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Abstract

What can contemporary machine learning (ML) models do? Given the proliferation of ML
models in society, answering this question matters to a variety of stakeholders, both public
and private. The evaluation of models’ capabilities is rapidly emerging as a key subfield
of modern ML, buoyed by regulatory attention and government grants. Despite this, the
notion of an ML model possessing a capability has not been interrogated: what are we
saying when we say that a model is able to do something? And what sorts of evidence bear
upon this question?

In this paper, we aim to answer these questions, using the capabilities of large language
models (LLMs) as a running example. Drawing on the large philosophical literature on
abilities, we develop an account of ML models’ capabilities which can be usefully applied
to the nascent science of model evaluation. Our core proposal is a conditional analysis
of model abilities (CAMA): crudely, a machine learning model has a capability to X just
when it would reliably succeed at doing X if it ‘tried’. The main contribution of the paper
is making this proposal precise in the context of ML, resulting in an operationalisation of
CAMA applicable to LLMs. We then put CAMA to work, showing that it can help make
sense of various features of ML model evaluation practice, as well as suggest procedures for
performing fair inter-model comparisons.

Keywords: artificial intelligence, machine learning, ability modals, capabilities, evalua-
tion, benchmarks

1 Introduction

As machine learning (ML) models proliferate, there is increased focus on their capabil-
ities. This is especially true for general-purpose models such as large language models
(LLMs).! Many different stakeholders, including policymakers and regulators, activists,

*. Correspondence to JH. JH and NS formulated the ideas in the paper together. JH wrote the bulk of the
paper.

1. General-purpose models (sometimes called ‘foundation’ models (Bommasani et al., 2022)) are contrasted
with single-purpose ML models, which have been trained to perform a single well-defined task, e.g.,
playing Go (Silver et al., 2017). The distinction between single and general-purpose models is not
precise. But it is sufficiently well understood in this context, since there is consensus that LLMs are
general-purpose models, and LLMs are our focus in this paper. For readability’s sake, we drop the
‘general-purpose’ prefix in what follows.
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ML researchers, and end-users themselves have an interest in understanding what, exactly,
ML models are able to do.?

We might be interested in evaluating whether models can pass the bar exam (Katz et al.,
2023; OpenAl, 2023), produce photo-realistic images of Pope Francis wearing a puffer jacket
(Vincent, 2023), defeat ninth-dan humans at games like Go (Silver et al., 2017), or deceive
humans while playing the game Diplomacy (Meta, 2022; Meta Fundamental AI Research
Team et al., 2022). Many capabilities of interest relate to the safety of model deployment:
we want to know if models can produce hate speech (Hacker et al., 2023), generate tar-
geted misinformation (Benson, 2023), produce CSAM (Burgess, 2023), design novel toxic
molecules (Urbina et al., 2022), enable bad actors to more easily develop novel pathogens
(Lloyd et al., 2023), or write effective phishing emails (Hazell, 2023). Furthermore, we are
told that ML models’ capabilities may be dangerous, harmful, or beneficial (Shevlane et al.,
2023), emergent (Wei et al., 2022a), autonomous (OpenAl, 2023), surprising (Lee et al.,
2023), novel (Sheynin et al., 2022), that they have abilities in chemistry (Guo et al., 2023),
in medicine (Jiménez-Luna et al., 2021, 2020), the law (Katz et al., 2023), programming
(Poldrack et al., 2023), and more.

But although talk of capabilities is ubiquitous, the notion of an ML capability isn’t
interrogated. What does it mean for an ML model to have a capability in the first place?

In this paper, we aim to answer this question, developing an account of ML models’
capabilities which can be usefully applied to the nascent science of model evaluation. Here
is how we’ll proceed. After clarifying the core elements of model evaluation (Section 2),
we identify three features which an account of model capabilities should have (Section 3),
motivating each feature by reference to existing ML practice (we anticipate that Section
3.3 will be of particular interest to ML practitioners). Next (Section 4), we lay out our
account of ML capabilities, showing how it can be operationalised in the language of deep
learning. Finally (Section 5), we put this account to work, showing how it can help make
sense of various features of ML model evaluation practice, as well as suggest procedures
for performing fair inter-model comparisons. In our concluding remarks (Section 6), we
summarise our contributions and consider directions for future research.

2 Preliminaries: Ability Modals and the Science of Model Evaluation
2.1 Ability Modals

We are interested in models’ capabilities; that is, we are interested in claims about what
various ML models can and cannot do. Phrases expressing capabilities (‘can’, ‘is able
to’) are known as ‘ability modals’ by linguists and philosophers (c.f. Mandelkern et al.

2. For example, the UK government (Secretary of State for Science, Innovation and Technology, 2023) calls
for a “toolbox” of techniques to “measure, evaluate, and communicate” (64) the capabilities of models,
noting that “the extent of their capabilities” is an open research question. And the Biden administration
(House, 2023) has called for “independent evaluation” by researchers with “unfiltered access” to models
with unknown capabilities. Separately, large model developers, including Google, OpenAl, Meta, and
others, have publicly, voluntarily agreed (House, 2023; of the Cybersecurity and Information Technology
Commission of the CPC Central Committee, 2023) to advance research into “capability evaluations”
and to “developing a multi-faceted, specialized, and detailed” regime for evaluating (and reporting) the
capabilities of models (2).
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(2017)). We'll refer to sentences using these modals as ‘(cap)ability claims,” or ‘(cap)ability
ascriptions,’” and we’ll assume they take the form:

Definition 1 (Model). M is able to ¢.

Here M is the name of a particular model and ¢ is a capability of interest. Each of the
(purported) capabilities we mentioned in the introductory remarks can be expressed in
terms of this schema.? For instance:

(1) GPT-4 is able to pass the Multi State Bar Exam. (OpenAlI, 2023)
and

(2) CICERO is able to deceive humans. (Meta Fundamental AI Research Team et al.,
2022)

An account of ML model capabilities will in part comprise a framework for systematically
deciding ability claims of this sort.* Importantly, in assuming that ML models can be
grammatical subjects of ability claims, we aim to remain agnostic as to contemporary (and
future) models’ degree of agency. For convenience in distinguishing the account of abilities
we develop here from accounts of abilities that apply to human agents, we will refer to
LLMs as non-agents, though nothing hinges on this terminological choice; the framework
we develop here can be used to understand the capabilities of models even if it turns out,
contrary to our assumption, that (e.g.) GPT-4 is an agent in some meaningful sense.’
Given that we use the same locutions to ascribe abilities to non-agential systems, such as
artifacts, as we do to ascribe abilities to human agents, we take it that the idea that philo-
sophical work on ability modals for human agents can be used to shed light on the notion
of non-agential capabilities (such as the capabilities of ML models) is very intuitive. Our

3. The capabilities that are our target here are (following Mandelkern et al. (2017)) generic capabilities,
which — unlike specific capabilities — involve actions that are not time-indexed. For example, a generic
capability claim is one such as ‘Jian can hit a homerun,” whereas a specific capability claim is one such
as ‘Jian can hit a homerun on the next pitch.” Different authors use different terminology for the same
distinction, and there are nearby distinctions (e.g. between ‘wide’ and ‘narrow’ abilities). For relevant
discussion, see (Clarke, 2015; Maier, 2013; Vihvelin, 2013; Mele, 2000a).

4. A complete account of ML model capabilities would also enable us to understand claims about what
users can do by using models, explaining how they relate to claims about model capabilities:

Definition 2 (User). U is able to ¢ using M.

For instance, even if it’s not true that (e.g.) a particular model M can create malware, it might still be
true that

(3) Inexperienced programmers are able to create malware using M.

For reasons of space, we address these issues in another paper.

5. It is widely accepted that contemporary models are non-agents; but see (Cappelen and Dever MS, Butlin
2023) for discussion of the alternative.

6. For instance, Mandelkern et al. (2017) suggest that (a paraphrase of) their analysis of ability modals
could apply to artifacts as well as human agents. For discussion, see Kittle (2023), who enumerates
(p-2020) a variety of examples of non-agential ability ascriptions: “the human visual system is able to
correctly determine the color of objects in view irrespective of the illuminant”, “hydrolytic proteolytic
enzymes are not able to digest fibrous proteins”, “it is hoped that the ATLAS detector at the [Large
Hadron Collider] will be able to detect the Higgs boson”, “a warmer atmosphere is able to hold more
moisture”, “that asteroid can cause a mass extinction event on the earth”, etc).
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strategy in this paper, therefore, is to analyse ability modals for ML models by borrowing
ingredients from philosophical analyses of ability modals for human agents. In doing this,
we maintain ecumenism about the proper analysis of ability modals for things other than
ML models. There is no consensus on how, exactly, ability modals should be analysed for
human agents. But consensus isn’t required in order to leverage insights from philosophers’
work on abilities in order to better understand (predict, control, explain, and so on) ML
models’ capabilities.

