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Abstract

Neural models achieve high performance on a variety of natural language processing (NLP)
benchmark tasks. How models perform these tasks, though, is notoriously poorly understood.
As models are deployed more widely in real-world settings, there has been increased focus
on explaining model behaviour. Since the task the model performs is linguistic, it seems
intuitive that models perform tasks by representing linguistic properties of inputs.

Despite its centrality in the philosophy of cognitive science, there has been little prior
philosophical work engaging with ‘representation’ in contemporary NLP practice. This paper
attempts to fill that lacuna: drawing on ideas from the philosophy of cognitive science, I
introduce a framework for evaluating the representational claims made about components of
neural NLP models, proposing three criteria with which to evaluate whether a component of
a model represents a property and operationalising these criteria using ‘probing classifiers’,
a popular analysis technique in NLP (and deep learning more broadly).

The project of operationalising a philosophically-informed notion of representation should
be of interest to both philosophers of science and NLP practitioners. It provides philosophers
insight into the connections between empirical model interpretability work and foundational
questions in cognitive science, assisting them in engaging with downstream philosophical
issues in the development of AI. It helps NLPers organise the large literature on probing
experiments, suggesting novel avenues for empirical research.
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1 Introduction

Neural models1 achieve high performance on a variety of natural language processing (NLP)
benchmark tasks (Wang et al. 2019). How models perform these tasks, though, is notoriously
poorly understood. As models are deployed more widely in real-world settings, there has
been increased focus on explaining model behaviour. Since the task the model performs is
linguistic, it seems intuitive that models perform tasks by representing linguistic properties
of inputs.

Despite its centrality in the philosophy of cognitive science, there has been little prior
philosophical work engaging with ‘representation’ in contemporary NLP practice. This paper

1At times, I will restrict my discussion to large pre-trained transformer models (Vaswani et al. 2017),
such as BERT (Devlin et al. 2018), RoBERTa (Y. Liu et al. 2019), GPT (Radford, Narasimhan, et al. 2018,
Radford, Wu, et al. 2019, Brown et al. 2020), T5 (Raffel et al. 2020) and BART (Lewis et al. 2020). That
said, I intend my arguments to apply to a wide class of neural models, so I aim to stay neutral as to the
precise model under discussion.
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attempts to fill that lacuna: drawing on ideas from the philosophy of cognitive science, I
introduce a framework for evaluating the representational claims made about components of
neural NLP models, proposing three criteria with which to evaluate whether a component of
a model represents a property and operationalising these criteria using ‘probing classifiers’
(Alain and Bengio 2016), a popular analysis technique in NLP (and deep learning more
broadly).

The project of operationalising a philosophically-informed notion of representation should
be of interest to both philosophers of science and NLP practitioners. It provides philosophers
insight into the connections between empirical model interpretability work and foundational
questions in cognitive science, assisting them in engaging with downstream philosophical
issues in the development of AI. It helps NLPers organise the large literature on probing
experiments, suggesting novel avenues for empirical research.

The paper is organised as follows. In the remainder of this section, I motivate the need
for a notion of representation suitable for NLP (Section 1.1) and introduce terminology
for describing the setting of interest (Section 1.2). In Section 2, I give (Section 2.1) three
plausible criteria for a component of a system to count as representing a property of an
input and introduce (Section 2.2) probing classifiers, a popular technique for analysing neural
models which serves as a basis for an operationalisation of the criteria. (Much of) Section
2.1 will be familiar to philosophers, whilst Section 2.2 will be familiar to NLPers. Section
3 contains the main contribution of the paper, in which I operationalise the three criteria
(Information, Use and Misrepresentation) via definition of two sorts of interventions on model
activations. In Section 4, I draw connections between my operationalisation of representation
and the empirical NLP literature; this section will be of particular interest to NLPers, but
it also serves as a relatively self-contained introduction to several interpretability techniques
which have received recent interest from philosophers. I conclude (Section 5) by summarising
the contributions of the paper, arguing that they should interest both philosophers and
NLPers.

1.1 Motivation: Two Examples

To demonstrate the need for an account of representation in NLP, I outline the following toy
examples.

1.1.1 Example 1

Suppose BERT (Devlin et al. 2018) is fine-tuned on the Corpus of Linguistic Acceptability
(CoLA; Warstadt, Singh, and S. R. Bowman 2018). CoLA is a binary classification task,
where the model judges whether an input sentence is grammatical or not.

BERT has been pre-trained on a large document-level corpus on two self-supervised
tasks: a masked language modelling task and a next sentence prediction task. For the fine-
tuning stage, a linear classifier is appended to the end of the model. The classifier takes
in the activation above the first token from BERT’s final layer and predicts a probability
distribution over labels C = {grammatical, ungrammatical}. The combination of model
and classifier are tuned (a supervised task) on the labelled training portion of CoLA.

3



Suppose that at test time BERT incorrectly judges the following CoLA example as un-
grammatical:

John danced waltzes across the room.

A researcher suggests the following high-level explanation for BERT’s error: the model judges
‘waltzes’ to be a verb, when it is in fact a noun.

1.1.2 Example 2

GPT-3 (Brown et al. 2020) is performing a zero-shot co-reference resolution task, such as
the Winograd Schema Challenge (Levesque, Davis, and Morgenstern 2012).

Like BERT, GPT-3 has been pre-trained on a large document-level corpus. Unlike BERT,
GPT has been trained on a standard left-to-right language modelling task (using Vaswani
et al.’s terminology, BERT is constructed from stacked ‘encoder’ transformer blocks whereas
GPT is constructed from stacked ‘decoder’ blocks). Since GPT-3 is performing the task
using in-context learning, there is no additional component to the system (but rather an
‘unembedding’ layer which outputs a distribution over the vocabulary), and no fine-tuning
occurs.

We notice (similarly to Brown et al. 2020, who test GPT-3 on a gendered version of
Winograd from Rudinger et al. 2018) that for the (fictional) input

The doctor told the patient she was unwell. Who was unwell?

GPT-3 suggests the completion ‘the patient’, whereas for the input

The doctor told the patient he was unwell. Who was unwell?

GPT-3 suggests the completion ‘the doctor’.
We hypothesise that this is because GPT-3 represents the doctor as male (and – perhaps

– the patient as female).

1.1.3 Discussion of Examples 1 and 2

Both examples contain partial explanations of model behaviour. Because these explanations
involve the model responding to (and manipulating) properties of inputs to perform com-
plex linguistic tasks – tasks for which there do not exist perspicuous non-representational
explanations (Gelder 1995) – they are naturally seen as making claims about what the model
represents. These are instances of a more general phenomenon: explanations of contempo-
rary artificial neural models which purport to be human-understandable often presuppose
a notion of a model representing a property (Buckner 2019, Cao 2022, Elhage et al. 2021,
Lipton 2018).

To evaluate the claim made in Example 1, we need an account of what it means for BERT
to (mis)judge a word to be a noun or verb: that is, we need to understand what it means
for BERT to represent words’ part of speech (PoS) across some range of inputs, and what
it means for BERT to misrepresent the word ‘waltzes’ as a verb in this particular case. In
Example 2, we need to know what it is for a model to represent doctors as male, or patients
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as female; downstream work which attempts to ‘de-bias’ a model’s internal states (Bolukbasi
et al. 2016) implicitly makes a similar representational claim.

It is important to make three clarifications at this stage. First, throughout this paper, I’m
using ‘representation’ in the sense that philosophers of cognitive science do, to denote a con-
cept intimately connected with explanation (it is this sense of representation that supports
counterfactuals like ‘if the system S hadn’t represented property Z, it would have failed to
perform the task’). I’m concerned only with subpersonal representations (representations of
properties of inputs by components of systems), not personal-level representations. Note also
that there is a thinner use of the word ‘representation’ – ubiquitous in machine learning – in
which any internal state of a neural model counts as a ‘representation’ (i.e. ‘representation’
is often used as a synonym for ‘intermediate activation’). My point isn’t merely sociological
(that philosophers and NLPers use the word ‘representation’ differently), but rather that
many explanations in NLP presuppose the sense of representation used by philosophers of
cognitive science.

Second, the candidate explanations need not actually be true (or even plausible) for the
claim I’m making to hold. Indeed, even in the toy example tasks, any actual explanation of
model behaviour will be much more complex than the explanations above. The point is rather
that evaluating the explanations’ truth requires an account of what it means for a model
to represent a property (so all that is needed is plausible truth-aptness). Moreover, this
account should be operationalisable: given the account, it should (in principle) be possible
to test for a representation of a property.

Third, nothing said here commits me to the claim that models actually have internal
representations of linguistic properties (although in the context of contemporary models I
find this claim compelling). It might be that any sense we have of models ‘representing’
language based on their behaviour is entirely misleading. This would constitute an error
theory about representational explanations. To put it in Marr’s (1982) terms, the thought
would be that – to the extent that we could explain models’ behaviour – such explanations
would sit only at the implementational level (in terms of the way models manipulate points in
a high-dimensional space) or at the computational level (in terms of input/output mappings),
but not at the algorithmic level. Again, though, entering into this discussion presupposes an
account of representation.

