuite, & la
section 4, que ce furent les succés empiriques des applications qui rendirent acceptable
la distinction entre le mouvement absolu et le mouvement purement relatif que Fried-
man tient pour I'élément-clé de I'argument transcendantal de Kant. Dans la
section 5, un examen attentif des postulats de la pensée empirique selon Kant révéle
que le recours newtonien aux phénoménes dans la défense de la gravitation uni-
verselle est compatible avec I'attribution & cette loi de la nature d’une certitude
apodictique convenant & la nécessité matérielle telle qu’elle est définie dans le
troisiéme postulat de Kant. La section 6, enfin, en portant attention au détail de
Pargument de Newton pour l'universalité de la constante gravitationnelle, montre
que ce que Newton voit comme une inférence inductive & partir des phénoménes per-
met de légitimer beaucoup plus que 'universalité toute relative en vertu de laquelle
hous ne pourrions rien dire d’autre que ceci : nos observations jusqu’ici Wont repéré
aucune exception a telle ou telle régle.
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In my review of Michael Friedman’s book, Kant and the Exact Sciences,!
I suggested that, though the position he attributes to Kant is informed
and ingenious, it is not clear that it offers any epistemic advantage over
Newton’s treatment of space and scientific method. The issues raised by
confronting Friedman’s and Kant’s remarks with some details of New-
ton’s practice are quite illuminating, not just for understanding Kant and
Newton, but also for understanding important aspects of scientific prac-
tice more generally.

1.

In books one and two of Principia,’ Newton develops propositions from
his Laws of Motion which make possible measurement of forces by phe-
nomena of motion. In book three these are applied to argue from phe-
nomena to Universal Gravitation in propositions 1-7. This initial
argument is then backed up by applications in which universal gravitation
resolves the two chief world systems problem and explains phenomena
such as the tides, precession of the equinoxes, lunar motions, and motions
of comets, In these applications Newton’s aim is not just prediction but
prediction backed up by accurate measurement from phenomena of the-
oretical parameters, such as the masses of the sun and planets.

It was the extraordinary realization of this sort of empirical success in
the hands of such successors as Clairout, Euler, Lagrange, and Laplace
that led first to the defeat of the rival mechanical philosophy and, then,
to the installation of Newton’s new way of enquiry as the paradigm that
transformed natural philosophy into natural science. For Newton and his
successors in the development of this science, it would seem that it was
enough that the accepted laws of motion generated measurements which
allowed Universal Gravitation to be gathered from phenomena by induc-
tion and that this theory of gravitation clearly surpassed any rivals at real-
izing empirical successes of prediction backed up by accurate measure-
ment of theoretical parameters.

As Friedman suggests, this may not have been enough for Kant. Con-
sider the following passage from Kant’s Metaphysical Foundations of Nat-
ural Science (MFNS), which Friedman quotes (1992, p. 137):

Thus these mathematical physicists could certainly not avoid metaphysical
principles and among those certainly not such as to make the concept of their
proper object, namely matter, a priori suitable for application to outer experi-
ence: as the concepts of motion, the filling of space, inertia, etc. However, they
rightly held that to let merely empirical principles govern these concepts would
be absolutely inappropriate to the apodeictic certainty they wished their laws
of nature to possess; they therefore preferred to postulate such principles, with-
out investigating them in accordance with their a priori sources.
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Here, it would seem that Newton’s laws of motion and the corresponding
definitions of centripetal force, absolute space, time, and motion are par-
adigmatic of the principles referred to, and that Universal Gravitation is
paradigmatic as a law of nature. If this is correct, then Kant is suggesting
that merely empirical principles would be inappropriate to ground the
argument to Universal Gravitation. According to this suggestion, New-
ton should have investigated his laws of motion “in accordance with their
a priori sources” in order to do justice to the “apodeictic certainty” he
wished Universal Gravitation to possess.

Kant proposes arguments to demonstrate a priori his version of the
Laws of Mechanics. The relevant chapter of MFNS follows a chapter on
phoronomy in which Newton’s idea of absolute space is rejected and a
chapter on dynamics in which the mechanical philosophers’ objections to
forces acting at a distance are also rejected. Friedman concentrates on
Kant’s last chapter, “Metaphysical Foundations of Phenomenology.” He
sees it as an extension of Newton’s appeal to corollary 4 of his Laws of
Motion to resolve the two chief worlds system problem by showing that
the centre of mass of the solar system is “never very far from the sun’s
center.” According to Newton’s corollary 4,

The common center of gravity of two or more bodies does not change its state
whether of motion or of rest as a result of the actions of the bodies upon one
another; and therefore the common center of gravity of all bodies acting upon
one another (excluding external actions and impediments) either is at rest or
moves uniformly straight forward. (Cohen and Whitman 1999, p. 421; Cajori
1934, p. 19)

This corollary of Newton’s is central to two of the themes I want to com-
ment on. One is Friedman’s discussion of Kant’s use of the idea of the
centre of mass of all bodies in the universe as a substitute for—what Kant
takes to be—Newton’s objectionable appeal to absolute space. The other
is his discussion of Kant’s chapter on phenomenology as a sort of tran-
scendental deduction of the immediacy and universality of gravitation
between bodies.

2.

The following quotation articulates central features of Friedman’s
account of Kant’s appeal to the centre of mass as an alternative to New-
ton’s absolute space.

For Kant, the center of mass of the solar system is not strictly privileged: the
solar system itself experiences a slow rotation around the center of mass of the
Milky Way galaxy, and the latter experiences a slow rotation around the center
of mass of the entire cosmic system of the galaxies. In the end, only the forever
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unreachable “common center of gravity of all matter” can furnish us with a
truly privileged frame of reference, and our procedure for “reducing all motion
and rest to absolute space” never terminates: absolute space is an idea of rea-
son. (Friedman 1992, p. 149)

Just what is the advantage over Newton’s absolute space supposed to be?
Neither it nor the centre of mass of the universe counts as a possible
object of experience. Friedman emphasizes the constructive procedure
that lets one tell objectively when one approximation is better than
another. His quotation suggests that, on Kant’s view, the centre of mass
of a more inclusive system of bodies overrides the centre of mass of any
subsystem.