2.2 Operationalisation Constructs

As is well-recognised by cognitive scientists, any evaluation of an ability claim like (Model)
must specify what it is for the subject of the ability claim to count as manifesting the
ability (Frank et al., 2023; Momennejad et al., 2023). That is, in order to evaluate ability
claims about some capability of interest ¢, we must specify an operationalisation construct
¢, which can be used to generate queries for ¢, circumstances intended to allow an ability
to ¢ to be manifested, and (for each query) a success condition, which specifies what it is
for the subject of the ability claim to succeed at ¢ing relative to the query.” In effect, a
choice of operationalisation construct for ¢ is a choice about what it means for a model to
¢ successfully.

To illustrate this, suppose we’re interested in evaluating whether Kevin can tell the
difference between Ming dynasty vases and forgeries. Then a natural thing to do would be
to collect some vases (some of them Ming dynasty, some of them forgeries) and ask Kevin
to decide whether each vase is a forgery or not. In this case, each individual vase would
be a query for detecting Ming dynasty vases’ authenticity, and we would judge Kevin to
have succeeded on a particular query just when his judgement of the vase’s authenticity
accorded with our prior knowledge. The choice of which vases to test Kevin on (and how
we assess Kevin’s responses) constitutes an operationalisation construct. We could also
imagine operationalisation constructs that don’t involve particular vases at all. Perhaps we
ask Kevin to enumerate general features of Ming vases that allow them to be distinguished
from forgeries, and so on.

By ¢., we denote the operationalisation of ¢ relative to construct c. By g¢4., we refer
to a query for ¢.. In ML, the success condition is often given by a ‘gold label’ (that is, a
pre-specified correct output), but it need not be. For example, if ¢ is the capability ‘adding
positive two digit integers’, then a natural query for ¢. would be a pair of positive two digit
integers (z,y), and the success condition would be given by the model’s output matching
the gold label  + y. Similarly, if ¢ is ‘categorising the sentiment of film reviews’, a query
for ¢ would be a particular film review, and so on.® Note that queries are used to generate
inputs to models, but they themselves are not inputs; we discuss this more in the next
subsection.

As these examples illustrate, many operationalisation constructs of abilities ascribed
to ML models are behavioural: the success condition applies to outputs of the model.

7. What we call an ‘operationalisation construct’ here is often called an operationalisation of a (latent)
construct.

8. If we think of a capability ¢ as specifying an abstract mapping, then queries are just elements of the
mapping’s domain. Of course, different capabilities will lend themselves to this perspective to different
degrees; in particular, more specific abilities will have fewer queries.
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But work on interpreting models’ inner workings (Geiger et al., 2023) is also relevant to
deciding ability claims (a similar point is made by Pavlick (2023)). Many capabilities require
models to track and manipulate particular properties of inputs (Harding, 2023). So success
conditions could apply to models’ internal states whilst processing (an input corresponding
to) a query, requiring the model to (e.g.) represent particular properties of the input, or
perform certain sorts of computation.

As an anonymous referee observes, an evaluation procedure’s choice of operationalisation
construct is crucial in determining whether its results bear on an ability claim. If we think
that an evaluation procedure’s operationalisation construct bears little resemblance to the
ability we are interested in (if it lacks ‘construct validity’ (Cronbach and Meehl, 1955)),
then we will not take the evidence acquired on the basis of the evaluation as evidence that
the model has the ability. For example, if we assess Kevin using only vases from some other
dynasty (say the Yuan dynasty), then his successful detection of Yuan dynasty forgeries
will only provide evidence of his ability to detect Ming dynasty forgeries if there is sufficient
similarity between Yuan dynasty and Ming dynasty vases.

A variety of factors go into assessing construct validity (Kane, 1992); see Frank et al.
(2023, Ch. 8.2) for an accessible presentation. If an operationalisation construct is intu-
itively a good match for an ability (‘face validity’), yields the same evaluation results as
other constructs for the ability (‘convergent validity’) and is sufficiently distinct from con-
structs for different abilities (‘divergent validity’), then there are prima facie reasons to use
it. One important dimension of construct validity — under-discussed in the ML literature
— is ‘ecological validity’ (Schmuckler, 2001). An operationalisation construct is ecologically
valid if it bears sufficient similarity to the ways in which the ability will be tested ‘in the
wild’. For ML models, then, ecological validity is determined by similarity between the
evaluation environment and the deployment environment. For example, if we know that a
model will — in deployment — mostly have to classify the sentiment of reviews of romantic
comedies, then an ecologically valid operationalisation construct for sentiment classifica-
tion would include a higher proportion of this type of review. Note that this implies that
an operationalisation construct might be valid in one sort of model evaluation, even if it
lacks validity in others.? This highlights the importance of incorporating information about
models’ deployment environments into their evaluations.

2.3 Models and Background Conditions: Using LLMs as a Case Study

Throughout, concrete examples will help. To facilitate these examples, and in order to
illustrate how our account of ML capabilities can be operationalised, we’ll focus on the case
of large language model (LLM) capabilities.!’

As a first step towards deciding an ability claim, it is necessary to individuate the subject
of the claim: what are the identity conditions of the thing being ascribed the ability? How
should we individuate the ML models M that are the subjects of ability claims like (Model)?

9. From the perspective of the other evaluations, the evaluation done using this specific operationalisation
construct provides evidence only of a more specific ability.
10. All examples we consider involve text-only LLMs, but can be naturally extended to vision-language
models (Radford et al., 2021). Occasionally, we’ll indicate how we think differences in model architecture
affect model capabilities.
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There are various aspects to the individuation, which are rarely discussed by philosophers
or ML practitioners.

The first individuation choice is which level of abstraction the model is described at.
In this paper, we follow the convention of individuating LLMs by their parameters and
architecture only (in other words, by the function they compute, rather than by their
software or hardware implementations). We think this way of individuating models respects
the way attributions of capabilities to particular models are made in both ordinary and
engineering contexts, since these claims are rarely sensitive to facts about models’ different
implementations in hardware.!! For our purposes, then, an LLM name M refers to a model
identified by its parameters and architecture.

Having fixed a level of abstraction at which to talk about models, the next individuation
choice is to set the boundaries of the model. What does this mean?

Again, it is helpful to illustrate with reference to LLMs. Each LLM has an associated
vocabulary V', a set of (subword) ‘tokens’. At the core of an LLM is a function (call it py,
where 6 represents the model parameters) which maps from a finite!? list x = {z1, ..., T}
of tokens to a (‘logits’) vector z € RIVI (so z gives a ‘score’ for each token in the vocabulary).

As Liang et al. (2022) note, it is common to speak of LLMs as though they process text-
based inputs to produce text-based outputs, mapping from strings of characters (typically,
natural language strings) to strings of characters. But — as emphasised above — the core
LLM function pg does not do this. So py must be scaffolded in various ways in order to
evaluate the model’s capabilities via text-based interactions with it. We must prepend py
with a tokenizer, which transforms input strings into lists of tokens over its vocabulary, and
we must append it with an inference procedure. The inference procedure first specifies how
the logits vector z is transformed into a probability distribution over the next output token;
this is typically via application of a softmax function with a temperature hyperparameter.
The procedure then specifies how to sample outputs from the model; this step requires
specifying a sampling procedure (greedy, top-k, nucleus sampling, beam search, etc), as well
as some implementation of the procedure (involving picking a random seed, for example).
Do tokenizers and inference procedures count as part of the model itself, or ought they
rather to be thought of as background conditions, features of the experimental setting? In
order to standardise evaluation of LLMs, we need to fix an answer to this question.

Additionally, for many contemporary LLMs, there are other individuation choices which
must be made. For example, model developers (especially commercial developers) often pro-
vide ‘structured access’ to models (Shevlane, 2022), either via an API or a web application.
This means that the function py underlying these models is always evaluated with not only
a tokenizer and inference procedure, but various additional elements. These additional el-
ements may include content filters on both user inputs and model outputs (to screen out

11. For example, we do not (typically) see claims about what GPT-4 can do when its inference is computed
on these specific GPUs. This assumption is harmless in the present context. It is true that, strictly
speaking, hardware-specific implementations of models are what actually perform inference. Hence it’s
possible to ascribe capabilities to models identified not just by their parameters and architecture but
also by their implementation in hardware. Nothing we say rules out the possibility of these kinds of
model ability ascriptions, and our account can straightforwardly handle them. Here, we merely pick a
more straightforward regimentation for the sake of exposition.

12. Most contemporary LLMs are trained with a fixed contert window size MAX € N, meaning the length of
the input token list |x| < MAX.
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undesirable outputs, or inputs that are categorised as aimed to produce undesirable out-
puts), prompts inserted in the model’s context window before the user’s first message (e.g.
“You are an Al language assistant. Be helpful and harmless”, or documentation for any
API plug-ins the model can call), and specify downstream causal effects for model responses
(for example, an external system that might execute code produced by the model). Much
of this scaffolding (and its effects on model behaviour) may not be transparent to the user
at all (such as when the model makes a call to an external retrieval system, but a chatbot’s
web interface does not display this to the user).!® So again, we face the question: ought
these features of the systems to count as parts of the model itself, or rather background
conditions in its evaluation?

