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RESUMEN 

Desarrollando una sugerencia de Wittgenstein, ofrezco una explicación de las ta-
blas de verdad como fórmulas de un lenguaje formal. Defino la sintaxis y la semántica de 
TPL (el lenguaje de la lógica proposicional tabular) y desarrollo su teoría de la demostra-
ción. Las fórmulas individuales de TPL y los grupos finitos de fórmulas con la misma fila 
superior y matriz TF (representación de posibles valoraciones) pueden servir como sus 
propias pruebas con respecto a las propiedades metalógicas de interés. Sin embargo, la si-
tuación es diferente para los grupos de fórmulas cuyas filas superiores difieren. 
 
PALABRAS CLAVE: lógica proposicional, tablas de verdad, filosofía de la lógica, simbolismo, notación, 
demostración formal. 
 
ABSTRACT 

Developing a suggestion of Wittgenstein, I provide an account of truth tables as 
formulas of a formal language. I define the syntax and semantics of TPL (the language of 
Tabular Propositional Logic) and develop its proof theory. Single formulas of TPL, and 
finite groups of formulas with the same top row and TF matrix (depiction of possible 
valuations), are able to serve as their own proofs with respect to metalogical properties of 
interest. The situation is different, however, for groups of formulas whose top rows dif-
fer. 
 
KEYWORDS: Propositional Logic, Truth Tables, Philosophy of Logic, Symbolism, Notation, Formal Proof. 

 
 

I. INTRODUCTION 
 

In logic, truth tables appear in multiple aspects: 
 
Defining connectives. Truth tables are used to define the connectives that 
appear in PL wffs (i.e., standard formulas of propositional logic).1  
 

Defining metalogical notions. In the setting of propositional logic, truth tables 
are used to precisify logical notions such as those of tautologousness (a 
formula is a tautology iff it is true on every row of its truth table), validity 
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(an argument is valid iff there is no truth table row on which its premises 
are true and its conclusion false), equivalence (two formulas are equivalent 
iff they get the same truth-value on every row), and so on. Here, truth 
table rows play the role of models. 
 

Deciding presence of metalogical notions. Truth tables constitute an effective de-
cision procedure for the metalogical properties mentioned above – they 
are finite arrays composed of a definite stock of symbols and can be gen-
erated mechanically in a finite amount of time. 
 

Proving presence of metalogical notions. A completed truth table for a PL wff 
constitutes a proof of that wff’s tautologousness (if it is a tautology), sat-
isfiability (if it is satisfiable), or unsatisfiability (if it is unsatisfiable), since 
truth tables can be checked mechanically for correctness in a feasible 
time, relative to the size of the table (i.e. the time it takes to check truth 
tables does not get out of hand as the tables get larger). 
 

But truth tables have yet another side to them, highlighted by Witt-
genstein; what we might normally call the truth table for some particular 
formula of propositional logic in some standard notation may also be re-
garded as a formula itself.2  

For example, consider the following truth table for the PL wff (p → q): 
 

p  q (p → q) 
 

T T T 
T F F 
F T T 
F F T 

 
If we got rid of the PL wff in the top right, the remainder could be used 
in its stead. 

In this paper I work out a systematic account of this aspect of truth 
tables using modern logical methods. Why do this? Well, I hope that the 
interest of some students of logic has already been kindled by the very 
idea of doing this, but I can say more. I have three main motivations for 
working out such an account: 
 

Motivation 1: Broadening the Church of Modern Logic. I would like to see more 
attempts to apply modern logical techniques to structures that resemble 
natural language sentences less than do formulas of standard logical lan-
guages. And I am not talking about liberating the tools of logic from the 
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subject’s traditional focus on truth and on what follows from what (alt-
hough that can be interesting and worthwhile too). Thinking of logic as 
primarily being about representations and how truth distributes over 
them – a natural and common view, which I will adopt here but will not 
argue for – patently does not entail a focus on sentence-like representa-
tions. By regarding truth-tables as “well-formed formulas” and working 
out their logic, I hope to loosen things up and help to encourage further 
logical study of items that are representational without being sentence-like. 
 

Motivation 2: Vindicating Wittgenstein’s Idea in an Ecumenical Setting. Wittgen-
stein had many very interesting ideas about logic, but I think it’s safe to 
say that many of them have, so far at least, failed to catch on. And this idea 
that truth-tables may be seen as formulas – as propositional signs – may 
seem quite strange and exotic. Lest it be thought that this exotic-seeming 
idea only “works” or makes sense in the context of Wittgenstein’s own 
early thinking in all its glory and difficulty, I want to show that it can be 
cherry-picked and worked out thoroughly in a modern setting. So, the 
project here is very different from one of working out what the early 
Wittgenstein thought, or how he should have elaborated his framework 
of thinking as a whole. The early Wittgenstein may for instance have 
thought that the soundness and completeness proofs I provide below 
belong to an inherently illegitimate or confused way of thinking. But in a 
way that’s the point: we don’t have to share all of Wittgenstein’s scruples 
in order to work out, for ourselves, his idea about truth-tables. (And of 
course, none of this is to say that we don’t stand to learn anything by 
thinking about those scruples on another occasion, or that there is no 
truth in them.) 
 

Motivation 3: Appreciating the Trade-Offs. I want to understand the trade-offs 
involved, from a modern logical perspective, in doing propositional logic 
by treating truth tables as formulas. To anticipate, we will see that the 
problem of assessing a formula for satisfiability becomes trivial, but the 
problem of assessing multiple formulas for joint satisfiability does not. 
Relatedly, when working with standard notation for propositional logic it 
is trivial to form a semantic conjunction of two or more formulas – a formu-
la which is true iff the input formulas are true – but this is not trivial in 
truth table notation. 
 