One advantage of Kant’s concentration on the outcome actually
reached at any stage might be that it would—up to tolerances of measure-
ment—pick out a single frame. Newton’s corollary 5 of his Laws of
Motion points out that any Galilean transformation of an inertial frame
is as good as any other.

When bodies are enclosed in a given space, their motions in relation to one
another are the same whether the space is at rest or whether it is moving uni-
formly straight forward without circular motion. (Cohen and Whitman 1999,
p. 423; Cajori 1934, p. 20)

Kant’s centre of mass idea shares with Newton’s definition of absolute
space the feature of going beyond the family of interchangeable inertial
frames to pick a specific frame which counts as absolute rest. Should we
count such an appeal to Kant’s constructive procedure as an improvement
that would turn Newton’s idea of absolute rest from a mistaken step
beyond what the laws of motion allow to something that counts as legit-
imately approximated by the outcome of any stage?’

To construe Kant’s explicit limitation to the outcomes of centre of mass
constructions as an improvement on Newton’s treatment would seem to
ignore Newton’s corollary 6 of his Laws of Motion.

If bodies are moving in any way whatsoever with respect to one another and are
urged by equal accelerative forces along parallel lines, they will all continue to
move with respect to one another in the same way as they would if they were not
acted upon by those forces. (Cohen and Whitman 1999, p. 423; Cajori 1934, p. 21)

How well do the centre of mass of Jupiter or the centre of mass of the
system of Jupiter together with its moons approximate reference frames
that pick out true motions? According to Kant’s suggestion the centre of
mass of the Jupiter-moons system would be only a slight improvement on
the centre of mass of Jupiter (because Jupiter is so much more massive
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than its moons), but both are wildly bad approximations because the
Jupiter system is not even approximately at rest (nor in uniform motion)
with respect to the centre of mass of the solar system. According to cor-
ollary 6 of Newton’s laws, however, how well the Jupiter frames approxi-
mate ones adequate to fix what can count as true motions of Jupiter’s
moons depends only on the extent to which the accelerations toward
other bodies (such as the sun) are approximately equal and parallel.* If
these approximations are good enough then such local frames are good
enough to specify motions that measure gravitational forces of interac-
tion among bodies in the Jupiter system. As we shall see, such local frames
will satisfy Friedman’s specific constructive procedure for checking ade-
quacy to specify true motions among bodies in a given system.

The very great distance to the nearest stars effectively isolates inter-
actions among solar system bodies from even very great, gravitational
accelerations of the solar system with respect to larger systems. One impli-
cation of corollary 6 is that, as far as interactions among solar system
bodies are concerned, the centre of mass of our galaxy, or system of gal-
axies, would be no better approximation to an appropriate frame for dis-
tinguishing true from merely relative motions than the centre of mass of
the solar system.

3.

According Kant, Newton’s appeal to the Laws of Motion needs to be
backed up by investigations of their a priori status. Newton tells his read-
- ers, “The principles I have set forth are accepted by mathematicians and
confirmed by experiments of many kinds” (Cohen and Whitman 1999,
p. 424; Cajori 1934, p. 21). Friedman sees Kant as arguing that the Laws
of Motion are not empirical facts, but, instead, are conditions under
which alone the notion of true motion has objective meaning.

Thus, Newton presents the laws of motion as facts, as it were, about a notion
of true motion that is antecedently well defined. Accordingly, he attempts to
provide empirical evidence for their truth—especially in the case of the third
law. For Kant, on the other hand, since there is no such antecedently well-
defined notion of true motion, the laws of motion are not facts but rather con-
ditions under which alone the notion of true motion first has objective meaning.
And, as we have seen, the third law is particularly important in this regard, for
the true motions are defined relative to the common center of mass of the sys-
tem of interacting bodies in question: in other words, true motions are just
those satisfying the third law.> (Friedman 1992, p. 171)

As we shall see, Friedman sees Kant’s appeal to the centre of mass con-
struction for distinguishing true motions as a transcendental argument
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not just for the laws of motion but for the universality of gravitation as
well.

Let us now turn to the transcendental argument itself. A key step is
Friedman’s discussion of that most delicate part of Newton’s argument
for Universal Gravitation—his case for proposition 7, book 3.

Gravity exists in all bodies universally and is proportional to the quantity of
matter in each. (Cohen and Whitman 1999, p. 810; Cajori 1934, p. 414)

Here is the part of Newton’s argument Friedman focuses on.

We have already proved that all planets are heavy [gravitate] toward one another
and also that the gravity toward any one planet, taken by itself, is inversely as
the square of the distance of places from the center of the planet. And it follows
(by Bk 1, Prop. 69 and its corollaries) that the gravity toward all the planets is
proportional to the matter in them. (Cohen and Whitman 1999, p. 810; Cajori
1934, p. 414)

Here is proposition 69, book 1:

If, in a system of several bodies A, B, C, D, . . ., some body A, attracts all the
others, B, C, D, . . ., by accelerative forces that are inversely as the squares of
the distances from the attracting body; and another body B also attracts the rest
of the bodies A, C, D, .. ., by forces that are inversely as the squares of the dis-
tances from the attracting body; then the absolute forces of the attracting bod-
ies A and B will be to each other in the same ratio as those very bodies [i.e., the
masses] A and B themselves to which those forces belong. (Cajori 1934, p. 191)

The key step in Newton’s proof of this proposition is as follows:

But the accelerative attraction of body B toward A is to the accelerative attrac-
tion of body A toward B as the mass of body A is to the mass of body B, because
the motive forces—which (by defs. 2, 7, and 8) are as the accelerative forces and
the attracted bodies jointly—are in this case (by the third law of motion) equal
to each other. (Cohen and Whitman 1999, p. 507; Cajori 1934, p- 191)

Friedman illustrates Kant’s transcendental argument by having the sys-
tem consist of two planets, Jupiter and Saturn, with their respective sat-
ellites.