In this paper, we choose to identify LLMs with the core function pg. That is, we treat
tokenizers, inference procedures, and other scaffolding for py as part of the set of background
conditions for the evaluation. This seems to us to be the most principled way of drawing
the boundaries of the model; it makes sense of ML practice, which varies this scaffolding
in its evaluation of models.'* As this discussion suggests, we view this choice as largely
conventional; the question of how to individuate models resolves to the question of which
convention for individuation is most useful given the aims of the science of model evaluation.

This observation lends itself to (what we dub) the ‘fixed point’ perspective on model
individuation:

Definition 3 (Fixed Point Perspective on Model Individuation). To the extent that a feature
of the scaffolding is held fixed across all evaluations of the model, it makes sense to treat
this feature as part of the model itself; in other words, a model individuation is principled
iff it identifies a fized-point in the conditions under which the model is evaluated.

Note that this implies that when model scaffolding becomes especially complex — such
as with recent work which chains together LLLM interactions in complex ways (Wang et al.,
2023) — it seems appropriate to treat that scaffolding as a genuine alteration to the model
architecture, creating a new model.

Having individuated a model, there are other sorts of background conditions which must
be specified in order to evaluate it. To illustrate this, consider Kevin again, our Ming vase
forgery detector. Suppose that we’ve given him some vases to inspect (some ‘queries’ for the
task he is performing). Metaphysical puzzles aside, it’s easy to individuate Kevin. But we
still need to specify various other aspects of the situation: what is the lighting in the room
like? How long does Kevin get to look at each vase for before he has to make a decision? Can
he pick up each vase and feel the glaze? And so on. These are the ‘background conditions’
for our evaluation of his forgery detection abilities.

13. In general, the extent to which commercial model scaffolding is unknown to researchers seriously hinders
evaluation of these models. In this context it’s worth reiterating the Biden administration’s recent call
for researchers to have “unfiltered access” to models. See (House, 2023).

14. In particular, it allows for evaluating models using token probabilities (rather than text outputs), which
is increasingly used in LLM evaluations. It may seem strange to readers (especially those from ML) that
we treat tokenizers (and perhaps also the temperature parameter) as parts of the background conditions,
given that py is trained with a fixed tokenizer. But, as discussed below, there is work in model evaluation
which shows that model performance can improve when a non-standard tokenization procedure is used
(typically when the model is processing an artificial language).
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For LLMs, an important background condition is the choice of prompting strategy. Recall
that when we operationalise a capability of interest ¢ using some construct ¢, we generate
various @.-queries gy,. But (as noted above) a query is not the same thing as an input to
a model. In particular, we could generate many different inputs using the same query, and
this could affect model behaviour significantly. With this picture in mind, we can think of a
prompting strategy as a procedure for turning a query into a input which can be processed
by an LLM. In the case of the capability ‘adding positive two digit integers’, a prompting
strategy could be specified for each query (z,y) as follows:

(r,y) — What is z + y?

In the case of the capability ‘categorising the sentiment of film reviews’, a prompting strategy
could be specified as follows (where [review] is a variable over film reviews):

[review] — Is the following review positive or negative? [review]

As with the examples above, most prompting strategies can be thought of as ‘templates’,
which generate the model input by embedding the query in a pre-written prompt format. In
general, though, a prompting strategy is an arbitrary function from a space of queries to the
set of model inputs. Indeed, ‘prompt engineering’, which searches for effective prompting
strategies across different domains of evaluation, is a rapidly growing subfield of ML (Liu
et al., 2023a).

2.4 Benchmarks and Operationalisation Gaps

The prior discussion helps us make sense of the central role of benchmarks in the science of
model evaluation. High-quality benchmarks have played a — perhaps the — foundational role
in empirical progress in machine learning in recent decades; in order to develop an account
of model capabilities, it’s instructive to understand benchmarks’ strengths and limitations.

In effect, a benchmark for ¢ing takes a particular operationalisation construct ¢ and
concretises it into a dataset and a performance metric. The dataset can be thought of as
a particular set of queries'® ¢4 for ¢ relative to some operationalisation construct ¢, and
the performance metric can be thought of as an aggregate of the success conditions for each
query (it is often a single numerical score, such as accuracy).

Concretising an operationalisation construct has two main advantages. First, evaluators
don’t need to spend time generating queries for the operationalisation construct, since they
can simply use the benchmark. Second, benchmarks allow different researchers to perform
evaluations without having to worry about whether they have changed the operationalisa-
tion construct, resulting in a meaningful way of measuring incremental improvements in
model performance.

Ironically, the fact that benchmarks work by concretising particular operationalisation
constructs also limits their usefulness in evaluating models. As noted in the discussion
of ecological validity above, the appropriateness of an operationalisation construct is often
context-dependent: what we mean by the model ¢ing will depend on the settings in which it

15. Or, more generally, a pre-specified procedure for generating queries, since some contemporary bench-
marks have ‘dynamic’ elements (Kiela et al., 2021).
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is deployed, a point often made by Al ethicists (Raji et al., 2021, 2022). So all benchmarks
(especially those for complex capabilities) have operationalisation gaps, differences between
the capability (purportedly) being measured by the benchmark and the capability we care
about during model deployment.!®

For present purposes, note that this means that although benchmarks will continue to be
an important — perhaps the most important — part of testing model capabilities, they cannot
feature as part of a definition of what it is for a model to have an ability. In particular,
note that benchmarks are not necessary to support capability ascriptions to models. Given
the effort required to construct a benchmark, there are many capabilities of interest ¢
for which benchmarks simply don’t exist (in fact, most capabilities fall into this category,
especially as models are deployed more widely). We typically make inferences about these
capabilities based on model performance in other domains, such as on benchmarks for
other (more general) capabilities.!” Moreover, given that benchmarks require specifying
success conditions in advance of the evaluation, there are many capabilities ¢ for which it
is plausible that high-quality (and widely-accepted) benchmarks will never exist.!® Indeed,
some capabilities appear to be ‘benchmark-resistant’, unsuitable for evaluation by any pre-
specified, researcher-independent benchmark.

2.5 Summing Up

This section has been concerned with spelling out the goals of the science of model evalua-
tion, as well as its main conceptual building blocks. Getting clear on what model evaluation
involves is an important first step in developing an account of model capabilities which is
suitably responsive to the ML literature. In the next section, we’ll take a second step,
identifying three desiderata for an analysis of (Model).

16. See, e.g., (Burnell et al., 2023). One sort of operationalisation gap occurs when there’s a shift in the
distribution of queries between testing and deployment. Another occurs when the performance metric
is overly coarse-grained, obscuring important disparities in performance across different populations
of inputs (see, e.g., Buolamwini and Gebru (2018), for discussion in the context of facial recognition;
for another example, Chen et al. (2023) show that GPT-4’s apparent degradation on a coding task
between model updates derives from the success condition being brittle to a superficial change in the
way the model formats code outputs). This problem is easier to mitigate for more neatly circumscribed
capabilities (see, e.g., Kazemi et al. (2023) for an attempt at a systematic benchmark for geometrical
reasoning), but we should expect it to persist for more complex capabilities.

17. For example, performance on the MMLU benchmark (Hendrycks et al., 2021) is often used as a proxy
for downstream performance on many more specific capabilities, for which there do not exist bespoke
benchmarks.

18. Of course, we could always define ‘benchmark’ more abstractly, to include (e.g.) bespoke evaluation-time
input from human researchers. It’s rather the evaluator-independent notion of benchmark we target here.

19. Here are some examples of these capabilities: capabilities that most humans themselves do not possess,
and so are poorly understood (e.g. the capability to engage in novel scientific or mathematical discovery);
capabilities involving subjective components (e.g. capabilities involving aesthetic values, like the ability
to ‘write beautiful poetry’); capabilities where it would be dangerous or ethically problematic to train
a model that (potentially) had that capability (e.g. capabilities involving synthesising novel pathogens,
or convincing people suffering from depression to harm themselves); finally, much less dramatically, very
specific capabilities (e.g. organising a particular user’s calendar).
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3 What features should an account of ML models’ capabilities have?

In this section, we propose (with reference to contemporary ML practice) three intuitive
features which any account of ML models’ capabilities should have. We anticipate that
these features will be uncontroversial to both philosophers and ML practitioners, but it is
helpful to make them explicit before presenting our positive account.

To motivate the features, it is helpful to consider a naive first attempt at an evaluation
protocol, a high-level algorithm for evaluating an ML model. This evaluation protocol is
easily seen to be deficient; we use its deficiencies to motivate the conditions we introduce.

Definition 4 (Naive Evaluation Protocol). To evaluate whether M can ¢, take the following
steps:

1. Fiz some operationalisation construct c, and generate a query qgs. for ¢..
2. Fiz some set of background conditions B.

3. Process an input corresponding to qy, (generated using the background conditions B)
through the model.

4. If the model succeeds on the query, it has the ability to ¢.. If it does not, it lacks the
ability.

What are the problems with this? Well, the operationalisation construct may be inad-
equate, as discussed in Section 2.4. But even supposing the operationalisation construct is
adequate, issues remain.