1.2 The General Setting

In the general setting (depicted in Figure 1), we have a system S performing a task D. The
system S takes an input s and maps it to an output S(s). For simplicity, I treat the task
D as a finite set of inputs s ∈ D along with an associated ‘goodness measure’ on outputs
S(s) (for example, a loss function); so different outputs of the system are ‘better’ or ‘worse’
relative to the task D.

In the simplest case, we can see the system S as the composition of two functions: an
‘upstream system’ which takes an input s and maps it to an ‘intermediate activation vector’
h(s) (which I assume is a d-dimensional real vector), and a ‘downstream system’ which takes
the intermediate activation vector h(s) and maps it to an output S(s). To foreshadow the
role that this decomposition will play in my account of representation, I call the upstream
system SEnc (for ‘encoder’) and the downstream system SDec (for ‘decoder’).
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Figure 1: The General Setting: a System Performing a Task

The setting here is general enough to accommodate a variety of neural models and tasks.
More concretely, we could think of S as an autoregressive transformer (Vaswani et al. 2017),
inputs s as finite lists of subword tokens from some fixed vocabulary, each h(s) as the value
of the residual stream (Elhage et al. 2021) at some layer and position in the context window,
SEnc as the layers below h, SDec as the layers above h, and outputs S(s) as probability
distributions over next tokens.

Let Z be a finite set of ‘property labels’. More concretely, Z could be a property of
individual words (e.g. a set of PoS tags – as in Example 1 – or dependency heads) or of
whole sentences (a binary variable corresponding to whether the subject of the sentence is
singular or plural). Although many of the properties about which representational claims
are made in NLP are syntactic, Z could also be a more abstract property (e.g. a set of labels
for the gender of the subject of the sentence, as in Example 2, or a set of sentiment labels
for the sentence). I assume each input s is associated with a ‘true label distribution’ pZ(s)
over the labels in Z (that is, pZ(s) ∈ P(Z), where P(Z) denotes the set of probability mass
functions over Z).

When the system S processes inputs s ∈ D, we get a pattern of activations h(D), defined
as follows:

h(D) = {h(s) | s ∈ D}

(i.e. a pattern of activations is just a set of intermediate activation vectors, one for each
input comprising the task).

Contemporary accounts of representation distinguish between a representational vehicle
and the information it bears about the input s (its representational content). The content
supervenes on the vehicle that bears it; it is the vehicle which interacts with the rest of the
system, and it is via this interaction that information passes through the system. In neural
models, a natural vehicle for content is the pattern of activations h(D).

Having motivated the need for an account of representation in NLP and specified the
general setting, I turn to the question this paper seeks to answer: what does it mean for the
pattern of activations h(D) to represent property Z of inputs s?
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2 Representation in NLP

In this section, I give (Section 2.1) three plausible criteria for a component of a system to
count as representing a property of an input. I then introduce (Section 2.2) probing classifiers,
a popular technique for analysing neural models which I suggest can help operationalise the
criteria.

2.1 Three Criteria

I suggest that a pattern of activations h(D) represents a property Z if the following three
criteria hold:

Definition 1 (Information). The pattern of activations h(D) bears information about Z.

Definition 2 (Use). The information the pattern of activations h(D) bears about Z is used
by system S to perform task D.

Definition 3 (Misrepresentation). It should be possible (at least in principle) for the acti-
vation vector h(s) to misrepresent Z with respect to an input s ∈ D.

By specifying these criteria, I don’t take myself to be proposing a new theory of represen-
tation in cognitive science, nor am I evaluating existing accounts of representation by how
amenable they are to operationalisation. My goal in this paper is rather to take conditions
on representation widely endorsed by philosophers of cognitive science and operationalise
them in an NLP setting.2 One might label this an ‘operationalisation first’ approach to
representation.3 My hope is that by resisting tying my operationalisation to a particular
account of representation, proponents of different accounts can re-purpose my framework
with their own theoretical paraphernalia.4 Given that different accounts of representation
will re-purpose the criteria differently, the criteria ought not to be thought of as necessary
and sufficient conditions on representation, but rather important building blocks in a theory
of representation.5

Although I take it that Information, Use and Misrepresentation have broad philosophical
appeal, I want briefly to justify their importance in assessing representational claims. It’s

2In this, I follow projects applying philosophically-informed notions of representation to analysis tech-
niques in neuroscience, such as Roskies (2021).

3This could be thought of as a species of ‘representational pragmatism’ (Cao 2022).
4I intend the operationalisation I introduce to be amenable to a wide variety of teleosemantic accounts

of representation, including those which emphasise the role of a ‘producer’ of the representation (Neander
2013, Neander 2017) and those which emphasise the role of a ‘consumer’ of the representation (Millikan 1984,
Millikan 2004), as well as ‘conceptual role’ accounts of representation (Harman 1982, Block and Campell
1987, Piantadosi and Hill 2022).

5This disclaimer is largely intended for the philosophers reading this paper. Given the centrality of
(something like) these criteria in contemporary philosophical discussion of representation, NLPers interested
in applying ideas from the philosophy of representation to their own work could in practice treat these
criteria as crudely necessary and sufficient for representation in a wide range of experimental settings (with
the caveat that there is there is nuanced, ongoing philosophical disagreement about the details involved in
fleshing out the criteria).
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helpful to give an example of an account of representation in which some version of the
criteria play a role, namely ‘varitel semantics’ (Shea 2018). Amongst other things, varitel
semantics counts components of systems as representing properties when they carry ‘corre-
lational information’ which plays a ‘role in explaining’ the system’s performance of a ‘task
function’ (p.84). A ‘task function’ is a sufficiently robust behaviour of the system which has
been ‘stabilised’ (p.64) by being selected for or learned.

For our purposes, we can see that the task D (construed as a set of inputs along with
a goodness measure on outputs) can be thought of as a task function, the system’s per-
formance of which we are seeking to explain. It’s clear that Information requires that a
component bears ‘correlational information’. Similarly, demonstrating Use holds is a first
step in explaining a system’s successful performance of the task.

Showing that the system uses the information a pattern of activations bears about a
property to perform the task helps explain the system’s successes on the task. However,
we are also interested in explaining the system’s failures on the task. This is especially
important in the present context: a key motivation for explaining neural NLP models is
to explain their failures (presumably with an eye to correcting them), as gestured at in
Examples 1 and 2. It is this idea which Misrepresentation is intended to capture. If we
explain a neural model’s behaviour in representational terms, then one source of failure will
be misrepresentation, a case in which a particular activation vector h(s) is an ‘incorrect
representation’ (of some particular property) relative to the system’s task function (Shea
2018). Broadly speaking, a representation of a property is incorrect if, when interacted with
in the usual way, it leads the downstream system to process the input as though the input
has (on my terminology) a property label it does not actually have; such processing will
typically – though not always – result in a degradation of the system’s performance on the
task, and it is the ‘incorrectness’ of this behaviour which grounds the incorrectness of the
representation. Incorrect representations can occur in a variety of ways; for example, (using
my notation) something may go wrong with the way the upstream system SEnc produces
a particular activation vector h(s), or it might be that no malfunction with the upstream
system occurs but rather there has been some shift in the distribution of inputs (a case in
which the environment is ‘uncooperative’).6

Of course, the comments above are far from a full development of varitel semantics in
the context of modern NLP; there are many interesting questions to explore.7 For example,
it’s natural to observe that task functions are easier to spell out in contemporary machine
learning models than biological ones (Cao 2022), in that artificial systems are trained by
optimising an objective function using gradient descent; this observation motivates my stip-
ulation of the task D. This appears to imply that the stabilisation process relevant for
ascribing task functions to NLP systems is learning, but the current NLP training pipeline
complicates this. As exemplified in Examples 1 and 2, contemporary models go through
both pre-training and tuning stages using different objective functions and optimisers, and

6Of course, different accounts of representation will disagree as to which of these cases are misrepresen-
tations. For example, proponents of ‘low-church’ teleosemantics (Neander 1995) will usually deny that cases
of uncooperative environments count as misrepresentations.

7To name two: I haven’t discussed what it means for components of systems to ‘implement algorithms’ or
what it means for information to play an ‘unmediated role’ in explaining the system’s performance of tasks
(Shea 2018, p.84). I intend these lines of development to be compatible with my project here.
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it’s unclear whether in-context learning (Brown et al. 2020) ought to count as a stabilising
process: the tasks D whose performance we want to explain need not be tasks for which
models were explicitly optimised. It’s also worth observing that a selection process operates
on populations of models; less successful models quickly fade into obsolescence.