We know, by the first property of gravitational acceleration, that the accelera-
tion-field on Saturn’s moons is given by a; = k,/r,2 and the acceleration-field
on Jupiter’s moons is given by a, = k;/r,2 . We want to show that when r, = Iy,
ay/ay = ky/kj = my/m; , where mg and m; are the masses of Saturn and Jupiter
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respectively. To do so we assume that the acceleration-fields of our two planets
extend far beyond their respective satellites, so that we also have an acceleration
3= k,/r? of Jupiter and an acceleration ag = -kj/r2 of Saturn, where r is now the
distance between the two planets. But, according to the third law of motion,
mya; = -mga,. Therefore, we have m/m; = -a;/a, = ky/k;, as desired. We are now—
and only now—in a position to compare the masses of Jupiter and Saturn by ref-
erence to the acceleration-fields on their respective satellites, that is by reference

to k; and k. (Friedman 1992, p. 155, emphasis added)

Friedman drives his point home in a footnote to this passage:

Using just the third law of motion and our first property of gravitational accel-
eration discussed above we can show the following: for any two gravitationally
interacting masses m, and mg, there is a constant G,y such that Fyp = -Fp, =
G,pgmamp/r?, We need the universality of gravitational interaction, however, to
conclude that G,y is the same constant for every such pair; that is that Gis a
“universal constant.” It now—and only now—follows that, universally, k, =
Gmy. (1992, p. 155 note, emphasis added)

‘What are we to make of Friedman’s “only now”s? Consider a sceptic who
doubts that G ,p for gravitational interaction between A and B is the same
constant as G¢p for gravitational interaction between C and D. Kant,
surely, would not want to say that the sceptic’s position is viable until we
can actually measure the relevant accelerations. Presumably, he posits
that the relevant accelerations all satisfy a single constant until such time
as a sceptic would actually deliver on interactions that violated this
assumption.

For Newton, using the same units of distance (Astronomical Units)
and time (sidereal days) for harmonic law ratios from Jupiter’s moons as
for the harmonic law ratio of Venus’s orbit of the sun allows comparison
of the mass of Jupiter with the mass of the sun (corollary 1, proposition
8, book 3; Cajori 1934, p. 416). No explicit appeal to direct interactions
between Jupiter and Venus, or even between Jupiter and the sun, is made.
Newton’s practice is to assume that the same constant governs both inter-
actions until such time as this assumption would actually run into trouble.
I see no epistemic advantage of Kant’s treatment over Newton’s.

There is, however, some advantage for Newton in not being saddled
with what Friedman takes to be Kant’s a priori commitment to measuring
masses by the active gravitation they produce. For one thing Kant’s com-
mitment only makes sense for bodies massive enough to produce measur-
able gravitational effects on other bodies. How can this somewhat
accidental feature fix universal gravitation as a necessary condition for
distinguishing true motions? Suppose that, instead of looking at pertur-
bations produced by them on other bodies, we most accurately measured
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masses of planets by pushing them, ever so carefully, with rockets
equipped with Kantian repulsive force generators. Would this undercut
Friedman’s version of Kant’s story?

4.

The distinction between true and merely relative motions Friedman sees
as Kant’s premise for a transcendental argument is just what Berkeley
objected to. According to Berkeley, thought experiments and unbiased
reflection are sufficient to reveal that only relative motions can be empir-
ically established.® For Berkeley, the claim that only relative motions can
be empirically established counts as a priori. For Newton, whether or not
true motions can be empirically determined is itself an empirical question
to be decided by the empirical successes supporting background assump-
tions like the laws of motion.” The transcendental argument attributed to
Kant by Friedman would not help against a sceptic like Berkeley who
rejected the fundamental premise.

Howard Stein (1991) has identified Newton’s appeal to proposition 69
as an appeal to the hypothesis that the third law of motion can be applied
to gravitation between bodies as though they were directly attracting each
other. Huygens and Leibniz objected to this hypothesis.® As vortex theo-
rists they regarded the appropriate application of the third law of motion
to be between each body and the vortical particles pushing it. Perhaps the
point of the transcendental argument Friedman attributes to Kant is to
show that the application of the third law Stein identifies as a questionable
hypothesis is unavoidable. In a passage that strongly suggests the tran-
scendental argument attributed to him by Friedman, Kant accuses New-
ton of putting himself at variance with himself when he tries to allow that
gravitation might not be essential to bodies.

One can well note that the offense which his contemporaries and perhaps he
himself took at the concept of an original attraction made him at variance with
himself. For he absolutely could not say that the attractive forces of two planets,
e.g. Jupiter and Saturn, which they manifest at equal distances of their satellites
(whose mass is unknown), are proportional to the quantity of matter of these
heavenly bodies, unless he assumed that they merely as matter, and hence
according to a universal property of the same, attracted other matter. (MFNS,
observation 2, proposition 7, chap. 2; Kant 1970, p. 66, emphasis added)

Kant’s “absolutely could not say . . . unless he assumed,” like Friedman’s
“only now”s, suggest that without direct attraction between planets New-
ton’s centre of mass construction for distinguishing true from merely rel-
ative motions of solar system bodies could not be carried out. Qur
criticism of Friedman’s “only now”s suggests that such transcendental
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arguments do not add to the warrant provided by Newton’s empirical
argument.

Indeed, even if such an argument could provide additional warrant, to
have it do so the key premise that one can distinguish true from merely
relative motions needs to be established. It seems clear that it was empir-
ical successes, rather than additional transcendental arguments, that did
the establishing. As Stein points out, Newton’s argument for Universal
Gravitation includes all the applications in the rest of book 3, in addition
to the explicit argument from phenomena in propositions 1-7. Later
researchers such as Clairaut, Euler, and others greatly extended and
improved upon Newton’s initial empirical successes.’ Perhaps it was the
indirect support afforded to Newton’s laws of motion by these successful
applications that, by Kant’s time, made such laws plausible as candidates
for a priori status.