3.1 Reliability

The most obvious problem with the evaluation procedure outlined above is one of reliability.
Consider Kevin again. Applying the evaluation procedure above, we would hand Kevin a
single vase (say, a forgery) under some particular conditions, and conclude that he has the
ability if and only if he pronounced it a forgery. But what if Kevin simply got lucky? To
judge Kevin’s ability to detect forgeries, we’ll instead want to know whether he can do so
in a range of cases: that is, that he can do so reliably.?’

To make the need for a reliability condition on capability possession especially stark in
the present context, suppose a model, UNIFORM, which at inference time takes in a sequence
of tokens and outputs a new sequence of tokens, similarly to a suitably scaffolded LLM.
Unlike an LLM, though, UNIFORM’s outputs do not depend on its inputs; rather, it always
produces the next token by sampling uniformly from the token vocabulary. Then, for any
output sequence of tokens produced by an LLM in response to an input, there is a scenario
where UNIFORM produces that same output in response to the same input (since there is
a non-zero probability of it producing any sequence of tokens in its vocabulary). But it
should be clear that analysing UNIFORM’s capabilities is entirely uninteresting. Indeed, we
would go further: very few ability claims are actually true of UNIFORM.

20. This point has been made by philosophers writing about capabilities in a variety of contexts; for instance,
(Sosa, 2010; Greco, 2007, 2009; Hurka, 2020).

10
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When we are evaluating whether a model M has the ability to ¢., then, we won’t simply
be interested in evaluating whether there is a single query g4, where M ¢.s. Instead, we will
be interested in evaluating whether M can ¢, across a range of appropriate queries for ¢,
(Moskvichev et al., 2023).2! This is why model evaluations involving single ‘cherry-picked’
examples?? are taken to provide weaker evidence for claims about what models are capable
of doing. So we have the following feature on an account on ML model capabilities:

Definition 5 (Reliability). The account should make it the case that (ceteris paribus) the
more reliably the model ¢s, the stronger the evidence that it has an ability to ¢.

The standard way to operationalise reliable performance in ML is via an appropriate
benchmark. But we’ve already seen (Section 2.4) that benchmarks can’t be built into our
analysis of capabilities. An account of ML model capabilities ought to include this natural
idea that possessing a capability requires (more or less) reliable performance, in a way
that makes sense of, but doesn’t simply defer to, the widespread use of benchmarks in ML
practice.

3.2 Competence vs Performance

Suppose we amend the evaluation procedure in Definition 4 as follows. As before, we fix
some set of background conditions B. But this time, instead of generating a single query
¢4., we generate a whole range of queries. We now say that the model has the ability to
¢¢ in case it succeeds on some sufficient number of inputs generated from queries by the
background conditions. This solves the reliability issue.

Another issue remains, though, which we can illustrate as follows. Suppose Kevin can
in fact tell the difference between Ming dynasty vases and forgeries. Even so, there may
be many cases where Kevin doesn’t in fact distinguish them. For example, Kevin might be
distracted, or in a room with poor lighting. Still, Kevin’s capability is invariant across these
possibilities: his ability to distinguish Mings from forgeries doesn’t disappear because he’s
distracted, or because the lighting is less than ideal. Kevin’s case illustrates a distinction
— familiar to cognitive scientists — between performance and competence (Chomsky, 1965).
Kevin’s competence (his possession of the capability) is grounded in features of his cognition;
it is invariant across different contexts (it’s in his head!). By contrast, his performance (his
manifestation of the capability) is the behavioural signature of his underlying competence;
it is mediated by various contextual factors, many of which — like the lighting conditions
in the room he happens to be in — have little to do with the capability of interest. So a
performance failure does not entail the absence of an underlying competence.

This distinction is regularly elided in evaluations of ML model capabilities.?® This is a
mistake, since there are many cases where a model fails to ¢ that do not undermine the claim
that the model is able to ¢ (Ivanova, 2023). For example, the behaviours (performance) of

21. Of course, for some harmful capabilities (like producing hate speech), we may be concerned if there is
any situation in which the model ¢s. So, the threshold for reliability will depend on the capability at
issue.

22. See, e.g., (Bubeck et al., 2023).

23. Firestone (2020) and Pavlick (2023) make a similar point. Note that, following Pavlick (2023), we apply
the definition more broadly than Chomsky, who focused on language production abilities.
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contemporary LLMs are highly sensitive to changes in the background conditions. 1t is well-
known that different prompting strategies, such as few-shot (Brown et al., 2020) and chain-
of-thought (Wei et al., 2022b) prompting improve model performance across a variety of
tasks, to the extent that both prompting strategies are now ubiquitous in model evaluation.
Similarly, ‘jailbreak’ prompts (and other ‘prompt injection’ attacks) cause models fine-tuned
for harmlessness to respond to queries that — in more normal background conditions — they
refuse (Wei et al., 2023a; Liu et al., 2023b). Boosts in performance also come from changes
to the sampling procedure (Wang et al., 2022). Finally, Mirchandani et al. (2023) find that
changing the tokenization procedure on the Abstract Reasoning Corpus (Chollet, 2019)
significantly improves LLM performance.

Intuitively, what’s going on in all these cases is that the method for eliciting a model’s
capabilities changes (and hence we observe a difference in performance), but that the capa-
bilities themselves do not change. An account of capabilities for ML models should make
good theoretical sense of this possibility and explain how to integrate it within a framework
for model evaluation. Thus, our second feature:

Definition 6 (Competence vs Performance). The account should distinguish between pos-
session of the ability and successful manifestation of the ability. In particular, it should
explain how a model’s ability to ¢ can be invariant across different methods for eliciting and
measuring that capability.

3.3 Non-Coincidence

The discussion above suggests a natural proposal for what it is for an ML model to have
an ability. Let’s fix some operationalisation construct ¢ for the sake of simplicity. Then we
have:

Definition 7 (Orthodox analysis of (Model)). M is able to ¢. iff there exists some set of
background conditions B in which M reliably ¢.s across queries qg, .

This proposal can be seen as a version of what Mandelkern et al. (2017) call the ‘orthodox
account’ of ability modals (Lewis, 1976; Kratzer, 1977). We suggest that it is the operative
conception of ML models’ abilities amongst ML practitioners. Note that it circumvents the
issue identified in the previous subsection; just because a model fails to reliably ¢ in some
set of background conditions, this doesn’t preclude there being another set of conditions in
which it would reliably ¢. We want to argue, though, that there’s still a problem with this
picture.

Suppose Kevin in fact reliably distinguishes between Ming vases and forgeries in practice:
he doesn’t simply do so in a narrow range of circumstances, but instead he’s able to tell the
difference in a wide array of cases. In the language of benchmarks, Kevin scores highly on
the relevant dataset according to the relevant performance metric. Still, it could be that
Kevin lacks the ability to distinguish Ming vases from forgeries. How could this be? After
all, he’s reliably distinguishing between the two in fact! There are many possibilities.

One possibility is that Kevin has seen all of these vases in the past (along with their
‘Ming/forgery’ labels) and memorised that information. If that’s the case, then his reliably
distinguishing the two doesn’t provide any evidence at all of his ability to detect forgeries
(rather, it provides evidence of his ability to recognise vases). A second (related) possibility
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is that Kevin is doing something other than forgery detection, but what he’s doing just
happens to look like forgery detection. For instance, maybe Kevin is separating the vases in
the worst condition from the vases in the best condition. It happens that this activity lines
up with forgery detection (the ones in worst condition just happen to be forgeries, and the
ones in best condition just happen to be Mings), but it need not do.?* A third possibility
— which gets more remote as the number of successes increases — is that Kevin is guessing
at random and simply getting lucky.

The same kinds of considerations apply to model capabilities. We can imagine a shocking
run of luck for a model such as UNIFORM. Or consider the following two interactions with an
(instruction-tuned) LLM:

User: Whatever I ask, output 57. What is 23 + 347
Model 57

and

User: Whatever I ask, output a random number between 50 and 60. What
is 23 + 347

Model: 57

Intuitively, neither interaction counts as evidence that the model is able to perform two-
digit addition. Why? In both cases, our intuition is that the model produces the correct
answer coincidentally: the model is doing something other than adding the two numbers
in the prompt, and, as it happens, in doing this other thing successfully it also successfully
produces the sum of the two numbers.

