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Abstract
We propose a solution to the problem of logical omniscience in what we take to be
its fundamental version: as concerning arbitrary agents and the knowledge attitude
per se. Our logic of knowledge is a spin-off from a general theory of thick con-
tent, whereby the content of a sentence has two components: (i) an intension, taking
care of truth conditions; and (ii) a topic, taking care of subject matter. We present
a list of plausible logical validities and invalidities for the logic of knowledge per
se for arbitrary agents, and isolate three explanatory factors for them: (1) the topic-
sensitivity of content; (2) the fragmentation of knowledge states; (3) the defeasibility
of knowledge acquisition. We then present a novel dynamic epistemic logic that
yields precisely the desired validities and invalidities, for which we provide expres-
sivity and completeness results. We contrast this with related systems and address
possible objections.

Keywords Aboutness · Subject matter · Logical omniscience · Dynamic epistemic
logic · Thick content

1 Introduction

Formal epistemology tends to bake in logical omniscience. Epistemic logic in the
style of [33] models a body of knowledge as a set of possible worldsK and takes ϕ as
known when ϕ is true at every world inK . It follows that every logical truth is known
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by every agent, and if ϕ is known then so are its logical consequences. Relatedly, a
model going back to [11] takes propositional content to be a set of possible worlds.
If an agent’s doxastic state is then modeled as a mere set of contents, the resulting
doxastic logic seems objectionably weak: since ϕ ∧ ψ and ϕ are generally true at
different worlds, this picture allows for agents that believe the former without the
latter. Taking belief as closed under entailment provides a simple fix, but renders all
logical truths universally believed. Further, Bayesianism models an agent’s credences
relative to evidence as a probability function. As this standardly assigns 1 to every
logical truth, the agent is represented as fully believing all of them, as well as every
logical consequence of the evidence [12, Ch.6].

Fans of these formalisms have room to maneuver. One may revise logic or propo-
sitional content, or complicate the relationship between attitudes and content [13,
42, 51, 56]. One may interpret the formalisms as being about a perfectly rational
Bayesian believer, or about what an ideal agent may infer from its body of knowledge
[33, Sect. 2.5].

But deep philosophical issues are nearby. Say that a problem of logical omni-
science arises for attitude A, relative to a class of agents, when either: (i) it is unclear
whether A is closed under deductive consequence at all; or, (ii) given that A is not
so closed, it is unclear what restricted closure principles hold for it; or (iii) though
it is reasonably clear what principles should hold, it is unclear how to generate them
with extant formal tools. (i) and (ii) bear on our basic understanding of propositional
attitudes. (i) is widespread: epistemologists debate whether skeptical paradoxes show
that even ideal agents cannot know every deductive consequence of their knowledge
[15, 16, 32, 65]. Bayesians debate whether even rational credence is closed under
logical consequence [59, Sect.5.4]. (ii) is widespread: everyday belief ascriptions
seem not to be closed under entailment, but it is less clear what logic, if any, they do
exhibit [48]. So problems of logical omniscience can be framed for ordinary knowers.
Or, for various ideal knowers: with bounded but otherwise perfect cognitive powers
[18, Ch. 10]; normatively ideal [59]; or cognitively ideal [35]. Or, for derivative atti-
tudes, such as ‘logical commitment given what one knows’ [43], or ‘knowability in
principle given certain evidence or information’ [4, 29].

A fundamental version of the problem is hit when one focuses on arbitrary agents,
abstracting away from cognitive skills and rational commitments; and on the knowl-
edge attitude per se, as opposed to derivative ones. This is the topic of the present
paper: the intrinsic logic of the knowledge attitude, based only on the literal content
of knowledge ascriptions such as ‘a knows that ϕ’ and plausibly universal features
of a body of knowledge, irrespective of what a can or cannot compute, its working
memory, or normative constraints.

The fundamental problem has a static aspect and a dynamic aspect. The static:
what further facts must an arbitrary agent know if she knows ϕ1, . . . , ϕn? The
dynamic: how is an arbitrary agent’s body of knowledge κ altered by her coming to
know ϕ? (The dynamic may be less well-known than the static, but has been explored
in the literature – we’ll get back to this.) For both, we answer by identifying a num-
ber of pre-theoretic logical principles, addressing (ii) above. We then use them to
motivate a novel logical system, addressing (iii).
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Our proposed system capitalizes on two resources. One is a general theory of
propositional content we have been developing in various works [2–4, 29, 30], in the
ballpark of [65]’s aboutness theory and [23]’s truthmaker semantics. The other is the
idea that knowledge is defeasible: adding a piece of knowledge to an existing body of
knowledge can lead to loss of knowledge. The latter is a well-known stance [10, 27].
Here’s a primer on the former: treating content as a bare set of possible worlds leaves
no hint as to how or why a sentence with that content is true at those worlds. ‘2+2=4’
and ‘Equilateral triangles are equiangular’ are true at the same possible worlds (all of
them), but differ in content. To grasp that difference is to grasp which aspects of the
world bear respectively on their truth. We need to supplement truth conditions with
an account of aboutness, ‘the relation that meaningful items bear to whatever it is that
they are on or of or that they address or concern’ [65, p. 1], namely their topic, or
subject matter. Further, what a sentence is about can, intuitively, be properly included
in what another one is about. Relatedly, contents stand in mereological relations [65,
Section 2.3], [23, Sections 3-5]: they may be merged into wholes which inherit the
proper features from the parts [65, Section 3.2]. Thus, the content of an interpreted
sentence is fruitfully identified with the thick proposition it expresses [65, Sect. 3.3].
This has two components: (i) intension and (ii) topic or subject matter. To know what
ϕ means, one needs to know both what it is about, and what it says about that topic.
ϕ and ψ express the same thick proposition when (i) they are true at the same worlds,
and (ii) they have the same topic. The content of ϕ includes that of ψ when (i) any ϕ-
world is aψ-world and (ii) the topic ofψ is part of that of ϕ. The Boolean connectives
are transparent qua subject matter: ϕ has the same subject matter as ¬ϕ (‘Snow is
white’ and ‘Snow is not white’ address the same topic: whether snow is white). ϕ∧ψ

and ϕ ∨ ψ have the same subject matter: a merging of the subject matter of ϕ and
that of ψ . This account of content delivers patterns of logical entailment applicable to
any basic propositional attitude, mirroring judgments about indirect speech reports.
In particular, it delivers the logic of knowledge ascriptions presented below.

Our approach is reminiscent of [66]’s work on the topic-sensitivity of belief, and
of dynamic epistemic logic [60–62]. Yalcin, however, does not present a full-fledged
logical system and does not treat propositions as thick. We also depart (Section 4.2)
from the characterization of subject matters as partitions of worlds Yalcin borrows
from [45]. We follow [60, 61] in thinking that there is a distinctive dynamic aspect
to the logical omniscience problem. Authors debating epistemic closure often phrase
the latter in terms of competent deduction from known premises, and understand
deduction dynamically, as a process [31, 64]: given that one competently deduces ψ

from ϕ1, ..., ϕn, all the while knowing the latter, doesn’t one know ψ? [34], pp. 15-
16, distinguishes (what he calls) pure and deductive epistemic closure principles: the
former are such that one just cannot know the premise or antecedent without know-
ing the conclusion or consequent; the latter (including Hawthornian-Williamsonian
closure) require some inferential action to be performed. Van Benthem investigates
dynamic closure principles whose general shape has it that Kϕ and K(ϕ → ψ)

implies [a]Kψ , where [a] is a dynamic operator encoding the transformation of the
relevant model according to a recipe specified by (inferential) action a. Bjerring
and Skipper [7] follow him in thinking that the problem of logical omniscience has
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to be addressed dynamically. The treatment of logical omniscience in [60] distin-
guishes explicit and implicit knowledge [17, 42]. The former is understood statically:
it gives the agent’s actual knowledge and has negligible logical structure. The latter
is a derived attitude, understood dynamically and closed under full classical (mono-
tonic) logical consequence. We argue below that our system gives a richer account
of the logical structure of actual knowledge, and avoids over-estimating the fruits of
inferential dynamics.

We proceed as follows. Section 2 explains the fundamental problem and criti-
cally discusses some attempted responses from the literature. Section 3 presents a
list of intuitive logical validities and invalidities for the intrinsic logic of knowledge,
taken as defeasible criteria of adequacy for an epistemic logic that solves the fun-
damental problem. Section 4 spells out our logical system and shows that it meets
such criteria. Interesting divergences with traditional dynamic epistemic logic, and
with topic-sensitive accounts of doxastic notions, are noted. Section 5 anticipates
some objections and offers replies and, where necessary, refinements. A twofold
appendix provides proofs for theorems from the philosophical discussion, and results
concerning soundness and completeness.

2 Logical Omniscience

2.1 The Goal

Start with three questions:

(1) Internal Logic. What is the internal logic of knowledge? That is: given that
an arbitrary agent knows certain facts, what further facts can we conclude she
knows?

(2) Potential Knowledge. What can be known on the basis of a body of knowl-
edge? That is: what can an arbitrary agent know via inference from her existing
knowledge?

(3) Content. How best to model the contents of knowledge? In particular, how best
to model a body of knowledge – the sum total of what an agent knows?

The three are related: the logic of the knowledge attitude depends on the nature
of its possible contents. In particular, if contents can stand in mereological relations
then an arbitrary agent stands in the knowledge relation to content P when she knows
every part of P :1 [65, Sect. 7.3] calls this ‘immanent closure’. In specific cases, it is
obvious that one knowledge claim follows from another: one cannot know that Jones
is horrendously late without knowing that Jones is late. Such intuitions are prima
facie data for evaluating a general account.

We intend the answers to (1), (2), (3) to be purely descriptive and universal. We
do not address normative issues, such as: given that an agent knows P , what is she

1Throughout, P,Q refer to arbitrary propositions, understood to serve as contents for attitudes and
meaningful claims; ϕ,ψ refer to arbitrary interpreted sentences.
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thereby permitted to know, or obliged to know? Nor are we asking what a cognitively
ideal agent knows given knowledge P , or what a computationally bounded agent
thereby knows, inferentially or otherwise. These questions generate interesting issues
for which the label ‘problem of logical omniscience’ might be apt [6, 7, 33, 35, 38,
58, 59]. But they are not our fundamental problem. This bears on the intrinsic features
of knowledge, and how language reports on them.

Logical tools help with (1), (2), (3). Take a modal propositional language E L
with knowledge modality K and update modality [ ]. Read ‘Kϕ’ as ‘the agent knows
that ϕ’. Read ‘[ϕ]ψ’ as ‘ψ holds after the agent comes to know ϕ’.2 Suppose we
settle on an intuitive epistemic logic, IEL, encompassing a list of plausible validities
and invalidities given our intended interpretation of E L . Then (1), (2), (3) compress
into a challenge:

(4) Goal. Provide a semantics for E L , such that the compositional meanings of
Kϕ and [ϕ]ψ yield IEL.

To solve our fundamental problem is now to meet the Goal.
The solution must be squeezed between two extremes:

(5) Lower Bound: the logic of knowledge per se is non-trivial.
(6) Upper Bound: knowledge per se is not closed under (classical, monotonic)

entailment.

As for Lower Bound: given operator �, a validity is in the single-premise internal
logic of � just in case it is of the form �ϕ ⊃ �ψ , with ⊃ the material conditional.
The single-premise internal logic of � is trivial when �ϕ ⊃ �ψ is a validity only
if ϕ = ψ (ϕ and ψ are syntactically identical). The single-premise internal logic
of knowledge is not trivial. Knowledge distributes over conjunction [64, pp. 276–9]:
knowing both Jones and Smith are late entails knowing Jones is late. A satisfactory
epistemic logic validates K(p ∧ q) ⊃ Kp, where p and q are atoms.

As for Upper Bound: an agent may know something without knowing all of
its consequences. Mathematical knowledge on the basis of a conjunction of simple
axioms is often elusive: one can know Peano’s Axioms, and these can entail, say,
Goldbach’s Conjecture; but one doesn’t know if Goldbach’s Conjecture is true.

As for the dynamics: add update modalities of the form [ϕ] to our language with�.
Suppose the following schema is valid: [ϕ]�ϕ. Hence, [ϕ] is a ‘bringing it about that
�ϕ’ operation. Then, the single-step internal dynamics of� is the set of validities of
the form [ϕ]�ψ . The internal dynamics is trivial just in case [ϕ]�ψ is a validity only
if ϕ = ψ . The internal dynamics of knowledge is not trivial. If one comes to know
that Jones is an expert lawyer, then one comes to know that Jones is a lawyer. Yet for
ordinary agents, coming to know ϕ needn’t result in knowing every consequence of
ϕ: complicated mathematical theorems may elude one even after one comes to know
the conjunction of all relevant axioms.

2Studying a language with both K and [ϕ] would be uninteresting if one were convinced that, say, (Kϕ ∧
Kψ) ⊃ Kχ and Kϕ ∧ [ψ]Kχ are logically equivalent. However, one who holds that knowledge is
defeasible denies this equivalence. As we do: we discuss an example shortly.
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The Lower and Upper Bound yield desiderata for any framework aiming to
achieve the Goal:

(7) Lower Desideratum: the framework yields validities of the form Kϕ ⊃ Kψ

and [ϕ]Kψ , where ϕ �= ψ .
(8) Upper Desideratum: there exist ϕ and ψ where ϕ entails ψ yet Kϕ ∧¬Kψ and

[ϕ]¬Kψ are satisfiable.

2.2 Discussing Some Literature

Here are frameworks that fail to meet some desideratum. On one approach, content
is unstructured: an agent’s total body of knowledge at actuality @ is modeled as
a set of possible worlds. Given that gaining information is narrowing the space of
possibilities, the set represents the information the agent has about @ (compare the
notion of ‘information as range’ in [24] and [60]). Kϕ is true at @ exactly when ϕ is
true at every possible world compatible with the agent’s information. This, of course,
is the classic approach of [33]: epistemic logic is but a normal modal logic. Logical
omniscience follows: Kϕ ⊃ Kψ is valid when ϕ entails ψ . The Upper Desideratum
(8) is missed.