The plan for the rest of the paper is as follows. In Section II, I specify 
the language of tabular propositional logic (TPL) and remark on its sta-
tus as a language. In Section III, I treat the semantics of TPL by defining 
truth on a model (where a model is a propositional valuation), and note 
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some facts. In Section IV I turn to proof theory. We will see that tautol-
ogous, satisfiable, and unsatisfiable formulas constitute proofs of their 
own tautologousness, satisfiability, and unsatisfiability respectively. On 
the other hand, jointly satisfiable pairs or larger groups of formulas do 
not seem to constitute proofs of their own joint satisfiability (and like-
wise for joint unsatisfiability). Similarly, arguments in the language of 
TPL with one or more premise do not count as proofs of their own va-
lidity. At least, not in general. We will see that, for groups of formulas 
which have the same top row and TF matrix (i.e., the same arrangement 
of T’s and F’s to depict the possible valuations of the atoms), this self-
proving property is present. For cases where the self-proving property is 
arguably not present, I offer two responses: (i) a system of ‘row tree 
proofs’, the soundness and completeness of which is then shown, and (ii) 
a re-writing strategy. It may be wondered why I provide two different re-
sponses here. The reason is that, in this paper, I am not concerned to put 
forward a view about how best to do propositional logic, or anything like 
that. Rather, I am trying to explore the space of possibilities and come to 
an appreciation of the trade-offs between different ways of going.  
 
 

II. THE LANGUAGE OF TPL 
 
II.1. Symbols of TPL 
 

Atoms: a, b, …, z, a1, a1, …, z1, a2, b2, …, z2, …  
 

Value signs: T, F 

The stopper: ⚫ 
 
Remark on the Atoms: unlike in standard PL syntax, atoms of TPL do not 
themselves count as wffs, and are not treated as true or false on models. 
They may be thought of as signs representing conditions which may or 
may not be met, but which do not say that these conditions are met. 
Compare a natural language phrase like ‘whether the sky is blue’. If we 
think of the atoms this way, then the T’s and F’s which appear below 
them should not be thought of as ascribing truth and falsity to the at-
oms.3 Alternatively, the atoms may be thought of as standing in for sen-
tences of some language on which TPL is parasitic –– much as one 
might think of the atoms in a standard PL wff for which a glossary has 
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been given. In that case, the T’s and F’s below them may be thought of 
as ascribing truth and falsity. 
 

Remark on the Stopper: the purpose of the stopper is to occupy the place 
where, in a truth table for a standard PL wff, that wff would go. The 
stopper is not really necessary, but having it enables us to treat formulas 
of TPL as regular two-dimensional arrays of symbols whose size and 
shape can be specified with two natural numbers. 
 
II.2. Syntax of TPL 
 

For all natural numbers n and m, an n-by-m array4 of symbols of TPL 
– where n is the number of rows and m is the number of columns – is a 
formula of TPL. For example, the following are formulas of TPL: 
 

T  a  ● 
● ● F 

 
 

T T g  F 
● z ● ● 

 
 

T 
T 
F 
T 
 
 

● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● 

 
We will now define the well-formed formulas or wffs of TPL, which form a 
proper subset of the formulas. First some terminology. 

Each element in an n-by-m formula has a unique address given by a 
pair of natural numbers between 1 and n and 1 and m respectively. For 
example, element (2,4) in the following 5-by-5 formula is highlighted 
with an underline (not itself part of the formula): 
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c  T ● ● s 
● ● F z F 
T T T ● T 
R  r ● ● ● 
T T F s  T 

 
The ith row of an n-by-m formula F is a sequence of length m of symbols 
of TPL, whose 1st element is element (i, 1) of F, whose 2nd element is 
element (i, 2) of F, and so on. 

The ith column of an n-by-m formula F is a sequence of length n of 
symbols of TPL, whose 1st element is element (1, i) of F, whose 2nd el-
ement is element (2, i) of F, and so on. 
 

The top row of a formula is its 1st row. 
 

The rightmost column of an n-by-m formula is its mth column. 
 

The last element of a sequence of length n is its nth element. 
 

An alternating TF sequence of n segments of length m is a sequence of length (n 
× m) whose first m elements are T, its next m elements are F, and so on. 
 

For all finite natural numbers n, a 2n-by-(n + 1) formula of TPL, call it α, 
is a wff iff: 
 

1. Elements 1 … n of the top row of α are atoms and element (n + 1) 
is the stopper. 

 

2. No atom occurs more than once in the top row of α. 
 

3. For all numbers i between 1 and n inclusive, the ith column of α 
is a sequence consisting of an atom followed by an alternating TF 
sequence of 2i segments of length 2n/2i. 

 

4. For all numbers i between 2 and 2n inclusive, element i of the 
right column of α is either T or F. 

 

No other formula of TPL is a wff. 
 

Conditions 1 and 2 are there to ensure that our truth tables have 
suitable top rows. Note that while in textbooks truth tables are often 
presented with the atoms in alphabetical order along the top row, this is 
not required of a wff of TPL.  
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Condition 3 ensures that each possible truth-value assignment to 
the atoms in a truth table appears in a row of the table and that the or-
dering of the rows follows a standard format. 

Condition 4 ensures that the truth table is able to represent its own 
truth-conditions, by ensuring that each row ends in a T or an F, which 
comes immediately after the Ts and Fs that will be used to determine a 
truth-value assignment to the atoms. Note the first element in the right-
most column of a wff of TPL will be the stopper, in light of condition 1. 
 