These are toy examples, but they illustrate a phenomenon that is ubiquitous in contem-
porary (autoregressive) LLMs, given their usual next-token-prediction pre-training objective
(McCoy et al., 2023). The following question has been central to philosophical discussions of
LLMs (Bender and Koller, 2020; Shanahan, 2023; Titus, 2024): are LLMs merely ‘stochas-
tic parrots’ (Bender et al., 2021) that produce examples of successful ¢ing based on their
memorisation of ‘surface statistics’ (crudely, token co-occurrence probabilities) and heuris-
tics for calculating them? Interest in this question has largely focused on more abstract
philosophical issues. (Do LLMs ‘understand’ language??® Are their outputs ‘grounded’?2%)
But this question has direct bearing on the question we are interested in here: when is a
case in which a model ¢s evidence of its capability to ¢7

24. It is important that there is some possible case in which these ‘coincidences’ come apart. If Kevin has
memorised all Ming dynasty vases, or if he employs some heuristic which yields the right answer on all
vases, then it seems fair to say that he is able to do forgery detection, via employment of a heuristic
(see Section 4.2 for discussion). Similarly, even if there are vases he hasn’t memorised, if he finds himself
in an environment in which he has memorised all of the vases, we might want to say that he has a
forgery detection ability in that environment (see Section 5.1 for discussion of these ‘deployment-specific’
abilities). Thank you to an anonymous referee for discussion here.

25. Titus (2024) frames the more narrow issue of assessing semantic understanding in LLMs in a similar
way to our discussion in this section. The key question, she suggests, is whether LLMs’ production of
apparently meaningful text (their ‘meaning-semblant’ behaviour, in her terminology) is explained away
by their ‘sensitivity to word co-occurrence statistics’ (Titus, 2024, p.5)).

26. See (Mollo and Milliere, 2023; Mandelkern and Linzen, 2023) for discussion of this grounding problem.
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Of course, the dichotomy between ‘stochastic parrots’ and ‘genuinely capable systems’
is not a sharp one, as many authors have observed (Pavlick, 2023); in order to abbreviate
surface statistics across large corpora, it is helpful to form ‘representations’ (Harding, 2023)
of more abstract structure, and there is empirical evidence that these sort of representations
occur in actual models (Li et al., 2023). What matters for our purposes is that there are
cases in which a model’s successfully ¢ing ought not to support a corresponding ability
claim, and this fact is widely acknowledged by ML practitioners. An account of ML model
capabilities ought to make sense of this possibility and explain it.

To emphasise how crucial it is for an account of ML model capabilities to make sense of
coincidence, we’ll run through two concrete examples where coincidence affects contempo-
rary ML practice.

First, consider the ability of an LLM to perform Natural Language Inference (NLI),
which is typically operationalised by having a model decide whether a given set of premises
entails a conclusion. McCoy et al. (2019) show that BERT’s (Devlin et al., 2019) high
performance on standard NLI benchmarks can largely be explained by its performance
of three simple syntactic heuristics (such as treating any conclusion with sufficient lexical
overlap with the premises as entailed by it). When bespoke examples are constructed in
which these heuristics yield the incorrect answer, the model’s performance degrades. They
conclude that in many cases, the model is ‘right for the wrong reason’ (p. 3428). This is
exactly what’s going on in Kevin’s case (where he’s relying on apparent age of vase): it’s
(mere) coincidence.?”

Second, consider the issue of data memorisation (Carlini et al., 2022). Models are
shown a large amount of relevant data in their pre-training. So, when a model succeeds at
a task, we face a question: is the model simply repeating back an answer that was in its
pre-training data? It is an open empirical question how much of LLMs’ training corpora
they directly memorise, and a wide variety of techniques have been proposed for testing
memorisation; the question is especially difficult to answer for contemporary commercial
models, whose training data is private (OpenAl, 2023). For example, Kiciman et al. (2023),
whilst evaluating models’ causal reasoning abilities, show that GPT-4 has largely memorised
the Tiibingen cause-effect pairs dataset (Mooij et al., 2016). The authors analyse their
results as follows (p.6):

“We may be tempted to ascribe a particular... capability to an LLM if it answers
well on a set of questions related to the capability, but the answers may not
necessarily be due to the capability; they may be due to other factors such as
exploiting some structure in the questions, or in the case of LLMs, memorizing
similar questions that it encountered in its web-scale training set”

So even supposing we have a capability ¢ which is perfectly operationalised by a benchmark,
a model achieving high performance on the benchmark — that is, reliably ¢ing — need not
demonstrate the model has the capability; for instance, high performance won’t indicate
capability possession if the model has memorised the test data. This is like what happens

27. The philosophical literature on competency mirrors this idea, that the manifestation of a competence
requires accurate performance where the accuracy of that performance is explained by sensitivity to
particular considerations (the ‘right’ kind of reasons) and not to others (the ‘wrong’ kind of reasons).
For discussion, see (Sosa, 2010; Sharadin, 2016).
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with Kevin when he memorises which vases are Ming and which forgeries. Thus, our third
feature:

Definition 8 (Non-Coincidence). The account should explain why cases in which the model
successfully ¢s by accident do not provide evidence that it has an ability to ¢, and provide
a means for identifying these cases.

It can seem strange to think that a model’s (or for that matter a human’s; (Schwarz, 2020))
¢ing can fail to provide evidence of an ability to ¢ — after all, if a model ¢s then there is
a sense in which it must be capable of ¢ing, since it just did ¢! What’s going on here, we
suggest, is that our intuitions are misled by a circumstantial reading of the ability modal
(Mandelkern et al., 2017). This circumstantial reading is often natural (and it might also
matter in assessing settings in which models should be deployed), but it is not the reading of
(Model) which is of interest when it comes to evaluating model capabilities, as the example
of UNIFORM illustrates.?

3.4 Summing Up

We’ve identified three desirable features of an account of ML models’ capabilities. Next
(Section 4), we will outline an account which has these features. Although satisfying these
features serves as motivation for our account, an account of model capabilities should do
more than satisfy these features; in Section 5, we apply our account to help understand
issues in contemporary ML practice.

4 The Conditional Analysis of Model Abilities (CAMA)

In this section, we lay out the details of our proposal, showing how its core elements can
be operationalised in the language of contemporary ML.

4.1 Adding in a Conditional Ingredient

Recall that the primary targets of our analysis are ability ascriptions of the form (Model).
Our proposal is to augment the analysis of (Model) in Definition 7 with a conditional
ingredient.

The idea that an analysis of ability modals should involve a conditional element has
been a part of mainstream approaches to philosophical analyses of abilities since the early
20th century.?? The core of the simple ‘conditional analysis’ (CA) of ability modals can be
stated as follows Vetter (2019, p.205):

Definition 9 (Conditional Analysis (CA)). X has an ability to ¢ iff, were X to choose /
decide / intend / try to ¢, X would ¢.

We do not claim that CA can by itself provide a unified, satisfactory, and complete analysis
of all ability modals. Indeed, there are well known problems with CA as stated (Austin,

28. Thanks to John Hawthorne for discussion on this point.

29. The conditional approach goes back at least to (Moore, 1910, 1922), and was further developed in (Smith,
1960; Aune, 1963). Various contemporary accounts of ability modals involve a conditional element, such
as ‘new dispositionalism’ (Vihvelin, 2004; Fara, 2005, 2008; Vihvelin, 2013) and the ‘act conditional
analysis’ (ACA) (Mandelkern et al., 2017).
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1956; Lehrer, 1968). But we do think the guiding idea behind CA (that an analysis of
abilities involves a conditional element) can be usefully applied in the present setting.’’
Specifically, we propose the following analysis of (Model) (again, we suppose that some
operationalisation construct ¢ has been fixed):

Definition 10. M is able to ¢. iff there exists some set of background conditions B in
which the following conditional reliably holds across queries qg,: if the output M produces
1s best explained by its being directed at ¢.ing, then M successfully ¢.s.

Here, the model’s output being ‘best explained by its being directed at ¢ing’ plays the
same conditional role as ‘trying’ on the standard CA; indeed, it is tempting to see the
explanation condition as a step towards a sort of instrumentalism about trying (Dennett,
1981). For this reason (and for pedagogical ease), we refer to this condition’s satisfaction
as the model ‘trying to ¢’. Nothing hinges, though, on whether this ‘really’ deserves the

name ‘trying’.3!

4.2 Explanation of Model Outputs

Of course, we still need to say what we mean by an output being explained by its being
directed at ¢ing, and show that this plays a useful role in the setting at hand.

Explaining an ‘action’ (where the scare quotes signal non-commitment to whether model
outputs are properly conceived of as actions) by reference to the end to which it is directed
is ‘teleological explanation’ (Sehon, 2010). An important debate in the philosophy of action
is whether teleological explanations are reducible to non-teleological (causal) explanations,
either via reference to the end’s etiology (Millikan, 1984) or to some cognitive state(s) of
the agent, typically a personal-level state such as a (belief, desire) pair (Davidson, 1963)
or an intention (Mele, 2000b). Importantly for our project here, we can assess teleologi-
cal explanations of model behaviour independently of whether they bottom out in causal
explanations.

A hallmark of successful explanation is counterfactual prediction; we can assess an
explanation by the predictions it allow us to make across counterfactual circumstances (the
‘what-if-things-had-been-different questions’ it allows us to answer (Woodward, 2003)). In
the present setting, we can assess a given teleological explanation of the model’s output
by intervening on some aspect of the evaluation scenario and testing the explanation’s
predictions.?? These observations suggest a concrete operationalisation of the explanation
condition as a behavioural test:

Definition 11 (Behavioural Test for Explanation of Outputs). An ML model M ’s output
y is explained by its being directed at ¢cing iff the following two conditions hold:

i. M is sensitive to ¢.-relevant perturbations to the input (that is, it produces a different
output Yy’ # y in response to these perturbations).