In the context of modern NLP, the characterisation of the task function D also bears on a
foundational question: do ‘the internal representations and outputs of Large Language Mod-
els possess intrinsic meaning, enabling them to represent things in the world independently
of human interpretation’ (Mollo and Millière 2023, p.8)? This is an updated version of the
familiar ‘Symbol Grounding Problem’ (Harnad 1990), which – given contemporary models’
significantly improved performance on natural language tasks – has received renewed atten-
tion (Bender and Koller 2020, Pavlick 2023, Mollo and Millière 2023, Mandelkern and Linzen
2023).8

Both Piantadosi and Hill (2022) and Pavlick (2023) suggest that conceptual role semantics
(CRS; Harman 1982, Block and Campell 1987), whereby the content of representations is
determined by their functional roles within the system, provides a natural framework for
grounding meaning in contemporary neural NLP models. Of course, the plausibility of this
suggestion as a complete solution to the grounding problem will depend on the sorts of
properties we want to feature in our representational explanations. If we want to move
beyond properties of inputs (e.g. linguistic properties) to properties of the world proper,
then CRS must either allow for a referential component to meaning (a ‘two-factor’ account)
or make use of ‘long-armed’ conceptual roles, those which stretch beyond the boundaries
of the model;9 Pavlick (p.10) adopts the former approach, appealing to a causal theory to
determine reference. Similarly, Mollo and Millière (2023) assume that CRS cannot by itself
resolve the referential component of the grounding problem. They suggest that in order to
ground non-linguistic representational content, the task D the model performs must itself
involve the world; in particular, they suggest that contemporary tuning techniques encourage
models to perform these ‘world-involving’ tasks.10

By stipulating the task D (rather than searching for a world-involving task that is inde-
pendent of human interpretation), my intention is to circumvent further engagement with
the grounding problem; in effect, the notion of representation I operationalise is task-relative.
This is because I see the motivation for my project as largely independent of the grounding
problem. To see this, note that an operationalisation of representation is needed even if the
grounding problem is solved: knowing that models can represent the world successfully is
not sufficient to determine what features of the world they represent (indeed, the properties
I discuss in this paper can all be construed in linguistic terms, which – as discussed above –
would simplify the grounding problem). Furthermore, even if there were no interpretation-
independent task which could ground meaning in contemporary NLP models (i.e. even if
there were no solution to the grounding problem), it would still be necessary to have an
account of representation which accounted for the utility of representational explanations;

8Thanks to an anonymous referee for discussion on this point.
9See Block 1986 for discussion; in particular, Block argues that long-armed one-factor accounts – like

Harman’s – collapse into a two-factor account.
10A version of this point – though aimed at grounding the outputs of LLMs – is also made by Mandelkern

and Linzen (2023), who argue that the tasks LLMs perform ground their reference, via establishing them as
members of the right sort of linguistic community.
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in such a case, we would still need a principled framework for understanding how to identify
and manipulate representations (Cao 2022).

Future work should pay more attention to the subtleties here. The discussion above is
intended to justify the importance of the three criteria I’ve introduced, so as to motivate the
project of operationalising them. I turn now to an important tool in the operationalisation
I propose.

2.2 Probing Classifiers

In this subsection, I introduce probing classifiers (Ettinger, Elgohary, and Resnik 2016,
Gupta et al. 2015, Köhn 2015, Alain and Bengio 2016), a popular analysis technique in deep
learning. Given a system S performing a task D and a component h of S, a probe for property

Figure 2: Training a Probe gZ for Property Z

Z is a function gZ : h(D)→ P(Z); that is, a classifier which takes in (for inputs s ∈ D) an
intermediate activation vector h(s) and outputs a label distribution gZ(h(s)) ∈ P(Z). This
situation is depicted in Figure 2.

Probes are trained to predict the true label distribution pZ(s) in a supervised way. We
train gZ on a labelled dataset consisting of pairs

{(h(s), pZ(s))}s∈Dgtrain

for a training set Dgtrain ⊆ D, by minimising the cross-entropy loss (Cover and Thomas
2006)

LCE(pZ(s), gZ(h(s)))

between the true label distribution pZ(s) and the probe’s predictions gZ(h(s)). The probe
gZ is tested on a test set consisting of pairs

{(h(s), pZ(s))}s∈Dgtest

for inputs Dgtest ⊆ D disjoint from Dgtrain .

Definition 4 (Successful Probe). A probe gZ for property Z is successful when its average
loss on the test set

1

|Dgtest |
∑

s∈Dgtest

LCE(pZ(s), gZ(h(s)))

is below some threshold.
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There is a large literature applying probing in NLP (Shi, Padhi, and Knight 2016, Adi et
al. 2017, Belinkov et al. 2017, Conneau et al. 2018, Zhang and S. Bowman 2018, Hupkes,
Veldhoen, and Zuidema 2018, N. F. Liu et al. 2019, Tenney et al. 2019, Saleh et al. 2020;
see Belinkov 2021 for a survey). There is also ongoing discussion about how best to baseline
probing experiments and select among successful probes (Zhang and S. Bowman 2018, N. F.
Liu et al. 2019, Pimentel, Valvoda, et al. 2020, Hewitt and Liang 2019, Pimentel, Saphra,
et al. 2020, Voita and Titov 2020, Pimentel and Cotterell 2021). In Section 4, I argue that
the framework I introduce helps make sense of this literature.

3 Operationalising the Three Criteria

In this section, I will operationalise the three criteria introduced in Section 2.

3.1 Operationalising the Information Criterion

Recall that Information was defined as follows:

Definition 1 (Information). The pattern of activations h(D) bears information about Z.

Information is straightforward to operationalise using probing classifiers.
Let s be a random variable over inputs, with a distribution Ps induced by the task D.11

Let Z be a random variable over property labels Z, with a distribution PZ induced by the task
D (it might help to think of the gold label distribution pZ(s) as the result of conditionalising
PZ on the event s = s). Similarly, let h be a random variable over activation vectors h(s),
with distribution Ph induced by Ps.

A natural first step towards operationalising Information is to say that a pattern of
activations h(D) bears information about a property Z just when the Shannon mutual
information I(Z;h) (Cover and Thomas 2006) between the random variables Z and h is
sufficiently high (intuitively, if learning the value of the activation vector h(s) sufficiently
reduces uncertainty about the label distribution of input s, given the pattern of activations
h(D)).12

Given this step, we can see (following Pimentel, Valvoda, et al. (2020)) that the cross-
entropy loss of a probe gZ for property Z lower bounds precisely the quantity we’re interested
in. First, write the mutual information between Z and h as

I(Z;h) = H(Z)−H(Z | h)

where H(−), H(− | −) denote entropy and conditional entropy, respectively (Cover and
Thomas 2006). Then it is easy to see that the (expected) empirical cross-entropy loss LCE

of probe gZ upper bounds the conditional entropy H(Z |h) (see Zhu and Rudzicz (2020) for

11By ‘induced by the task D’, I intend to capture the intuitive idea that the distribution of inputs depends
on the setting in which we evaluate the model (for example, the inputs we would expect to see in a sentiment
analysis setting are different from the inputs in a code completion setting).

12See Usher (2001) for an partial operationalisation of representation using mutual information. It varies
significantly from my account in that it is not developed in the context of neural models, and does not involve
causal interventions.
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a proof of this). So finding a successful probe gZ – a probe whose expected loss is below
some threshold (Definition 4) – guarantees that I(Z;h) is above some threshold (where this
second threshold will depend on the entropy H(Z)). This suggests an operationalisation of
Information as follows:

Definition 5 (Information Operationalised). h(D) bears information about Z iff we can find
a successful probe gZ : h(D)→ P(Z).

3.2 Operationalising the Use Criterion

In this subsection, I operationalise Use. I suggest that we can test whether the system uses
information about a property by performing an appropriate intervention on the system’s
intermediate activations and assessing its effects on the system’s outputs.13

Recall that Use was defined as follows:

Definition 2 (Use). The information the pattern of activations h(D) bears about Z is used
by system S to perform task D.

Suppose we have a pattern of activations h(D) which bears information about a property
Z. Given a particular input s and activation vector h(s), the question is: what does it mean
for the system to count as using the information h(s) bears about Z to perform task D?

There’s a problem with this question as posed: although it’s natural to speak of individual
activation vectors h(s) bearing information about Z, this way of speaking is misleading. In
particular, it doesn’t make sense to ask about the mutual information a single activation
vector h(s) bears about a property Z; this is akin to asking about the trivial quantity
I(Z;h′), where h′ is a constant random variable (which takes value h(s) with probability 1).

This is an instance of a more general principle: individual messages are only informative
relative to a decoding scheme. To the extent that it makes sense to speak of a single activation
vector h(s) bearing information, then, it is in virtue of the fact that h(s) is part of a pattern
of activations h(D); it is h(D) that is the primary vehicle for informational content. So
the information h(s) bears about Z can only be defined relative to a way of decoding the
information that h(D) bears about Z.14 A way of decoding the information h(D) bears
about Z is just a successful probe gZ : h(D)→ P(Z).

Fixing some successful probe gZ , the discussion above motivates the following definition:

Definition 6 (Activation Vector Bearing Information Relative to a Probe). The amount of
information an activation vector h(s) bears about Z relative to a probe gZ is given by the
negative entropy

−H(gZ(h(s)))

of the probe’s predictions on the activation vector.

13A large body of work in NLP takes a similar causal perspective. See (e.g.) Elazar et al. 2020, Feder
et al. 2021, Giulianelli et al. 2018, Tucker, Qian, and Levy 2021, Tucker, Eisape, et al. 2022, Vig et al. 2020,
Geiger, Cases, et al. 2019; I discuss extant work in Section 4.3.