Here, for example, are two wffs of TPL: 
 

p  q ● 
T T T 
T F F 
F T T 
F F T 

 
z  a  r  ● 
T T T T 
T T F T 
T F T T 
T F F F 
F T T F 
F T F T 
F F T T 
F F F F 

 
We will say that the negation of a TPL wff α is the wff β that results from 
swapping all the T’s in α’s right column for F’s and vice versa.  

For example, the negation of our first example of a wff above is: 
 

p  q ● 
T T F 
T F T 
F T F 
F F F 

 
And our first example of a wff above is the negation of it, too. (For this 
reason, we have limited use for the term ‘negand’ in the context of TPL, 
since if α is β’s negation then β is also α’s, with the result that whenever 
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we want to speak of a formula’s negand we may just as well call it that 
formula’s ‘negation’.) 
 

Remark on the status of TPL as a language: While there may be deep and in-
teresting reasons why languages used by humans tend to be one-
dimensional, this does not mean that two-dimensional languages are not 
possible. It is true that in logic, and related disciplines such as computer 
science, mathematics and linguistics, a formal language is standardly re-
garded as a subset of the sequences or strings or words over some alphabet 
(i.e., set of symbols) –– and obviously, the sequence part of this concep-
tion is not a good fit for TPL. However, the key notions of formal lan-
guage theory can be generalised so that arrays of symbols count as items 
in a language. (For discussion see Giammarresi & Restivo (1997), the aim 
of which, to quote from the abstract, is ‘to generalize concepts and tech-
niques of formal language theory to two dimensions’.) 
 
 

III. SEMANTICS OF TPL 
 

A model of TPL is just like an ordinary model for propositional log-
ic: a function v mapping the atoms to members of the set {0, 1}.  

As a preliminary to defining truth on a model, we define some 
terms. First, if the ith element of the top row of a wff α is the atom A, 
we will say that the atom associated with the ith element of any row of the 
wff α is the atom A. (The atom associated with an occurrence of T or F 
in a TPL wff is the atom directly above it. There is no atom associated 
with the T’s and F’s in the right column of a TPL wff.) 

With respect to an n-by-m wff α and model v, we will say that α’s v-
corresponding row is the row R such that, for all numbers between 1 and (m - 1) 
inclusive, the mth element E of R is T iff v(the atom associated with E) = 
1. (Intuitively, α’s v-corresponding row is the one which represents the 
atoms involved in α as having the values they have on v.) 

We may now define truth on a model: a wff α is true on a model v 
iff the rightmost element of α’s v-corresponding row is T. 

We may now give the following standard definitions of metalogical 
concepts.  
 

A wff α is a tautology iff it is true on all models. 
 

A wff α is satisfiable iff it is true on at least one model. 
 



The Truth Table Formulation of Propositional Logic                                    131 

 

teorema XLII/1, 2023, pp. 123-147 

A wff α is contingent iff it is true on at least one model and it is false 
on at least one model. 
 

A wff α is unsatisfiable iff it is false on all models (i.e. if it is not true 
on any models). 

 

A set of wffs Γ is equivalent iff, on every model, either all members of 
Γ are true or all members of Γ are false. (Arguably, this is an abuse of 
language, since it is normally wffs themselves that are said to be 
‘equivalent’, but see the next parenthesis below for what is at least a 
partial corrective.) 
 

A set of wffs Γ is satisfiable iff there is a model on which every 
member of Γ is true.  
 

A set of wffs Γ is unsatisfiable iff there is no model on which every 
member of Γ is true.  

 
(We will also speak plurally of wffs and call them jointly satisfiable, joint-
ly unsatisfiable, or equivalent.) 
 

A wff α is a consequence of a set of wffs Γ iff every model v on which 
every member of Γ is true is also a model on which α is true. (In 

this case, we may also say that Γ implies α, or write Γ ⊨ α.)  
 

An argument α1, …, αn ∴ β is valid iff its premises {α1, …, αn} imply 
its conclusion β. 

 
Before we turn to the proof theory of TPL, note that no two distinct 
wffs with the same top row are equivalent. 

If we were to require that the atoms in the top row of a wff appear 
in alphabetical order, and that all wffs contain the same atoms, then all 
wffs would have the same top row, and so no two distinct wffs at all 
would be equivalent.5  
 

IV. PROOF THEORY 
 
IV.1. Single Formulas 
 

A remarkable feature of TPL wffs is that they can serve as their 
own proofs with respect to metalogical properties such as tautologous-
ness, satisfiability, contingency and unsatisfiability. Let us have a detailed 
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look at this, before considering the situation with pairs, larger groups, or 
arguments made up of TPL wffs. 
 

Call a wff α a proof that α is a tautology iff each element of its right-
most column is T. 
 

Call a wff α a proof that α is satisfiable iff at least one element of its 
rightmost column is T. 
 

Call a wff α a proof that α is contingent iff at least one element of its 
rightmost column is T and at least one element of its rightmost 
column is F. 
 

Call a wff α a proof that α is unsatisfiable iff each element of its right-
most column is F. 

 
So far these are just labels. To justify them, we do two things. First, we 
note that to inspect an array of symbols and determine whether it is a 
TPL wff that matches one of the above definitions is a computationally 
feasible task. (This is relevant because if a “proof” cannot be checked 
feasibly then its status as a proof is dubious.) Secondly, we prove that the 
set of TPL wffs considered as a set of proofs is sound and complete with 
respect to the property of being a tautology. (Soundness and complete-
ness with respect to satisfiability, contingency and unsatisfiability can be 
proven along similar lines.) 
 