The central theme of Euler’s 1748 defence of Newton’s distinction
between true and merely relative motion against Leibnizian metaphysi-
cians is the enormous warrant he takes the empirical successes of appli-
cations to provide for Newton’s laws of motion. Euler argues:

The principles of mechanics have already been established on such a sound
basis that one would greatly err if he wished to encourage any doubt about their
validity. Even if one were not in position to demonstrate them by the use of gen-
eral principles of metaphysics, the excellent agreement of all the conclusions
which one draws from them by means of the calculus, with all the movements
of bodies both solid and liquids, on the earth, and likewise with the movements
of the heavenly bodies, would be sufficient to place the truth of the principles
of mechanics beyond doubt. (See Koslow, 1967, p. 116)

The policy advocated by Euler, according to which it is such empirical
success rather than metaphysical principles that should guide research,
was central to the transformation of natural philosophy into natural sci-
ence.

5.

The certainty Newton claims for the universality of the constant of pro-
portionality of gravitation to mass is that expressed in his fourth Rule of
Reasoning:

In experimental philosophy, propositions gathered from phenomena by induc-
tion should be considered either exactly or very neatly true notwithstanding
any contrary hypotheses, until yet other phenomena make such propositions
either more exact or liable to exceptions (Cohen and Whitman 1999, p. 796;
Cajori 1934, p. 400)
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This is a certainty which Newton claims should be accorded to proposi-
tions gathered from phenomena by induction. To what extent is this
something Kant might want to count as “apodeictic certainty?” The “not-
withstanding any contrary hypotheses” suggests a faitly robust sense of
“certainty,” even if the addition of “very nearly true” (as an alternative to
“exactly true”) suggests that what counts as “certain” might be limited to
the approximate truth of propositions gathered from phenomena by
induction. It endorses the policy discussed above, according to which
sceptical doubts about the universality of the constant of proportionality
of gravitation to mass are dismissed until such time as a sceptic can deliver
on actual phenomena that require correcting this proposition.° In the
next section we shall attempt to clarify what Newton regards as sufficient
to count as “gathering a proposition from phenomena by induction” by
looking at his argument for proposition 6, book 3. This is his argument
for the universality of the constant proportion of weight to mass.

For Kant the “apodeictic certainty” appropriate to true universality
requires the necessity that goes with the a priori, while induction confers
only assumed and comparative universality.

First, then, if we have a proposition which in being thought is thought as nec-
essary, it is an a priori judgment; and if, besides, it is not derived from any prop-
osition except one which also has the validity of a necessary judgment, it is an
absolutely a priori judgment. Secondly, experience never confers on its judg-
ments true or strict but only, assumed and comparative universality, through
induction. We can properly only say, therefore, that, so far as we have hitherto
observed, there is no exception to this or that rule. If, then, a judgment is
thought with strict universality, that is, in such manner that no exception is
allowed as possible, it is not derived from experience, but is valid absolutely a
priori. Empirical universality is only an arbitrary extension of a validity holding
in most cases to one which holds in all, for instance, in the proposition, “all bod-
ies are heavy.” (Kant 1963, pp. 43-44)

The openness to correction by new phenomena built into Newton’s fourth
rule does seem to rule out the strict universality that goes with counting
as valid absolutely a priori. Does this not suggest that, for Kant, the cer-
tainty Newton wants for the universality of the gravitational constant as
“gathered from phenomena by induction” can only be “an arbitrary
extension of a validity holding in most cases to one which holds in all?”
Is such a suggestion not further supported by Kant’s use of “all bodies
are heavy” as his example of a proposition having this merely empirical
universality conferred by experience through induction? More generally,
how could Friedman’s attribution to Kant of a transcendental deduction
of the universality of the gravitational constant allow Kant to regard
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Newton’s appeal to phenomena as essential to the evidence for this prop-
osition?

Careful attention to Kant’s passage shows that it makes room for a
proposition which is thought as necessary even though it may, in part, be
derived from propositions which do not have the validity of necessary
judgements. Thought of such a proposition counts as an a priori judge-
ment, but not as an absolutely a priori judgement. This weaker notion of
a priori is apparently required by Kant’s official definition of necessity in
the postulates of empirical thought (A 218, B 265-266; Kant 1963, p. 239):

1. That which agrees with the formal conditions of experience, that is, with the
conditions of intuition and concepts, is possible.

2. That which is bound up with the material conditions of experience, that is,
with sensation, is actual.

3. That which in its connection with the actual is determined in accordance with
universal conditions of experience, is (that is, exists as) necessary.

According to these definitions, the necessity defined in 3 is not the one
that corresponds, by what we now regard as the standard relation
(OA < ~0~A), to the possibility defined in 1.!' Kant is quite clear that
judgements of actuality require appeal to experience; therefore, the mate-
rial necessity he defines in 3 also requires appeal to experience. This dif-
ferentiates it from the more formal necessity corresponding to the
possibility defined in 1. »
Suppose the sense of “a priori” involved in Friedman’s attribution to
Kant of a transcendental deduction of the universality of the gravita-
tional constant is the weaker sort that corresponds to the material neces-
sity defined in the third postulate.!? This suggests that Kant need not
regard Newton’s appeal to phenomena as incompatible with establishing
apodeictic certainty of the universality of the gravitational constant.
The phenomena from which Newton wants to gather propositions by
induction are themselves generalizations. Consider Newton’s inferences
from Kepler’s area law to centripetal forces. Newton derives systematic
dependencies that make the constancy of the rate at which areas are swept
out by radii to the centre measure the centripetal direction of the force
deflecting a body into an orbit."* It can be argued that the general
assumptions appealed to in these derivations are all what Kant would
have regarded as appropriately universal conditions on objects of experi-
ence.'* What we need to consider, in addition, is what would be required
to have the area law count as actual. For Kant it may not be enough to
have the merely assumed and comparative generality conferred by what
he calls “induction.” He wants more than an arbitrary extension to future
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astronomical data of what, strictly speaking, should be limited to the
claim that the area law fits the data we have up to now.

