CONSISTENCY AND THE THEORY OF TRUTH

RICHARD G HECK JR.

ABSTRACT. What is the logical strength of theories of truth? That is:
If you take a theory 7 and add a theory of truth to it, how strong is
the resulting theory, as compared to 7? Once the question has been
properly formulated, the answer turns out to be about as elegant as
one could want: At least when 7 is finitely axiomatized theory, theories
of truth act more or less as a kind of abstract consistency statement.
To prove this result, however, we have to formulate truth-theories
somewhat differently from how they have been and instead follow
Tarski in ‘disentangling’ syntactic theories from object theories.

1. MOTIVATIONAL REMARKS

Tarski’s classic paper “The Concept of Truth in Formalized Languages”
is nicely representative of the state of logic in the 1930s: It is as much
about what one cannot do as it is about what one can do. On the neg-
ative (or ‘limitative’) side, we have Tarski’s celebrated theorem on the
indefinability of truth. On the positive (or ‘constructive’) side, we have
Tarski’s demonstration that, for a wide range of theories 7, it is possible
to add a theory of truth to 7 in such a way that the resulting theory is
not only consistent (if 7 is) but also fruitful: Within it, we can prove the
sorts of meta-mathematical results for which the notion of truth was
then already being used. In particular, if we add a theory of truth to
Peano arithmetic, PA—if, that is, we add axioms like “A conjunction is
true iff both its conjuncts are true”, and so forth—then we will be able
to prove that PA is consistent by the following sort of argument: The
axioms are all true; the rules of inference preserve truth; hence every
theorem of PA is true; but some sentences, such as ‘0 = 1’, are false; so
some sentences are not theorems of PA; so PA is consistent.

My focus here will be on this positive part of Tarski’s contribution,
and the central question is what, precisely, a theory of truth buys us in
terms of logical strength.® Since PA plus a truth-theory proves that PA is
consistent, it follows from Gédel’s second incompleteness theorem that
the former is stronger than the latter. The same will be true of many

1Some of the results to be proven also have some historical significance, as relating to
Tarski’s infamous claim that the meta-language must be “essentially richer” than the
object language (Tarski, 1944, §10). I discuss those results in a different paper (Heck,
2014c).
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other theories 7. But can we say just how strong the resulting theory is,
as compared to the original theory 77?

The question comes in another form, as well. As is well known, Tarski’s
argument for the consistency of PA depends not just upon the availability
of a theory of truth but also upon our extending the induction axioms
beyond those of PA to permit semantic vocabulary. If we do not allow
‘semantic’ induction, then the resulting theory is not only a conserva-
tive extension of PAZ but, as we shall see, is interpretable in PA. That
might well seem to suggest that truth-theories, on their own, have no
logical strength whatsoever, but that the strength is provided by the new
instances of induction.

It will emerge below, however, that PA is, in several respects, a very
special case. What does or doesn’t happen when we add a truth-theory
to PA is not uninteresting, of course, but it is often very different from
what happens when we add one to some other theory, in particular, to a
finitely axiomatized theory. And it seems to me that, if we are interested
in questions about the logical strength of theories of truth, then the right
question to ask is not “What happens when you add a truth-theory to
PA?” but: What happens when we add a truth-theory to an arbitrary
theory 77

It will turn out that theories of truth act much like abstract consistency
statements, in a sense that is sufficiently captured by the following sort
of result, specific versions of which will be proven below.

Theorem. Let T be a finitely axiomatized theory in a finite language
L. Then the result of adding to T a fully compositional theory of truth
for L, based upon some underlying theory of syntax U, is equivalent to
U + Con(T).

One might therefore think of a theory of truth for £ as a kind of operator
on theories: If you hand it a finitely axiomatized theory 7 in £, then it
hands you back a theory of the same logical strength as the underlying
syntactic theory plus the statement that 7 is consistent. And this theory,
as we shall see, is always stronger than 7.

It will take some effort to find the right framework in which to state
and prove this kind of result, and many things will need to be clarified,
e.g., what the right notion of ‘equivalence’ is. Most work on theories
of truth, whether in the axiomatic or model-theorietic tradition, begins
with a ‘base theory’, usually taken to be PA, to which a self-referential
theory of truth is then added, with syntax being done via coding. Our
initial investigations will be within this sort of framework, but we will
see that it does not allow for a nice answer to the questions we want to
study. The reason is that the ‘base theory’, in such treatments, plays two

2Model-theoretic proofs of this result have been available for some time (Kotlarski
et al., 1981). The proof-theoretic argument given by Halbach (2011) contained a large
lacuna, but it has since been filled by Leigh (2013).
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very different roles, acting both as object theory and as syntactic theory,
and it is impossible to strengthen one of these without simultaneously
strengthening the other, sometimes in unexpected ways. What we need
to do, then, is to ‘disentangle the meta-theory from the object theory’, as
I shall put it, so that these can be varied independently. This idea, which
revives Tarski’s original approach. is perhaps the most important in this
paper.