14A related notion is that of ‘usable information’, in which mutual information is relativised to a ‘predictive
family’ of decoders. This is introduced by Xu et al. (2020) (and applied in the context of probing by Hewitt,
Ethayarajh, et al. 2021). Their framework applies only to information carried by patterns of activations
h(D), rather than individual activation vectors.
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This definition captures the intuitive idea that the more ‘certain’ the probe’s predictions
are, the more information about Z the activation vector h(s) provides relative to the probe,
and vice-versa. When gZ(h(s)) is uniform (so −H(gZ(h(s))) = − log2(|Z|) is minimal), h(s)
provides the least possible information about Z relative to gZ . When gZ(h(s)) is degenerate
(so −H(gZ(h(s))) = 0 is maximal), h(s) provides the most possible information about Z
relative to gZ .

Note that – on this definition – the amount of information h(s) bears about Z relative
to a probe gZ is independent of whether the prediction gZ(h(s)) is close to the true label
distribution pZ(s) (indeed, it is possible that pZ(s) is uniform); we are interested only in the
‘uncertainty’ of the probe’s predictions.

It’s worth comparing the notion of information employed here to that in the philosophical
literature on representation. As Shea (2018) observes (p.78, footnote 5), (using my notation)
his pointwise ‘correlational information’15 between Z and h can be seen as a special case of
the mutual information I(Z;h), which doesn’t pay attention to the underlying distribution
over h. In order for this correlational information to be ‘exploitable’, Shea requires both
that the correlation holds across some regions of values for Z and h, and that it holds for
a ‘univocal’ reason, where this latter condition is supposed to rule out merely coincidental
correlations.

We can see that the existence of a successful probe gZ : h(D) → P(Z) demonstrates
that both conditions hold. First, the ‘regions’ in which the correlation holds are determined
by the set of inputs D comprising the task. Second, as Shea makes clear, the hallmark
of a correlation that holds for a ‘univocal’ reason is generalisation; there must be some
pattern which allows prediction about the value of Z using previously unseen states h(s).
By Definition 4, a successful probe is exactly one that achieves below some threshold loss on
an unseen test set, demonstrating generalisation.

So the successful probe gZ shows not only that there exists correlational information, but
also that it is ‘exploitable’, via a demonstration of one way in which the information could be
decoded. When we talk about the degree of information relative to a particular probe across
region D, then, we are effectively talking about the degree of correlational information that
could be exploited using some particular decoder. When we fix some particular activation
vector h(s), the probe’s predictions gZ(h(s)) are guesses for the value of Z, based on the
correlation between Z and h that holds across region D; they are some particular first step
towards exploiting this correlation on some particular input s, namely estimating PZ(Z |h =
h(s)). The degree of certainty in the probe’s predictions (measured by the negative entropy)
reflects the degree to which this correlational information could be exploited on this input,
using this decoder.

What we care about is whether (and how) the downstream system actually exploits the
information. Definition 6 suggests the following step towards operationalising what it means
for the system S to use the information an activation vector h(s) bears about property Z.
The system counts as using the information h(s) bears about Z just when the following
counterfactual holds: if we intervene on h(s) to (i) reduce the information h(s) bears about

15More specifically, Shea’s notion applies to ‘items’ which can be in a range of ‘states’ (pp.77-78). Formally,
we can treat these items as random variables over the states they can be in, in order to enable comparison
with the framework developed here.
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Z relative to how the downstream system SDec decodes the information h(D) bears about Z
but (ii) leaving it otherwise unchanged, then the system’s output S(s) degrades (as measured
by the task’s goodness measure).

There are two challenges with further operationalising this idea, which I engage with in
the following two subsections.

3.2.1 How the Downstream System Decodes the Information

The first challenge is to specify what it means to reduce the information h(s) bears about Z
relative to how the downstream system SDec decodes the information h(D) bears about Z.

The problem here is that we don’t know how the downstream system SDec interacts with
the information h(D) bears about Z. In artificial neural systems, we know exactly how
the downstream system interacts with the vehicles of the representations, the activations
themselves; that is, we can tell a complete low-level story about the function the system is
computing. But this low-level story tells us very little about the way the system manipulates
information about higher-level properties.

Note that things would be easier if we knew that the downstream system SDec was a
composition of a successful probe gZ and a function which took in the probe’s predictions
gZ(h(s)) and performed some further computation. In this case, we could intervene on the
informational content directly, simply by intervening on the probe’s predictions. It’s clear,
though, that we can’t think of the downstream system in this way; to the extent that it
interacts with the information carried by the activations, it does so implicitly, manipulating
information about many properties of inputs concurrently. In other words, we should not
expect to find a single probe which uniquely identifies the way the downstream system
decodes the information; it’s not obvious how to apply Definition 6 directly.

A solution to this challenge starts by recognising that it’s essentially this difficulty that
motivates the whole probing paradigm. If we could directly read off the predictions that
neural models were making about high-level properties Z from their activations, there would
be little need for probing classifiers. Since we can’t, though, we use probes as proxies for
the sorts of ways the downstream system could decode the information. This suggests a way
of operationalising the idea of reducing the information h(s) bears about Z relative to the
downstream system, namely to reduce the information relative to all proxies (i.e. probes)
for how the downstream system could decode the information.

Of course, we don’t want just any probe gZ : h(D) → P(Z) to count as a proxy for
how the downstream system could decode the information. First, we’ll only be interested in
successful probes for the property, since we’re interested in testing the counterfactual under
the assumption that the downstream system is able successfully to manipulate information
about the property. Second, we’re only interested in probes which are plausible proxies for
how the downstream system decodes information about the property. I write the set of
plausible proxies for how the downstream system SDec decodes information about property
Z as GZ,SDec

. What does it mean for a probe gZ to be a member of GZ,SDec
?

Intuitively, it means that the probe gZ satisfies various constraints imposed by the down-
stream system SDec. Drawing on experimental practice, here are two plausible concrete
constraints on GZ,SDec

:
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Definition 7 (Linearity Constraint). If a probe gZ ∈ GZ,SDec
, then gZ should be linear. That

is, we should be able to write
gZ = softmax ◦WgZ

where WgZ is a linear transformation.

Definition 8 (Size Constraint). If a probe gZ ∈ GZ,SDec
, then there should be no probe

g′Z ∈ GZ,SDec
such that the following two conditions hold:

• g′Z is at least as successful as gZ, and

• g′Z is from the same family of models as gZ, and is strictly ‘smaller’ than gZ.

‘Smaller’ in this second condition should be understood relative to the model family (i.e.
rank of linear transformation for linear probes, hidden layer sizes for multi-layer perceptron
probes (Shalev-Shwartz and Ben-David 2014), and so on).

The Linearity Constraint is clearly motivated when the downstream system is linear, but
even for highly non-linear downstream systems there is empirical evidence that decoding
might be done linearly (Elhage et al. 2021; this claim is sometimes called the ‘Linear Repre-
sentation Hypothesis’). The Size Constraint is chosen to reflect experimental considerations
on probe selection (see Pimentel, Saphra, et al. 2020 for discussion on probe selection at the
‘Pareto frontier’ of success and complexity).

The two constraints are not exhaustive,16 and they should be understood as defeasible. A
full characterisation of membership of GZ,SDec

is beyond the scope of this paper. In general, I
take it to be an open problem; membership of GZ,SDec

will be refined by both theoretical and
empirical, model-specific insights. I discuss this in Section 4.2, where I highlight the role of
probe selection and baselining in informing membership of GZ,SDec

. I take the identification
of a distinctive role for ‘probes as proxies’ (exemplified by GZ,SDec

) as contrasted with other
roles probes play to be a conceptual contribution to the probing literature; I expand on this
in Section 4.2.

We are now ready to say what it means for an intervention to reduce the information
h(s) bears about Z relative to how the downstream system SDec decodes the information. I
call this condition on interventions the ablate condition.17 Note that since in my framework
h(s) ∈ Rd, an intervention on activation vectors is a function a : Rd → Rd.

Definition 9 (ablate condition). An intervention a : Rd → Rd on activation vector h(s)
satisfies the ablate condition for property Z iff for all successful gZ ∈ GZ,SDec

:

H(gZ(a(h(s)))) > H(gZ(h(s)))

So an intervention satisfies the ablate condition if applying it to an activation vector re-
duces the information h(s) bears about Z relative to all successful proxies gZ ∈ GZ,SDec

for the property (by the notion of information in Definition 6). The idea is that however

16Complexity notions from statistical learning theory could also be relevant here (e.g. bounding the
Rademacher Complexity (Shalev-Shwartz and Ben-David 2014) of the class of functions compatible with the
probe architecture with that compatible with SDec’s architecture).

17Lovering and Pavlick 2022 introduce an intervention with a similar spirit in a less general context.
Although my operationalisation is very different from theirs, I adopt their terminology.
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the downstream system interacts with the information h(s) bears about Z, an intervention
satisfying the ablate condition will reduce the information h(s) bears about Z relative to
the downstream system.