Kant was well aware that perturbations due to gravitational interac-
tions with other planets make the area law for any given orbit hold only
approximately. The striking empirical successes of prediction based on
accurate measurement of parameters by phenomena were applications of
perturbation theory developed by Euler and other successors. Central to
these developments was having corrections of Keplerian phenomena to
account for perturbations that provided quite significant improvements
of fit with the increasingly precise data that became available. These devel-
opments went hand in hand with increasingly accurate measurements of
the masses, and therefore the inverse square centripetal acceleration
fields, for the sun and planets.' :

I want to suggest that the corrected orbit, taking into account all
known perturbations, would have a sort of apodeictic certainty that Kant
would regard as going beyond the merely assumed and comparative uni-
versality conferred by what he calls “induction.” Such a corrected orbit,
based on accurate measurements of masses and motions, would be more
than an arbitrary extension to future astronomical data of what, strictly
speaking, should be limited to the claim that it fits the data we have up to
now.!S Similarly, someone who understands universal gravitation will be
able to realize an apodeictic certainty not available to the man who avoids
undermining the foundation of his house simply on the basis that his
experience so far fits the generalization all bodies are heavy. If these sug-
gestions are correct then the apodeictic certainty corresponding to Kant’s
weaker sort of a priori knowledge may be compatible with the openness
to correction by future phenomena that Newton builds into his fourth
rule.

6.

According to Friedman what Kant did find problematic was Newton’s
appeal to induction.

In the Principia itself the remarkable extrapolation to universal gravitation is of
course supported by quasi-inductive arguments . . . . Corollary I to Proposition
VI—which Kant singles out for special criticism, it will be recalled—is typical:
“Universally, all bodies about the earth gravitate towards the earth; and the
weights of all, at equal distances from the earth’s center, are as the quantities of
matter which they severally contain. This is the quality of all bodies within the
reach of our experiments; and therefore (by Rule ITI) to be affirmed of all bodies
whatsoever” ([82], p. 574; [83], p. 413). The moon and all sublunary bodies ex-
perience an inverse-square acceleration towards the earth; therefore, all bodies
whatsoever—no matter how distant—must also experience an inverse-square
acceleration towards the earth! Such an extrapolation can certainly be ques-
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tioned by reasonable men, as it was by intelligent critics such as Huygens and
Leibniz. The irony is that Kant, in acknowledging the force of the criticisms of
Newton’s quasi-inductive arguments for universal gravitation put forward by
Huygens and Leibniz, responds by giving an a priori foundation for precisely
what they feared most: immediate action at a distance (to infinity) across empty
space. (1992, p. 158, note 33)

Here is Newton’s Rule III, referred to in the passage Friedman quotes
from corollary 2 of proposition 6.7

Rule 3. Those qualities of bodies that cannot be intended and remitted [that is,
qualities that cannot be increased and diminished] and that belong to all bodies
on which experiments can be made should be taken as qualities of all bodies
universally. (Cohen and Whitman 1999, p. 795; Cajori 1934, p. 398)

The application of this rule in the corollary Friedman cites can be illumi-
nated by Newton’s main argument for proposition 6. .

This argument for proposition 6 is the heart of what Newton counts as
the gathering of the universality of the constant of gravitation from phe-
nomena by induction.

Proposition 6: All bodies gravitate toward each of the planets, and at any given
distance from the center of any one planet the weight of any body whatever
toward that planet is proportional to the quantity of matter which the body
contains,

Others have long since observed that the falling of all heavy bodies toward
the earth (at least on making an adjustment for the inequality of the retardation
that arises from the very slight resistance of the air) takes place in equal times,
and it is possible to discern that equality of the times, to a very high degree of
accuracy by using pendulums. I have tested this with gold, silver, lead, glass,
sand, common salt, wood, water, and wheat. I got two wooden boxes round and
equal. Ifilled one of them with wood, and I suspended the same weight of gold (as
exactly as I could) in the centre of oscillation of the other. The boxes, hanging by
equal eleven-foot cords, made pendulums exactly like one another with respect
to their weight, shape, and air-resistance. Then when placed close to each other
[and set into vibration], they kept swinging back and forth together with equal
vibrations for a very long time. Accordingly, the amount of matter in the gold
(by Bk 2, Prop. 24, corol. 1 and 6) was to the amount of matter in the wood as
the action of the motive force upon all the [added] wood—that is, as the weight

_of one to the weight of the other. And so it was for the rest of the materials. In
these experiments, in bodies of the same weight, a difference of matter that
would be even less than a thousandth part of the whole would have been clearly
noticed.(Cohen and Whitman 1999, pp. 806-807; Cajori 1934, p. 411)
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Newton begins with a pendulum experiment that measures the direct pro-
portionality of weight to inertial mass for samples of all these varied
materials. To say that such direct proportionality holds is to say that there
is a single constant giving the ratio in all these cases. For rule 3, the quality
that cannot be increased or diminished in this experiment is the propor-
tionality of weight to mass.

The equality of the periods of such pairs of pendulums counts as a phe-
nomenon—a generalization fitting an open-ended body of data—insofar
as the experiment is regarded as repeatable. Newton appeals to theorems
about pendulums from his laws of motion to make the tolerances to which
this phenomenon is established measure to three decimal places the con-
stancy of the ratio between weight and mass. This illustrates how New-
ton’s provision for “very nearly true” in rule 4 makes room for the
precision to which phenomena measure parameter values.!?

Newton next appeals to the moon test, which measured the agreement
between the accelerationt of gravity at the surface of the earth and the
result of increasing the inverse-square centripetal acceleration of the
lunar orbit to obtain what the corresponding acceleration at the surface
of the earth would be.

Now there is no doubt that the nature of gravity toward the planets is the same
as toward the earth. For imagine our terrestrial bodies to be raised as far as the
orbit of the moon and, together with the moon, deprived of all motion, to be
released so as to fall to the earth simultaneously; and by what has already been
shown, it is certain that in equal times these falling terrestrial bodies will
describe the same spaces as the moon, and therefore that they are to the quan-
tity of matter in the moon as their own weight is to its weight. (Cohen and Whit-
man 1999, p. 807; Cajori 1934, p. 411)

That different bodies have equal accelerations at any given distance exhib-
its that the earth’s gravitation is an inverse-square acceleration field, not
just an inverse-square force field. To have a gravitation field be an accel-
eration field is to have the same proportionality between weight and mass
for all attracted bodies at any given distance. The equality of these accel-
erations at any given distance is a phenomenon that measures the con-
stancy of the proportionality of weight to mass at each distance.!®

Newton goes on to point out that inverse-square acceleration fields are
exhibited by orbits satisfying Kepler’s harmonic law—that periods are as
the 3/2 power of distances.