The plan for the paper is as follows. In an effort to make the discussion
as accessible as possible, I will review, in Section 2, some of the central
concepts from logic that we shall be using. Readers familiar with that
material can skip to Section 3, where we'll discuss the usual way of
‘adding a truth-theory’ and prove some preliminary results. We will also
discover some limitations of the approach we will have been pursuing to
that point. Section 4 explores a different way of ‘adding a truth-theory’,
the one that involves ‘disentanglement’. That will allow us to prove
all the nice results we had proven before plus more. I will close in by
comparing the results proven here to some related results due to Visser.

2. LOGICAL PRELIMINARIES

In this section, I'll review some of the logical machinery to be used
below. In Section 2.1, I'll make a few remarks about terminology. In Sec-
tion 2.2, I introduce the notion of interpretability; Section 2.3 discusses
the fragments of arithmetic in which we will be interested; Section 2.4
introduces the notion of a cut that is so fundamental to the study of weak
fragments of PA and states some of the basic results about cuts; Section
2.5 presents a wonderful form of the second incompleteness theorem due
to Pudlak.

Readers familiar with what is covered in the various sub-sections
should be able to skip them.

2.1. Languages and Theories. The languages in which we’ll be inter-
ested here are first-order languages, constructed from primitive expressions—
terms, function-symbols, and predicates of one or more places—in the
usual way. These languages will also be finite, in the sense that they
have only finitely many primitives. It is convenient to identify a lan-
guage with the set of its primitives, together with some indication of
their logical type, that is, with what is sometimes called the ‘signature’
of the language.

A theory here will always have a recursive set of axioms, and, following
Feferman (1960), we understand the notion in an intensional sense: A
theory is not a set of axioms but a ‘presentation’ of a set of axioms.
When a theory has only finitely many axioms, the distinction between
intensional and extensional conceptions all but lapses, since there is an
obviously best way of specifying the axioms: as a list, i.e., as a disjunction:
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r="A;7V---Vz="A,"1.2 But the distinction does matter, in general,
and it will matter at certain points below.*
A theory is ‘stated in’ a language.

2.2. Interpretability. There are a number of ways of comparing the
logical strength of theories. If the theories are stated in the same lan-
guage, then the obvious question is whether one proves all the results
the other proves. Comparison is more difficult when the theories are
stated in different languages. In that case, the theories will trivially
prove different theorems: If A is in the language of the one but not of the
other, then "A Vv —A™ will be a theorem of the one but not of the other;
this is true even if the (non-logical) axioms of the two theories are the
same.’

If the language of one theory contains that of the other, then one way
to compare them is to ask whether the first is a ‘conservative extension’
of the second, that is, whether the theory in the extended language proves
any new theorems that can be stated in the original language. But even
this fails if the theories are not so related. In that case, the usual method
of comparison uses the notion of interpretation.

Let theories B (for ‘base’) and 7 (for ‘target’) be given, stated in lan-
guages Lz and L7, respectively. A relative interpretation® of T in B
consists of two parts: a translation of £ into £z, and proofs in B of
the translations of the axioms of 7. The translation is compositional,
in the sense that the only thing we actually need to do is define the
(non-logical) primitive expressions of £7 in terms of those of L5 and
specify a ‘domain’ for the interpretation in terms of a formula 6(x) of Lp.
This can then be extended to a complete translation of L7 into Lz in
the obvious way, where quantifiers are ‘relativized’ to §(z): Vz(¢4(x)) is
translated as: Vz(d(x) — ¢*(z)), where ¢*(z) translates ¢(x); Jz(¢(x)),
as: Jz(6(z) A ¢*(z)). As well as proofs of the translations of the axioms,
we also need proofs of §(t*), for each primitive term ¢ of £7,” and of the

3Alternatively, one could conjoin the axioms and specify the theory by a single identity:
r="A1 A NALT

4See, in particular, notes 42, 53, and 76.

5Here’s an illustration of why this sort of point needs to be kept in mind. It’s well-
known that the sub-theory of PA that excludes the axioms for multiplication—so-called
Pressburger arithmetic—is decidable. But this is so only if the multiplication symbol
is also excluded. If it is included, then the theory is undecidable. In fact, every theory
in the language of arithmetic that is compatible with Q is undecidable (Tarski, 1953,
Theorem 6).

6In fact, there are several different notions of interpretation. We shall only need this
one.