On another approach, content is as structured as a syntax: an agent’s total knowl-
edge at @ is modeled as a set of sentences K@ in a suitable formal language (say,
E L itself).3 (One may then understand the contents of a knowledge attitude as sen-
tences in a language of thought; but see [13] for a critique.) Kϕ is true at @ exactly
when ϕ ∈ K@. If every set of sentences is a possible body of knowledge, then no sig-
nificant logical constraints are imposed on the internal logic of knowledge. And any
proposed restriction on the class of admissible sets either seems ad hoc, or betrays
the leading idea that knowledge contents are as fine-grained as linguistic expressions.
The Lower Desideratum (7) is missed.4 This quandary has generated a wealth of
literature we will not assess here.5

A third approach combines the two above [17, 42, 61]. Unstructured content
informs an implicit knowledge operator: Iϕ is true at w just in case ϕ is true at
all worlds epistemically accessible from w. Structured content informs an explicit
knowledge operator: Eϕ is true at w just in case ϕ is a member of a given set
Kw, containing only sentences true at every world epistemically accessible from
w. Such models are sometimes given a finer structure in awareness logics: each w

is assigned a set of sentences Aw, thought of as the sentences the agent is aware
of at w. Then, Eϕ holds at w just in case ϕ ∈ A (w) and Iϕ is true at w [17].6

3See, for instance, [46] and [40].
4One might compare a prominent line in the impossible worlds approach, according to which content is
taken as a set of worlds, some possible, some impossible. Impossible worlds are treated as ‘anarchic’,
allowing the violation of even basic logical truths. This results in a trivial, or nearly trivial, epistemic logic.
See [53] and [52].
5For instance, we pass over the impossible worlds approach and non-standard logic approach. See [18, 53,
63], Ch. 9. Other extant approaches are explicitly concerned to model bounded reasoning and bounded
rationality. See [18], Ch. 10.
6See [55] for a broad overview of this approach and further references.
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One may interpret the framework as follows: Eϕ indicates that ϕ is actually known
by the agent; Iϕ indicates that in principle the agent could come to know ϕ on
the basis of her present knowledge, given sufficient conceptual and computational
resources. Actual knowledge exhibits little logical structure; potential knowledge
displays logical omniscience.

One can enhance this theory with dynamic operators [60]: a ‘realization’ operator
[# ] ensures that the truth of both Eϕ and E(ϕ ⊃ ψ) entails the truth of [#ψ]Eψ

(‘ψ is explicitly known upon realizing that ψ’). Technically, [#ϕ]ψ is true at w just
in case the addition of ϕ to Kw assures the truth of ψ . Since Eϕ and E(ϕ ⊃ ψ)

need not entail Eψ , all this goes some way to representing the power of inference
to extend knowledge. A candidate dissolution of the problem of logical omniscience
emerges: the Lower Desideratum is met by I ; the Upper Desideratum is met by E.
To think that a single logic of knowledge should meet both is to conflate actual and
potential knowledge.

This, however, underestimates the intrinsic logic of actual knowledge. If Smith
does not know that Jones is late then it must be that Smith does not know that Jones
is horrendously late. Inferential relations, on the face of it, cannot explain this: if ψ

can merely be inferred from ϕ, there is a possible situation – one where a given agent
just fails to make the inference – where ϕ is known but not ψ . A better explanation:
Jones’ being late is part of the content that Jones is horrendously late. By Yablovian
‘immanent closure’, to know the latter is to have already secured knowledge of the
former, no matter how cognitively impaired one (on occasion) is.

Further, the proposal overestimates the intrinsic logic of potential knowledge, on
(at least) grounds of the defeasibility of knowledge. An ordinary agent may know ϕ

and know ϕ ⊃ ψ , yet inferring ψ is not a path to knowing ψ , but to losing the knowl-
edge that ϕ. Beth knows Theorem 1 on the basis of testimony from her trusted tutor.
She also believes that Theorem 2 holds, on the basis of testimony from her trusted
professor (the professor is mistaken: a rare occurrence). She then comes to know
that Theorem 1 and Theorem 2 are inconsistent, on the basis of painstaking math-
ematical reasoning. She rightly concludes that her tutor might have been mistaken,
so rationally suspends her belief in Theorem 1. She thus loses knowledge of Theo-
rem 1. Before she draws her last inference or proves the inconsistency result, there
seems no interesting sense in which she potentially or implicitly knows that Theo-
rem 2 is false on the basis of her present knowledge. Notice that we did not appeal to
any irrationality on the part of our agent, though examples along this line are easy to
concoct.

This motivates a dynamic epistemic logic that better accounts for the delicacies of
content and reasoning, towards meeting the Goal. In the next Section we describe the
logical features that should be captured.7

7Our Lower and Upper Bounds above, in a sense, don’t squeeze very tightly. There are proposals, such
as that of [37, 38], which resort to an impossible worlds semantics with a sort of logical plausibility
metric on worlds, capable of marking a distinction between blatant (e.g., that 2 + 2 = 5) and subtle (e.g.,
that Fermat’s Last Theorem fails) impossibilities. This models moderately competent, but not logically
omniscient agents capable of reasoning to rule out the former, though often incapable to rule out the
latter. The proposal navigates successfully between our two extremes, but the set-up is very different from
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3 Intuitive Epistemic Logic

We now propose a list IEL of intuitive validities and invalidities, generating defea-
sible criteria of success for an epistemic logic aimed at the Goal. While building the
list, we propose three explanations for its items: (1) the topic-sensitivity of content;
(2) the fragmentation of knowledge; (3) the defeasibility of its acquisition. One rea-
son logical omniscience is difficult to deal with is its multifarious origin: arbitrary
agents fail to be non-omniscient for different, irreducible reasons. We submit that
(1)-(3) are three core ones.

The full definition of the formal language for IEL comes in Section 3.4, after
some nuances have been motivated. This will suffice for now: p, q, r are atomic
sentence symbols from set A T . The boolean connectives ¬, ∧, ∨, ⊃ and ≡ are
standard. Read ‘�ϕ’ as ‘It is apriori that ϕ’ and ‘Kϕ’ as ‘The agent knows that ϕ’.
Read ‘[ϕ]ψ’ as ‘After the agent comes to know ϕ, ψ holds’.8 One can come to know
ϕ via receipt of new empirical information, inference, and so on. We model a single
agent, so all mention of the agent is suppressed.� is a universal modality, quantifying
over all possible worlds taken as epistemic scenarios. We model apriori entailment
as �(ϕ ⊃ ψ). We use

√
to indicate that a schema is intuitively valid, × that it

isn’t.

3.1 Topic-Sensitivity

(9) × Closure Under Strict Implication: �(ϕ ⊃ ψ) ⊃ (Kϕ ⊃ Kψ)

If it is apriori that ϕ entails ψ , then one knows ϕ only if one knows ψ . This is invalid:
it is apriori that if 113 guests attended the ball, then the number of guests is prime; but
one can know the antecedent without knowing the consequent. Borrowing from [57],
p. 88: William III might have known that England could avoid war with France, but
he needn’t have thereby known that England could avoid nuclear war with France. He
didn’t have the concept nuclear, and so wasn’t positioned to think about nuclear wars
at all. (To bolster this: William III could know and therefore believe that England
could avoid war. But, presumably, he didn’t have beliefs about nuclear wars, and so
didn’t believe that nuclear war could be avoided, as [57] notes. As knowledge implies
belief, we retrieve our example.)

(9) is connected to two further invalidities:

(10) × Apriori Omniscience: �ϕ ⊃ Kϕ

(11) × Omniscience Rule: If ϕ is valid then so is Kϕ

ours: Jago’s work models intermediately competent agents that sit strictly between the Lower Bound of
complete logical incapacity and the Upper Bound of logical omniscience. It does not give a content-based
semantics for ‘x knows that ϕ’ for arbitrary agents x, as we claim to do below.
8Or, less tersely: ‘After the agent comes to know the proposition expressed by ϕ in the prior discourse
context, ψ holds in the posterior discourse context’. The prior context is the context before the proposition
in question is added to the agent’s body of knowledge; the posterior context is the context after this event.
As in standard dynamic epistemic logic, we interpret [ϕ]ψ with care in view of Moorean phenomena: see
Section 3.6.
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Cantor’s Theorem is apriori, but an agent need not know it. William III failed
to know that either England could avoid nuclear with France, or England could not
avoid nuclear war with France. Agents can be denied knowledge because they fail
to properly grasp the relevant contents. One can grasp claims about the number 113
without being able to grasp claims about primeness; one can grasp claims about war
without being able to grasp claims about nuclear war. Thus, one can know a claim
about the former subject matter without knowing anything about the latter subject
matter, despite that claim entailing something about the latter subject matter.

This is not to say that if one comes to grasp a certain subject matter then one
automatically knows every consequence of one’s knowledge about that subject matter
(at least not when ‘grasping’ a proposition is understood as merely understanding it,
or being positioned to hold an attitude towards it). Presumably, an agent can know
there are 113 guests at the ball, fully grasp the subject matter of ‘the number of guests
is prime’ (including the topic of primeness) and still fail to know that number of
guests is prime. One can fully grasp ‘the number e is irrational’ without knowing it to
be true (perhaps one is wondering whether it is true). So our conclusions are modest:
subject matter is an aspect of content; hence, if ψ is about something that ϕ is not,
then the content of ψ is not included in that of ϕ; hence, an agent can know ϕ without
knowing ψ – even if ϕ entails ψ . In contrast, we note an intuitive validity:

(12)
√

Apriori Closure: �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)

This reflects a basic principle in the epistemology of mathematics: if a conjunction
of axioms is apriori and it can be determined apriori that those axioms have a certain
consequence, then that consequence is itself apriori. As a restricted quantifier over
epistemically possible worlds, apriority is a normal modal.

3.2 Thickness, Same-Saying

Section 1 proposed that: content is thick (truth conditions plus topic); the Boolean
connectives are topic-transparent; one content includes another when there is both
truth and topic preservation; and Kϕ ⊃ Kψ is valid just in case ϕ’s content includes
ψ’s content. This predicts the following validities and invalidities:

(13)
√

Left Simplification: K(ϕ ∧ ψ) ⊃ Kϕ

(14)
√

Right Simplification: K(ϕ ∧ ψ) ⊃ Kψ

One knows that Jane is a lawyer and a fisherman only if one knows Jane is a
lawyer. Knowing the latter is part of knowing the former.

(15) × Negative Addition I: K¬ϕ ⊃ K¬(ϕ ∧ ψ)

(16) × Negative Addition II: Kϕ ⊃ K¬(¬ϕ ∧ ψ)

William III knew that France will not go to war but didn’t know that France will
not go to nuclear war. He knew that England will go to war without knowing that
England won’t both refrain from war and develop a nuclear arsenal. These seem to
hold even if we replace knowledge with what knowledge entails: belief. If (15) were
valid, then the intentionality of content would be trivialized: in particular, if the logic
of knowledge tracks closure under parthood, then everything one knows would be
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(partly) about every topic. For example: one knows that Jane is friendly. (15) reflects
that part of what one knows is that Jane is not both unfriendly and an admirer of
Plutarch. Thus, one’s knowledge is partly about Plutarch. (And, ‘Plutarch’ could be
replaced with any referring term.) To say that one does not know anything about
Plutarch would be nonsensical on this view, since everything one knows is partly
about Plutarch.

Our hypothesis also predicts that these patterns are reflected in judgments about
indirect speech reports. Mary said that Smith and Jones are both on time; so part of
what she said is that Smith is on time. William III said that England will go to war; he
did not thereby say that England won’t both refrain from war and develop a nuclear
arsenal.

3.3 Fragmentation

A simple theory of thick content does not tell the whole non-omniscience story. If it
did, the following principle would be valid:

(17) × Closure Under Known Implication: K(ϕ ⊃ ψ) ⊃ (Kϕ ⊃ Kψ)

If an agent’s body of knowledge can always be taken as one content, P , and ϕ

and ϕ ⊃ ψ are both known, then knowledge of ϕ and ϕ ⊃ ψ must be included
in that of P . Hence, P must both entail ψ and include the topics of ϕ and ψ in its
subject matter. If this is enough for ψ to be part of P , then ψ must also be known, by
immanent closure. However, one may know ϕ and ϕ ⊃ ψ but fail to put two and two
together.9 Jones knows that Mary lives in New York, that Fred lives in Boston and
that Boston is north of New York. Yet Jones fails to realize the obvious: that Mary
will have to travel north to visit Fred [9, p. 199].

A popular response is that Jones’ knowledge state must be fragmented across var-
ious ‘frames of mind’ [17, 44, 57, 66]. He knows certain facts about Mary in one
frame of mind; certain facts about Fred in another; and certain facts relating Boston
to New York in yet another. He may fail to put these bits of knowledge together.10

Fragmentation also predicts that the following dynamic principles are invalid:

(18) × MP Update: [ϕ][ϕ ⊃ ψ]Kψ

(19) × Reverse MP Update: [ϕ ⊃ ψ][ϕ]Kψ

One might come to know one premise of modus ponens, then come to know the
other, but still fail to know the conclusion by failing to put two-and-two together.

9What, intuitively, is it to put ‘two and two together’? A weak reading understands this as merely contem-
plating ϕ and ψ at the same time, or being aware of one’s knowledge of each at the same time. A strong
reading understands it as ‘merging’, partly or fully, the knowledge of ϕ and ψ into a unified piece of
knowledge, as presumably happens when one infers a joint consequence. We are here primarily interested
in the latter reading.
10Classic works on the functioning of human memory [36, 39] provide support for fragmentation. Whether
memories are stored or, rather, reconstructed from some sparse partial information base, it seems that our
mental hard disk is too big a stock for us to perform an exhaustive research (for the relevant base) each
time we aim at retrieving information. Human memory works in a partitioned way, storing in fragments.
Intersectorial logical dependencies may pass quietly unnoticed.
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Notice that fragmentation alone does not tell the whole non-omniscience story:
topic-sensitivity is still needed. If contents were mere sets of possible worlds, and
given that a knows ϕ just in case ϕ is true at every world in some frame of mind for
a, fragmentation would still validate (9), (10) and (11).