Theorem 1. Soundness of TPL wffs-as-proofs with respect to the property of 
being a tautology. If a wff α is a proof that α is a tautology, then α is a 
tautology (i.e., is true on all models v). Proof. Suppose for the pur-
pose of conditional proof that α is a proof that α is a tautology. By 
the definition of proof that α is a tautology, the rightmost element of 
every row of α other than its first row is T. So for all models v, 
whichever row R of α is α’s v-corresponding row, the rightmost el-
ement of R is T. So by the semantics of wffs of TPL, α is true on v. 
So α is a tautology. 
 

Theorem 2. Completeness of TPL wffs-as-proofs with respect to the property 
of being a tautology. If a wff α is a tautology, then α is a proof that α is 
a tautology. We prove the contrapositive –– that if a wff α is not a 
proof that α is a tautology, then α is not a tautology. Assume that α 
is not a proof that α is a tautology, i.e., some element of its right-
most column is not T. By Condition 4 of the syntax, that element 
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must be F. Consider the row R that this element appears on and 
consider a model v such that R is α’s v-corresponding row. By the 
semantics of TPL wffs, α is false on v, since the rightmost element 
of R is F and R is α’s v-corresponding row. So α is not a tautology. 
 

Note that these results rely on Condition 2 of the syntax, which requires 
that no atom appears more than once in a wff’s top row. If we allowed 
atoms to appear more than once in a wff’s top row, then we could not 
guarantee that each row of a wff corresponds to a distinct, non-empty 
set of models. For example, consider the following non-wff: 
 

p  p ● 
T T F 
T F T 
F T T 
F F F 

 
If we applied our definition of truth on a model to this non-wff 

then it would be false on all models (since only the TT and FF rows are 
the v-corresponding rows of some model v and they both end in F), but 
if it counted as a wff, this formula would (by the definition of ‘proof that 
α is satisfiable’) also count as a proof that it is satisfiable. We would then 
have unsound “proofs”. 
 
IV.2. Multiple Formulas 
 

We have seen that single formulas of TPL serve as their own 
proofs with respect to properties like tautologousness, satisfiability, con-
tingency and unsatisfiability. We now consider properties possessed by 
sets of wffs (and arguments) as defined in Section III. 

Call a set Γ of TPL wffs top-row-identical iff all wffs α ∈ Γ have the same 
top row. (In addition to calling sets of wffs top-row-identical, we will also 
permit ourselves to talk of wffs plurally and call them top-row-identical.) 

To explain the definition a bit: some wffs are top-row-identical 
when their top rows involve the same atoms in the same order. (By ‘top 
row’, I mean the very top row, where the stopper appears –– not the first 
row of value signs: that is the second-from-top row.) 

We start by considering sets of top-row-identical wffs, for which 
the situation is broadly similar to that for single wffs, before discussing 
the general case of groups of TPL wffs, which poses special difficulties. 
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IV.2.1. Top-Row-Identical Formulas 
 

Call a finite array consisting of all the members of a set Γ of top-
row-identical TPL wffs a proof that Γ is equivalent iff, for every number i 

between 1 and the number of rows of a wff α ∈ Γ, either the ith element 

of the rightmost column of every wff α ∈ Γ is T, or the ith element of 

the rightmost column of every wff α ∈ Γ is F. 
Call a finite array consisting of all the members of a set Γ of top-

row-identical TPL wffs a proof that Γ is satisfiable iff there is a number i be-

tween 1 and the number of rows of a wff α ∈ Γ such that, for all wffs α 

∈ Γ, the ith element of α’s rightmost column is T. 
Call a finite array consisting of all the members of a set Γ of top-

row-identical TPL wffs a proof that Γ is unsatisfiable iff there is no number i 

between 1 and the number of rows of a wff α ∈ Γ such that, for all wffs 

α ∈ Γ, the ith element of α’s rightmost column is T. 
Call a finite array consisting of all the members of a set {α1, …, αn, 

β} of top-row-identical TPL wffs a proof that the argument α1, …, αn ∴ β is 
valid iff there is no number i between 1 and the number of rows of a wff 

α ∈ Γ such that the ith elements of the rightmost columns of α1, …, αn 
are all T while the ith element of the rightmost column of β is F. (We 

will also call this a proof that {α1, …, αn} ⊨ β.) 
To justify these labels, we first note that to inspect an array of symbols 

and to determine whether it is an array of TPL wffs matching some particu-
lar one of the above definitions is a computationally feasible task. Having 
first checked that our array of symbols is an array of TPL wffs, it is then easy 
to check whether it is a proof of satisfiability using the following procedure: 
proceed down the rightmost column of the first wff, and if you hit a T, hop 
across to the corresponding element of the rightmost column of the next 
wff and see if it is also a T, and if so, hop across again. If you can get 
through all the wffs finding a T in that spot each time, then stop and say 
Yes, the array is a proof of satisfiability. Otherwise, go back to the first wff 
and continue down its rightmost column, repeating the hopping across part 
of the process if you hit another T. If you get to the end of the rightmost 
column of the first wff and haven’t said Yes, say No. 

