
REFERENTIAL AND SUBSTANTIAL LOGICS

TOM HARVEY

Abstract. This article develops a logic with two fundamental components: ob-
jects and labels. We compare the properties of the two universes that can be
constructed from these building blocks and show how they naturally resolve a class
of linguistic paradoxes. We conclude with a application to modal logics involving
context fields.

1. Definitions

Consider an interpretation (O,L, []1, 〈〉1). O is a set of objects and L is a set of
labels. We also have two operators:

For l ∈ L and o ∈ O,

[]1 : L→ P (O), [l]1 = {the set of all o ∈ O referred to by l}

〈〉1 : O → P (L), 〈o〉1 = {the set of all l ∈ L that refers to o}.

From these we define the following:

For m ∈M ⊆ L, p ∈ P ⊆ O

[] : P (L)→ P (O), [M ] =
⋃

m∈M
[m]1,

〈〉 : P (O)→ P (L), 〈P 〉 =
⋃
p∈P
〈p〉1.

where P (X) is the powerset (set of all subsets) of X, and extend the definition so that

[l] = [{l}] and

〈o〉 = 〈{o}〉.

2. Constructions

The universe in which we wish to reason can be constructed in two ways:

A referential construction is obtained by starting with the set L and then defining O
as follows:
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(1) O = [L]

i.e. O consists of anything to which a label refers. We will refer to such a construc-
tion as R. A substantial construction is obtained by starting with the set O and then
defining L as follows:

(2) L = 〈O〉

i.e. L consists of anything referring to an object. We will refer to such a con-
struction as S. Where necessary we will delineate specific labels with "" and specific
objects with ''.

3. Properties common to R and S

For what follows, l ∈ L, o ∈ O. The following three properties hold for both R and
S:

(3) o ∈ [l] ⇐⇒ l ∈ 〈o〉

Proof. =⇒ : Suppose l /∈ 〈o〉. Then l is not in the set of objects referring to o. So o
is not in the set of objects referred to by l, i.e. o /∈ [l], a contradiction.
⇐= : Suppose o /∈ [l]. Then o is not in the set of objects referred to by l. So l is not
in the set of objects referring to o, i.e. l /∈ 〈o〉, a contradiction. �

(4) l ∈ 〈[l]〉

Proof. l /∈ 〈[l]〉 ⇐⇒ [l] /∈ [l] by (3), a contradiction. �

(5) o ∈ [〈o〉]

Proof. o /∈ [〈o〉] ⇐⇒ 〈o〉 /∈ 〈o〉 by (3), a contradiction. �

For example consider o = ′ � ′. Now 〈o〉 contains labels like "diamond" and
"lozenge", which are specific selectors, but also contains the general selector "quadri-
lateral", which refers to many other objects as well, such as ′�′, etc. So [〈o〉] is much
larger than the single element o.

As another example take l = "a rock". This can be a label for any individual rock,
each of which may have many other specific labels, making 〈[l]〉 much larger than the
single element l. The label l is acting as a general selector.
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4. Additional properties of R

(6) L ⊆ O

In R, every label can be referred to by another label e.g. if l ∈ L, x ="the label l",
then l ∈ [x], so by (1), l ∈ O.

Let us investigate [x], where

x ="An object to which no label refers".

Assume o is an object to which no label refers. Then 〈o〉 = ∅. But o ∈ [x], so
x ∈ 〈o〉 by (3). This is a contradiction, so o /∈ O by (1) and [x] = ∅.

Now consider

y ="A label that does not refer to any object"

We have just shown that x ∈ [y]. So there are redundant labels in R, but no in-
accessible objects. Call the set of redundant labels L∅ = L \ 〈O〉.

5. Additional properties of S

(7) L 6⊆ O

Whilst O may be declared to contain L, this is not a fundamental property for
general O and we cannot a priori assume this. We will instead assume the opposite,
(7). This means labels cannot be referred to in a sentence in S.

Consider
y ="A label that does not refer to any object"

Assume y ∈ L. Then [y] 6= ∅ so there exists some z ∈ [y] such that [z] = ∅.
But z ∈ 〈O〉 by (2) =⇒ [z] 6= ∅, contradiction. So y /∈ L and there are no redundant
labels in S.

Now consider [x], where

x ="an object to which no label refers"

Assume x ∈ L. By (2), [x] 6= ∅ so there exists some o ∈ [x] and x ∈ 〈o〉 by (3).
But o ∈ [x] =⇒ 〈o〉 = ∅, a contradiction. So x /∈ L.
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Call the set of inaccessible objects O∅ = O \ [L].

Open question: Is it possible to say anything about O∅ at all? Does O∅ = ∅?

One thing we can try is referring to the set O∅:

X = "The set of objects to which no label refers"

An attempted investigation might go as follows:

Assume o1, o2, o3, · · · is an enumeration of all objects to which no label refers., i.e.
∀oi, 〈oi〉 = ∅.

So [X] = ∪oi.

But X ∈ 〈[X]〉 and (4) gives

X ∈ 〈[X]〉 = 〈∪oi〉 = ∪〈oi〉1 (by the definition of 〈〉)

Now ∀oi, 〈oi〉 = ∅ =⇒ 〈{oi}〉 = ∪〈oi〉1 = 〈oi〉1 = ∅,

So ∪〈oi〉1 = ∪∅ = ∅, a contradiction.