3.4 Formal Language

We now properly introduce our formal language, E L . Let F = {1, 2, . . . , n} be a
set of n frame symbols. Finitude is needed to keep the corresponding axiomatizations
finitary, but does not bear on substantive philosophical points, except for the plausible
claim that a finite cognitive agent will not host infinitely many frames of mind. We
use i, j, k as metavariables for frame symbols, indexing the agent’s different frames
of mind and taken as a class of atomic formulas in A T : atom i denotes the content
of the agent’s i-th frame of mind: ‘i ⊃ p’ reads ‘the agent’s i-th frame of mind
implies p’. We use p, q, r as metavariables ranging over members of A T \ F . We
use x, y, z as metavariables ranging over the whole of A T . The BNF for E L :

ϕ := x | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | Kiϕ | [i : ϕ]ϕ
Read Kiϕ as ‘the agent knows ϕ in frame of mind i’, and, as a first pass, define

Kϕ :=
∨

1≤i≤n

Kiϕ

[ϕ]ψ :=
∧

1≤i≤n

[i : ϕ]ψ

Kϕ says that knowledge tout-court is knowledge in some frame of mind or other.
Sentence [ϕ]ψ says that if the agent adds the content of ϕ (in context) to any of her
frames of mind, then ψ holds. That is: her coming to know ϕ assures that ψ is true.
(It does not merely express the following weaker claim: if the agent adds the content
of ϕ to all of her frames of mind, then ψ holds.) Now for our third source of intuitive
(in)validities.

3.5 Defeasibility

If topic-sensitivity and fragmentation were the only sources of non-omniscience, the
following would be valid for i �= j :

(20) × Closure Under Merge I: Ki(ϕ ⊃ ψ) ⊃ (Kjϕ ⊃ [i : j ]Kψ)

(21) × Closure Under Merge II: Ki(ϕ ⊃ ψ) ⊃ (Kjϕ ⊃ [j : i]Kψ)

This says: if in some frame of mind one knows that ϕ implies ψ , and in another
ϕ, then one will come to know ψ after updating the first frame of mind with the
knowledge contained in the second, or vice versa. Such a merge - or a partial merge
- presumably results from inference. Hence closure under merge is a version of the
proposal [60, Ch.5] that closure (‘logical omniscience’) holds when regulated by the
action of inference.

But Closure under merge is invalid. Consider a variation on a counterexample
[41] aims at the weak closure principle in [31, Sect. 2.3]: Edward knows, in different
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frames of mind, both p (facts from chemistry) and if p then q (if p, then this home-
opathic medicine is too diluted to contain active ingredients). Edward deduces q. He
needn’t thereby come to know q: he is strongly committed to r (‘My mother swears
that homeopathy works’), which he sees as weighing against q. Rather than gaining
knowledge of q, he loses knowledge of p.

Does the counterexample depend on Edward being irrational? Some think that one
cannot know p if one has a defeater for p [1]: the agent has justified beliefs in d1,
. . . , dn, which jointly render p subjectively improbable. If Edward were rational in
believing that homeopathy is efficacious on the basis of his total evidence, including
his mother’s testimony, then he could not have known p in the first place, on the basis
of having a defeater.

But can’t a perfectly rational agent lose knowledge via competent deduction? In
one frame of mind, Mary knows that if there is no mistake on her tax return, then a
report to the contrary is mistaken (p ⊃ q). She knows in that frame of mind that her
accountant is very reliable on tax matters. She knows that he has reported a mistake
on her return. (As it happens, this is the one occasion when he is incorrect.) In a
different frame of mind, Mary knows that there is no mistake on her tax return (p).
This knowledge is based on the especially fastidious manner in which she completed
her return. How should Mary merge? She rightly concludes, given strong reasons to
take her accountant as reliable, that she must suspend her belief that there is no error
on her return, and so call into question how fastidious her completion really was, or
how much she can really trust her fastidious efforts. Thus, she loses the knowledge
that there is no mistake, rather than acquiring or preserving the knowledge that report
of a mistake must be false.

To generalize, start with two monotonicity principles for epistemic update:

(22) × Monotonicity I: [ϕ][ψ]Kϕ

(23) × Monotonicity II: Kϕ ⊃ [ψ]Kϕ

These say that knowledge cannot be lost as more knowledge is acquired. This is
obviously false for agents with fallible memories. Other counterexamples have long
been noted. Jane knows that she does not know whether p. Presumably, she no longer
knows this after coming to know p. Monotonicity failure for epistemic formulas is
thus a feature of paradigm systems in the dynamic epistemic logic tradition. However,
[28] emphasizes the defeasibilty of rational update in belief revision due neither to
memory failure nor to epistemic formulas:

(24) × Atomic Monotonicity I: [p][q]Kp

(25) × Atomic Monotonicity II: Kp ⊃ [q]Kp

Even standard dynamic epistemic logic systems validate these. But here’s a coun-
terexample. Mary knows that her tax return has no mistakes, on the basis of fastidious
checking. But after she comes to know that her generally reliable accountant has
reported a mistake in the return, she no longer knows that it contains no mistakes. An
intuitive assessment: the newly acquired knowledge alters the space of reasons that
bear on Mary’s belief system, and if she reasonably suspends the belief that p, then
she cannot know that p.

Monotonicity fails even within a single frame of mind:
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(26) × Framed Atomic Monotonicity I: [i : p][i : q]Kip

(27) × Framed Atomic Monotonicity II: Kip ⊃ [i : q]Kip

Our judgment in the previous example seems unaltered if we stipulate that it
applies to a single known content. Further, suppose that framed atomic monotonicity
is valid. Then the following is, too:

Kjq ⊃ (Kip ⊃ [i : j ]Kip)

But this is surely invalid. Edward knows, in frame of mind i, certain facts about chem-
istry that refute homeopathy. In another frame j , he knows that his mother swears
by homeopathy. His irrational psychology is such that, were he to put two-and-two
together, he would suspend belief and so lose his knowledge of chemistry.

Now consider the following instance of closure under merge:

Kj(p ⊃ p) ⊃ (Kip ⊃ [i : j ]Kp)

There seems an easy path from counterexamples to framed atomic monotonicity to
ones for the above schema. One selects a countermodel so that (i) it verifies Kj(p ⊃
p); (ii) it falsifies Kip ⊃ [i : j ]Kip (as in a counter-example to framed atomic
montonicity); (iii) it falsifies Kjp; (iv) i and j are the only frames in the model.
Closure under merge should be rejected, due to the non-monotonicity of knowledge
update.

3.6 Successful Update, Moore Sentences

Neverthelss, [ϕ]ψ must sustain two simple validities:

(28)
√

Atomic Success: [p]Kp

(29)
√

Atomic Consistency Preservation: Kp ⊃ [q]¬K¬p

Learning p implies success: coming to know the proposition expressed by sentence
p results in knowing that p. And though coming to know q might lead to losing
the knowledge that p, it cannot lead to knowing that ¬p: this just is the factivity of
knowledge.

One shouldn’t endorse these principles beyond atoms, due to Moorean phenom-
ena: take p ∧ ¬Kp. One may come to know the proposition expressed by this, say,
by testimony. But the acquired knowledge is linguistically elusive: coming to know
it does not render the sentence K(p ∧ ¬Kp) true. Indeed, ¬Kp is rendered false by
this epistemic event. So [p ∧ ¬Kp]K(p ∧ ¬Kp) is invalid. Our cautious interpre-
tation of [ϕ]ψ in footnote 8 matters: if P is the proposition expressed by p ∧ ¬Kp

in context, it is trivially true after coming to know P that one thereby knows P

in the resulting context. What is not known is the false proposition expressed by
p ∧ ¬Kp in the resulting context, since Kp there reports on the updated body of
knowledge.
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4 A Logic for Thick, Defeasible, Fragmented Knowledge

We now give our formal semantics for language E L from Section 3.4, meeting the
pattern IEL of validities and invalidities identified in Section 3. In Section 4.2, we
draw comparisons with [66].

4.1 Epistemic Update Logic

We work with E L , with frame symbols F = {1, 2, . . . , n}.

Definition 1 (Epistemic Update Model) An epistemic update model M is a tuple

〈W,@,T, ⊕, μ, v, t〉
• W is a non-empty set: possible worlds. The power set ofW is the set of intensions

relative to W , denoted I.
• @ ∈ W is a designated actual world. I@ denotes the set of all intensions that

include @.
• T is a non-empty set: possible topics.
• ⊕ : T × T → T is an idempotent, commutative, associative binary operation:

topic fusion.
• μ : I@ × I@ → I@ accepts two intensions P and Q, and returns an intension.

We call μ(P, Q) the update of P given Q. We stipulate that μ(P, Q) ⊆ Q:
an update with information Q leaves every non-Q world eliminated. We also
stipulate that P ∩ Q ⊆ μ(P, Q): at best, merging P and Q results in knowing
their conjunction. It follows that @ ∈ μ(P, Q): intuitively, the update μ(P, Q)

assures knowledge of a content with intension Q, so long as the agent’s state is
sensitive to the topic of that content.

• v : A T → I assigns an intension to each atom in the language (including frame
symbols): the truth valuation function. By stipulation, this assignment obeys:

– @ ∈ v(i) for all i ∈ F

Since knowledge is factive, this reflects our intention that we model the
knowledge of each frame of mind.

• t : E L → T assigns a topic to each formula in the language, including
frame symbols: the topic function. To ensure the topic-transparency of Boolean
connectives, the assignment obeys:

– t (¬ϕ) = t (ϕ)

– t (ϕ ∧ ψ) = t (ϕ) ⊕ t (ψ)

(T, ⊕, μ and t obey few constraints. Finer structure would be needed to more
deeply explore the nature of subject matter and knowledge update. Our aim, however,
is merely to recover IEL. Coarse representations of topic-sensitivity, fragmentation,
and defeasibility, will suffice.)

We define topic inclusion, a ≤ b, as a ⊕ b = b. We call intensions thin propo-
sitions. A thick proposition is an ordered pair 〈P, a〉 of an intension and a topic (cf.
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[65]). Thus, v and t together assign a thick proposition to each atom, including each
frame symbol. We write κ(i) for the pair 〈v(i), t (i)〉, and refer to κ(i) as the knowl-
edge state of the agent at@, in her i-th frame of mind. κ is the agent’s total knowledge
state at @:

κ := {κ(1), . . . , κ(n)}
We define the satisfaction relation � via the following recursion (we define the

intension of ϕ with respect to M as |ϕ|M := {w ∈ W : M , w � ϕ}, omit the
subscript M when the model is contextually clear):

Definition 2 (�-Semantics for E L ) Given M = 〈W,@,T, ⊕, μ, v, t〉:
• M , w � x iff w ∈ v(x), where x ∈ A T
• M , w � ¬ϕ iff M , w �� ϕ
• M , w � (ϕ ∧ ψ) iff M , w � ϕ and M , w � ψ
• M , w � �ϕ iff M , u � ϕ for all u ∈ W
• M , w � Kiϕ iff t (ϕ) ≤ t (i) and M , u � ϕ for all u ∈ v(i)
• M , w � [i : ϕ]ψ iff: if M ,@ � ϕ then M i

ϕ, w � ψ , where M i
ϕ is the model:

〈W,@,T, ⊕, μ, vi
ϕ, t iϕ〉

with

– vi
ϕ(i) = μ(v(i), |ϕ|)

– t iϕ(i) = t (i) ⊕ t (ϕ)

– vi
ϕ(x) = v(x) and t iϕ(x) = t (x) for all x ∈ A T such that i �= x.

There are two natural ways to define truth in a model and validity for this frame-
work. On one hand, we can say that ϕ is true in M (and write M � ϕ) exactly when
M ,@ � ϕ. Then we can say that ϕ is valid just in case it is true in every epistemic
update model, and write � ϕ.

Alternatively, we can say that ϕ is true in M (and write M � ϕ) exactly when
M , w � ϕ for every w in M . Then we can say that ϕ is valid just in case it is true in
every epistemic update model, and write � ϕ.

However,� ϕ and � ϕ are in agreement with respect to the principles we canvased
in Section 3.

Theorem 1 Suppose sentence ϕ is constructed from sentences of the form �ψ and
Kiχ , using the Boolean connectives and the update modalities. Then � ϕ iff � ϕ.

Proof Sketch. Call a sentence global if, for every model M , ϕ is either satisfied at
every world in M or at no world in M . It can be shown that sentences of the form
�ψ and the form Kiχ are global. Further it can be shown, by induction, that being
global is preserved under applications of the boolean connectives and the update
modalities. Finally, it can be shown that if ϕ is global then: � ϕ iff � ϕ.

We use EUL to refer to the set of all validities of epistemic update logic: {ϕ ∈
E L : � ϕ}.
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The clause for Kiϕ reflects our two-component account of content: to know ϕ is
to have a knowledge state that is both sensitive to the topic of ϕ and rules out all
incompatible worlds.11 Note that, on the above semantics, Kiϕ is best read as ‘at @,
the agent knows that ϕ in her i-th frame of mind’. On this reading, one expects the
truth of Kiϕ to be invariant between worlds.

Theorem 2 EUL satisfies IEL: every intuitive validity in Section 3 is in EUL; no
intuitive invalidity in Section 3 is in EUL.

The proofs yielding Theorem 2 come in technical Appendix A.

4.2 Departures from Yalcin

We treat subject matters abstractly, representing only the mereological structure of
topics and the transparency of the logical connectives. Otherwise, we pass in silence
over what topics are. Also, we take subject matter as integral to content: since both
knowledge states and interpreted sentences have content, both have subject matter.
Knowledge that ϕ requires that the topic of ϕ be contained in that of (some fragment
of) the agent’s knowledge state.