3.2.2 Leaving the Activation Vector Otherwise Unchanged

The second challenge is to spell out what it means to leave the activation vector h(s) ‘oth-
erwise unchanged’. The problem is that the same vehicle h(D) can bear correlational infor-
mation about multiple properties Z1, Z2, .... So any intervention on h(s) that modifies the
information h(s) bears about (e.g.) Z1 could inadvertently modify the information it bears
about (e.g.) Z2. To the extent that we want representational claims about both Z1 and Z2

to feature in our explanations of the model, this is a problem.
To give a concrete example, suppose that BERT is performing a zero-shot subject/verb

number agreement task). For the input s,

The man with the children [MASK] at us.

when predicting the masked token, BERT correctly assigns a higher probability to the sin-
gular verb form ‘waves’ than to the plural verb form ‘wave’. We hypothesise that this is
because BERT is representing the number of the nouns ‘man’ and ‘children’ (property Z1),
as well as a complete dependency parse of the sentence (property Z2). Suppose we have
evidence that h(D) bears information about both Z1 and Z2 (e.g. by successfully training
probes gZ1 and gZ2 to predict Z1 and Z2 respectively). To test our hypothesis, we apply an
intervention to reduce the information h(s) bears about number (i.e. the information about
Z1) relative to gZ1 ;

18 we predict that BERT should now assign the singular and plural verb
forms roughly equal probability, and this prediction comes true. Unbeknownst to us, though,
we have modified h(s) such that gZ2 now predicts the sentence as having a nonsensical de-
pendency parse, undermining the claim that BERT uses the information h(s) bears about
Z1 to perform its task. So the requirement that interventions be left otherwise unchanged is
intended to protect the conclusions we can draw on the basis of interventions satisfying the
ablate condition from ‘false positives’.

The point is that distinct representational contents can have the same representational
vehicle. It’s important to emphasise that it is distinct from the related observation (made
by Feder et al. 2021) that distinct linguistic properties Z1 and Z2 can be correlated (e.g.
that I(Z1;Z2) > 0). To see this, note that it’s perfectly possible for representational content
about two correlated properties Z1 and Z2 to have different representational vehicles. It’s also
possible for the same pattern of activations h(D) to bear information about two uncorrelated
properties Z1 and Z2 (e.g. Z1 is a semantic property and Z2 an uncorrelated syntactic
property).19

As above, we can use probes as proxies for ways the downstream system could decode
information about properties (this time, information about properties we want to control

18Of course, this intervention may fail to satisfy the ablate condition, since it does not necessarily reduce
the information relative to all gZ1

∈ GZ1,SDec
. This doesn’t matter for the purposes of this example.

19Feder et al. 2021 are concerned with a different (though related) problem to that of this paper. Rather
than intervene on activations to evaluate representational claims, they tune an existing model so that its
activations no longer bear information about a property (whilst preserving information about other proper-
ties).
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for). This suggests a way of operationalising the idea of an intervention leaving information
about properties ‘otherwise unchanged’, namely the control condition:

Definition 10 (Control Condition). An intervention a : Rd → Rd on activation vector h(s)
satisfies the control condition for property Y iff for all successful gY ∈ GY,SDec

:

DKL(gY (h(s)) || gY (a(h(s)))) ≈ 0

where DKL denotes the Kullback–Leibler divergence (Cover and Thomas 2006).

In other words, an intervention on the information carried by h(s) about property Z relative
to the downstream system SDec satisfies the control condition for property Y ̸= Z just
in case it (approximately) preserves the predictions of probes for Y (as measured by the
Kullback–Leibler divergence, a familiar way of measuring changes in distributions). As
stated, the control condition is demanding; in practice, we would expect some relaxation
of it. I discuss this in Section 4.1.

3.2.3 Putting it Together: the ablate Intervention

Having defined the ablate and control conditions, we are now ready to characterise the
ablate intervention:

Definition 11 (ablate Intervention). An intervention a : Rd → Rd on activation vector
h(s) is an ablate intervention for property Z iff:

• a satisfies the ablate condition for property Z.

• a satisfies the control condition for all properties Y ̸= Z.

The ablate intervention operationalises the idea of reducing the information an activation
vector bears about a property whilst leaving information about other properties unchanged,
relative to the downstream system SDec. This suggests the following operationalisation of
Use:

Definition 12 (Use Operationalised). The information h(D) bears about Z is used by system
S to perform task D on input s iff applying an ablate intervention to activation vector h(s)
degrades output S(s) (as measured by the task’s goodness measure on outputs) in an expected
way.

It’s worth saying something about what it means for an output to degrade ‘in an expected
way’.20 The point is that we want a degradation to show that the information is being used
to perform task D (rather than having some other causal role in the system’s behaviour).
But degradation by itself is a weak requirement to meet; the output could degrade without
indicating the sort of use we want to demonstrate. In general, in order for a degradation to
count as ‘expected’, it must plausibly relate to the property Z we intervened on using the
ablate intervention, and the way in which it degrades must reflect the intended effect of
the ablate intervention (increasing uncertainty about the property). With respect to this
second aspect, an anonymous referee gives the following example:

20Thanks to an anonymous referee for suggesting this way of thinking about the issue.

17



Consider an autoregressive model that needs to predict what verb follows “the
man with the children”. To conclude that the model encodes whether a verb’s
subject is singular or plural, we should perform an ablation that results in the
model doing worse at producing the right inflection for the verb (e.g. before
ablation, it puts 99% probability on “is” and 1% on “are”, after ablation it
puts 50% on each). It would not be evidence of encoding singular/plural if the
distribution instead changed to 99% “was”, 1% “were”, even if this distribution
now resulted in degraded performance.

The ‘in an expected way’ clause is supposed to make sense of this intuition. Note that the
sort of degradation expected is also dependent on the inputs s themselves. Depending on
the task D and property Z, there will be many inputs s ∈ D for which we know property
Z is not relevant for system performance (even if we think Z is represented by the whole
pattern of activations h(D)); on these inputs, we do not expect any degradation when we
perform an ablate intervention. Part of establishing whether Use Operationalised is satisfied
is identifying which inputs s ∈ D we should expect the system’s performance to degrade on
after we perform an ablate intervention on property Z.21

What should we make of cases in which an output degrades, but in an unexpected way
(for example, on an input s for which we knew the property could not possibly be relevant)?
I suggest that these cases provide evidence that the purported ablate intervention did not
actually meet the control condition (i.e. was not actually an ablate intervention); the
intervention on property Z has interfered with the information h(s) bears about some other
property Y ̸= Z. Indeed, inputs like this provide a way of testing whether an intervention
satisfies the control condition.

The referee’s example touches on another point, related to the degree of degradation.
Ceteris paribus, the greater the degree of degradation (as measured by the task’s goodness
measure), the stronger the evidence that Use Operationalised is satisfied; the point at which
we allow that Use Operationalised is satisfied will depend on our wider explanatory interests.
Note that the ‘goodness’ of the original output S(s) is also relevant here; if we consider inputs
on which the model failed to perform the task pre-intervention, then it’s less clear how much
degradation we should expect.22

3.3 Operationalising the Misrepresentation Criterion

In this subsection, I operationalise Misrepresentation. As above, I do this via an intervention
characterised by the predictions of probes.

Recall that Misrepresentation was defined as follows:

Definition 3 (Misrepresentation). It should be possible (at least in principle) for the acti-
vation vector h(s) to misrepresent Z with respect to an input s ∈ D.

It’s important to distinguish a misrepresentation of an input’s property from the mere non-
existence of a representation of the property. A pattern of activations h(D) does not represent
Z when h(D) bears no correlational information about Z (i.e. when Information fails to be

21As the referee points out, this makes sense of work on targeted evaluations, such as Wilcox et al. (2018).
22Thanks to another referee for discussion of this point.
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satisfied). By contrast, what happens in a case of misrepresentation is that h(D) does
bear correlational information about Z, but the activation vector h(s) is interpreted by the
downstream system as saying that s has a label distribution distinct from the true label
distribution pZ(s).

This suggests a step towards operationalising what it means for the activation vector
h(s) to misrepresent property Z. h(s) counts as misrepresenting property Z of input s just
when the following counterfactual holds: if we intervene on h(s) to (i) make it such that
the interpretation of the information h(s) bears about Z by the downstream system SDec is
closer to the true label distribution pZ(s) but (ii) leaving it otherwise unchanged, then the
system’s output S(s) improves (as measured by the task’s goodness measure).

The second condition (leaving the activation vector ‘otherwise unchanged’) should be
familiar from the previous section: it is just the control condition.

The first condition is harder to think about though. What does it actually mean for the
interpretation of the information h(s) bears about Z by the downstream system to move
closer to the true label distribution?

3.3.1 Changing the Downstream System’s Interpretation of the Label Distri-
bution

In discussing what it means to change the downstream system’s ‘interpretation’ of the infor-
mation an activation vector bears about a property, we encounter the problem in the previous
section, namely that the downstream system never explicitly interprets the information h(s)
bears about Z.

Before, I suggested resolving this using the predictions of probes for the property. Specif-
ically, I suggested that we could see the information h(s) bears about Z being reduced
relative to the downstream system if it was reduced relative to every successful proxy for the
downstream system. In this section, I employ the same basic insight, but with a different
target (specifying an interpretation, rather than reducing information). The downstream
system counts as interpreting an activation vector h(s) as saying that s has a certain prop-
erty label distribution qZ(s) ∈ P(Z) just in case every successful proxy for the downstream
system predicts qZ(s) from h(s). This suggests a way of understanding what it means for
an intervention to modify the information h(s) bears about Z relative to the downstream
system, namely the modify condition:

Definition 13 (Modify condition). An intervention a : Rd → Rd on activation vector h(s)
satisfies the modify condition for property Z and label distribution qZ(s) ∈ P(Z) iff for all
successful gZ ∈ GZ,SDec

:

DKL(qZ(s) || gZ(a(h(s)))) < DKL(qZ(s) || gZ(h(s)))

where DKL denotes the Kullback–Leibler divergence (Cover and Thomas 2006).