Further, since the satellites of Jupiter revolve in times that are as the 3/2 power
of their distances from the center of Jupiter, their accelerative gravities toward
Jupiter will be inversely as the squares of the distances from the center of Jupi-
ter, and, therefore, at equal distances from Jupiter their accelerative gravities
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would come out equal. Accordingly, in equal times in falling from equal heights
[toward Jupiter] they would describe equal spaces, just as happens with heavy
bodies on this earth of ours. And by the same argument the circumsolar [or pri-
mary] planets, let fall from equal distances from the sun, would describe equal
spaces in equal times in their descent to the sun. Moreover, the forces by which
unequal bodies are equally accelerated are as the bodies; that is, the wéights [of
the primary planets toward the sun] are as the quantities of matter in the plan-
ets. (Cohen and Whitman 1999, p. 807; Cajori 1934, pp. 411-12)

The harmonic law for Jupiter’s moons is a phenomena measuring the
equality of ratios of gravitation toward Jupiter to the inertial masses of
those moons, while the harmonic law for the primary planets measures
the ei(c)luality of such ratios for the gravitation of the planets toward the
sun.

Newton next appeals to the absence of observable polarization of orbits
of Jupiter’s moons with respect to the sun to measure that the moons and
Jupiter are equally accelerated toward the sun by solar gravity.

Further, that the weights of Jupiter and its satellites toward the sun are propor-
tional to the quantities of their matter is evident from the extremely regular
motion of the satellites, according to Bk 1, Prop. 65, Corol. 3. For if some of
these were more strongly attracted toward the sun in proportion to the quantity
of their matter than the rest, the motions of the satellites (by Bk 1, Prop. 65,
Corol. 2) would be perturbed by that inequality of attraction. If, at equal dis-
tances from the sun, some satellite were heavier [or gravitated more] toward the
sun in proportion to the quantity of its matter than Jupiter in proportion to the
quantity of its own matter, in any given ratio, say d to e, the distance between
the center of the sun and the center of the orbit of the satellite would always be
greater than the distance between the center of the sun and the center of Jupiter
very nearly and these distances would be to each other as the square root of d
to the square root of e, as I found out by making a certain calculation. And if
the satellite were less heavy [or gravitated less] toward the sun in that ratio of d
to e, the distance of the center of the orbit of the satellite from the sun would
be less than the distance of Jupiter from the sun in that same ratio of the square
root of d to the square root of e. And so if, at equal distances from the sun, the
accelerative gravity of any satellite toward the sun were greater or smaller than
the accelerative gravity of Jupiter toward the sun, by only a thousandth of the
whole gravity, the distance of the center of the orbit of the satellite from the sun
would be greater or smaller than the distance of Jupiter from the sun by 1/2000
of the total distance, that is by a fifth of the distance of the outermost satellite
from the center of Jupiter; and this eccentricity of the orbit would be very sen-
sible indeed. But the orbits of the satellites are concentric to Jupiter, and there-
fore the accelerative gravities of Jupiter and of the satellites toward the sun are
equal to one another.
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Here again theorems are appealed to which make the tolerances to which
a phenomenon—the absence of polarization of the orbits—is established
to measure the constancy of the ratio of weight toward the sun to inertial
mass for Jupiter and all of its satellites.?!

The same argument also applies to the orbits of Saturn’s moons, and to
the earth and its moon if they also gravitate toward the sun.

And by the same argument the weights [or gravities] of Saturn and its companions
toward the sun, at equal distances from the sun, are as the quantities of matter
in them; and the weights of the moon and earth toward the sun are either nil or
exactly proportional to their masses. But they do have some weight, according to
Prop. 5, Corol. 1 and 3. (Cohen and Whitman 1999, p. 808; Cajori 1934, pp. 412-13)

The unpolarizations of all these orbits are phenomena which measure the
constancy of the proportionality of weight toward the sun and inertial
mass for each planet and all its moons.??

Finally, Newton extends his argument for equal ratios between weight
and inertial mass to individual parts of planets.

But further, the weights [or gravities] of the individual parts of each planet
toward any other planet are to one another as the matter in the individual parts.
For if some parts gravitated more, and others less, than in proportion to their
quantity of matter, the whole planet, according to the kind of parts in which it
most abounded, would gravitate more or gravitate less than in proportion to the
quantity of matter of the whole. But it does not matter whether those parts are
external or internal. For if, for example, it is imagined that bodies on our earth
are raised to the orbit of the moon and compared with the body of the moon,
then if their weights were to the weights of the external parts of the moon as the
quantities of matter in them, but were to the weights of the internal parts in a
greater or lesser ratio, they would be to the whole moon in a greater or lesser
ratio, contrary to what has been shown above. (Cohen and Whitman 1999, p. 809;
Cajori 1934, p. 413)

The phenomena measuring the constancy of the ratios of mass to weight
for whole planets or moons also testify to the constancy of these ratios
for parts of these bodies.

In his discussion of Prolegomena, sec. 38, Friedman adds further com-
ments about Newton’s appeal to induction:

Because Newton explicitly includes induction in his method, and especially
because he places the laws of motion and the law of gravitation on the same
level, he himself was not in a position to give a strong interpretation to “deduc-
tion from the phenomena.” On the contrary, I do not see how Newton’s method
can, in the end, be distinguished from the hypothetico-deductive method: in the
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end, therefore, he does not and cannot avoid hypotheses. (Of course, in the end
this Newtonian predicament remains our predicament as well, for we certainly
cannot embrace Kantian apriorism in the context of contemporary physics
[note 15, p. 175].