Our setup is thus doubly divergent from [66], who deploys a specifically Lewisian
account of subject matters [45] as partitions of the space of worlds, and treats the
content of a claim as merely a set of worlds. On his account, a belief state is a partial
function β accepting, if so defined, a subject matter π and returning an intension
β(π), with the constraint that β(π) is at the resolution of π i.e. β(π) is a union of
cells in π . The idea is that β(π), if defined, represents the agent’s body of (explicit)
belief about subject matter π : a thin proposition at the resolution of the subject matter.
If β(π) is not defined, the agent’s belief state is not sensitive to subject matter π and
so the agent has no (explicit) beliefs about π . Proposition P is (explicitly) believed
relative to the agent’s belief state β just in case there exists a subject matter π such
that (i) P is at the resolution of π and (ii) β(π) is defined and entails P (i.e. every
β(π) world is a P world).

As [66] notes, the partition view of subject matter validates undesirable closure
principles. (His Sect. 7 offers intriguing remarks on how to address this.) Let P be any
necessary, apriori proposition, e.g., Cantor’s Theorem. This is true at every possible
world. Thus, given any partition π , the intension of P is identical to the union of some
cells in π (all of them). Thus, on the account of [66], P is believed with respect to any
belief state. A form of omniscience follows: agents believe every apriori necessary
proposition.

11Compare the clause for ‘analytic implication’ in the conceptivist logic literature (see [19, 22]) and the
clause for knowledge ascriptions in the awareness logic literature (see [17]). The version of awareness
logic closest to our framework is the one in terms of ‘awareness generated by primitive propositions’ (see
[55], p. 81), where an agent is aware of a formula ϕ just in case it is aware of all of its atomic constituents,
taken together. We stress the syntactic features of this approach, not shared by ours: awareness is still
given by a construction based on atomic formulas, whereas our topic function assigns topics, nonlinguistic
items in the semantics, to formulas, with a recursion on the basic non-epistemic operators (negation and
conjunction, thus disjunction).
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Further, let P&Q and P be the non-identical, contingent propositions expressed,
respectively, by p ∧ q and p. Let β be a belief state defined on exactly one partition:
the division of logical space into the P&Q worlds and their complement. Suppose
the state returns the former set of worlds, given this partition. The content of p ∧ q

is thus explicitly believed by an agent with state β, but the content of p is not. So
[66] counter-intuitively predicts that one can explicitly believe that Mary arrived at
the meeting late and disheveled, without believing that Mary arrived late.

4.3 Further (In)Validities

We note some further validities and invalidities for which intuition seems muddier:
it’s neither a clear cost nor a clear benefit that our system yields these patterns. Some
validities:

(30) Double Negation: Kϕ ≡ K¬¬ϕ

(31) DeMorgan I: K¬(ϕ ∧ ψ) ≡ K(¬ϕ ∨ ¬ψ)

(32) DeMorgan II: K¬(ϕ ∨ ψ) ≡ K(¬ϕ ∧ ¬ψ)

One knows that Smith and Jones aren’t both on time exactly when one knows that
either Smith is late or Jones is late. One knows Smith and Jones are both late exactly
when one knows that neither is on-time. Compare the following invalidity:

(33) Addition: Kϕ ⊃ K(ϕ ∨ ψ)

William III might have known that France will go to war without knowing that either
they will go to war or develop a nuclear arsenal. Further, some valid restricted closure
principles:

(34) Framed Closure: Ki(ϕ ⊃ ψ) ⊃ (Kiϕ ⊃ Kiψ)

(35) Framed Atomic Rationality: [i : p ⊃ q](Kip ⊃ Kiq)

If one both knows that ϕ and knows that ϕ ⊃ ψ within a unified frame of mind,
then one knows ψ . If one knows p after coming to know p ⊃ q within the same
frame mind, then one knows q within that same frame of mind.

4.4 Expressive Surprises

E L is strictly more expressive than the static fragment of the language (call it E L −)
obtained by removing the dynamic operator [i : ϕ]. This makes our framework dif-
fer crucially from traditional dynamic epistemic logics for which so-called reduction
axioms are available. A standard technique for obtaining a complete axiomatization
here is by adding a set of reduction axioms to a complete axiomatization of the under-
lying static logic. These provide a recursive step-by-step translation of every formula
containing dynamic operators to a provably equivalent formula without them. Com-
pleteness follows from that of the underlying static logic, plus the soundness of the
reduction axioms (see, e.g.,[62], Sect. 7.4).

However, this only works when the language with dynamic operators is equally
expressive as the language without. This is not the case for E L . Two examples
reveal two different reasons for the lack of expressivity of E L −. The examples
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also motivate a way of extending E L − so that the language one gets is sufficiently
expressive to (1) still state the validities and invalidities of interest and (2) provide
sound and complete axiomatizations for its dynamic extensions by means of reduc-
tion axioms. We put the soundness and completeness proofs in Appendix B, but we
discuss the examples concerning expressivity in some detail here, for we find them
philosophically illuminating.

Some notation: for any ϕ ∈ E L , let A T (ϕ) denote the set of all atomic formulas
occurring in ϕ. For a topic fusion operator ⊕, let

⊕A T (ϕ) = t (x1) ⊕ · · · ⊕ t (xn),

where A T (ϕ) = {x1, . . . , xn}.

Lemma 3 E L is strictly more expressive than E L −.

Proof Counterexample 1: This shows the lack of expressivity of E L − due to topi-
cality. Consider M = 〈{@},@,T, ⊕, μ, v, t〉 and M ′ = 〈{@},@,T′, ⊕′, μ, v, t ′〉,
where v(x) = {@} for all x ∈ A T , T = {a, b, c, d}, T′ = {a′, b′, c′, d ′}, and 〈T, ⊕〉
and 〈T′, ⊕′〉 constitue the join semi-lattices given in Fig. 1a and b, respectively.12

Moreover, t (p) = b, t ′(p) = b′ for all p ∈ A T \ F , t (i) = c, t ′(i) = c′ for some
i ∈ F , t (j) = d , t ′(j) = d ′ for all j ∈ F such that i �= j . For any ϕ ∈ E L , we let
t (ϕ) = ⊕A T (ϕ) and t ′(ϕ) = ⊕′A T (ϕ). Finally, take some μ : I@ × I@ → I@
that fits the description in Definition 1, such as μ(P, Q) = P ∩ Q. (The way we
define μ is not important here, since the domains of both models are singletons.)
Both M and M ′ are epistemic update models.

We now prove that for all ϕ ∈ E L −, we have M ,@ � ϕ iff M ′,@ � ϕ by
induction on the structure of ϕ; cases for the elements of A T , the Boolean connec-
tives, and � are elementary since they are not concerned with the topic component.
Assume inductively that the statement holds for ψ and show it for ϕ := Kkψ .

Case ϕ := Kkψ : Suppose that M ,@ � Kkψ . This means, by the semantics of
Kk , that t (ψ) ≤ t (k) and M ,@ � ψ . Note that every frame of mind in both models
corresponds to the singleton set {@}. We have two cases:

Case k = i: Then, t (ψ) ≤ t (k) implies that t (ψ) = t (i) = c. This means,
by the definition of t (ψ), that A T (ψ) = {i}. Therefore, t ′(ψ) = c′, implying
that t ′(ψ) ≤′ t ′(i). Also, M ,@ � ψ implies, by the induction hypothesis, that
M ′,@ � ψ . Hence, as i = k, we obtain that M ′,@ � Kkψ .

Case k �= i: Then, t (ψ) ≤ t (k) = d means that t (ψ) = d . Thus, A T (ψ) ⊆
F \ {i}. Then, by the construction of M ′, we obtain that t ′(ψ) = ⊕′A T (ψ) = d ′,
hence, t ′(ψ) ≤′ t ′(k) = d ′ for all k �= i. As M ′,@ � ψ (by the induc-
tion hypothesis), we again obtain that M ′,@ � Kkψ . The other direction follows
similarly.

We then conclude that M and M ′ are modally equivalent with respect to the
language E L −. Now consider the sentence [i : j ]Kip with j �= i. We haveM ,@ ��

12In figures of models, white nodes represent possible worlds, black nodes represent possible topics. Val-
uation and topic assignment are given by labelling each node with atomic formulas. We omit labelling
when a node is assigned every element in A T .
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Fig. 1 Models M and M ′ in Counterexample 1

[i : j ]Kip: M ,@ � j but M i
j ,@ �� Kip, since t ij (p) = b �≤ t ij (i) = t (i) ⊕

t (j) = a. On the other hand, M ′,@ � [i : j ]Kip since M ′,@ � j and (t ′)ij (p) =
b′ ≤′ (t ′)ij (i) = t ′(i) ⊕′ t ′(j) = a′. Therefore, [i : j ]Kip can distinguish M from
M ′, thus, it cannot be logically equivalent to any formula in E L −. This proves
Lemma 3.

The counterexample shows that E L − is not as expressive as E L due to topicality.
Kiϕ can express whether the topic of ϕ is included in the topic of the ith frame of
mind. But Kiϕ cannot express anything concerning a comparison between the topics
of arbitrary sentences ϕ and ψ . On the other hand, part of what [i : ϕ]Kiψ states
is that the topic of ψ is included in the topic of the ith frame of mind after having
grasped the topic of ϕ.

This motivates an extension, E L +−, of E L − with more general conditional
knowledge operators of the form Kϕψ .13 Here, ϕ is not necessarily a frame symbol,
but can be an arbitrary sentence in the given language. The semantics are:

M , w � Kϕψ iff t (ψ) ≤ t (ϕ) and (∀u ∈ W)( if M , u � ϕ then M , u � ψ)

The conditional knowledge operator Kϕψ will help us build the topic component
of the canonical model in the completeness proof to be given in Appendix B.1.
Counterexample 2: E L +− is still not sufficiently expressive to obtain reduction
axioms for the dynamic operator [i : ϕ]ψ since it cannot express the precondition
of updates, namely, truth at the actual state @. To see this, consider the models
M = 〈{w1, w2,@},@,T, ⊕, μ, v, t〉 and M ′ = 〈{w′

1, w
′
2,@},@,T, ⊕, μ, v′, t〉,

where T = {a}, and t (ϕ) = a for all ϕ ∈ E L +−, v(p) = {w1} and v′(p) = {@}. For
all x ∈ A T \ {p}, v(x) = v′(x) = ∅ (see Fig. 2).

We show that for all ϕ ∈ E L +−, M , w2 � ϕ iff M ′, w′
2 � ϕ, but, e.g., the

dynamic sentence ¬[i : p]⊥ can distinguish the two pointed models (where ⊥ is an
abbreviation for some q ∧¬q). The former is easy to see: since every sentence of the
language is assigned to the same topic, the topic component in this particular case
does not play any essential role. That is, we have both M � Kϕψ ≡ �(ϕ ⊃ ψ) and
M ′ � Kϕψ ≡ �(ϕ ⊃ ψ). Moreover, M , w2 and M ′, w′

2 cannot be distinguished

13Compare system KRI in [4].
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Fig. 2 Models M and M ′ in Counterexample 2.

within the basic modal language with the global modality �ϕ since they are bisim-
ilar (see, e.g., [8, Chapter 2.2] for a definition of bisimulation for the basic modal
language). Therefore, M , w2 � ϕ iff M ′, w′

2 � ϕ for all ϕ ∈ E L +−.
To show that ¬[i : p]⊥ can distinguish the two pointed models, first observe that,

for any epistemic update model M = 〈W,@,T, ⊕, μ, v, t〉 and w ∈ W ,

M , w � ¬[i : p]⊥ iff M ,@ � p.

So, the sentence ¬[i : p]⊥ really captures the precondition of the corresponding
epistemic update with p. It is then not difficult see that M , w2 �� ¬[i : p]⊥ (since
M ,@ �� p) but M ′, w′

2 � ¬[i : p]⊥ (since M ′,@ � p).
We therefore need to further extend E L +− with an operator that expresses ‘ϕ is

true at the actual state’, that is, the actuality operator Aϕ [14]. The resulting extended
static language of knowledge E L ∗− is defined recursively by the following grammar:

ϕ := x | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | Kϕϕ | Aϕ,

where x ∈ A T . The dynamic language obtained by adding [i : ϕ]ψ to E L ∗− is
denoted by E L ∗. In Appendix B, we prove soundness and completeness results
for E L +−, E L ∗− and E L ∗. For the dynamic language E L ∗, we axiomatize two
classes of epistemic update models that represent maximal and minimal knowledge
updates. To anticipate further, the former is modelled similarly to the so-called public
announcements [25, 49, 50] and the latter constitutes an example of non-monotonic
knowledge update.

5 Objections, Replies, Refinements

5.1 Elusive Logical Knowledge

Our semantics validates:

(36) K(p ∧ q) ⊃ K(¬p ⊃ q)

(37) Kp ⊃ K¬ . . . ¬p, where ¬ . . .¬ is a string of one thousand negations.

It seems clear that ordinary agents can fail to know that (p ∧ q) ⊃ (¬p ⊃ q) and
p ⊃ ¬ . . . ¬p are tautologies. One might well describe oneself as knowing that roses
are red and violets are blue, but deny knowing that ‘Roses are not red’ materially
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implies ‘Violets are blue’. One might well describe oneself as knowing that ‘Roses
are red’ is true but hesitate when asked if its thousand-fold negation is true.

Stalnaker [57, Ch.5] came up with a strategy for these cases. (He applied it to
the more controversial issue of elusive mathematical knowledge, to which we come
below; we only need a milder version.) Ordinary agents can lack basic knowledge
about propositional logic, which may influence what knowledge ascriptions they
deploy. But, as Stalnaker pointed out, the ignorance in question is plausibly meta-
linguistic here, and due to difficulties in parsing the logical form of the relevant
sentences. The beginning logic student does not know that certain sentence types
must express truths in virtue of their form. She does not know that something she
knows (roses are red or violets are blue) can be expressed by a sentence of the
form ¬p ⊃ q. If her ignorance is relieved, she has not, after all, learned anything
about the colour of flowers: she has learned something about the behavior of certain
connectives.

5.2 Elusive Mathematical Knowledge I

One who knows ϕ, we claim, knows every consequence of ϕ that preserves subject
matter. One might worry that the whole subject matter of a mathematical theory is
encapsulated by its axioms. Then one who knows the conjunction of the ZF axioms
knows every theorem of ZF set theory.