"It is convenient to allow terms and function-symbols to be translated using descrip-
tions, which can then be eliminated as Russell taught. In that case, we need 5 to prove
that the descriptions are proper.
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closure condition
Vay - xp[d(z) A Ad(xn) = 0(f (21, .., 20))]

for each primitive function-symbol f, of however many places. We also
need (if this isn’t already covered) a proof that the domain is non-empty:
Jz(6(z)).

It follows that, if B is consistent, so is 7. If a contradiction could be
derived from the axioms of 7, then that proof could be mimicked in 5:
Just prove the translations of the axioms of 7 used in the proof of the
contradiction, then append (a modified version of) the proof given in 7.
Indeed, quite generally, if ¥ 1+ A, then ¥* g A*, where, again, the
asterisk means: translation of. Moreover, if 5 and 7 are not too terribly
weak,® then all of this will be provable in B and 7 themselves. So, in
particular, 7 will prove Con(B) — Con(7) and so cannot prove Con(B),
though B might well prove Con(T).

Note that interpretability is transitive and reflexive and so is a pre-
order.

One way to give content to the idea that 5 is at least as strong as 7
is therefore to take it to mean: 7 is relatively interpretable in 5. That
this really is a useful way to give content to the intuitive idea of relative
strength emerged only after a good deal of hard work, beginning with
Tarski, Mostowski, and Robinson (1953) and continuing through work
by Feferman (1960) to the present day (e.g., Visser, 2006).

Though the notion of interpretation is particularly useful when we
are dealing with theories stated in different languages, we can still ask
whether 7 can be interpreted in B even when £ and L3 are the same:
The interpretation of the primitives does not have to be the identity
function. But of course it can be, and in that case the interpretation may
take a very simple form, which we might call a pure relativization: The
only substantial part of the interpretation is the relativization to a new
domain. Many of the interpretations in which we shall be interested are
of this kind.

Now, a couple definitions that apply (sensibly) only to non-finitely
axiomatized theories 7.

Definition. 7 is said to be locally interpretable in B if every finite subset
of 7 is interpretable in B.

Local interpretability obviously follows from interpretability, which is
also known as ‘global’ interpretability. The converse may fail. Local
interpretability is also transitive and reflexive, and it relates to relative
consistency just as global interpretability does: If 7 is locally inter-
pretable in 3, then 7 is consistent if B is. The reason is that any proof of
a contradiction in 7 will use only finitely many of 7’s axioms.

8Facts concerning interpretability can generally be verified in the theory known as
1Ag + Q1, for which see below.
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As said above, PA is going to turn out to be something of a special case.
That is because PA is not only not finitely axiomatizable but is reflexive
(Mostowski, 1952).°

Definition. 7 is reflexive if 7 proves the consistency of each of its finite
sub-theories.

It is one of the central lessons of Feferman’s classic paper “Arithme-
tization of Metamathematics in a General Setting” (Feferman, 1960)
that PA’s reflexivity can cause all sorts of unexpected phenomena as
regards interpretability in PA. What will matter most to us here is the
fact that reflexive theories collapse the distinction between local and
global interpretability.

Theorem (Orey’s Compactness Theorem). Suppose that T is locally
interpretable in B and that B is reflexive. Then T is (globally) interpretable
in B.

This result is due to Stephen Orey (1961)—hence the name—but it first
appeared in the paper of Feferman’s just mentioned, as Theorem 6.9.%°

2.3. Fragments of Arithmetic. As mentioned earlier, we are going
to be interested in the general question what happens when we add a
truth-theory to some arbitrary theory 7. In practice, however, we shall
mostly be concerned with PA and certain of its sub-theories.

Robinson arithmetic, or Q, is the theory whose axioms are the univer-
sal closures of the following eight formulae:

Q1 Sz #0

Q2 Se=Sy—>z=y

Q3 r+0==x

Q4 x+ Sy =S(z +vy)

Q5 rx0=0

Q6 rXxSy=(rxy) +x
Q7 x #0— Jy(x = Sy)
Q8 r<y=3z(y=Sz+ux)

The last is often considered a definition of <; it is convenient in the
present context to regard < as just part of the language. The language

A stonger notion of reflexivity restricts the complexity of proofs, as well. We shall
not need that here.

10The version proved by Feferman and Orey is limited to reflexive theories B that
extend PA. The more general theorem stated in the text results from later strengthenings,
by various authors, of the ingredients used in the original proof, e.g., the arithmetical
completeness theorem. Feferman (1960, Theorem 6.2) proves it only for PA. We shall
later use a version of this result for IX; (Theorem 4.15), and it can be proven even for
1A0 + Q1 (Visser, 1991, §6) and then extended to Q by the method of cuts.
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of Q, {0,S, +, x, <}, is what we shall call ‘the language of arithmetic’ and
shall denote: A. We regard z < y as an abbreviation for: z < y vV z = y.!!