Our examination of the details of Newton’s argument has revealed one
important way in which it goes beyond the hypothetico-deductive
method. On the hypothetico-deductive method all that would matter for
empirical success is accurate prediction of all the phenomena. The uni-
versality of the constant of proportionality of gravitation to mass, how-
ever, is not just a hypotheses that accounts for all the cited phenomena.
In addition to this, for each phenomenon Newton is able to appeal to the-
orems making it measure the same constant ratio of gravitation to mass.
His inductive step is to regard all these phenomena as giving agreeing
measurements to a single general parameter, which express the constancy of
the ratio of gravitation to mass. This makes Newton’s inductive inference
to universality more compelling than the merely hypothetico-deductive
success of predicting all the phenomena.?*

The wide range of phenomena considered in Newton’s main argument
supports a more general application of rule 3 than the application limited
to gravitation toward the earth in the corollary Friedman discusses.?*
Attention to the details we have pointed out in Newton’s argument sug-
gest that the “extension to all bodies of qualities found to hold without
increase or diminution on all bodies within reach of our experiments”
endorsed in rule 3 is not construed as a mere Humean induction of the
sort Kant found problematic. Rather, it is backed up by Newton’s ideal of
empirical success. In the case in question we have a theoretical parameter,
limiting (for any given gravitational source) differences between ratios of
gravitation on bodies (at equal distances) to the inertial masses of those
bodies.?’ This parameter is accurately bounded toward zero by measure-
ments for gravitation of terrestrial bodies toward the earth, gravitation of
moons of Jupiter and Saturn toward their respective planets, for gravita-
tion of planets toward the sun, for gravitation of moons of Jupiter and of

" Jupiter toward the sun, for gravitation toward the sun of the earth and its
moon as well as Saturn and its moons, and for parts of bodies toward
planets and sun. The extension to all bodies of what has been found to
hold for all bodies within reach of experiment is to regard all these phe-
nomena as agreeing measurements of a constant value for a universal
parameter, until such time as further phenomena require revision. So far,
the very intensive testing of Newton’s equivalence principle, and its gen-
eralization by Einstein, has resulted in increasingly precise measurements
of the constancy of the ratios for which Newton argued.?
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Notes

1 See Friedman (1992) and Harper (1995).

2 I am using a 1999 Cohen and Whitman’s translation of Newton’s Principia.
Page numbers to the widely accessible Mott-Cajori (1934) translation are pro-
vided to supplement those to Cohen and Whitman.

3 Friedman does not stress this as an advantage. He (1992, p. 144, note 11) cites
Robert DiSalle and Howard Stein for correcting an eatlier exposition “which
too hastily assimilated Kant’s privileged frame of reference to the modern idea
of an arbitrary inertial frame.” DiSalle (1990) argues that, far from counting
as an improvement, this feature of Kant’s construction renders it a step back-
ward from the appropriate way to construe the idea of absolute space built
into Newton’s laws. For Newton, the role of absolute space is simply to make
available the distinction between true and merely relative motion built into the
laws of motion. It follows from corollaries 5 and 6 that no measurement of
force will pick out a frame at rest in absolute space. DiSalle argues that atten-
tion to the limited role absolute space plays for Newton disarms objections by
Einstein and Reichenbach based on construing absolute space as an entity
posited as a cause of inertial effects (1992, 1995).

4 Taking corollary 6 seriously motivates Einstein’s equivalence principle and the
version of Newtonian gravitation proposed by Cartan, according to which
gravitation is represented directly by local space-time curvature (see Misner,
Thorne, and Wheeler 1973, chap. 12). Our discussion of Friedman’s account
of Kant’s centre of mass construction illustrates difficulties of specifying iner-
tial frames that are avoided by the Cartan formulation. (See Malament [1995]
for more on advantages of Cartan’s formulation.)

5 Kant’s “Third mechanical law: In all communication of motion action and
reaction are always equal to one another” (Ellington 1970, p. 106) is a version of
Newton’s third law of motion “To any action there is always an opposite and
equal reaction; in other words, the actions of two bodies upon each other are
always equal and always opposite in direction” (Cohen and Whitman 1999,
p. 417; Cajori 1934, p. 13). A central part of what Friedman takes to be Kant’s
constructive procedure for judging whether a given frame is adequate to spec-
ify true motions in a given system is whether this third law can be applied to
accelerations between each pair of bodies.

6 See Treatise Concerning the Principles of Human Knowledge, sections 110-13,
pp. 93-95 in Jessop (1969), and DeMotu, sections 57-60, pp. 207-69 in Arm-
strong (1969).

7 As Laymon (History of Philosophy, 1976) and DiSalle (cited in note 3) have
argued, the point of Newton’s bucket experiment is that it shows that, to the
extent that his laws of motion are empirically adequate, his definitions distin-
guishing true from merely relative accelerations by dynamical effects can be
successfully applied empirically.

8 See Koyré 1968, pp. 115-38, and Taton and Wilson 1995, pp. 3-21.
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For a good general account of these developments see sections V and VI in
Taton and Wilson (1995).

What count as mere hypotheses are conjectures not sufficiently backed up by
empirical successes to count as alternatives to be taken as serious rivals. This
was exactly what the vortex theory failed to deliver on. Once this became suf-
ficiently clear, the mechanical philosophy’s commitment to explanation by
contact forces, which had supported the vortex theory and objections against
Universal Gravitation’s apparent commitment to action at a distance, became
irrelevant to the practice of science. See Harper (1997).

It may be natural to explicate the material necessity of the third postulate so
that a proposition B counts as necessary if for some proposition A that counts
as actual the conditional (If A then B) follows from universal conditions on
objects of experience. If the trivial conditional (If A then A) is allowed, this
has the consequence that any proposition A that counts as actual also counts
as necessary in the material sense specified in the third postulate. Even if such
trivial conditionals are not allowed, Kant’s causal principle would make any
“happening” count as a matetial necessity.

The actualities involved in Newton’s argument from phenomena are gener-
alizations. As we shall see below, Kant requires more than what he takes to be
“the merely assumed and comparative universality” conferred by experience
through induction to have a generalization count as actual.

It should be clear that it is only propositions satisfying Kant’s stricter notion
of necessity that could be candidates for the explication of a priori knowledge
provided by Philip Kitcher (1980; see also his 1996).