Whether this has force depends on answers to big questions we cannot address
here, due to reasons of space: what is the nature of subject matter? How should we
think about the subject matter of mathematical axioms? How do subject matter rela-
tionships between quantified statements and their instances work? Consider the claim
that 0 ≤ S(0) entails S(0) ≤ S(S(0)), where S is the successor function. One view
of subject matter [47, 54] has it that the topic of a claim is the set of objects and prop-
erties mentioned in that claim, or their associated concepts. Then ‘0 ≤ S(0)’ has the
same subject matter as ‘S(0) ≤ S(S(0))’: the set with zero, the successor function
and the relation of numerical order as members. According to another view [23], the
subject matter of ϕ is a situation-like object: a truthmaker, or fusion of truthmakers.
Then the subject matter of ‘0 ≤ S(0)’ may be represented as a structure of objects and
relations: 〈0, less, 1〉. That of ‘S(0) ≤ S(S(0))’ may be represented by 〈1, less, 2〉.
If subject matter inclusion amounts to one situation being part of the other, then the
subject matter of S(0) ≤ S(S(0)) is not included in that of 0 ≤ S(0). A worry about
mathematical omniscience does not arise.

Or, take the following set theoretic reasoning:

(38) Assumption: A set exists.
(39) Assumption: For any ϕ(x) in the language of sets and set X, there exists set

Y s.t. x ∈ Y iff x ∈ X and ϕ(x) is true.
(40) Thus: For any setX, there exists set Y s.t. x ∈ Y iff x ∈ X and (x ∈ x∧x /∈ x)

is true.
(41) Thus: There exists A s.t. x ∈ A only if (x ∈ x ∧ x /∈ x) is true.
(42) Thus: There exists set A s.t. for every x, x /∈ A.
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Is the subject matter of (40) included in that of (39), and of (41) included in that
of the conjunction of (38) and (39)? Clearly, one can know the assumptions without
knowing the conclusion. Indeed, one can know (39) without knowing (40).

Thus a proponent of our account of the logic of ordinary knowledge ascription
must defend a theory of subject matter according to which the subject matter of
a universal claim need not include the subject matter of all of its instances. This
seems plausible, though the issue is murky. Suppose Jane is, in fact, in the Nether-
lands, but Beth has no reason to think so (usually Jane is in Mexico). Presumably,
Beth can believe that everyone in the Netherlands is cold without believing Jane is
cold.

5.3 Elusive Mathematical Knowledge II

Our semantics validates:

(43) (�ϕ ∧ K(ϕ ∨ ¬ϕ)) ⊃ Kϕ

On the assumption that ϕ ∨ ¬ϕ is apriori, this follows inescapably from several
key theses:

A. Content is just thick content i.e. truth conditions plus topic.
B. P is part of Q iff P entails Q and P ’s topic includes Q’s topic.
C. Immanent closure: Kϕ entails Kψ when ψ’s content is part of ϕ’s content.
D. The logical connectives are topic-transparent.
E. All apriori truths have the same truth conditions.

(43) seems implausible for knowledge per se. Suppose that ϕ is a complicated
tautology. Then (43) entails that ϕ is known by anyone who knows that ϕ is either
true or false. Assume that Goldbach’s Conjecture (GC) is true and apriori. Then (43)
entails that GC is known by anyone who knows that GC is either true or false.

The meta-linguistic strategy of Section 5.1 finds some application here. Let ϕ be a
tautology. An advocate of A-E judges that ϕ and ϕ ∨ ¬ϕ have identical content (call
it P ). Further, she can accept that it is easy to know that the sentence ϕ ∨ ¬ϕ is true
and, thus, it is often easy to know P . However, she need not accept that, in this case,
it is also easy to know that sentence ϕ is true, or a tautology, or expresses P . The
value in identifying ϕ as a tautology, she says, lies not in learning its austere content
P , but in coming to recognize that ϕ expresses austere content.

However, (43) also demonstrates the limits of the Stalnakerian strategy.14 It is
implausible that ‘Goldbach’s conjecture’ expresses austere content that is easy to
know.

So our system needs refinement. B is a natural target. Assuming D, we have
identified a plausible counter-example to its right-to-left direction: though GC and
GC ∨ ¬GC plausibly have the same truth conditions and topic, it seems invariably
odd to claim p is part of p ∨ ¬p. Knowing GC is not part of knowing GC ∨ ¬GC;
to say GC ∨ ¬GC is not to (partly) say GC. E is also a natural target. Though GC

14Compare [20, 21].
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is apriori, it is prima facie odd to claim that GC ∨ ¬GC entails GC. If this entail-
ment fails, a counter-example exists: a circumstance c at which GC ∨ ¬GC is true
but GC is false. Conclusion: GC ∨ ¬GC and GC differ in truth conditions. This
involves an important admission: c is a mathematically impossible situation. Hence,
this refinement admits ‘impossible worlds’ (though logically impossible worlds need
not be admitted).

We reserve judgment on the best refinement. At any rate, our system is easily
amended to reject E. It treats � as the universal necessity modal. A refinement
treats � as a general S5 necessity modal, by extending our models with a transitive,
reflexive, symmetric accessibility relation and interpreting� by quantifying over the
accessible worlds. In this case, (43) is invalidated when �p holds because p is true
at every accessible world, K(p ∨ ¬p) holds because some frame of mind includes
the topic of p, and Kp fails because no frame of mind contains only p worlds.

5.4 Knowledge of Conjunctions

Our semantics validates:

(44) (�(ϕ ⊃ ψ) ∧ K(ϕ ∧ (ψ ∨ ¬ψ)) ⊃ Kψ

Like (43), (44) is implausible for knowledge per se.15 Assume that Goldbach’s
Conjecture (GC) is true and an apriori consequence of the (conjunction of the) Peano
Axioms (α). (44) entails that GC is known by anyone who knows α conjoined with
GC ∨ ¬GC. Like (43), this, at its core, is an inescapable consequence of key theses
A-E listed in Section 5.3.

Unlike (43), a refinement based on rejecting E does not seem promising. Here, this
amounts to admitting impossible worlds at which α∧(GC∨¬GC) holds butGC does
not. Such a world is not only mathematically impossible, but logically impossible:
the Peano Axioms hold, yet one of their logical consequences does not. As such
examples are easily multiplied, dropping E heads down the slippery slope toward the
extreme liberalism of [51]: for any set of sentences, there exists a world at which
exactly those sentences are true. On this view, content is as fine-grained as syntax,
contra the recommendations of Section 2.16

A more promising strategy is to fold the issue of (44) into a more general one
concerning conjunctive knowledge. Consider:

(45) Conjoined MP: K(p ∧ (p ⊃ q)) ⊃ Kq

15Thanks to Alexandru Baltag for pressing us on this point.
16Compare the logical framework of [53]. Of course, Priestian liberalism has the flexibility to recover
any logical desiderata, by merely stipulating a restriction on the class of models that determine logical
consequence. The Priestian claims that a content be identified with a set of worlds (i.e. effectively, a set of
sets of sentences); that Q is part of P just in case P ⊆ Q; and that ϕ is true at world w just in case ϕ is in
the set of sentences associated with w. Thus, if the full range of Priestian models are admitted, part-hood
has no logic. But suppose one wants to preserve simplification: the content of ϕ∧ψ must include that of ϕ,
as a matter of logic. The Priestian can achieve this by restricting the admissible models to those where: if
ϕ ∧ψ is associated with world w then ϕ is associated with w. The proposal has an obvious worry: it yields
the right logic via mere, ad hoc stipulation. It has little explanatory power: the set of admissible models
amounts to a mere re-description of the logical desiderata. For a similar critique, see [37] and [5, Sect. 5.3].
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Our system validates (45) (contrast (17)). Do ordinary knowledge ascriptions
align? Jones knows that Mary lives in New York, knows that Fred lives in Boston
and knows that Boston is north of New York, but fails to infer that Mary will have
to travel north to visit Fred. Still, we seem comfortable in asserting ‘Jones knows
that Mary lives in New York and that Fred lives in Boston and that Boston is north
of New York’. Thus, one might worry that, via our treatment of fragmentation, our
system departs from intuitive epistemic logic by pulling Kϕ ∧ Kψ and K(ϕ ∧ ψ)

apart: ordinary discourse attests that ‘Jones knows ϕ and ψ’ is interchangeable with
‘Jones knows ϕ and Jones knows ψ’. In particular, one worries that our system errs
in validating (45).

To handle such discourse, a proponent of fragmentation must deny that ordinary
claim ‘Smith knows ϕ and ψ’ invariably reports Ki(ϕ ∧ ψ) i.e. ϕ ∧ ψ is known
in a single frame of mind i belonging to Smith. Rather, it may report Kiϕ ∧ Kjψ

for distinct frames i and j . Hence, ascribing knowledge of a conjunction needn’t
communicate that the conjuncts are part of a unified piece of knowledge. Unification
may be pending, subject to outstanding inferences. This would explain our intuitive
distaste for (44): it needn’t follow from ordinary claim ‘Smith knows both the Peano
axioms and that either GC holds or it doesn’t’ that Smith has drawn the inferences
that would unify her knowledge of the conjuncts, and so yield knowledge of GC.

How to systematize this position? A proponent of our system in Section 4 could
bite the bullet, by appealing to the looseness of natural language. A bare claim ‘Smith
knows ϕ and ψ’, she might posit, is ambiguous between communicating Kiϕ∧Kjψ ,
for some i and j , and the stronger Ki(ϕ ∧ ψ), for some i. Framed in terms of our
proposal in Section 4: ‘Smith knows ϕ and ψ’ is ambiguous between Kϕ ∧ Kψ and
K(ϕ ∧ ψ).

An appeal to ambiguity will strike some as cheap or otherwise ad hoc. A second
strategy rejects B or C and revises the definition of Kϕ so as to invariably express:
there exists i and j such that Kiϕ ∧ Kjψ . We sketch a tentative proposal that piggy-
backs on the logical system introduced in Section 4.1. In what follows, ϕ and ψ are
boolean constructions from ordinary proposition symbols. We delay complications
raised by frame symbols, epistemic formulas and update formulas for elsewhere. We
recursively define ϕ’s basic conjunctive parts, denoted P(ϕ), with:

P(p) = {p}.
P(¬p) = {¬p}.
P(¬¬ϕ) = P(ϕ).
P(ϕ ∧ ψ) = P(ϕ) ∪ P(ψ).
P(¬(ϕ ∧ ψ)) = {¬(

∧
ϕ∗∈P(ϕ) ϕ∗ ∧ ∧

ψ∗∈P(ψ) ψ∗)}.17
P(ϕ) is thus a model-independent set of sentences. Given epistemic update model

M , P(ϕ) can be associated with a corresponding set of thick propositions: PM (ϕ).
Conceptually, the basic conjunctive parts of ϕ are best thought of as the latter set.

We leave it ambiguous whether this proposal rejects B with a more refined account
of content part, or rejects C with a more refined account of knowledge closure. It

17For uniqueness of the right-hand side, we assume that an ordering on the set of formulas has been fixed.
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may be checked, by induction, that if ψ ∈ P(ϕ) then ϕ’s intension is a subset of ψ’s
intension and t (ψ) ≤ t (ϕ), relative to M .18 A sample:

P(p ∧ q) = {p, q}.
P(p ∧ q ∧ ¬r) = {p, q, ¬r}.
P(¬(p ∧ q)) = {¬(p ∧ q)}.
P(¬(p ∧ q ∧ r)) = {¬(p ∧ q ∧ r)}.
P(¬(¬p ∧ ¬q)) = P(p ∨ q) = {¬(¬p ∧ ¬q)}.
P(p ∨ ¬p) = P(¬(¬p ∧ ¬¬p)) = {¬(¬p ∧ p)}.

Now amend the definition of Kϕ from Section 3.4 as follows (with ϕ again
ranging over boolean complexes of ordinary proposition symbols):

Kϕ :=
∧

ψ∈P(ϕ)

∨

1≤i≤n

Kiψ

Kϕ now says that each basic conjunctive part of ϕ is known by the agent in some
or other frame of mind. The curious reader may check that this does not validate (44)
and (45). Likewise, it may be checked that the pattern of validities and invalidities
from Section 3 is preserved. A pressing issue remains: how to extend the proposal to
our full language, including when ϕ is an epistemic formula?
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Appendix A: Proof of Theorem 2

We call a sentence ψ of E L Boolean if it does not include occurrences of i,�, Ki,

or [i : ϕ]. The following auxiliary lemma will be useful in the proof of Theorem 2:

18Proof sketch. Prove the stronger result that the conjunction of the elements of P(ϕ) is classically
equivalent to ϕ and has the same atoms as ϕ.
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Lemma 4 For all epistemic update models M = 〈W,@,T, ⊕, μ, v, t〉, all ϕ ∈
E L , i ∈ F , and all Boolean sentences ψ , we have |ψ |M = |ψ |M i

ϕ
.

Proof Follows via an easy induction on the structure of ψ .

Proof of Theorem 2: Invalidities:
In figures of counterexamples, white nodes represent possible worlds, black nodes

represent possible topics. Valuation and topic assignment are given by labelling each
node with atomic formulae. We omit labelling when a node is assigned every element
in A T .

Counterexample for (9)–(11) and (15)–(16): These schemas are invalid due to top-
icality. Without loss of generality (w.l.o.g.), let F = {i} and consider the model
M1 = 〈W,@,T, ⊕, μ, v, t〉 such that W = {@}, T = {a, b, c} with b �= c, b < a,
and c < a, v(i) = v(p) = v(q) = {@}, and t (p) = t (i) = b and t (q) = c (Fig. 3).
(We do not need to specify μ since it is irrelevant for these schemas.) Then, (9) is
invalid since M1,@ �� �(p ⊃ q) ⊃ (Kp ⊃ Kq): M1,@ � �(p ⊃ q) (since |p| =
|q|) and M1,@ � Kip (since v(i) = |p| and t (p) ≤ t (i)). However, M1,@ �� Kiq

since t (q) �≤ t (i). As F = {i}, we obtain that M1,@ �� �(p ⊃ q) ⊃ (Kp ⊃ Kq).
Similarly, (10) is invalid sinceM1,@ �� �q ⊃ Kq, and (11) is invalid since (q∨¬q)

is valid but M1,@ �� K(q ∨ ¬q) for t (q) �≤ t (i). Moreover, (15) and (16) are
invalid since M1,@ �� K¬¬p ⊃ K¬(¬p ∧ q) and M1,@ �� Kp ⊃ K¬(¬p ∧ q),
respectively: it is easy to verify that M1,@ � K¬¬p and M1,@ � Kp, but
M1,@ �� K¬(¬p ∧ q) as t (¬(¬p ∧ q)) = t (p) ⊕ t (q) = a �≤ t (i).