Intuitively, an intervention on activation vector h(s) satisfies the modify condition for prop-
erty Z and distribution qZ(s) if it moves the predictions of successful proxies for the down-
stream system towards the distribution qZ(s), where ‘moves towards’ is operationalised using
the Kullback–Leibler divergence between the distribution qZ(s) and the proxy’s predictions.
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3.3.2 The modify and correct Interventions

Having defined the modify condition, we can characterise the modify intervention:

Definition 14 (modify Intervention). An intervention a : Rd → Rd on activation vector
h(s) is a modify intervention for property Z and label distribution qZ(s) iff:

• a satisfies the modify condition for property Z and label distribution qZ(s).

• a satisfies the control condition for all properties Y ̸= Z.

So the modify intervention for property Z and label distribution qZ(s) pushes the predictions
of proxies for the downstream system towards qZ(s), whilst preserving the predictions of
proxies on other properties.

Thinking of a representational explanation as an algorithm for manipulating high-level
properties of inputs to derive the output S(s) (something like Marr’s algorithmic level of
description, or the sense of explanation in Shea 2018; one way of making this more formal is
to treat an explanation as a high-level causal model which ‘abstracts’ the computation the
system performs (Geiger, Cases, et al. 2019, Geiger, Lu, et al. 2021)), we can use the modify

intervention to test explanations. Given a modify intervention for property Z, explanations
make different predictions about how outputs S(s) (and the predictions of probes gY for
properties Y ̸= Z at later layers) should change, which can then be evaluated.23

The correct intervention is an important species of modify intervention:

Definition 15 (correct Intervention). An intervention a : Rd → Rd on activation vector
h(s) is a correct intervention for property Z iff it is a modify intervention for property Z
and the true label distribution pZ(s).

The correct intervention operationalises the idea of ‘correcting’ the information that an
activation vector bears about a property whilst leaving information about other properties
unchanged (relative to the downstream system SDec). This suggests the following opera-
tionalisation of Misrepresentation:

Definition 16 (Misrepresentation Operationalised). h(s) misrepresents Z iff applying a
correct intervention to activation vector h(s) improves output S(s) (as measured by the
task’s goodness measure on outputs) in an expected way.

Note that, as above, the ‘expected way’ clause ensures that the behavioural effects are related
to the performance of the task D; the improvement must plausibly relate to the property in-
tervened on. In the previous subsection, I suggested focusing on inputs on which the system
succeeds pre-intervention to evaluate Use Operationalised; when evaluating Misrepresenta-
tion Operationalised, by contrast, we should focus on the system’s failures, cases in which
we would expect to see improvement post-intervention if the system were misrepresenting
the property.24

Consider Example 1 again. We were considering the claim that BERT mistakenly judges
the following prompt s as ungrammatical

23I intend this idea to be compatible with the causal abstraction framework (Geiger, Lu, et al. 2021);
indeed, it can be seen as a low-cost aid in the search for causal abstractions.

24Again, thanks to an anonymous referee for discussion here.

20



John danced waltzes across the room.

because it misrepresents ‘waltzes’ as a verb. For each component h, we can test the expla-
nation in terms of misrepresentation as follows.

Let Z be a set of PoS tags. Here, the true label distribution pZ(s) is a degenerate
distribution, which assigns probability 1 to label noun and probability 0 to other labels.
We apply a correct intervention for property Z to activation vector h(s) and observe the
effect on model behaviour. In order for the explanation in terms of h(s) misrepresenting the
PoS tag of ‘waltzes’ to hold, BERT must assign a higher probability to the prompt being
grammatical after performing the intervention.

4 Discussion

Just as we can evaluate an operationalisation of a concept by how well it captures important
features of the concept, we can also evaluate it by its empirical plausibility and usefulness.
To this end, one central aim of this paper is to provide a common framework within which
to compare and evaluate experimental evidence for making representational claims in con-
temporary NLP.

My operationalisation is idealised in many respects, which I discuss in Section 4.1. My
hope is that it be thought of as an idealised experimental target, which different actual
experiments will approximate to varying degrees; the degree of approximation serves as a
metric for assessing an experiment’s representational conclusions.25 In Sections 4.2 and 4.3, I
attempt to demonstrate this idea, showing that the framework I introduce can make sense of
and assess several strands of empirical interpretability work, as well as suggesting directions
for empirical research. Note that in this section I assume the system under discussion is an
autoregressive transformer.

4.1 Approximation

In this subsection, I outline some idealisations involved in my operationalisation, sketching
how experiments could approximate them. Since this approximation comes in degrees (along
several dimensions), this makes the support a particular experiment provides for a represen-
tational claim a matter of degree; each dimension provides an axis along which experimental
evidence can be stronger or weaker. The threshold for when we want to call something a
representation (that is, for when we judge the experimental evidence sufficient to justify the
representational claim) will depend on our explanatory interests.

4.1.1 How to Approximate ‘all’ Successful Proxies?

It’s important that the ablate, control and modify conditions are defined relative to every
way the downstream system SDec could plausibly interpret information about the properties.
This is so we don’t end up (in the case of the ablate and modify conditions) with ‘false
negatives’, cases where the intervention fails to affect system behaviour because it doesn’t

25In other words, the idealisations have a normative component (Colyvan 2013).
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affect the way the downstream system interprets the information about a property, or (in
the case of the control condition) ‘false positives’, cases where the intervention affects
system behaviour via affecting the system’s interaction with information about an unrelated
property. But how could an experiment ever verify that a condition is met for all successful
probes g ∈ GZ,SDec

?
Here’s a general proposal for an approximation aimed at this dimension of idealisation.

In general, given constraints imposed by GZ,SDec
, we should train multiple successful probes

g ∈ GZ,SDec
for each property (the property Z we are intervening on and the properties

Y ̸= Z we want to control for); the ablate, control and modify conditions should be
satisfied relative to all of these probes. We treat these probes as samples from the class of
successful proxies for the downstream system; when we have taken sufficiently many samples,
we count ourselves as having verified the condition holds (see my discussion of Iterative Null
Space Projection (Ravfogel, Elazar, et al. 2020) in Section 4.3.2). Note that not only is this
standard practice in machine learning (c.f. cross-validation, where some finite number of
different partitions of the task D into training and test sets is used to draw an inference
about all possible partitions; Bishop 2006), training additional probes is feasible in practice,
since additional probes do not require additional forward passes of the larger system S.

Another general technique for approximating this dimension of idealisation comes from
Tucker, Eisape, et al. (2022), who propose a novel method for training probes, which works
by zero-ing out a portion of randomly selected neurons from the input activation vector (note:
this is not standard dropout, in which intermediate neurons are zero-ed out during training;
Goodfellow, Bengio, and Courville 2016) h(s) during each training step of probes gZ . The
idea is that these ‘dropout probes’ are more likely to detect all the ways in which information
about a property Z is encoded in h(D), allowing them to serve as better approximations for
the conditions I’ve introduced (in my framework, we can see this as suggesting that a single
probe can approximate the behaviour of ‘all’ gZ ∈ GZ,SDec

).

4.1.2 How to Approximate the control Condition?

In order to satisfy the control condition, an intervention must preserve the predictions of
probes for all properties Y ̸= Z. There are two questions this raises:

• First, how should we circumscribe the class of properties Y ̸= Z which we want to
control for, given that we can’t train probes for every property?

• Second, given that properties share a common representational vehicle h(D), is it ac-
tually possible to change information about one property without affecting predictions
about others? (This question is especially pressing when properties are correlated.)

Note the first question (how to identify possible ‘confounders’?) arises at some stage in the
process for any attempt to evaluate counterfactuals about models by intervening on their
activations. In all cases, then, we’ll pick some finite subset of possible properties to control
for. One benefit of the framework I’ve introduced is that, given a pattern of activations
h(D) and a property Y , it’s cheap to probe for Y , meaning we can be liberal with the set of
properties we control for (liberalism seems sensible here; there is no problem with controlling
for redundant properties, whereas we don’t want to miss relevant properties). In general, I
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take it that the set of properties we control for will depend on the sorts of representational
explanations we want to evaluate (in other words, we will want to control for properties
which feature in some plausible explanation of system behaviour); these explanations could
come from domain-specific experts or – as is increasingly common – from the model itself, via
appropriate prompting. Some properties we want to control for will doubtless be quite ‘alien’,
not reducible to existing concepts at a first glance.26 Various techniques exist for searching
for these properties, via investigation of the geometry of the activation space (Chung and
Abbott 2021) or automated identification of shared features of sets of inputs which excite
particular neurons (Bills et al. 2023).