According to propositions 1 and 2 of book 1, given Newton’s assumptions
(which include absence of additional perturbing forces), Kepler’s area law for
an orbit (the rate at which areas are swept out by radii from the centre of the
primary is constant) is equivalent to the centripetal direction of the force
deflecting a body into that orbit. According to corollary 2 of proposition 2, an
increasing areal rate corresponds to having the force off centre in the direction
of motion while a decreasing rate corresponds to having the force off centre in
the opposite direction. Thus, having the areal rate be constant measures the
centripetal direction of the deflecting force.(See Harper 1991.)

This is argued in some detail in Harper (1986).

Indeed, it was Laplace’s success at solving the great, over 800-year period,
interaction between Jupiter and Saturn (see Taton and Wilson 1995, pp. 138-41,
and especially Wilson 1985) that may have made his determinism seem plau-
sible as an ideal limit corresponding to exact values of masses and motions
that the increasingly precise astronomical data and corrected orbits could be
regarded as approximating. Newton’s method, which is directed to the approx-
imations of actual measurement by phenomena (Harper 1998), neither
requires nor endorses such determinism (Harper 1997).

One nice feature of classical perturbation theory in Newtonian gravity is that
the basic centripetal force inferred from the area law is maintained when force
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components toward other bodies are added to produce perturbations that
introduce deviations from the area law. The corrections to account for pertur-
bations do not undercut the propositions about forces inferred from the basic
phenomena, even when those phenomena are found to be only approxima-
tions to the corrected orbit (see Harper 1993, pp. 156-59).

It may be worth pointing out that Kant’s (MFNS, observation 2, proposition 7,
chap. 2; Kant 1970, pp. 65-66) actual criticism of Newton’s corollary 2 of prop-
osition 6 is not specifically directed against the appeal to rule 3 cited by Fried-
man. Instead, it is directed toward arguing that Newton’s appeal to a thought
experiment, which was aimed at ruling out transformations of form that
would allow the gravity of matter to fade away, implies that Newton was com-
mitted to treat gravitation as essential to bodies.

Clifford Will (1991, p. 27) argues that Newton’s pendulum experiment estab-
lishes what we now call the “Weak Equivalence Principle”—the identification
of passive gravitational mass with inertial mass for laboratory-sized bodies—
to three decimal places.
Let us define G, = Qr? where Q is the ratio of a body’s weight toward the
earth to its inertial mass and r is its distance from the centre of the earth. Given
the inverse-square variation of gravitation toward the earth with distance from
the centre of the earth argued for in propositions 3 and 4, G, is a measure of
gravitation toward the earth which counts as a quality of all bodies (at or above
the surface of the earth) that does not exhibit intension or diminution of degree.
Newton’s cited estimates of the lunar distance in his moon test support mea-
surements that put an upper bound of .03 on E6tvds ratios representing dif-
ferences between measurements of G, from the centripetal acceleration of the
lunar orbit and Huygens’s measurement of G, from the length of a seconds
pendulum at the surface of the earth. See Harper and DiSalle (1996, p. S48).
The data from Newton’s table on Jupiter’s moons (Cajori 1934, p. 401) put an
upper bound of less than .03 on Eétvds ratios representing differences between
measurements of G, by the orbits of those moons, where G;is defined for grav-
itation toward Jupiter as G, for gravitation toward the earth in note 19 (Harper
and DiSalle 1996, p. S48). Similarly, the data Newton cites for the primary
planets (Cajori 1934, p. 404) put bounds of less than .008 on Edtvos ratios rep-
resenting differences between measurements of G, for gravitation toward the
sun (Harper and DiSalle 1996, p. S49).
Damour (1987) points out that the result Newton claims is wrong in both sign
and magnitude. Where Q(x) is the ratio of the sun’s gravitation on a body to
its inertial mass, Nordtvedt (1968) gives the correct calculation for the direc-
tion and magnitude of the orbital polarization that would correspond to a
given difference in Q-ratio between a planet one of its moons. Harper and Val-
luri (2000) have shown that using Nordtvedt’s calculation the data from
Pound, cited by Newton (Cajori 1934, p. 402), could have limited differences
in Q ratios to about .004.
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By 1825 Laplace was able to establish this phenomenon and relevant theorems

" sufficiently precisely for our moon to measure the constancy of these ratios to
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seven decimal places (Damour and Vokrouhlicki 1996).
A proposal which introduced separate constants for different phenomena,
e.g., a separate constant for the force attracting each planet, could make
exactly the same predictions and so equal the H-D success of Newton’s unified
account, but it would not seriously rival the success of agreeing measurements
of the same parameter by diverse phenomena exhibited by Newton’s infer-
ences from these phenomena. One of the advantages of Newton’s stronger
ideal of empirical success is that it makes his rule 4 able to count such propos-
als as mere hypotheses that are not to be allowed to undercut his inferences to
a single inverse-square centripetal acceleration field maintaining the planets
in their orbits about the sun.
It also illustrates that this Newtonian methodology, even though it goes
beyond the hypothetico-deductive method, is far less top-down than what
Friedman takes to be the Kantian a priorism that we cannot embrace in con-
temporary physics.
Where a, and a, are the gravitational accelerations that would be produced on
bodies x and y at similar locations in a given gravitational field, the E6tvos
ratio

2la,~a,ll la,+a,l
measures vxolatlons of the equahty of ratios of gravitation to inertial mass for
these bodies (Harper and DiSalle 1996, p. S47). Phenomena bounding such
E6tvos ratios toward zero can be construed as measurements bounding
toward zero a single universal parameter. To have all these phenomena bound
such a parameter toward zero is to have them all count as agreeing measure-
ments of the equality of ratios of gravitation to inertial mass that any two bod-
ies would have at similar locations in any gravitational field.
Will cites the Moscow torsion balance experiments which limit violations of
the weak equivalence principle (WEP) to 1072 (Will 1991, p. 26). He calls the
extension of WEP to bodies large enough to have significant gravitational self-
energy, such as planets and moons, the gravitational weak equivalence princi-
ple (GWEP) (Will 1991, p. 184). Lunar laser ranging has provided measure-
ments which limit violations of GWEP to (2% 5) x 10713 (Dickey et al. 1994).
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