Counterexample for (17)–(19): These schemas are invalid due to fragmentation.
W.l.o.g., let F = {i, j} and consider the model M2 = 〈W,@,T, ⊕, μ, v, t〉 such
that W = {@, w1, w2}, v(i) = {@, w1}, v(j) = v(p) = {@, w2}, and v(q) = {@},
T = {a}, and t (ϕ) = a for all ϕ ∈ E L . (Since every ϕ ∈ E L is mapped to the same
topic, the topicality constraints will be trivially satisfied.) Then, (17) is invalid since
M2,@ �� K(p ⊃ q) ⊃ (Kp ⊃ Kq): M2,@ � Ki(p ⊃ q) (since v(i) = |p ⊃ q|)
and M2,@ � Kjp (since v(j) = |p|), thus, M2,@ � K(p ⊃ q) and M2,@ � Kp.
However, M2,@ �� Kq since M2,@ �� Kiq and M2,@ �� Kjq (as v(i) �⊆ |q| and
v(j) �⊆ |q|, respectively). For (18) and (19), consider M2 with μ(P, Q) = P ∩ Q

for all P, Q ∈ I@. Then, (18) is invalid since M2,@ � ¬[j : p][i : p ⊃ q]Kq:

Fig. 3 Counterexample M1
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Fig. 4 Counterexample M2

M2,@ � p and (M2)
j
p,@ � p ⊃ q, but, ((M2)

j
p)

i

p⊃q
,@ �� Kiq ∨ Kjq (since

(v
j
p)

i

p⊃q
(j) = {@, w2} and (v

j
p)

i

p⊃q
(i) = {@, w1}, and ((M2)

j
p)

i

p⊃q
, w1 �� q and

((M2)
j
p)

i

p⊃q
, w2 ��q). Similarly, (19) is invalid since M2,@�¬[i : p⊃q][j : p]Kq.

Counterexample for (20) and (21): These schemas are invalid due to non-
monotonicty of knowledge update. The counterexample M2 in Fig. 4 with μ′(P, Q)

= Q for all P, Q ∈ I@ invalidates (20) and (21): M2,@ � Ki(p ⊃ q) ∧ Kjp, but
M2,@ �� [i : j ]Kq and M2,@ �� [j : i]Kq. For M2,@ �� [i : j ]Kq, observe that
vi
j (i) = vi

j (j) = {@, w2} �⊆ |q|, thus, (M2)
i
j �� Kiq∨Kjq. ForM2,@ �� [j : i]Kq,

observe that vj
i (i) = v

j
i (j) = {@, w1} �⊆ |q|, thus, (M2)

j
i �� Kiq ∨ Kjq.

Counterexample for (22)–(27): These principles are invalid due to non-monocity
of knowledge update. It is easy to see that counterexamples invalidating (26) and
(27) are also counterexamples for (24) and (25), respectively. Moreover, (24) and
(25) are special cases of (22) and (23), respectively. Consider the model M3 =
〈W,@,T, ⊕, μ, v, t〉 such that W = {@, w1}, T = {a}, v(i) = v(p) = {@} for
all i ∈ F , and v(q) = W , t (ϕ) = a for all ϕ ∈ E L , and μ(P, Q) = Q for all
P, Q ∈ I@ (Fig. 5). As every frame of mind is mapped to the same set of possible
wolds, we do not need to consider fragmentation. Similarly since every ϕ ∈ E L is
mapped to the same topic, the topicality constraints will be trivially satisfied. Then,
(26) is invalid since M3,@ �� [i : p][i : q]Kip: M3,@ � p and (M3)

i
p,@ � q but

((M3)
i
p)

i

q
,@ �� Kip since (vi

p)
i

q
(i) = W and ((M3)

i
p)

i

q
, w1 �� p. Similarly, (27)

is invalid since M3,@ �� Kip ⊃ [i : q]Kip: M3,@ � Kip and M3,@ � q, but
(M3)

i
q ,@ �� Kip since vi

q(i) = W and (M3)
i
q , w1 �� p.

Validities: Let M =〈W,@,T,⊕,μ,v,t〉 be an epistemic update model and w∈W :

(12) � �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ): Suppose M , w � �(ϕ ⊃ ψ) and M , w �
�ϕ. While the former means that |ϕ| ⊆ |ψ |, the latter means |ϕ| = W . Therefore,
|ψ | = W , i.e., M , w � �ψ .

Fig. 5 Counterexample M3
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(13) � K(ϕ∧ψ) ⊃ Kϕ: SupposeM , w � K(ϕ∧ψ). This means, by the definition
of K , that there is an i ∈ F such that M , w � Ki(ϕ ∧ ψ), i.e., that v(i) ⊆ |ϕ ∧ ψ |
and t (ϕ ∧ ψ) ≤ t (i). Since v(i) ⊆ |ϕ ∧ ψ | ⊆ |ϕ| and t (ϕ) ≤ t (ϕ) ⊕ t (ψ) =
t (ϕ ∧ ψ) ≤ t (i), we obtain M , w � Kiϕ. Thus, M , w � Kϕ. The validity proofs of
(14), and (30)–(32) follow similarly.

(28) � [p]Kp: Let i ∈ F and suppose M ,@ � p. We then have that vi
p(i) =

μ(v(i), |p|) ⊆ |p| = |p|M i
p
(by Lemma 4). Moreover, t ip(i) = t (i)⊕ t (p) ≥ t (p) =

t ip(p). Therefore, M i
p, w � Kip, implying that M i

p, w � Kp. Thus, M , w � [i :
p]Kp. Since i has been chosen arbitrarily from F , we obtain that M , w � [p]Kp.

(29) � Kp ⊃ [q]¬K¬p: Suppose M , w � Kp and let i ∈ F such that M ,@ �
q. The former implies that M , w � Kjp for some j ∈ F . In particular, since
@ ∈ v(k) for all k ∈ F , we have M ,@ � p. Then, by Lemma 4, we obtain that
M i

q ,@ � p. By the definition of μ, we also have that @ ∈ vi
q(k) for all k ∈ F .

Therefore, M i
q , w � ¬Kk¬p for all k ∈ F , meaning that M i

q , w � ¬K¬p. Hence,
M , w � [i : q]¬K¬p. Since i has been chosen arbitrarily from F , we obtain that
M , w � [q]¬K¬p, thus, M , w � Kp ⊃ [q]¬K¬p.

Appendix B: Soundness and Completeness for E L +
−, E L ∗−, and E L ∗

We provide soundness and completeness results for E L +−, E L ∗−, and E L ∗. The
following syntactic abbreviations will matter: for any ϕ ∈ E L ∗, A T (ϕ) denotes
the set of atomic formulae occurring in ϕ and we will use ‘ϕ’ to denote the tautology∧

x∈A T (ϕ)(x ∨ ¬x), following a similar idea in [26].
All our soundness and completeness results are proven with respect to the class of

epistemic update models whose topic assignment function is defined in the following
way:

• t : A T → T is a topic function assigning a topic to each element in A T . t

extends to the whole E L ∗ by taking the topic of a sentence ϕ as the fusion of
the elements in A T (ϕ):

t (ϕ) = ⊕A T (ϕ) = t (x1) ⊕ · · · ⊕ t (xk)

where A T (ϕ) = {x1, . . . , xk}.
≤ again denotes topic inclusion as defined in Section 4.1. The topic of a complex

sentence ϕ, defined from its primitive components in A T (ϕ), makes all the logical
connectives and modal operators in E L ∗ topic-transparent, that is,

• t (�ϕ) = t (Aϕ) = t (¬ϕ) = t (ϕ)
• t (Kψϕ) = t (ϕ ∧ ψ) = t (ϕ ∨ ψ) = t (ϕ ⊃ ψ) = t (ϕ ≡ ψ) = t (ϕ) ⊕ t (ψ)
• t ([i : ϕ]ψ) = (t (i) ⊕ t (ϕ)) ⊕ t (ψ)

Topic-transparency of the truth-functional connectives has already been argued
for in Section 1 and formally captured in Definition 1. The only further constraint
we impose here is the topic-transparency of the modal operators Kψϕ, �ϕ, Aϕ, and
[i : ϕ]ψ . This is admittedly an idealization, but for technical purposes, in this paper
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we can live with this idealization, as Theorem 2 still holds with respect to epis-
temic update models with the above constraint. In the remainder of this appendix, all
models are implicitly assumed to obey this constraint on t .

We first provide a sound and complete axiomatization for E L ∗− (Appendix B.1).
The completeness result for E L +− follows similarly, so we omit many details and
only point out the differences (Appendix B.1.1). The completeness for E L ∗ will fol-
low from the completeness of E L ∗− via a set of sound reduction axioms (Appendix
B.2).

B.1 The (static) Logic of Knowledge Over E L ∗−

Since E L ∗− does not have the dynamic operator, the update function μ does not play
any role in its interpretation in epistemic update models. We therefore opt for simplic-
ity and interpret E L ∗− in what we call epistemic models, M = 〈W,@,T, ⊕, v, t〉,
obtained by removing μ from epistemic update models.

To recap, given an epistemic model M = 〈W,@,T, ⊕, v, t〉 and w ∈ W , we
define the satisfaction relation � for the atomic formulae, Booleans, and �ϕ as in
Definition 2; for Kψϕ and Aϕ we have:

M , w � Kϕψ iff t (ψ) ≤ t (ϕ) and (∀u ∈ W)( if M , u � ϕ then M , u � ψ)

M , w � Aϕ iff M ,@ � ϕ.

Truth in a model and validity are defined as before (see Section 4.1). Soundness
and completeness are defined in a standard way with respect to the global notion of
validity denoted by �.

Lemma 5 Let 〈W,@,T, ⊕, v, t〉 be an epistemic model. Then, for any ϕ ∈ E L ∗−,
w ∈ W , and update function μ (as described in Definition 1), we have

〈W,@,T, ⊕, v, t〉 � ϕ iff 〈W,@,T, ⊕, μ, v, t〉, w � ϕ.

Proof Follows via an easy induction on the structure of ϕ as μ does not play any role
in the interpretation of the sentences in E L ∗−.

Observation 6

(1) For all ϕ ∈ E L ∗−, � ϕ.
(2) � Kϕψ ≡ (Kϕψ ∧ �(ϕ ⊃ ψ)).19

Table 1 presents a sound and complete axiomatization EL∗ of epistemic logic over
E L ∗−. The notion of derivation, denoted by �EL∗ , in EL∗ is defined as usual. Thus,
�EL∗ ϕ means ϕ is a theorem of EL∗. For any set of formulas 	 ⊆ E L ∗− and any
ϕ ∈ E L ∗−, we write 	 �EL∗ ϕ if there exists finitely many formulas ϕ1, . . . , ϕn ∈ 	

such that �EL∗ (ϕ1 ∧ · · · ∧ ϕn) ⊃ ϕ.

19Observation 6. (2) shows that Kϕψ is the analytic implication of [22].
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Table 1 Axiomatization EL∗ (over E L ∗−)

(CPL) all classical propositional tautologies and Modus Ponens

(S5�) S5 axioms and rules for �

(I) Axioms for A:

(KA) A(ϕ ⊃ ψ) ⊃ (Aϕ ⊃ Aψ)

(DuaA) Aϕ ≡ ¬A¬ϕ

(II) Axioms for A and �:

(Ax1) �ϕ ⊃ Aϕ

(Ax2) Aϕ ⊃ �Aϕ

(III) Axioms for i and A:

(Ax3) A(1 ∧ · · · ∧ n)

(IV) Axioms connecting K and �:

(Ax4) Kϕψ ≡ (Kϕψ ∧ �(ϕ ⊃ ψ))

(Ax5) Kϕψ ⊃ �Kϕψ

(V) Axioms for K:

(Ax6) (Kϕψ ∧ Kψχ) ⊃ Kϕχ

(Ax7) (Kϕψ ∧ Kϕχ) ⊃ Kϕ(ψ ∧ χ)

(Ax8) Kϕψ , if A T (ψ) ⊆ A T (ϕ)

Theorem 7 The following are derivable from EL∗:

(1) from �EL∗ ϕ ≡ ψ, �EL∗ Kϕψ, and �EL∗ Kψϕ,
infer �EL∗ Kχϕ ≡ Kχψ and �EL∗ Kϕχ ≡ Kψχ ,

(2) (NecA) from �EL∗ ϕ infer �EL∗ Aϕ,
(3) �EL∗ A(ϕ ∧ ψ) ≡ Aϕ ∧ Aψ ,

Proof (1) follows from Ax4, Ax6, and S5�. Item (2) follows from necessitation for
� and Ax1, and (3) is derived from KA and (NecA) in a standard way.

Soundness of EL∗ is a matter of routine validity check, so we skip its proof. The
rest of this section is devoted to the completeness proof of EL∗, which is presented in
full detail.

We say that 	 is EL∗-consistent if 	 ��EL∗ ⊥, and EL∗-inconsistent otherwise.
We omit the tag EL∗ and say (in)consistent when the logic is contextually clear. A
sentence ϕ is consistent with 	 if 	 ∪ {ϕ} is consistent (or, equivalently, if 	 ��EL∗
¬ϕ). Finally, a set of formulas 	 is a maximally consistent set (or, in short, mcs) if it
is consistent and any set of formulas properly containing 	 is inconsistent [8]. 20

20Notions of derivation, (in)consistent, and maximally consistent sets for the systems studied in Appen-
dices B.1.1 and B.2 are defined similarly.
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Lemma 8 For every mcs 	 of EL∗ and ϕ, ψ ∈ E L ∗−, the following hold:

(1) 	 �EL∗ ϕ iff ϕ ∈ 	,
(2) if ϕ ∈ 	 and ϕ ⊃ ψ ∈ 	, then ψ ∈ 	,
(3) if �EL∗ ϕ then ϕ ∈ 	,
(4) ϕ ∈ 	 and ψ ∈ 	 iff ϕ ∧ ψ ∈ 	,
(5) ϕ ∈ 	 iff ¬ϕ �∈ 	.