Having selected a finite set of properties to control for, there are also ways of approximat-
ing controlling for unconsidered properties, (e.g.) via appropriate regularisation (choosing
interventions a which satisfy the ablate or modify conditions with the smallest possible
distance between a(h(s)) and h(s) on some metric).

To respond to the second question, it’s true that we should expect any change to the
vehicle h(D) to affect the information h(D) bears about properties Y ̸= Z (this is why
the requirement in the control condition is only that the predictions of probes gY be ap-
proximately unchanged); the degree of divergence is a dimension along which experimental
evidence for claims about determinate representational content will come in degrees (presum-
ably, we will care about controlling for some properties Y more than others). That said, one
advantage of my operationalisation is that the ablate and modify conditions are relatively
undemanding; they can be satisfied with small changes to the activation vector, implying
that satisfying the control condition might not be as difficult as it appears. Empirical work
could investigate this.

When assessing how much violation of the control condition to allow, one technique
is to baseline the effect a has on probe gY ’s predictions against random interventions with
the same property as a (for example, which move h(s) the same distance as measured by
some metric). This idea makes sense of work by Elazar et al. (2020), who compare their
proposed linear projection intervention to a baseline intervention into a random subspace
with the same dimension as the subspace projected into by the original intervention. Indeed,
comparing changes in predictions of successful probes for properties Y1 and Y2 in the face of
random interventions on h(s) is a way of testing how correlated the information that h(D)
bears about each property is. Another experimental technique in the NLP literature which
could mitigate the problem of correlations between properties is to find a subset of inputs
s ∈ D in which the properties are de-confounded, and perform intervention experiments on
this subset of the data (McCoy, Pavlick, and Linzen 2019); thanks to an anonymous referee
for this suggestion.

Finally, to the extent that properties are correlated in the training data, there may be
cases where we say that failure to be able to control for some property Y ̸= Z when inter-
vening on the information about Z (and vice-versa) shows that it is genuinely indeterminate
whether h(D) represents Y or Z; this sort of indeterminacy is familiar to philosophers.

26Thanks to an anonymous referee for discussion on this point.
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4.1.3 How to Approximate Downstream System Behaviour?

My operationalisation of Use and Misrepresentation relies on performing an intervention and
measuring changes to system outputs. This seems reasonable if the neurons in h are close
to the system’s output layer, but one might worry if h is taken from an early layer of the
model that there is simply ‘too much going on’ between h(s) and S(s) to interpret the result
of an intervention (there could be back-up mechanisms in place which ‘wash out’ the effect
of the intervention, or the intervention could move the activation vector h(s) too far away
from its ‘usual’ values h(D) such that it generates strange system behaviour, an effect which
compounds the more layers the downstream system has).

This worry generalises to any method which intervenes on neurons in an intermediate
layer, including popular techniques like causal mediation analysis (Vig et al. 2020) or rank
one model editing (Meng et al. 2023), but it’s worth saying something about how it could
be solved in practice.

One suggestion could be to employ a perspective from the empirical literature (the ‘logit
lens’; see Belrose et al. 2023 for a refinement on this, the ‘tuned lens’) which treats each
layer’s output as though it was the system’s pre-unembedding output, mapping it to a
probability distribution over tokens using the model’s own unembedding layer (Vaswani et al.
2017); this perspective has empirical support, and sees the model as progressively refining its
prediction at each layer. Rather than the whole system’s behaviour, then, we could evaluate
interventions by how they change the predictions of each downstream layer in turn. In
effect, then, this proposal would treat each adjacent layer as though it were the downstream
system (refining the set of proxies accordingly) and assessing Use and Misrepresentation
Operationalised according to the intervention effect on the next layer’s predictions. This
could help us understand the role intermediate representations play in the system. Empirical
work could investigate this.

4.2 Probe Selection

As observed above, there is a large literature on probe selection and baselining. This litera-
ture is motivated by the insight that – since activations are (relatively) lossless encodings of
inputs (Pimentel, Valvoda, et al. 2020) – an overly expressive probe gives us little insight,
since the probe may just ‘learn the task’ (Hewitt and Liang 2019). In my framework, we
can identify two different roles for this literature.

4.2.1 Probes as Proxies

I have said relatively little about GZ,SDec
, the set of plausible proxies for how the downstream

system could decode the information h(D) bears about Z, apart from that it should be
constrained by various properties of the downstream system SDec, such as its architecture.
Probe selection can be seen exactly as examining what it takes to be a plausible proxy for
SDec. A complete discussion of the sorts of constraints the probe selection literature places on
GZ,SDec

is left to future work, but I will give brief discussion of one aspect of probe selection
which shows the value of framing probe selection in this way.

It is widely agreed that it is important for probes to generalise, rather than memorise
(earlier, I made the same point in arguing that successful probes satisfy Shea’s exploitability
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conditions). This is the reason why we train probes on a proper subset of h(D), rather than
the whole pattern of activations. Various techniques exist for encouraging and measuring
generalisation (including standard regularisation techniques, such as dropout (Srivastava et
al. 2014), restricting probe training data (Zhang and S. Bowman 2018), and reporting probe
‘description length’ (Voita and Titov 2020; see their ‘online code’) and ‘Bayesian mutual
information’ (Pimentel and Cotterell 2021)). One popular baseline in this vein is ‘Control
Tasks’ (Hewitt and Liang 2019), in which the gold labels z ∈ Z for each input type in
the probe’s training and test data are randomly permuted, ensuring that a probe could
only achieve success through memorisation (since it could not do better than random for
unseen input types). Probes are selected only if no probe with the same architecture and
hyperparameters is capable of memorisation (as measured by success on the control task).

In my framework, we can explain this work by seeing it as trying to refine GZ,SDec
.

Specifically, the assumption is that the downstream system couldn’t possibly be interacting
with the information h(D) bears about Z through memorisation, implying the only probes
we should treat as proxies are those which don’t possibly memorise. By proposing techniques
for measuring the degree of probe generalisation, this work is implicitly reducing the space
of proxies for the downstream system.

4.2.2 Probes as Locators of Information

Much of this paper has been concerned with operationalising the notion of a pattern of
activations h(D) representing a property of an input. I haven’t discussed, though, how one
should select which component h to perform experiments on.

One option is to perform experiments on every intermediate activation of the model;
indeed, many experiments in the NLP literature do just this. Once experiments start involv-
ing interventions on activations, though, (especially those involving multiple properties) this
becomes infeasible. How should we select parts of the model for more focused evaluation? In
other words, which parts of the model are most appropriate to make representational claims
about?

Once again, contemporary NLP practice is a guide here; we can use probes to help us
choose candidate vehicles for representational claims. One will be able to train sufficiently
expressive probes on many of the model’s intermediate activations, but by more carefully
selecting probes (specifically, by constraining probes’ expressive power), one often ends up
with a situation in which one can only train successful probes in some sequence of the model’s
intermediate layers.27 This suggests – as is recognised in NLP – that the right part of the
model to make representational claims about is in these intermediate layers, since information
is more ‘easily extractable’ at these layers (Pimentel, Valvoda, et al. 2020). Empirical work
could test this intuition, using the framework I’ve introduced to operationalise representation.

Here we have a situation, then, where probe selection plays another role, namely to help
locate parts of the model about which to make representational claims. It’s important to
emphasise that this is distinct from the role that probe selection plays in constraining proxies
for the downstream system (i.e. in refining GZ,SDec

, on my picture). The two roles often go
hand in hand, but are separable; for example, we might want to use a low-rank linear probe

27For example, successful probes are trained at k + 1 layers l, l + 1, ..., l + k, and probes trained at layers
< l or > l+k are unsuccessful, for some l, k; exactly this picture can be found in (e.g.) Tenney et al. (2019).
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to draw attention to layers of the model in which information is most easily extractable, even
though we believe that the downstream system could be interacting with the information
non-linearly (i.e. that GZ,SDec

could contain probes with non-linearities). I take it as a virtue
of the framework I’ve introduced that it can distinguish between these roles.

4.3 Causal Interventions on Model Activations

So far, I’ve said little about how we might find ablate or modify interventions in practice.
In this subsection, I outline examples of interventions on model activations from the NLP
literature, showing that the idealised interventions I’ve introduced provide a useful framework
for evaluating and comparing this extant work.

4.3.1 Input-Based Methods

The first techniques I discuss are input-based methods, such as causal mediation analysis
(Vig et al. 2020; the most basic sort of ‘interchange intervention’ also has this form (Geiger,
Lu, et al. 2021)). The idea is to construct interventions on h(s) for property Z as follows:
find inputs s and s′ which differ with respect to property Z (e.g. pZ(s) ̸= pZ(s′)) but which
agree on properties Y ̸= Z (so pY (s) = pY (s′) for all Y ̸= Z). We then define the intervention

a : h(s) 7→ h(s′)

So we substitute in the activation vector h(s′) (generated by input s′) for the activation vector
h(s) on input s, and see how this changes the system’s behaviour. Using my framework,
under the assumption that the two inputs vary only with respect to property Z, we appear
to be guaranteed to have a modify intervention for property Z and distribution pZ(s′).