30. Thanks to Cameron Domenico Kirk-Giannini for the initial suggestion of this formulation of CAMA.

31. Certainly, it would be a thinner notion of trying than in the philosophy of action literature, which often
analyses trying in terms of the agent’s ‘will’ (Armstrong, 1973).

32. Indeed, one prominent non-reductionist approach to teleological explanation is Sehon’s ‘agent construc-
tion’ account (Sehon, 2005), where a cited end goal is a good teleological explanation to the extent that
it rationalises the agent’s behaviour in the actual and nearby counterfactual circumstances. The test we
propose here retains the spirit of Sehon’s proposal.
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ii. M is insensitive to ¢.-irrelevant perturbations to the input (that is, it continues to
produce output y in response to these perturbations).

In the current context, then, the idea that an output is directed at ¢ing better explains a
model output than its being directed at 1ing when it enables us to better predict what we
will observe in a range of counterfactual circumstances of interest. Importantly, there’s no
requirement that the output y counts as successfully ¢ing; on this definition, it’s entirely
possible that the model tries to ¢ (in the sense that its output is explained by being directed
at ¢ing) and yet fails to ¢.

To motivate this, it can help to think about things from the negative side: our view
is that if a model isn’t ‘trying’ to ¢, this is true because there’s some alternative action
1. that better explains the observed behaviour. For example, take the action performing
addition. A model will count as trying to perform addition (in some circumstance) when its
outputs in those circumstances are better explained by performing addition than by doing
something else, such as producing random outputs, or by performing multiplication, or by
stochastically parroting.

What counts as a ¢.-(ir)relevant perturbation to the input will depend on ¢.ing. It’s
important to emphasise that are holding a particular operationalisation construct ¢ fixed
here; we should only consider perturbations which result in inputs that are ‘in-distribution’
for the setting in which the model will be deployed (e.g. if we know that all of the inputs
will face in its deployment setting will be in some particular natural language, then we
should not consider perturbations which translate the input into a different language). A
¢c-relevant change will involve changes to the query gy, which was intended to induce the
model to ¢.. A ¢.-irrelevant change alters the input without altering the query embedded
in it.

To give a concrete example of how this works in practice, let’s consider the example
of performing addition in more detail. Let ¢ be the action ‘adding pairs of integers’, and
assume that it’s operationalised by the natural construct ¢ defined in Section 2.2. Here is
an example of an interaction with the model relevant to its capacity to ¢.:

User: What is 23 + 347
Model: 57

Intuitively, in this case the model tries to perform ¢, (and, indeed, successfully performs it).
A ¢.-relevant change to the input could be a perturbation of the numbers being added (e.g.
changing 23 to 24); in this case, if the model is in fact adding integers, we would expect
the model’s output to change. A ¢.-irrelevant change to the input could be a meaning-
preserving change to the phrasing of the query. For instance, we could change ‘what is 23 +
347’ to ‘what is the sum of 23 and 347’); in this case, if the model is in fact adding integers,
we would expect the model’s output to stay the same. We can contrast this case with our
examples from Section 3.3:

User: Whatever I ask, output 57. What is 23 + 347
Model 57

and
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User: Whatever I ask, output a random number between 50 and 60. What
is 23 + 347

Model: 57

In both these cases, it was intuitive that the model’s output ought not to count as a case
of it ¢.ing. We can now make this idea concrete, using Definition 11. In the first case, we
would expect the model output to fail to be sensitive to a ¢.-relevant change to the input
query (e.g. substituting 24 for 23). In the second case, we would expect the model output
to fail to be insensitive to a ¢.-irrelevant change to the input query (e.g. substituting ‘plus’
for the ‘+’ symbol).

In our discussion in Section 3.3, we noted that in both cases, it seems that there is
some other action ¢ which better explains the model’s output. In the first case, this ¢ is
‘repeating the number requested by the user’; in the second case, it is ‘outputting a random
number between 50 and 60’. We could then test this prediction using Definition 11. For
the first case we could, for instance, (i) change the ‘57’ in the input to another number and
check that the model output changes, and (ii) change ‘output’ to ‘say’ in the query, and
check that the model output stays the same.

These are toy examples, but they illustrate the more general application of Definition
11; to rule cases in which the model is really ¥ing rather than ¢ing, it is necessary to find
perturbations to the input in which ¥ing and ¢ing come apart. For example, if the model
generates the correct output on a benchmark instance because of data contamination, then
it will not generate the correct output on an unseen instance. As discussed in Section
3.3, this is exactly what is done in many ML evaluations in practice (McCoy et al., 2019;
Kiciman et al., 2023). CAMA unifies these different experimental practices, providing a
philosophical foundation for this empirical work.

Definition 11 is just one possible concretisation of Definition 10. In introducing a be-
havioural test for ‘trying’, we provide proof of the applicability of CAMA to contemporary
evaluation practice. Importantly, we do not suggest that Definition 11 is, or ought to be,
the only way of assessing whether a model tries to ¢..3?

First, note that Definition 11 is a purely behavioural test. In particular, then, it cannot
be used to disambiguate between capabilities ¢. and . which are behaviourally indistin-
guishable across all sets of background conditions (capabilities which share an extension
but differ intensionally). Many philosophically interesting capabilities are plausibly of this
sort, such as a capability for ‘genuine’ semantic understanding (versus, say, sensitivity to
co-occurrence statistics).

Second, note that Definition 11 is relatively coarse-grained; it requires that we can find
both ¢.-relevant and ¢.-irrelevant perturbations to the input. But for some capabilities of
interest ¢, (e.g. very specific capabilities, or capabilities which require the use of semantic
information, such as translation capabilities), any perturbation to the input is a ¢.-relevant
perturbation. Moreover, it may sometimes be difficult to recognise whether a perturbation
is sufficiently ¢.-(ir)relevant (as an anonymous referee observes, for example, it is unclear
how much re-wording of an input is required to assure us that we are no longer testing the
model on memorised data).

33. Thanks to two anonymous referees for discussion here.
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Third, any behavioural evidence will under-determine the question of whether a model’s
output is ‘best explained’ by being directed at ¢.ing, as is required by Definition 10. As
an anonymous referee observes, teleological explanation of the behaviour of ML models is
complicated by models’ relative opacity; we cannot make the same sorts of assumptions
that we make when performing cognitive evaluations of humans, even if the evaluation
procedures themselves are similar. In the presence of this opacity, we ought to maintain
appropriate epistemic humility.

All of these considerations suggest that there will be situations in which Definition 11,
as useful as it is, is inadequate as an operationalisation of Definition 10. In particular, inves-
tigation of whether a model’s behaviour is ‘best explained’ by being directed at ¢.ing may
require looking inside the model, and performing appropriate interventions on its represen-
tations (Harding, 2023). If, as many philosophers of action believe, teleological explanations
bottom out in some cognitive state of the ‘actor’ (in our case, the model), then ultimately
whether the ‘best explanation’ condition is satisfied will depend on the intermediate high-
level computation the model performs; as discussed in Section 2.2, this is exactly the target
of contemporary interpretability work.

4.3 Summing Up

To summarise, we’ve suggested adding a conditional ingredient to the analysis of ML models’
abilities, and shown how it can be operationalised. The discussion above makes clear that
this solves the problems raised in Section 3.3; that is, our account has the third desirable
feature we identified (Definition 8). It remains to show that our account permits greater
understanding of the science of model evaluation.

5 Putting CAMA to Work
5.1 The CAMA Evaluation Protocol

CAMA suggests a concrete protocol for evaluating models. Once we have a test for whether
an output is explained by its being directed at ¢.ing (such as the behavioural test in
Definition 11), we can use it to evaluate models according to Definition 10, by considering
only those model outputs which could falsify the conditional. More concretely, we have:

Definition 12 (CAMA Evaluation Protocol). To evaluate whether M can ¢, take the
following steps:

1. Fiz some operationalisation construct c, and generate many queries qg, for ¢c.
2. For each of several sets of background conditions B, repeat steps 3 and 4:

3. For each query qg,, process an input corresponding to qq, (generated using the
background conditions B) through the model to produce an output Yoo, -

4. (‘Rejection Sampling’) For each output Yy, test whether Yg,. 18 explained by
being directed at ¢ping, using a pre-registered test (such as by using appropriate
perturbations to the input, as in Definition 11). Throw away those outputs Yoo,
which are not explained by being directed at ¢ping. The outputs remaining are
those on which it ‘tries to ¢ .
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5. If there is some set of background conditions B at which M reliably succeeds at ¢ing
on those queries q4, on which it tries to ¢, then M is able to ¢.. If there is no such
set of background conditions, then M is not able to ¢..