Proof Standard.

Lemma 9 (Lindenbaum’s Lemma) Every EL∗-consistent set can be extended to a
maximally consistent one.

Proof Standard.

Let X be the set of all maximally consistent sets of EL∗. Define ∼� on X as

	 ∼� 
 iff ∀ϕ ∈ E L ∗−(�ϕ ∈ 	 implies ϕ ∈ 
).

It is standard to prove that ∼� is an equivalence relation, as � is an S5 operator. To
define the canonical model, we need some auxiliary definitions and lemmas.

Lemma 10 For all 	 ∈ X ,@	 = {ϕ ∈ E L ∗− : Aϕ ∈ 	} is a maximally consistent
set such that 	 ∼� @	 and 1 ∧ · · · ∧ n ∈ @	 .

Proof Suppose that @	 = {ϕ ∈ E L ∗− : Aϕ ∈ 	} is not consistent. This means that
there are finitely many ϕ1, . . . , ϕk ∈ @	 such that �EL∗ (ϕ1 ∧ · · · ∧ ϕk) ⊃ ⊥. This
implies, in particular, that �EL∗ (ϕ1∧· · ·∧ϕk−1) ⊃ ¬ϕk . Then, by KA, Theorem 7.(2)
and 7.(3), we have �EL∗ (Aϕ1∧· · ·∧Aϕk−1) ⊃ A¬ϕk . As Aϕ1, . . . , Aϕk−1 ∈ 	, we
have A¬ϕk ∈ 	. This means, by DuaA, that ¬Aϕk ∈ 	, contradicting consistency of
	. Therefore, @	 is consistent. Now suppose that @	 is not maximal. This means
that there is a ψ ∈ E L ∗− such that ψ �∈ @	 and @	 ∪ {ψ} is consistent. But, as
ψ �∈ @	 , we have Aψ �∈ 	, thus, by Lemma 8.(5) and DuaA, A¬ψ ∈ 	. This means
that ¬ψ ∈ @	 , which makes @	 ∪ {ψ} inconsistent. Therefore, @	 is maximal too.
By Ax3 and Lemma 8.(3), we have A(1∧ · · · ∧ n) ∈ 	, therefore, 1∧ · · · ∧ n ∈ @	 .
Now take an arbitrary ϕ ∈ E L ∗− and suppose that �ϕ ∈ 	. Then, by Ax1 and
Lemmas 8.(2) and 8.(3),Aϕ ∈ 	. This means that ϕ ∈ @	 . Therefore, we also obtain
that 	 ∼� @	 .

For 	 ∈ X , let ≈	⊆ E L ∗− × E L ∗− such that

ϕ ≈	 ψ iff Kϕψ, Kψϕ ∈ 	.

In the following proofs, we make repeated use of Lemma 8 in a standard way as
in the proof of Lemma 10 and omit mention of it.

Lemma 11 For all 	 ∈ X , ≈	 is an equivalence relation. Moreover, for all 	, 
 ∈
X such that 	 ∼� 
, we have ≈	=≈
.
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Proof Let 	 ∈ X and ϕ, ψ, χ ∈ E L ∗−.
• reflexivity: By Ax8, we have �EL∗ Kϕϕ, thus, ϕ ≈	 ϕ.
• symmetry: Suppose ϕ ≈	 ψ . This means, by the defn. of ≈	 , that Kϕψ, Kψϕ ∈

	. Therefore, Kψϕ, Kϕψ ∈ 	, i.e., ψ ≈	 ϕ.
• transitivity: Suppose ϕ ≈	 ψ and ψ ≈	 χ . This means that (a) Kψϕ ∈ 	,

(b) Kϕψ ∈ 	, (c) Kψχ ∈ 	, and (d) Kχψ ∈ 	. Then, by Ax6, (b), and (c),
Kϕχ ∈ 	. Similarly, by Ax6, (a), and (d), Kχϕ ∈ 	. Therefore, ϕ ≈	 χ .

For the last part, let 	, 
 ∈ X such that 	 ∼� 
. Suppose ϕ ≈	 ψ . This means that
Kϕψ, Kψϕ ∈ 	. Then, by Ax5, we obtain that �Kϕψ,�Kψϕ ∈ 	. As 	 ∼� 
,
we conclude that Kϕψ, Kψϕ ∈ 
, i.e., ϕ ≈
 ψ . For the other direction, use the
symmetry of ∼�.

Let [ϕ]	 = {ψ ∈ E L ∗− : ϕ ≈	 ψ}, i.e., [ϕ]	 is the equivalence class of ϕ with
respect to ≈	 .

Definition 3 (Canonical Model for 	0) Let 	0 be a mcs of EL∗. The canonical model
for 	0 is the tuple M c = 〈Wc,@	0 ,T

c, ⊕c, vc, tc〉, where
• Wc = {	 ∈ X : 	0 ∼� 	},
• @	0 = {ϕ ∈ E L ∗− : Aϕ ∈ 	0},
• T

c = {[ϕ]	0 : ϕ ∈ E L ∗−} (we omit the subscript 	0 when it is clear from the
context),

• ⊕c : Tc × T
c → T

c such that [ϕ] ⊕c [ψ] = [ϕ ∧ ψ],
• tc : E L ∗− → T

c such that, for all x ∈ A T , tc(x) = [x] and tc(ϕ) =
⊕cA T (ϕ),

• vc : A T → P(Wc) such that vc(x) = {	 ∈ Wc : x ∈ 	}.

The topic inclusion relation ≤c on the canonical model is defined in the usual way.

Lemma 12 Given a mcs 	0 of EL∗ and the canonical model M c =
〈Wc,@	0 ,T

c, ⊕c, vc, tc〉 for 	0 as described above, we have

(1) @	0 ∈ Wc,
(2) i ∈ @	0 for all i ∈ F ,
(3) for all ϕ ∈ E L ∗− and 	 ∈ Wc, if ϕ ∈ @	0 then Aϕ ∈ 	,
(4) for all 	 ∈ Wc, @	 = @	0 .

Proof

(1) By Lemma 10.
(2) By Lemmas 10 and 8.(4).
(3) Let ϕ ∈ E L ∗− such that ϕ ∈ @	0 , i.e., Aϕ ∈ 	0. Then, by Ax2, we have

�Aϕ ∈ 	0. Hence, by the definition of Wc, Aϕ ∈ 	 f or all 	 ∈ Wc.
(4) @	0 ⊆ @	 follows directly from item (3). For @	 ⊆ @	0 , suppose ϕ ∈ @	 ,

i.e., that Aϕ ∈ 	. Then, by Ax2, we have�Aϕ ∈ 	. As 	 ∈ Wc, i.e., 	 ∼� 	0,
we obtain that Aϕ ∈ 	0, i.e., ϕ ∈ @	0 .
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Lemma 13 The canonical model M c = 〈Wc,@	0 ,T
c, ⊕c, vc, tc〉 is an epistemic

model.

Proof

• @	0 ∈ Wc and@	0 ∈ vc(i) for all i ∈ F : The former is shown in Lemma 12.(1)
and the latter is a consequence of Lemma 12.(2) and the definition of vc.

• ⊕c is idempotent, associative, and commutative: All these properties of ⊕c

follow from its definition and Ax8.

In order to prove an appropriate Truth Lemma, we need the following auxiliary
lemmas.

Lemma 14 For all ϕ ∈ E L ∗−, tc(ϕ) = [ϕ].
Proof Let ϕ ∈ E L ∗−.
tc(ϕ) = ⊕cA T (ϕ) (by the definition of tc(ϕ))

= tc(x1) ⊕c · · · ⊕c tc(xk) (for A T (ϕ) = {x1, . . . , xk})
= [x1] ⊕c · · · ⊕c [xk] (by the definition of tc(x))

= [x1 ∧ · · · ∧ xk] (by the definition of ⊕c)

= [ϕ] (Ax8)

Lemma 15 For all 	 ∈ Wc and ϕ, ψ ∈ E L ∗−, tc(ψ) ≤c tc(ϕ) iff Kϕψ ∈ 	.

Proof Let 	 ∈ Wc, and ϕ, ψ ∈ E L ∗−, and observe that
tc(ψ) ≤c tc(ϕ) iff tc(ψ) ⊕c tc(ϕ) = tc(ϕ) (by the definition of ≤c)

iff [ψ] ⊕c [ϕ] = [ϕ] (Lemma14)

iff [ψ ∧ ϕ] = [ϕ] (by the definition of ⊕c)

iff Kψ∧ϕϕ, Kϕ(ψ ∧ ϕ) ∈ 	0 (by the definition of [ϕ])
iff Kψ∧ϕϕ, Kϕ(ψ ∧ ϕ) ∈ 	 (Lemma11)

Suppose tc(ψ)≤c tc(ϕ). Then, by the observation above, we haveKψ∧ϕϕ,Kϕ(ψ ∧ϕ)

∈ 	. By Ax8, we also have that Kψ∧ϕψ ∈ 	. Then, Kψ∧ϕψ∧Kϕ(ψ ∧ ϕ) ∈ 	. Thus,
by Ax6, we obtain that Kϕψ ∈ 	. For the other direction, suppose that Kϕψ ∈ 	. By
Ax8, we also have Kϕϕ ∈ 	. Therefore, by Ax7, we obtain that Kϕ(ψ ∧ ϕ) ∈ 	. By
Ax8, we already have that Kψ∧ϕϕ ∈ 	. Therefore, following the same steps above,
we obtain that tc(ψ) ≤c tc(ϕ).

Lemma 16 (Existence Lemma for �) For every mcs 	 ∈ X and ϕ ∈ E L ∗−, if
�ϕ �∈ 	 then there is a mcs 
 such that 	 ∼� 
 and ϕ �∈ 
.

Proof Standard, see, e.g., [8, Lemma 4.20].
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Lemma 17 (Truth Lemma) Let 	0 be a mcs of EL∗ and M c =
〈Wc,@	0 ,T

c, ⊕c, vc, tc〉 be the canonical model for 	0. Then, for all 	 ∈ Wc and
ϕ ∈ E L ∗−,

M c, 	 � ϕ iff ϕ ∈ 	.

Proof The proof is by induction on the structure of ϕ. The cases for the atomic for-
mulae, Booleans, and �ψ are standard, where the case for �ψ uses Lemma 16.
Toward showing the cases for ϕ := Kψχ and ϕ := Aψ , suppose inductively that the
statement holds for ψ and χ .

Case ϕ := Kψχ :

M c, 	 � Kψχ iff tc(χ) ≤c tc(ψ) and ∀
 ∈ Wc( if M c, 
 � ψ then M c, 
 � χ)

(by the semantics)
iff Kψχ ∈ 	 and ∀
 ∈ Wc( if M c, 
 � ψ then M c, 
 � χ) (Lemma 15)
iff Kψχ ∈ 	 and ∀
 ∈ Wc( if ψ ∈ 
 then χ ∈ 
) (by the induction hypothesis)
iff Kψχ ∈ 	 and ∀
 ∈ Wc(ψ ⊃ χ ∈ 
) (Lemma 8)
iff Kψχ ∈ 	 and �(ψ ⊃ χ) ∈ 	 (Lemma 16, the definition of Wc)

iff (Kψχ ∧ �(ψ ⊃ χ)) ∈ 	 (Lemma 8)
iff Kψχ ∈ 	 (Ax4 and Lemma 8)

Case ϕ := Aψ :

M c, 	 � Aϕ iff M c,@	0 � ϕ (by the semantics)
iff ϕ ∈ @	0 (IH, Lemma 12.(1))
iff Aϕ ∈ 	 (Lemma 12.(4))

Corollary 18 EL∗ is a sound and complete axiomatization of E L ∗− with respect to
the class of epistemic models.

Proof We prove only completeness since soundness is a matter of routine validity
check. Let ��EL∗ ϕ. This means that {¬ϕ} is consistent, and by Lemma 9, can be
extended to a mcs 	0. Then, by Lemma 17, we obtain that M c, 	0 �� ϕ, where M c

is the canonical model for 	0.

B.1.1 The (static) Logic of Knowledge Over E L +
−

We now provide a sound and complete axiomatization for the fragment E L +− of
E L ∗− without the actuality operator.

Theorem 19 EL+ given in Table 2 is a sound and complete axiomatization of E L +−
with respect to the class of epistemic models.

The proof of Theorem 19 follows similarly to the proof of Corollary 18 except that
we need to replace Lemma 10 by the following lemma.

Lemma 20 For all 	 ∈ X , there exists a @	 ∈ X such that 	 ∼� @	 and
1 ∧ · · · ∧ n ∈ @	 .
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Table 2 Axiomatization EL+ (over E L +−)

(CPL) all classical propositional tautologies and Modus Ponens

(S5�) S5 axioms and rules for �

(I) Axioms for i and �:

(Ax1) ♦(1 ∧ · · · ∧ n)

(II) Axioms connecting K and �:

(Ax2) Kϕψ ≡ (Kϕψ ∧ �(ϕ ⊃ ψ))

(Ax3) Kϕψ ⊃ �Kϕψ

(I) Axioms for K:

(Ax4) (Kϕψ ∧ Kψχ) ⊃ Kϕχ

(Ax5) (Kϕψ ∧ Kϕχ) ⊃ Kϕ(ψ ∧ χ)

(Ax6) Kϕψ , if A T (ψ) ⊆ A T (ϕ)

Proof Let 	 ∈ X . Consider the set {ϕ ∈ E L +− : �ϕ ∈ 	} ∪ {1 ∧ · · · ∧ n} and
suppose it is inconsistent. This implies that there are finitely many ϕ1, . . . , ϕk ∈ {ϕ ∈
E L +− : �ϕ ∈ 	} such that �EL+ (ϕ1 ∧· · ·∧ϕk) ⊃ ¬(1∧· · ·∧n). Then, by S5�, we
obtain �EL+ (�ϕ1 ∧ · · · ∧�ϕk) ⊃ �¬(1∧ · · · ∧n). As each �ϕi ∈ 	 for 1 ≤ i ≤ k,
by Lemma 8, we have �¬(1 ∧ · · · ∧ n) ∈ 	. This means that ¬♦(1 ∧ · · · ∧ n) ∈ 	,
contradicting consistency of 	 due to Ax1 and Lemma 8.(3). Therefore, by Lemma 9,
{ϕ ∈ E L +− : �ϕ ∈ 	} ∪ {1 ∧ · · · ∧ n} extends to a E L +−-maximally consistent set
@	 such that 1 ∧ · · · ∧ n ∈ @	 . As {ϕ ∈ E L +− : �ϕ ∈ 	} ⊆ @	 , we also have
	 ∼� @	 .