Now, we prove that the set of arrays of top-row-identical TPL wffs, 
considered as a set of proofs, is sound and complete with respect to the un-
satisfiability of top-row-identical finite sets of wffs. (For the rest of this sec-
tion, all references to sets of wffs are to be understood as references to top-
row-identical finite sets of wffs.) Soundness and completeness with respect 
to equivalence, satisfiability, and validity can be proven along similar lines. 
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Theorem 3. Soundness of arrays of top-row-identical wffs, considered as 
proofs, with respect to the unsatisfiability of finite top-row-identical sets of wffs. 
If there is a proof that Γ is unsatisfiable, then Γ is unsatisfiable (i.e., 
there is no model v on which all members of Γ are true). Proof. We 
prove the contrapositive: if Γ is satisfiable (i.e., if there is a model v 

on which all α ∈ Γ are true), then there is no proof that Γ is unsatis-
fiable. Suppose for the purpose of conditional proof that there is a 
model v on which all members of Γ are true. By the semantics of 

TPL wffs, all wffs α ∈ Γ are then such that the rightmost element 
of α’s v-corresponding row is T. By the syntax of TPL and the fact 
that Γ is top-row-identical, these v-corresponding rows all appear in 

the same place, i.e., there is a number i such that for all wffs α ∈ Γ, 
the ith row of α is α’s v-corresponding row. And so, there is a num-

ber – this same i – such that, for each wff α ∈ Γ, the ith element of 
α’s rightmost column (a.k.a. the rightmost element of α’s ith row) is 
T. Hence, by the definition of ‘proof that Γ is unsatisfiable’, there is 
no proof that Γ is unsatisfiable. 

 

Theorem 4. Completeness of arrays of top-row-identical wffs, considered as 
proofs, with respect to the unsatisfiability of finite top-row-identical sets of wffs. If 
Γ is unsatisfiable, there is a proof that Γ is unsatisfiable. We prove 
the contrapositive: if there is no proof that Γ is unsatisfiable, then Γ 
is satisfiable. Suppose for the purpose of conditional proof that there 

is no proof that Γ is unsatisfiable, i.e., an arbitrary array A of wffs α ∈ 
Γ fails to be a proof that Γ is unsatisfiable. Then, by the definition of 
‘proof that Γ is unsatisfiable’, there is a number i such that, for each 

wff α ∈ Γ, the ith element of α’s rightmost column is T. That means 

there is a number i such that for each wff α ∈ Γ, the rightmost ele-
ment of the ith row of α is T. By this fact together with the syntax of 

TPL and the fact that Γ is top-row-identical, the ith rows of all α ∈ Γ 

are identical. So, there is a model v such that for all α ∈ Γ, the ith row 
of α is α’s v-corresponding row. By the semantics of TPL wffs, all α 

∈ Γ are true on this model v, since the rightmost element of the ith 
row they have in common is T. And so Γ is satisfiable. 

 
Having shown that the proof-theoretic status of arrays of top-row-
identical arrays of TPL wffs is broadly similar to that for single TPL wffs, 
we now turn to the general case –– arrays of wffs that may not be top-
row-identical. 
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IV.2.2. The General Case 
 

As soon as we venture past top-row-identical sets of wffs, difficul-
ties arise. Even sets of wffs involving the same atoms but in different 
orders are considerably harder to check for metalogical properties. (To 
transform a group of such wffs so that they become top-row-identical 
wffs, we cannot just shuffle columns around, since we need the matrices 
of the wffs to follow the same pattern.) Further complications arise 
when different wffs involve different atoms. 
 
IV.2.2.1. Formal Proofs Should Be Easily Checkable 
 

In textbooks and the like, the notion of formal proof is often intro-
duced with two requirements: for something to be a formal proof, it 
needs to be constructed from a definite stock of symbols, and the cor-
rectness of its construction needs to be mechanically checkable in a finite 
amount of time. Hilbert (1918) is an early source for this conception. But 
these two requirements are not enough in general.6  

It is easy to see that mechanical decision procedures exist for 
checking whether sets of TPL wffs (and arguments) possess metalogical 
properties of interest. But arrays of TPL wffs should not, I think, count 
in general as proofs with respect to these properties. 

Compare: given an ordinary PL wff, there is a mechanical proce-
dure that will tell you whether it is a tautology. But we do not count PL 
tautologies themselves as proofs that they are tautologies.  

Why not? Beame and Pitassi (2001) consider exactly this question: 
 
What exactly is a propositional proof? Cook and Reckhow were possibly 
the first to make this and related questions precise. (...) Since there are on-
ly finitely many truth assignments to check, why not allow the statement 
itself as a proof? (...) The key observation is that a proof is easy to check, 
unlike the statement itself [Beame and Pitassi (2001), p. 43].7 
 

In the case of arbitrary finite sets of TPL wffs, it isn’t easy to check for meta-
logical properties like joint unsatisfiability, and hence arrays of such jointly 
unsatisfiable wffs cannot in general be regarded as proofs of the joint unsat-
isfiability of the wffs involved. If we want proofs here, we need a system for 
producing quite distinct things which do count as proofs, or – closer per-
haps to the spirit of Wittenstein’s thinking about these matters – a way of 
re-writing such wffs so that they are top-row identical. In the interest of ex-
ploring both options in order to appreciate their relative strengths and 
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weaknesses, in section 4.2.2.2. below I turn to developing a proof system 
for arbitrary finite sets of TPL formulas, the soundness and completeness 
of which is then shown in section 4.2.2.3. Following that, I turn in section 
4.2.2.4. to a re-writing strategy for reducing the case of arbitrary finite sets 
of TPL formulas to the top-row identical case. 