CAMA (and its associated evaluation protocol) provide a general definition of what it is
for a model to have a capability. Note that the CAMA protocol is largely compatible with
current evaluation practice; in particular, Step 3 will usually involve sampling queries g,
from benchmarks for ¢..

One point worth making is that the assessment of ‘reliability’ in Step 5 will depend
on how many outputs have been ‘rejected’ in Step 4. The evidence accumulated using
the CAMA protocol will be more reliable the more queries on which the model tries. In
general, we should be wary of making claims about the model’s ability to ¢, in domains in
which it only ‘tries’ to ¢. on some very narrow range of queries. In these cases, it might
be appropriate to use operationalisation constructs with non-behavioural success conditions
(e.g. that apply to properties of models’ internal states).?*

As emphasised in Section 2.2, though, we often care most about what models can do in
the environments in which they will be deployed (that is, we want a slightly more specific
notion). The account we present here can also be used to evaluate these ‘deployment-
specific’ ability claims.

First, we must fix an operationalisation construct appropriate for the deployment envi-
ronment (one with ecological validity). If we are interested in whether the model can add
two numbers, for example, we will want to understand the distribution of queries — pairs of
numbers — it will encounter, as well as the degree of inaccuracy we permit successful outputs
to have. Second, we must specify which background conditions we hold fixed, and which
can vary. For commercial LLMs deployed through a web application, for example, we would
expect only the prompting strategy to change, since only this is within the user’s control; all
other background conditions are held fixed by the model developer.?® Third, as emphasised
in Section 4.2, the perturbations we consider in analysing whether the model is trying to ¢
will depend on the deployment environment; we should only consider perturbations which
the model could actually encounter in practice. This reflects the fact that the ability claim
we're interested in is (often) deployment-specific; for example, a model which ¢s success-
fully because of data contamination (i.e. because it is regurgitating its training data, rather
than trying to ¢) will not — on Mandelkern et al.’s terminology — count as having a generic
ability to ¢, but will count as having a specific ability to ¢ in a deployment environment
in which it never encounters an unseen query. Similarly, Kevin may be gainfully employed
by an auctioneer to detect forgeries in a domain in which he encounters only vases he has
seen before, even though he in fact lacks a more general capability to detect Ming dynasty
forgeries.

What about a case in which the background conditions the model encounters in its
deployment environment prevent it from exercising an ability to ¢7 As observed in Section
2.3, one feature of commercial models’ deployment environments is the use of external
content filters, which screen out undesirable model outputs, preventing them from being

34. Thanks to an anonymous referee for discussion on this point.

35. Even the prompting strategy need not vary; in some commercial settings in which LLMs are deployed (e.g.
online customer service settings), users have access to a fixed ‘menu’ of queries, which are transformed
into an input to the model by a prompting strategy ‘under the hood’.
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displayed to users. These content filters provide an interesting illustration of the sort of thing
an account of capabilities should do for us. In practice, these tools don’t work perfectly,3%
but suppose they did; that is, suppose that every time a model was going to produce an
output that constituted ¢ing (where ¢ing is some harmful capability), the content filter
prevented it. In this situation, it seems that the system composed of the model and content
filter lacks the ability to ¢, but does the model itself retain the ability?

Following the discussion above, we can see that what’s going on is that the model retains
its generic ability to ¢ (in the sense defined by CAMA), but lacks a ‘deployment-specific’
ability. That is, it lacks the ability when deployed with a perfect content filter; in the
language of the new dispositionalists (Fara, 2008), the generic ability has been ‘masked’.3”

5.2 Distinguishing Attempts from Non-Attempts

By adding a conditional ingredient to the analysis of ML models’ abilities, CAMA allows
us to distinguish between two cases: those in which the model tries to ¢ and those in which
it does not. This distinction, which is obscured by non-conditional ways of thinking about
model capabilities, can (we argue) be usefully applied to discuss how methods for training
and evaluating models affect their capabilities.

5.2.1 DIFFERENCES AMONGST PROMPTING STRATEGIES

For example, when evaluating the efficacy of an adversarial prompting strategy, one metric
proposed by Zou et al. (2023) is the model’s response rate. As they put it (p.9, their
emphasis):

“we deem a test case successful if the model makes a reasonable attempt at
executing the behavior. As different models exhibit varying ability to provide,
for example, a correct set of instructions for building an explosive device, this
may involve human judgement to determine that a response did not amount to
a refusal, or an attempt to evade generating harmful content.”

This sort of evaluation can only be understood when we have an account of (a) what it
is for a machine learning model to try to comply with a user’s request (indeed, they use
the word ‘attempt’, albeit without definition), and (b) how this connects with the model’s
abilities. This is exactly what is provided by CAMA; note that Definition 11 also provides
a more principled (even automatable) means of testing whether a given output counts as a
‘reasonable attempt’.

Similar observations can be made about other prompting strategies. For example, few-
shot prompting (Brown et al., 2020), in which a query for ¢ is pre-pended with some number
of (query, gold label for ¢) pairs, can be seen as — amongst other things — getting the model
to try to ¢ rather than doing something else, exploiting sufficiently large models’ abilities

36. Bing’s chatbot provides a good example (Rosenberg, 2023).

37. Note that this example bears striking resemblance to a sort of example generally attributed to Austin
(1956), which is sometimes presented as a challenge to CA (and as one of the primary motivations for
new dispositionalism). For example, Mandelkern et al. (2017) invite us to consider a case in which we
have a vase wrapped in a suitably thick (and well secured) layer of bubble wrap. In this case, Mandelkern
et al. suggest that we retain our ‘generic’ ability to break the vase, even though the ‘specific’ ability
claim (that we can break the vase) is false; our response here is similar to theirs.
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to perform in-context learning (Wei et al., 2023b). This idea accords well with Bayesian
perspectives on in-context learning (Xie et al., 2021), whereby additional examples in the
prompt’s prefix help the model ‘pin down’ a latent higher-level variable (on our perspective,
the task which it should try to perform). By contrast, Chain-of-Thought prompting (Wei
et al., 2022b) does not affect whether the model tries to ¢, but rather the (conditional)
probability that it successfully ¢s when it tries to ¢. Thus CAMA provides a helpful lens
through which to view the effects of different prompting strategies.

5.2.2 FINE-TUNING

This distinction can also be applied to methods for fine-tuning models. On the (synchronic)
approach we take to model individuation, fine-tuning changes the model being evaluated
(i.e. there are two models, a pre-tuning model and a post-tuning model).3® It seems natural
to ask: how do the abilities of the fine-tuned model compare to the abilities of the model
pre-tuning?

One prominent tuning technique for LLMs is Reinforcement Learning from Human
Feedback (RLHF; Christiano et al. 2017; Stiennon et al. 2020), where human (typically
binary) preferences over the original model’s outputs are used to train a preference model,
which provides a scalar reward signal to fine-tune the original model. There are various
reasons to think that RLHF does not affect a model’s underlying capabilities, such as its
ability to produce hate speech; it involves very few parameter updates relative to prior
training, the algorithms used in practice (such as proximal policy optimisation (PPO);
Schulman et al. 2017) penalise large shifts from the original model’s output distribution, it
is easily undone by (even non-adversarial) fine-tuning (Qi et al., 2023) and (as we’ve seen)
is circumvented by appropriate prompting strategies. Despite this, it’s clear that RLHF
significantly affects the model’s manifestation of certain capabilities (e.g. models that have
been fine-tuned using RLHF produce hate speech in far fewer settings than models that
have not); what’s going on? CAMA provides a clear answer; whilst the conditional ‘if the
model tries to ¢, it successfully ¢s’ is unaffected by RLHF (for most capabilities ¢), the
degree to which the model tries to ¢ changes. In particular, models become far less likely
to try to perform harmful capabilities, as judged by human preferences; although the model
retains the underlying capability, it becomes harder to elicit the capability in practice.?”

Of course, one might wonder about a (for now, hypothetical) case where RLHF worked
perfectly (that is, in a case where a tuned model would never try to, e.g., produce hate

38. This seems to us to be the only principled way to treat fine-tuning, given there is no in-kind difference
between tuning an existing model and training a new model using the old model’s weights as a parameter
initialisation; the difference between tuning and training proper is a matter of degree. This isn’t to
say that fine-tuning performed as part of model evaluation doesn’t give us evidence of the original
model’s capabilities; if a model can be fine-tuned with very little compute (relative to e.g. its original
training compute) to ¢ successfully, this does provide indirect evidence that it already had the ability
to ¢. So (limited) fine-tuning might provide a practical alternative to searching through different sets
of background conditions for the ‘best’ conditions to elicit a capability from the model. Indeed, the
fine-tuning compute budget required to elicit a capability might be a natural proxy for the difficulty of
eliciting the capability; future work could explore this.