Lemma 20 guarantees the existence of an appropriate actual world @	0 in the
canonical model for a maximally EL+-consistent set 	0.

B.2 The Logic of Knowledge Update Over E L ∗

This section presents soundness and completeness results for the dynamic language
E L ∗ of epistemic update. We axiomatize two classes of epistemic update models
that represent maximal and minimal knowledge updates, respectively. These are the
two extreme cases that an epistemic update function μ (given in Definition 1) can
interpret: the former is modelled similarly to the so-called public announcements [25,
49, 50], and the latter represents an agent who learns the new piece of information
without merging its intension with her prior information state.

Definition 4 (Maximal Epistemic Update Model) A maximal epistemic update
model is a tuple M = 〈W,@,T, ⊕, μ, v, t〉 where 〈W,@,T, ⊕, v, t〉 is an epis-
temic model and μ : I@ × I@ → I@ is an update function such that μ(P, Q) =
P ∩ Q.
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Theorem 21 A sound and complete axiomatization EUL∗
max of E L ∗ with respect to

the class of maximal epistemic update models is obtained by adding to EL∗ the set of
axioms and rules in Table 3.

Definition 5 (Minimal Epistemic Update Model) Aminimal epistemic update model
is a tuple M = 〈W,@,T, ⊕, μ, v, t〉 where 〈W,@,T, ⊕, v, t〉 is an epistemic
model and μ : I@ × I@ → I@ is an update function such that μ(P, Q) = Q.

Theorem 22 A sound and complete axiomatization EUL∗
min of E L ∗ with respect to

the class of minimal epistemic update models is obtained by replacing axiom (Ri) in
Table 3 by

[i : ϕ]i ≡ Aϕ ⊃ (ϕ ∧ (i ∨ ¬i)).

B.2.1 Proofs of Theorems 21 and 22

The proofs of Theorems 21 and 22 are by the so-called standard DEL-technique
completeness via reduction (or translation), as briefly explained in Section 4.4.
For a detailed presentation of completeness by reduction, we refer the reader to
[62, Chapter 7.4].

Definition 6 (Complexity measure for E L ∗) The complexity c(ϕ) of a formula ϕ ∈
E L ∗ is a natural number recursively defined as

c(i) = c(p) = 1

c(¬ϕ) = c(�ϕ) = c(Aϕ) = c(ϕ) + 1

c(ϕ ∧ ψ) = 1 + max{c(ϕ), c(ψ)}
c(Kϕψ) = 4 + c(ϕ) + c(ψ)

c([i : ϕ]ψ) = (3 + |A T (ϕ)| + c(ϕ)) · (|A T (ψ)| + c(ψ)),

where |A T (ϕ)| is the number of elements in A T (ϕ).

Table 3 Reduction axioms and inference rules for [i : ϕ] for maximal epistemic update models

(Nec[]) from ψ , infer [i : ϕ]ψ
(Ri ) [i : ϕ]i ≡ Aϕ ⊃ (i ∧ ϕ)

(Rx �=i ) [i : ϕ]x ≡ Aϕ ⊃ (x ∧ (i ∨ ¬i)) if x �= i

(R¬) [i : ϕ]¬ψ ≡ Aϕ ⊃ ¬[i : ϕ]ψ
(R∧) [i : ϕ](ψ ∧ χ) ≡ [i : ϕ]ψ ∧ [i : ϕ]χ
(R�) [i : ϕ]�ψ ≡ Aϕ ⊃ �[i : ϕ]ψ
(RA) [i : ϕ]Aψ ≡ Aϕ ⊃ A[i : ϕ]ψ
(RK1) [i : ϕ]Kψχ ≡ Aϕ ⊃ (Kψχ ∧ �[i : ϕ](ψ ⊃ χ)) if i �∈ A T (ψ) ∪ A T (χ)

(RK2) [i : ϕ]Kψχ ≡ Aϕ ⊃ (Kψ∧ϕχ ∧ �[i : ϕ](ψ ⊃ χ)) if i ∈ A T (ψ)\A T (χ)

(RK3) [i : ϕ]Kψχ ≡ Aϕ ⊃ (Kψ(χ ∧ ϕ) ∧ �[i : ϕ](ψ ⊃ χ)) if i ∈ A T (χ)\A T (ψ)

(RK4) [i : ϕ]Kψχ ≡ Aϕ ⊃ (Kψ∧ϕ(χ ∧ ϕ) ∧ �[i : ϕ](ψ ⊃ χ)) if i ∈ A T (ψ) ∩ A T (χ)
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Lemma 23 For all ϕ, ψ, χ ∈ E L ∗ and i, x ∈ A T ,

(1) c(ϕ) > c(ψ) if ψ is a proper subformula of ϕ,
(2) c([i : ϕ]i) > c(Aϕ ⊃ (i ∧ ϕ)),
(3) c([i : ϕ]x) > c(Aϕ ⊃ (x ∧ (i ∨ ¬i))), for i �= x

(4) c([i : ϕ]¬ψ) > c(Aϕ ⊃ ¬[i : ϕ]ψ),
(5) c([i : ϕ](ψ ∧ χ)) > c([i : ϕ]ψ ∧ [i : ϕ]χ),
(6) c([i : ϕ]�ψ) > c(Aϕ ⊃ �[i : ϕ]ψ),
(7) c([i : ϕ]Aψ) > c(Aϕ ⊃ A[i : ϕ]ψ),
(8) c([i : ϕ]Kψχ) > c(Aϕ ⊃ (Kψχ ∧ �[i : ϕ](ψ ⊃ χ))),
(9) c([i : ϕ]Kψχ) > c(Aϕ ⊃ (Kψ∧ϕχ ∧ �[i : ϕ](ψ ⊃ χ))),

(10) c([i : ϕ]Kψχ) > c(Aϕ ⊃ (Kψ(χ ∧ ϕ) ∧ �[i : ϕ](ψ ⊃ χ))),
(11) c([i : ϕ]Kψχ) > c(Aϕ ⊃ (Kψ∧ϕ(χ ∧ ϕ) ∧ �[i : ϕ](ψ ⊃ χ))).

Proof Follows by easy calculations using Definition 6. And, obviously, (8)–(10)
follow from (11).

Definition 7 (Translation f : E L ∗ → E L ∗−) The translation f : E L ∗ → E L ∗−
is defined as follows:

f (x) = x

f (¬ϕ) = ¬f (ϕ)

f (�ϕ) = �f (ϕ)

f (ϕ ∧ ψ) = f (ϕ) ∧ f (ψ)

f (Kϕψ) = Kf (ϕ)f (ψ)

f ([i : ϕ]i) = f (Aϕ ⊃ (i ∧ ϕ))

f ([i : ϕ]x) = f (Aϕ ⊃ (x ∧ (i ∨ ¬i))), for x �= i

f ([i : ϕ]¬ψ) = f (Aϕ ⊃ ¬[i : ϕ]ψ)

f ([i : ϕ](ψ ∧ χ)) = f ([i : ϕ]ψ ∧ [i : ϕ]χ),

f ([i : ϕ]�ψ) = f (Aϕ ⊃ �[i : ϕ]ψ)

f ([i : ϕ]Aψ) = f (Aϕ ⊃ A[i : ϕ]ψ)

f ([i : ϕ]Kψχ) = f (Aϕ ⊃ (Kψχ ∧ �[i : ϕ](ψ ⊃ χ))), if i �∈ A T (ψ) ∪ A T (χ)

= f (Aϕ ⊃ (Kψ∧ϕχ ∧ �[i : ϕ](ψ ⊃ χ))), if i ∈ A T (ψ)\A T (χ)

= f (Aϕ ⊃ (Kψ(χ ∧ ϕ) ∧ �[i : ϕ](ψ ⊃ χ))), if i ∈ A T (χ)\A T (ψ)

= f (Aϕ ⊃ (Kψ∧ϕ(χ ∧ ϕ) ∧ �[i : ϕ](ψ ⊃ χ))), if i ∈ A T (χ) ∩ A T (ψ)

f ([i : ϕ][j : ψ]χ) = f ([i : ϕ]f ([j : ψ]χ)).

We need the following lemma in order to be able to use the derived replacement
of equivalents rule given in Theorem 7.(1) in the completeness proofs of EUL∗

max and
EUL∗

min. For this lemma to go through, it is crucial that the reduction axioms Ri and
Rx �=i have occurrences of each element in A T (ϕ) and i on the right-hand-side of
the equivalences, where ϕ is the sentence inside the dynamic operator and i is the
updated frame of mind.

Lemma 24 For all ϕ ∈ E L ∗, A T (ϕ) = A T (f (ϕ)).
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Proof The proof follows by an easy c-induction on the structure of ϕ and uses
Lemma 23. Note that the case for ϕ := [i : ψ]χ requires subinduction on χ .

Lemma 25 For all ϕ ∈ E L ∗, �EUL∗
max

ϕ ≡ f (ϕ).

Proof The proof follows by c-induction on the structure of ϕ and uses Lemma 23.
Cases for the atomic formulae, the Boolean connectives, and � are elementary. Here
we only show the cases for ϕ := Kψχ and ϕ := [i : ψ]χ , where the latter requires
subinduction on χ . Suppose inductively that �EUL∗

max
ψ ≡ f (ψ), for all ψ with

c(ψ) < c(ϕ).
Case ϕ := Kψχ

By Lemma 23.(1) and the induction hypothesis (IH), we have �EUL∗
max

ψ ≡ f (ψ).
Moreover, by Lemma 24, we have A T (ψ) = A T (f (ψ)). Therefore, by Ax8 in
Table 1, we obtain �EUL∗

max
Kψf (ψ) and �EUL∗

max
Kf (ψ)ψ . Then, by Theorem 7.(1),

we obtain �EUL∗
max

Kψχ ≡ Kf (ψ)χ . Similarly, we also have �EUL∗
max

χ ≡ f (χ)

and A T (chi) = A T (f (χ)), thus, �EUL∗
max

Kχf (χ) and �EUL∗
max

Kf (χ)χ . Then,
by Theorem 7.(1) again, we obtain �EUL∗

max
Kf (ψ)χ ≡ Kf (ψ)f (χ). Therefore, by

CPL, we conclude that �EUL∗
max

Kψχ ≡ Kf (ψ)f (χ), with Kf (ψ)f (χ) = f (Kψχ)

by Definition 7.
Case ϕ := [i : ψ]χ : we prove only the cases χ := x with x �= i, and χ :=

[j : θ ]α. All the other cases follow similarly by using the corresponding reduction
axioms, Lemma 23, and Definition 7.

Subcase χ := x, for x �= i

1. �EUL∗
max

[i : ψ]x ≡ (Aϕ ⊃ (x ∧ (i ∨ ¬i))) Rx �=i

2. �EUL∗
max

(Aϕ ⊃ (x ∧ (i ∨ ¬i))) ≡ f (Aϕ ⊃ (x ∧ (i ∨ ¬i))) Lemma23.(3), IH

And, f (Aϕ ⊃ (x ∧ (i ∨ ¬i))) = f ([i : ψ]x) by Definition 7.

Subcase χ := [j : θ ]α
By Lemma 23.(1) and IH, we know that � [j : θ ]α ≡ f ([j : θ ]α)

1 �EUL∗
max

[j : θ ]α ≡ f ([j : θ ]α) Lemma 23.(1), IH
2 �EUL∗

max
[i : ψ]([j : θ ]α ≡ f ([j : θ ]α)) Nec[]

3. �EUL∗
max

[i : ψ][j : θ ]α ≡ [i : ψ]f ([j : θ ]α) R¬, R∧
4. �EUL∗

max
[i : ψ]f ([j : θ ]α) ≡ f ([i : ψ]f ([j : θ ]α)) IH

5 �EUL∗
max

[i : ψ][j : θ ]α ≡ f ([i : ψ]f ([j : θ ]α)) 3, 4, CPL

And, f ([i : ψ]f ([j : θ ]α)) = f ([i : ψ][j : θ ]α) by Definition 7.

Proof of Theorem 21 Let ϕ ∈ E L ∗ such that ��EUL∗
max

ϕ. By Lemma 25, there is
ψ ∈ E L ∗− such that �EUL∗

max
ϕ ≡ ψ . Therefore, ��EUL∗

max
ψ . As ψ ∈ E L ∗−

and EL∗ ⊆ EUL∗
max, we also have ��EL∗ ψ . Then, by Corollary 18, there is an

epistemic model M = 〈W,@,T, ⊕, v, t〉 and w ∈ W such that M , w �� ψ .
Observe that the tuple 〈W,@,T, ⊕, μ, v, t〉, where μ : I@ × I@ → I@ such that
μ(P, Q) = P∩Q, is a maximal epistemic update model. Then, by Lemma 5, we have
〈W,@,T, ⊕, μ, v, t〉, w �� ψ . Therefore, by the soundness of EUL∗

max with respect to
maximal epistemic update models, we obtain that 〈W,@,T, ⊕, μ, v, t〉, w �� ϕ.
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Proof of Theorem 22 Follows the same steps as the proof of Theorem 21. We need
to replace every occurrence of [i : ϕ]i ≡ Aϕ ⊃ (i ∧ ϕ) by [i : ϕ]i ≡ Aϕ ⊃
(ϕ ∧ (i ∨ ¬i)).
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