Before proceeding, it is interesting to note that this difference in the 
proof-theoretic situation for arbitrary finite sets of wffs as opposed to sin-
gle wffs is not something that arises in ordinary propositional logic: there 
the two sorts of problems are straightforwardly reducible to one another, 
since we may easily take the conjunction of a finite set of wffs and may 
consider the singleton set of a single wff. By contrast, the problem of 
forming a semantic conjunction of two or more TPL wffs – a TPL wff 
that is true on a model iff the given TPL wffs are – is non-trivial. 
 
IV.2.2.2. Row Tree Proofs 
 

I will describe the system of row tree proofs by describing a proce-
dure for producing proofs in the system. The strategy is similar to that of 
tree proofs in ordinary propositional logic: we consider putative ways 
that the wffs we are interested in could all be true together and see 
whether any of these putative ways are really possible. If so, we have a 
proof of joint satisfiability (and can read off a model from it). If not, 
then we have a proof of joint unsatisfiability.  

I will describe the procedure by way of example. Let us show that 
the following wffs are jointly unsatisfiable: 
 

 p q ● q  r ● p  r  ● 
 

 T T T T T T T T F 
 T F F T F F T F T 
 F T T F T T F T F 
 F F T F F T F F F 
 
(Since the last wff is the negation of  
 
  p  r  ● 
  T T T 
  T F F 
  F T T 
  F F T 
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our proof may also be thought of as a proof that a TPL analogue of hy-
pothetical syllogism is valid.) 

First, we check if any of our wffs have no T’s in their rightmost 
column, and if there are such wffs, we do not begin our construction - 
these wffs themselves may be regarded as a proof that they are jointly 
unsatisfiable. Otherwise, we produce a row tree, proceeding as follows. We 
start with our initial wff. For each row R ending with T, we write down 
R’s row description: we move along our row from left to right, and when 
we see a T, we write the atom above the T, and when we see an F, we 
write the atom above the F but prefixed with a tilde (‘~’) (call the result 
the tilde of the atom). To ease readability, we may separate these atoms 
and tilded atoms with commas, but this is not essential. 

Now we move on to our next wff. For every row R in this wff that 
ends in T, we draw a branch coming off each row description from the 
previous wff and write R’s row description. Then, we cross off any path 
that contains both an atom by itself and that atom’s tilde. 

With our example above, after having considered the first two wffs 
we should have: 

 
 
Then, we move on to the next wff and repeat the process of the last 
step, but only looking at lines in the previous block which have not been 
crossed off. That gives us: 
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We continue doing this until all paths close, or until we have dealt with 
all our wffs. In this example, both of these things just occurred simulta-
neously –– we dealt with our last wff, and in doing so all paths closed. 

If all paths close in a completed row tree for a set of TPL wffs, we 
call the object consisting of the TPL wffs side by side plus the row tree 
below them a row tree proof that Γ is unsatisfiable. Otherwise (i.e., if there is 
at least one open path), we call it a row tree proof that Γ is satisfiable. So, for 
our example, we got a row tree proof that the set comprising the wffs we 
began with is unsatisfiable. 

Here is a second example. Consider the following three wffs 
 
 p ● p  q  r ● q  r  ● 
 T T T T T T T T F 
 F F T T F F T F F 
  T F T T F T F 
  T F F T F F T 
  F T T T 
  F T F F 
  F F T T 
  F F F F 
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Here is a row tree which, together with the wffs, constitutes a proof of 
their joint satisfiability: 

 
From this, we can also read off a model v on which our three wffs come 
out true: 
 

v (p) = 1 
v (q) = 0 
v (r) = 0 

 
We have now seen how row tree proofs work. It is interesting to note 
that they correspond to tableaux for ordinary PL wffs written in disjunc-
tive normal form.  

Before proving soundness and completeness in the next section, 
some remarks. 

As mentioned in passing earlier, in the case where we do not build a 
row tree because one of our wffs had no T’s in its right column, we may 
call the array of wffs itself a proof that our set of wffs is unsatisfiable. 

We could optimize our procedure a little further by checking, be-
fore constructing a row tree, whether any two of our wffs have an atom 
in common. If not – if our wffs contain disjoint sets of atoms – then we 
can regard our array of wffs itself as a proof that our set of wffs is jointly 
satisfiable or unsatisfiable as the case may be: we just check whether each 
wff has at least one T in its right column. If so, we have a proof of joint 
satisfiability. If not, a proof of joint unsatisfiability. 

A note on the tilde: in standard PL tree proof systems, we often 
write the negations of formulas of interest. The tilde here plays a similar 
role as the negation sign plays there, except that it is not part of the lan-
guage of TPL. Rather, it is an auxiliary sign used only in proofs, like the 
lines and crosses. Note also that we could have a signed variant of the 
TPL row tree proof system, analogous to signed PL tree proofs, where 
we don’t use the tilde but write a value-sign beside all our atoms. This 
would be a natural way to extend the TPL row tree proof system for a 
many-valued logical language. (Note that, unlike with standard many-
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valued propositional logic, where we use the same language but change 
its semantics, the natural move to many values for TPL would involve 
adding more value-signs to the language. Note also that, unlike with 
standard PL, it is not clear that there is a natural way to extend TPL to 
infinitely many values.) 
 