Of course, input-based methods by themselves are limited to toy linguistic settings, where
examples which differ only with respect to a single property are readily available (such as the
gendered pronoun co-reference case in Vig et al. 2020). These settings constitute valuable
domains for testing more general intervention methods (and in these settings, input-based
methods may provide significant insight into how to define more general interventions, and
where in the model to intervene), but it’s less clear how to construct examples which differ
only with respect to a single property in more general cases.

Even setting this limitation aside, there’s a philosophical problem with using input-based
methods to ground representational claims, which my framework can diagnose. In order for
an input-based intervention to count as satisfying the modify condition for property Z and
distribution pZ(s′), we have to already know that h(s′) does not misrepresent property Z
of input s′. Similarly, in order for an input-based intervention to count as satisfying the
control condition, we have to accept that h(s′) represents properties Y ̸= Z in the same
way as h(s). This may be a plausible assumption (especially when the model gives the
expected output S(s′)), but nothing about the inputs themselves guarantees this.

Indeed, one of the main motivations for explaining neural models is precisely failures of
robustness, often cases where inputs are indistinguishable to humans but receive different
model outputs; one might think this is exactly the problem that an account of representation
is supposed to solve. For example, how would an input-based method make sense of a case
of misrepresentation, such as in Example 1? In a case of misrepresentation, (I’ve argued
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that) we want something like the following counterfactual to be true: ‘if the component had
represented the property correctly, the system’s output would have been better’. In the case
of input-based methods, though, we get the antecedent ‘if the component had represented
as it did in a different case’, which isn’t necessarily the same.

4.3.2 Iterative Null Space Projection

The second technique I discuss is ‘Iterative Null Space Projection’ (INLP; Ravfogel, Elazar,
et al. 2020, Elazar et al. 2020, Lasri et al. (2022)). INLP works by training a linear probe

gZ = softmax ◦WgZ

(where WgZ is a linear transformation) to predict a property Z from h(D). For each input
s, we intervene on h(s) to project it into the kernel of the linear transformation WgZ . I

write this projection intervention as PKer(WgZ
). A new probe g

(1)
Z is trained to predict Z

from PKer(WgZ
)(h(D)), and the process is repeated (this is the part of the technique which

is ‘iterative’) until convergence. The composition of these projection operations ‘a’ is then
applied to h(s).

In the framework I’ve introduced, we can see INLP as approximating the ablate inter-
vention, since it purports to reduce the information h(s) bears about a property Z for every
decoder of the information. Does it approximate the ablate intervention well enough to be
used in Use Operationalised? There are two points to make.

First, since INLP is only defined relative to linear probes, it implicitly sets GZ,SDec
to

include only linear probes (it adopts the Linearity Constraint). To the extent that we think
that some plausible proxies for the downstream system are non-linear, it will fail to satisfy
even the ablate condition (indeed, Ravfogel, Elazar, et al. (2020) show that a non-linear
probe can still be successfully trained to predict pZ(s) from a(h(s))).

Second, even assuming the the Linearity Constraint, there’s no reason to think that
INLP satisfies the control condition. To see this, consider Example 1 once again. Suppose
that probe gZ decodes information about the PoS tag of ‘waltzes’ and probe gY decodes
information about the PoS tag of ‘dances’. Even if gY is also linear, applying PKer(gZ) to
activation vector h(s) can affect the prediction of gY on h(s), namely when the range of
the adjoint (the ‘rowspace’) of the linear map WgZ non-trivially intersects the range of the
adjoint of WgY (Axler 1997; this is of course guaranteed when the number of properties
exceeds the activation vector dimension d). This is because there is a sense in which INLP
is overly strong, which can be captured by my framework; it ensures not just that

H(gZ(PKer(gZ)(h(s)))) > H(gZ(h(s)))

as required by the ablate condition, but that the resulting uncertainty is maximal, since

gZ(PKer(gZ)(h(s)))

will be uniform.
Note that even in those cases in which INLP fails to satisfy the control condition,

it might still be convenient to use INLP to approximate the ablate intervention, since it
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does give (coarse-grained) insight of the sort relevant for assessing Use Operationalised.
Furthermore, by better understanding the activation subspace in which interventions make
a relevant difference to downstream system behaviour, we can design more fine-grained
interventions (the ‘AlterRep’ method in Ravfogel, Prasad, et al. 2021 is an example of
exactly this, designing an approximation of the modify intervention for a binary property
Z).

4.3.3 Gradient-based Methods

The final technique I discuss intervenes on h(s) using the gradient of the probe’s prediction
loss with respect to the input activation vector (Giulianelli et al. 2018, Tucker, Qian, and
Levy 2021, Tucker, Eisape, et al. 2022). Specifically, gradient-based methods compute

∇h(s)LCE(pZ(s), gZ(h(s)))

and update h(s) using stochastic gradient descent (this process is repeated until some stop-
ping condition obtains). So the update rule is as follows

h(k+1)(s)← h(k)(s)− α∇h(s)LCE(pZ(s), gZ(h(s)))

where α is the learning rate (a hyperparameter).
As used in the literature, pZ(s) is taken to be degenerate, and a gradient-based method

is best thought of as an approximation of the correct intervention for property Z (albeit
one using only a single probe gZ ∈ GZ,SDec

). But it’s worth observing that we could perform
the gradient update with arbitrary target distributions, approximating arbitrary modify

interventions. Furthermore, there is no requirement the target distribution be degenerate
(to my knowledge, this possibility has not been explored in the literature); by setting the
target distribution as Unif(Z) (the discrete uniform distribution over Z), we could satisfy
the ablate condition.

Do gradient-based interventions satisfy the control condition? This depends on whether
updating h(s) affects the information h(s) bears about properties Y ̸= Z. This is largely an
empirical question, but there is clearly nothing that prevents a gradient-based intervention
from significantly affecting the information h(s) bears about properties Y ̸= Z.

Can we do better? If we look at the definition of the control condition we note that
what we want is to preserve the predictions of probes gY for Y ̸= Z, even as we intervene on
h(s) to change the predictions of gZ . With a gradient-based method, there’s a natural way
to do this, namely build this extra condition directly into our loss term. For each input s,
I write the initial (pre-update) activation vector h(s) as h(0)(s). Then an example of a loss
term for target label p(s) with respect to g, g1, ..., gn after k gradient-based updates to h(s)
could be:

L(h(k)(s)) = LCE(pZ(s), gZ(h(k)(s)))+∑
Y ̸=Z

λYLCE(gY (h(0)(s)), gY (h(k)(s)))

where λY is a hyperparameter weighting the relative importance of property Y . After the
first update to h(s), these extra loss terms will work to penalise updates to h(s) which shift
the predictions the probes gY for properties Y ̸= Z. So we can see these extra loss terms as
capturing exactly the way the control condition was defined.
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5 Conclusion and Future Work

This paper has operationalised a notion of representation suitable for contemporary NLP
practice (and deep learning more generally).

By showing that a philosophically-informed notion of representation can be embedded
into an NLP setting, I hope to have provided philosophers of cognitive science a gateway for
applying well-developed theories of representation to contemporary debates in deep learning,
as well as assisting them in using examples from contemporary NLP to compare theories
of representation. As emphasised, the criteria I’ve operationalised do not by themselves
constitute a full theory of representation (for example, they say little about how to fix
determinacy of content). There is rich philosophical work to be done here, some of which
was gestured at in Section 2.1; my intention is that this paper gives philosophers a toolkit
for translating fuller accounts of representation into a novel empirical setting, where they
can help make better sense of machine learning practice.

Furthermore, as evidenced by my discussion of the grounding problem, philosophers
are increasingly interested in questions in the development of AI, such as those related to
understanding, explanation and agency. Not only do answers to many of these questions
depend on claims about representation, but there is also consensus among philosophers that
empirical work (especially interpretability work) should bear upon them; by organising this
work and drawing out its philosophical implications, I hope that readers of the paper will
be better-placed to engage with these issues. Finally, to the extent that ‘what the model
represents’ matters to downstream normative questions (as in Example 2), this work should
also be of interest to AI ethicists.

I anticipate that many of the more technical aspects of my proposal will be familiar to
NLPers. Indeed, in Section 4 I argued that something like this account is implicit in much
contemporary interpretability work. My hope is that by presenting an explicit, unified frame-
work for thinking about representation in NLP, I provide deep learning practitioners (and
empirically-minded philosophers) with a useful idealisation against which to compare and
assess a plethora of current interpretability techniques (especially in the probing literature),
as evidenced by the discussion in Section 4. I take some concrete contributions to be:

• outlining and operationalising a notion of misrepresentation, which has received little
explicit attention in the NLP literature;

• disambiguating between two sorts of effects interventions on activations can have with
respect to how the downstream system interacts with information about a property;

• providing a common benchmark for comparing a large variety of distinct work for
intervening on model activations;

• disambiguating between at least two roles for probe selection, and providing a way of
understanding how work on probe selection informs more causal methods, via refine-
ment of GZ,SDec

;

• suggesting (to my knowledge) a novel method for controlling for confounding proper-
ties, namely by preserving the predictions of probes for these confounders, and showing
that this can be accommodated by a gradient-based approach.

29



More generally, I hope that this paper demonstrates the role that philosophers of science can
play in contributing to debates in the development of AI, many of which – as the use of AI
proliferates – have implications for important normative questions in society at large.
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