The problem is that we cannot enumerate the objects oi in this way. Their defining
property is that they cannot be directly referred to, so we gain no real insight from
this approach.

6. Limit points of the [] and 〈〉 operators

Use the following notation to indicate repeated application of the [] and 〈〉 opera-
tors:

[· · · [[l]]· · · ] n times = [l]n

〈· · · 〈〈o〉〉 · · · 〉ntimes = 〈o〉n

Define the limit of the operators [], 〈〉 as

[l]∞ = limn→∞[l]n

〈o〉∞ = limn→∞〈o〉n
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If an application of the [] or 〈〉 operators is undefined, for example [o] where
o ∈ P (O \ L), then the limit has the value of its input (o in this case).

For a set X, we will call [X]∞ \X the object boundary of X, and denote it ∂[]X.

For a set X, we will call 〈X〉∞ \X the label boundary of X, and denote it ∂〈〉X.

7. General properties of limit points

Since [[l]∞]∞ = [l]∞, ∂[](∂[]X) = [∂[]X]∞ \ ∂[]X = ∂[]X \ ∂[]X = ∅.

Since 〈〈l〉∞〉∞ = 〈l〉∞, ∂〈〉(∂〈〉X) = 〈∂〈〉X〉∞ \ ∂〈〉X = ∂〈〉X \ ∂〈〉X = ∅.

By (3), [l]∞ = 〈[l]∞〉 and 〈l〉∞ = [〈l〉∞]

8. Limit points in R

There are three possibilities for [l]∞:

(1) [l]m ⊆ [l]k where k ≤ m, which would result in recursion. For example ["this
label"]m ="this label" for all m. [l]∞ can be defined as the set

⋃
i∈[k,m]

[l]i.

(2) [l]m ∈ P (O \L). In this case the sequence terminates since [l]m+1 is undefined
and the limit is [l]m.

(3) [l]∞ /∈ P (O). For example l ="1 the label whose first word is a number one
greater than this label’s first word", yields the infinite sequence [l]m ="m the
label whose first word is a number one greater than this label’s first word",
with "m" in the label replaced by the index m as a number.

The set of these type 3 limits is ∂[]O and [L]∞ = [O]∞. ∂[]L = ∂[]O∪ (O \L). Note
that the elements of L∅ map to ∅ under [], which is absorbed by the union operation
when calculating [O]∞ and [L]∞.

In contrast, there is only one possibility for 〈o〉∞:

All elements of L have type 3 limits, 〈o〉∞ /∈ P (O), by the example given for (6), and
the elements of O \L map to L under 〈〉. So 〈o〉∞ are all of type 3 and 〈O〉∞ ⊂ 〈L〉∞.
〈O〉∞ 6= 〈L〉∞ since we have previously shown in §4 that redundant labels can exist
in L. ∂〈〉L = ∂〈〉O ∪ 〈L∅〉∞.
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Figure 1. The boundary of ∂〈〉O in R is represented by the dashed
line.

It is tempting to think that all type 3 elements of ∂[]L and ∂〈〉L are in O since they
have a label referring to them, however what is that label? It is not one that can be
constructed a priori and therefore cannot be declared to be in L in general.

9. Limit points in S

By (7), all elements of L have type 2 [l]∞ limits, [l]m ∈ P (O \ L). In fact
[L]∞ = [L] ⊆ O = [O]∞. This gives ∂[]O = ∅, ∂[]L = O \O∅.

All elements o of O \ O∅ map to L under 〈〉, so by (7), all 〈o〉∞ are of type 3,
〈o〉∞ /∈ P (O). All elements of O∅ map to ∅ under 〈〉, which is absorbed by the union
operation when calculating 〈O〉∞. This gives 〈O〉∞ = 〈L〉∞ = L = ∂〈〉O and ∂〈〉L = ∅.

10. Resolution of Paradoxes

Consider linguistic "paradoxes" of the form:

a = 3

therefore

a dog = 3 dog,

which rely on slavish substitution of identicals. Reformulated in terms of labels
and objects:

[a] = 3



REFERENTIAL AND SUBSTANTIAL LOGICS 7

therefore

〈′a′〉 dog = [a] dog

is clearly false.

11. Applications

Define the context field to be the set of all possible worlds and times, and a context
(w, t), to be a subset of this space, where we will use ws to indicate the worlds and ts
to indicate the times. We will use subscripts to indicate the context in which a clause
is being considered. If either w and/or t is omitted it is assumed that the clause is
true for all worlds and/or times.

A worldly example:

[2]w1 + [3]w1 = [7]w1 is false,

[2]w2 + [3]w2 = [7]w2 is true,

〈[2]w1〉w2 + 〈[3]w1〉w2 = 〈[7]w1〉w2 is false.

In w2 different meanings have been assigned to the labels 2, 3, and/or 7 than in
w1 ("our" world). Operators (+,=) are labels we are assuming here are equivalent
in w1 and w2.

A temporal example:

c = "lump of clay", something that can be moulded into multiple forms.

〈o〉t0 ='lump of clay' [c]t0 = o

〈o〉t1 ='pottery' [c]t1 = ∅

〈o〉t2 ='mug' [c]t2 = ∅

〈o〉t3 ='lump of clay' [c]t3 = o

As the clay changes shape it is no longer referred to by its original label.

12. Summary

We have developed referential and substantial logics and explored the topological
and other properties of these constructions, highlighting their similarities and dif-
ferences. We have also shown interesting applications in resolving paradoxes and to
modal logic.