IV.2.2.3. Soundness and Completeness of the Row Tree Proof System 
 

Theorem 5. Soundness of row tree proofs with respect to unsatisfiability. If 
there is a row tree proof that Γ is unsatisfiable, then Γ is unsatisfia-
ble (i.e., there is no model v on which all members of Γ are true). 
Proof. We prove the contrapositive: if Γ is satisfiable, then there is 
no row tree proof that Γ is unsatisfiable. For the purpose of condi-

tional proof, assume that there is some model v on which all α ∈ Γ 
are true. Now, any row tree proof that Γ will be the result of con-

sidering the α ∈ Γ in some particular order (at least, until all paths 
close). For each wff α that we considered, we will have written 
down (perhaps among other row descriptions) a description of α’s 
v-corresponding row, since α is true on v and so, by the semantics 
of TPL wffs, α’s v-corresponding row ends in a T. But then we will 
always have at least one open path in our row tree, since no two de-
scriptions of v-corresponding rows for a given v will ever be such 
that one contains an atom by itself and the other contains that at-
om’s tilde. (This follows by the procedure for describing a row to-
gether with the fact that, by the definition of v-corresponding row, no 
two v-corresponding rows for a given v will ever be such that one 
has a T under some atom and the other has an F under that atom.) 
Therefore, there is no row tree proof that Γ is unsatisfiable, since 
by definition all paths close in such a proof.  

 
Before proving completeness, a definition: call a set of wffs Γ row tree apt 

iff it is finite and all α ∈ Γ have at least one T in their right column. Re-
call that for finite sets of wffs Γ which are not row tree apt, we already 
have proofs (in the form of the wffs themselves). 
 

Theorem 6. Completeness of row tree proofs with respect to unsatisfiability. If 
a row tree apt set of wffs Γ is unsatisfiable, then there is a row tree 
proof that Γ is unsatisfiable. Proof. We prove the contrapositive: if 
there is no row tree proof that some row proof apt set of wffs Γ is 
unsatisfiable, then Γ is satisfiable. For the purpose of conditional 



142                                                                            Tristan Grøtvedt Haze 

teorema XLII/1, 2023, pp. 123-147 

proof, assume the antecedent. That means that all row trees obtaina-
ble by considering members of Γ one by one have at least one open 

path. Consider in particular the finished ones, where all α ∈ Γ have 
been dealt with. Now consider a model v read off one of the open 

paths p in one of these finished row trees. For every α ∈ Γ, there is a 
row description along our path p, and the row R of α that yields that 
description will be α’s v-corresponding row (by the procedure for 
reading a model off an open path together with the definition of ‘v-
corresponding row’). Row R must end in a T, since otherwise (by the 
procedure for building a row tree) we would not have written its row 
description. So, by the semantics of TPL wffs, α is true on v. There-

fore, all α ∈ Γ are true on v, and so Γ is satisfiable. 
 
IV.2.2.4. The Re-Writing Strategy: Expanding Truth Tables by Means of Redun-
dant Atoms8 
 

First, let us modify clause 1 of the syntax given in 2.2. above to 
stipulate that the atoms in the top row must come in alphabetical order. 
Now, consider the following equivalent pair of TPL wffs: 

 
 p q  ● p ● 
T T T T T 
T F T F F 
F T F 
F F F 

 
In the one on the left, the atom q is redundant, in the sense that rows 
which feature the same value sign under each atom except for q also fea-
ture the same value sign under the stopper. The wff on the left is an ex-
pansion of the one on the right, in the sense all atoms that appear in the 
one on the right also appear in the one on the left, and all atoms that ap-
pear in the one on the left but not in the one on the right are redundant.  

Now, let us return to our example, from 4.2.2.2., of three jointly 
unsatisfiable wffs: 
  
 p q  ● q  r  ● p  r  ● 
 T T T T T T T T F 
 T F F T F F T F T 
 F T T F T T F T F 
 F F T F F T F F F 
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It is not easy to check whether they are jointly unsatisfiably simply by 
looking at them. However, we can expand them so that they become 
top-row-identical: 
 

 p q r ● p q r ● p q r ● 
 T T T T T T T T T T T F 
 T T F T T T F F T T F T 
 T F T F T F T T T F T F 
 T F F F T F F T T F F T 
 F T T T F T T T F T T F 
 F T F T F T F F F T F F 
 F F T T F F T T F F T F 
 F F F T F F F T F F F F 

 
Now it is easy to check. Since there is no row where all three wffs have a 
T under the stopper, this array is a proof of unsatisfiability in the sense 
defined in 4.2.1. above. 

We may also regard the resulting array of top-row-identical wffs as 
a proof that the original array is unsatisfiable, on the grounds that it is 
easy enough to check whether a larger truth table is an expansion of a 
smaller one. Of course, that does not mean that the original array, which 
is not top-row-identical, is itself a proof of its own satisfiability.  

At this point, a student of the Tractatus might want to appeal to the 
early Wittgenstein’s notion of what is essential in a proposition (or more 
generally, in a symbol): 
 

3.341 The essential in a proposition is therefore that which is common to 
all propositions which can express the same sense. 

And in the same way in general the essential in a symbol is that 
which all symbols which can fulfil the same purpose have in common. 

 
Thus, the original array, regarded as an array of propositions (proposi-
tions in the sense of the Tractatus), may be said, following Wittgenstein, 
to be essentially the same as the expanded top-row-identical array. But we 
must be careful here not to kid ourselves. Insofar as formal proofs are 
(or at least, constitutively involve) particular typographical objects, only the 
expanded version should count as a proof, and this must be regarded as 
a distinct object from the unexpanded version. 
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V. CONCLUSION 

 
Wittgenstein’s suggestion that truth tables may be seen as proposi-

tional signs has been developed. The result is a precisely defined lan-
guage which gives rise to a distinctive consequence relation and a 
distinctive domain of facts about properties of logical interest. We saw 
that single wffs written in this notation can serve as their own proofs 
with respect to properties of logical interest, as can some groups of wffs. 
I argued that not all finite groups of wffs enjoy this self-proving proper-
ty, on the grounds that proof-checking ought to be easy. I then gave two 
alternative responses to this problem: the system of row tree proofs, 
shown to be sound and complete for its intended domain, and the re-
writing strategy. 