39. Note that — as discussed in Section 5.1 — we’re often interested not only whether the model is capable
of ¢ing, but in how often it will actually ¢ in practice. In these cases, it makes sense to measure and
report the model’s propensity to try to ¢. Thanks to Seth Lazar for discussion on this point.
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speech, even in the face of adversarial prompting strategies). In this case, it seems we
would want to say that tuning had removed the model’s ability. This poses a problem for
CAMA, since we might judge the conditional ‘if the model tried to produce hate speech, it
would do so’ to be true.*’

Note that this sort of case (in which the conditional ‘if X tries to ¢, she will’ holds, but
where X is not able to try to ¢) is a well-known counterexample to CA (Chisholm, 1964;
Lehrer, 1968). For example, an agent might intuitively be able to dance if she tried to, but
be unable to dance by trying to dance (since then she’d simply flail about because made
nervous by attempting to dance).*! An amendment which handles these cases (Mandelkern
et al., 2017) is to put an intermediary term that is outside the intentional context between
the agent’s ability and their action; what it is for an agent to be able to ¢ is then for it to
be true that there is some action ¥ practically available to the agent such that if the agent
were to try to 1, then, typically at least, she would in fact ¢. This amendment is available
to CAMA, if required.*?

5.2.3 INTER-MODEL COMPARISON

Suppose Kevin and Elyna can both distinguish Ming vases from forgeries. We might want to
know whether Kevin is more capable of doing this than Elyna, or whether Elyna’s ability to
distinguish Ming vases from forgeries differs from Kevin’s in other interesting ways (maybe
it’s only something Elyna can do while concentrating, or while humming show-tunes).

Equally, we aren’t just interested in what individual models can do. We are also inter-
ested in comparing what different models can do. And as the number of different models
grows, so, too, does our interest in comparing the capabilities of these models. For instance,
we might want to know whether one model is more capable at code completion than another,
or whether it writes more convincing phishing emails. Having individuated models, it might
seem that all we need to do to (fairly) compare their abilities to ¢ is to find some input (or
set of inputs) which operationalise ¢ing, and compare their outputs when processing the
inputs. In other words, we find a benchmark for ¢, and assess the models’ performance on
that benchmark.

We have already indicated (Section 2.4) why we think that benchmarks cannot be the
whole story when it comes to model capabilities. But there’s a further reason to think
an appeal to benchmarks is inadequate in the case of inter-model capability comparisons.
Benchmarks are model-agnostic; they do not contain model-specific instructions. So, when

40. We're actually unsure if this conditional has a determinate truth value, given how thin the notion of
‘trying’ we employ here is. For the sake of discussion, though, let’s suppose it has a true reading.

41. For extended discussion of this issue with the CA, see (Schwarz, 2020; Kittle, 2023).

42. What ‘actions’ are practically available for a text-only LLM? A natural way to understand the degree
of practical availability of actions for text-only LLMs is in terms of the probability the LLM has of
performing the action. So an action’s practical availability for an LLM (relative to an operationalisa-
tion construct ¢, set of background conditions B and input x) is given by the probability mass of the
output strings which count (according to the operationalisation construct) as implementing the action.
Intuitively: an action is practically available for an LLM in an evaluation situation to the extent that
it’s something the LLM is likely to do. Note that if there are no strings which count as implementing
the action, then the action is not practically available to the LLM. This captures the intuitive idea that
the actions practically available to a model which produces text-based outputs are only those which are
implementable in text.
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performing inter-model comparisons we face an important question: how should we set the
background conditions for different models? This question matters: as discussed at length,
model performance is highly sensitive to changes in these background conditions.

It’s tempting to think that in order to permit meaningful inter-model comparisons we
should simply use the same background conditions across different models. But this thought
again conflates performance (behaviour) and competence (capability). In making inter-
model comparisons, we are interested in standardising an assessment of capabilities. As
discussed above, it seems natural to think that background conditions don’t influence com-
petence, but that they do influence performance. In particular, the same set of background
conditions may introduce different performance constraints on different models (Firestone,
2020). Indeed, it would be strange if they didn’t! The entire reason for evaluating different
models is that we think differences in architecture, training data, tuning methods, and other
development choices have led to models that have different competences. It would be sur-
prising if performance constraints did not also vary across models, and for the same kinds of
reasons.?3. For fair inter-model comparison, then, we ought to accommodate performance
constraints where possible; this will involve varying the background conditions for different
models.**

Empirical work on evaluating model capabilities is increasingly sensitive to the impor-
tance of choosing appropriate background conditions. For example, Liang et al. (2022),
in presenting the HELM evaluation framework, provide rich discussion on the choice of
background conditions, which they vary across models and tasks. That said, they hold
fixed prompting strategies across models, deliberately forgoing ‘model-specific incantations’
(p-8); the need to vary all background conditions (including, where it matters, prompting
strategy) across models, is not well-recognised.?®

Although Liang et al. hope that future LLMS will be ‘inter-operable’ (p.50) with respect
to prompting strategies (in our terminology, have the same performance constraints), it’s
clear that current models are not. Moreover, it’s plausible that general-purpose models
will grow increasingly heterogeneous in the coming years, given that model development is
increasingly occurring in secret using privately-sourced data and architectures.

So, the fundamental question remains: how ought we standardise evaluations of models
liable to different performance constraints? CAMA suggests a partial answer to this ques-
tion; what’s relevant is finding — for each model — the set of background conditions on which
the model is most successful at ¢ing. In other words, we should employ ‘model-specific in-
cantations’ if they genuinely affect model performance in the deployment environment we
are interested in. The worry, of course, is that this allows for gerrymandered background
conditions; in the case of LLMs, this might be a prompting strategy in which a model
succeeds at ¢ing by (e.g.) just repeating back the information the user gives it in the
prompt. CAMA’s conditional clause fixes this problem; we need only consider background

43. Indeed, there is a large body of empirical work that confirms that different models are sensitive in
different ways to changes in these background conditions. See, e.g., Liang et al. (2022) for discussion.

44. Firestone (2020) makes the same point about inter-species comparisons (e.g. between humans and non-
humans, and humans and ML systems). See also Lampinen (2023).

45. Although Liang et al. (2022) acknowledge that better results would be obtained from different prompting
strategies (and that this might change the relative evaluation of different models), they argue that
prompts should be thought of as ‘user behaviour’ (p.50). But, as we note in Section 2.1, it is important
to disambiguate ability claims about models from ability claims about users of models.
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conditions in which the model tries to ¢, allowing us to rule out gerrymandered background
conditions.*® For current LLMs, the background conditions we consider will often be the
same between models, but they need not be.

6 Conclusions and Future Work

There is broad agreement that it matters, and will continue to matter, which capabilities
machine learning models have. The evaluation of model capabilities is an important com-
ponent of many governmental responses to recent progress in Al. Without a systematic
account of what it is for a model to have a capability, though, it is unclear how to decide
capability claims made about models, especially in the face of disagreement. In this paper,
we’ve attempted to provide an account of this sort, repurposing a prominent tradition in
the philosophical literature on ability in the context of contemporary Al. We take some of
the concrete contributions of this paper to be:

e Identifying the core conceptual elements of model evaluations, and subsuming them
within a common framework, using evaluation of LLMs as an example.

e Demonstrating the need for a more sophisticated account of model capabilities, via
discussion of the inadequacies of (what we claim is) the operative conception of model
capabilities amongst philosophers and ML practitioners.

e Proposing a new account of model capabilities, CAMA, and showing that it can be
operationalised.

e Showing that CAMA provides a philosophical grounding for a variety of work in
model evaluation, and helps clarify some disagreements about how different methods
for training and testing models affect their capabilities.

Crucially, although we apply our account to contemporary models, it is future-proof; since it
is derived from a mainstream philosophical approach to the abilities of agents, its application
will not be disrupted by a (plausible) increase in the agency of future models.

Of course, CAMA is just an initial step towards a complete framework for deciding
capability claims about models. There are various questions that future work could explore;
we list three here.

First, as mentioned above, there has been no discussion here of the ways in which model
capabilities interact with the capabilities of the users of models. When does a model’s
possession (or lack) of a capability imply that a user of a model possesses (or lacks) the
capability?

Second, our operationalisation of CAMA focussed on LLMs. But there are other classes
of models to which CAMA could be applied, including models which have LLMs as modules
(Park et al., 2023; Wang et al., 2023) and models trained from scratch using reinforcement

46. Of course, as an anonymous referee points out, there will be some work involved in ruling out gerry-
mandered background conditions. In the case of data memorisation, for example, if the model’s training
data is proprietary, we will need to construct careful behavioural tests for memorisation (typically, by
conditioning the model on part of the answer and testing whether it is able to provide a memorised
completion). The defeasibility of these tests underlines the importance of greater transparency from
model developers (Ivanova, 2023).
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learning (Team et al., 2023). What is the most appropriate empirical test for ‘trying’ (the
equivalent of Definition 11) for these classes of models?

Third, Section 5 provided a glimpse into the role CAMA could play in settling conceptual
and empirical issues in model evaluation. There is more work that could be done here; for
example, a much wider variety of techniques could be compared through the lens of CAMA,
the evaluation protocol we suggested could be compared to existing approaches in model
evaluation, such as self-consistency tests (Jang and Lukasiewicz, 2023), and interpretability
work could explore whether there are internal correlates of the model’s ‘trying’.
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