In my view, Wittgenstein’s attitude toward truth tables as proposi-
tional signs has been both vindicated and tempered. I detect a utopian 
element in Wittgenstein’s logical thought, regarding what we would get if 
we had an optimal symbolism; as though, if we just hit upon the right 
way of writing things, we wouldn’t need to muck around manipulating 
symbols, and could instead just look at what we had written. The present 
investigation suggests that this is in an important sense not so and may 
contribute to our understanding of why not. 

It may be replied on Wittgenstein’s behalf that, provided we have 
some fixed set of atoms in our language and require that each wff con-
tains all the atoms in some particular order, we can retain the self-
proving property. While this is true, there are counter-replies that can be 
made which support our “no free lunch” stance. Firstly, if the number of 
atoms is not small, it will be very difficult and cumbersome to write any-
thing. Having 20 atoms in play – and one can easily imagine domains of 
discourse where there are 20 or more independently varying matters of 
interest – would make wffs over a million lines long (and of course this 
number gets further out of hand very quickly). So yes, maybe in this way 
one can say that testing for metalogical properties remains easy given 
some wffs, but then it may become very difficult to write anything in the 
first place. This just moves the work somewhere else. (I don’t say this is 
insignificant: one could imagine a strategic game-like scenario where one 
player has agreed to check groups of formulas, another has agreed to 
provide formulas containing information, and the first player gets to 
choose the notation. The present considerations suggest that it might be 
a good idea for the first player to choose this sort of notation.) Secondly, 
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we may want to leave it open how many atoms we are going to use. We 
might want to start small and expand when needed, without moving to a 
distinct language. This benefit appears to be incompatible with preserv-
ing the self-proving property for arbitrary groups of formulas. 

Finally, from a technical point of view, it may be interesting to con-
sider various extensions of the language of TPL (for instance in the di-
rection of modal or predicate logic), and to consider further from a 
computational complexity perspective the problem of forming a seman-
tic conjunction of two or more truth tables.9 
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NOTES 
 

1 In some presentations of propositional logic, connectives are not defined 
in terms of truth tables. Rather, some are taken as primitive (i.e., not defined at 
all), and others defined in terms of the primitive ones. However, in other 
presentations of propositional logic, such as that found in Chapter 3 of Smith 
(2012) (a popular textbook), truth tables are used to define the connectives.  

2 See Wittgenstein (1922), §4.442. For some elaborations of this idea in 
Wittgenstein’s lectures in the early 1930’s, see Wittgenstein (2016), p. 60, p. 114, 
and p. 130. 

3 It seems likely to the present author that some consideration of this sort 
lies behind Wittgenstein’s use of the letters ‘a’ and ‘b’ rather than ‘T’ and ‘F’ in 
the related ‘ab-Notation’ for propositional logic which he devised, although this 
later became ‘TF-notation’ in the Tractatus. [For background on ab-Notation see 
Wittgenstein (1961), Potter (2009)]. 

4 For present purposes it is convenient to take arrays as primitive, but note 
that an n-by-m array may be treated as an n-tuple of m-tuples, which in turn may 
be treated as a certain kind of set. 

5 This is significant from the point of view of Wittgenstein’s motivation 
for thinking of truth tables as propositional signs. For Wittgenstein one desider-
atum of a logical notation is that, as Landini (2011), p. 44 puts it, ‘all and only 
logical equivalents have the same expression’. For instance, in the early Notes on 
Logic, Third MS, we find the remark: ‘If p = not-not-p etc., this shows that the 
traditional method of symbolism is wrong, since it allows a plurality of symbols 
with the same sense; and thence it follows that, in analyzing such propositions, 

mailto:tristan.grotvedt@unimelb.edu.au
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we must not be guided by Russell’s method of symbolizing.’ (These notes ap-
pear in Wittgenstein (1961) and also in Potter (2009) (the main text of which is 
an extended commentary on them).) 

6 If the notion of formal proof is being introduced only with respect to a 
particular form of proof, then these two requirements may suffice. For example, 
in the context of axiom systems, where checking is typically feasible. (However, 
note that the feasibility of checking a putative axiomatic proof does depend on 
what axioms are allowed. One sometimes sees, in specifications of axiom sys-
tems for modal logic, words to the effect that all instances of propositionally 
tautologous forms count as axioms. For the reasons discussed above, the status 
of “proofs” in such axiom systems as formal proofs is on shaky ground. Thanks to 
N.J.J. Smith for discussion on this point.)  

7 See Cook and Reckhow (1973). Following Cook and Reckhow (1973), 
Beame and Pitassi precisify ‘easy to check’ in terms of there being a proof-
checking algorithm that runs in polynomial time. (Note that this is a point about 
proof-checking –– not proof construction.) This is, I think, a reasonable necessary 
condition on formal proofs. However, I do not think this condition is sufficient. 
Many things doable in polynomial or even linear time are still hard to do from 
an intuitive point of view, and proofs ought to be easy to check. (Thanks to 
N.J.J. Smith for discussion on this point.) 

8 Many thanks to an anonymous referee for this journal for suggesting this 
strategy. 

9 Many thanks to Fengning Yang for reading an early draft of this paper 
and providing several comments which led to improvements. 
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