An important class of sub-theories of PA is characterized in terms of
the induction axioms these theories contain. PA itself is Q plus the full
induction scheme:

A(0) AVz(A(z) — A(Sx)) — Va(A(x))

where A(z) is any formula at all.'?

A formula is said to be A( (a.k.a., Y) if all quantifiers contained
in it are ‘bounded’, that is, if all of its quantified subformulae are of
the form Vz(z <t — ---) or dx(z < t A---), where ¢ is a term. These
are customarily abbreviated: Vx < ¢(---) and 3z < ¢(---). A formula
is ¥ (resp., II;) if it is of the form Jv; --- v, (o) (resp., Y1 - - - Vo, (9)),
where ¢ is Ay. A formula is ¥, (resp., II,,) if it is Jv; - - - Ju, (@) (resp.,
Yoy -+ - Y, (¢)), where ¢ is 11, (resp., X,,—1).

The theory |10 is Q plus induction for formulae in the set ©: So A(z)
has to be in ©. Thus, 1Ay is Q plus induction for Ay formulae, and
[¥; is Q plus induction for ¥; formulae. [IAj is in one sense clearly
stronger than Q: It proves lots of important generalizations about the
natural numbers that Q does not. But in another sense it is still a very
weak theory: It is interpretable in Q.'® Another respect in which IA,
is weak is that, although one can define the relation y = 2* by means
of a Ay formula exp(z, y), we cannot prove in 1A, that exponentiation is
total; that is, we cannot prove: Vz3y(exp(z,y)). The obvious proof uses
induction on Jy(exp(x,y)), which is ¥;. But for that very reason, the
totality of exponentiation is provable in 131, as is the totality of every
other primitive recursive function. So IX; is much stronger than I1Ag:
Indeed, I, proves Con(1Ag).1*

There is one final theory, known as |Ag + 1, that we shall need. It
extends |Ay by asserting the totality of a certain function w,(z) that,
like 2%, is Ag-definable but not 1Ay-provably total. The precise definition
varies between authors, but one definition is:

wi(x) = 2lt

where |z| is the least y such that 25 > Sz (Visser, 1991, p. 83). As
said, the relation y = w;(x) can be defined by a Ay formula Q(z,y),

HNote that, in Q, we do not necessarily have: x <y = 3z(y = z + z). The left to right
direction is easy, but the other needs Sz + x = z + Sz. So we do have this equivalence in
IAo and even in the theory known as lopen.

1214 is customary then to drop Q7, which has a trivial inductive proof.

3 That 1A is locally interpretable in Q was first proven by Nelson (1986). That it
is globally interpretable was proven by Wilkie (Wilkie and Paris, 1987). The proof is
discussed both by Hajek and Pudlak (1993, pp. 366-70) and by Burgess (2005, §2.2). The
techniques used are those we shall discuss in Section 2.4.

MThis is already provable in |Ag + superexp, in fact.
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and I1Ag + Q4 is then |A( plus the formula asserting that this relation is
total: Vx3y(Q1(z,y)). The interest of this theory lies in the fact that it is,
as Visser puts it, “just right for treating syntax”.'® And, like 1A, it is
interpretable in Q (Hajek and Pudlak, 1993, p. 367).

It will be important below that, although 13, so described is not finitely
axiomatized, there is a finite axiomatization to be had if n > 0 (Hajek
and Pudlak, 1993, pp. 77ff). We shall assume such an axiomatization. It
is not presently known whether [A or 1Ay + €4 is finitely axiomatizable.

As we shall see later, it is sometimes extremely helpful if our language
contains no terms other than variables. We shall therefore also want
to use what we might call the language of relational arithmetic. This
language contains predicate letters Z,'5P, A, and M in place of 0, S, +,
and x. And, whereas, in the usual language of arithmetic, the totality
and functionality of S, +, and x are truths of logic, here these facts are

explicitly recorded as non-logical axioms:!”

V/ dx(Zx ANVy(Zy — x =y))

P Vady(Pxy AVz(Prz — y = 2))

A VaVydz(Azyz A Vw(Azyw — 2z = w))
M VaVy3dz(Mzyz A Vw(Mzyw — z = w))

It should be clear that theories in the usual language of arithmetic have
natural correlates in the language of relational arithmetic. We can thus
state a theory Qg in this language, with much the same content as Q, by
simply adapting the axioms of Q itself. The first four axioms, for example,
would be:

QR1 ~P0

QR2 PrzAPyz—z=y

QR3 AxOx

QR4 (Pyz A Azzu) A (Azyw A Pwv) — u =0

The first two conjuncts of QR4 say, in effect, that u = = + Sy; the next
two, that v = S(x + y).

15Wilkie and Paris (1987) seem to have been the first to recognize the importance
of 1Ap + ©1. One has to use a more “efficient” coding than is customary, however, to
get things to work. Hajék and Pudlak (1993, pp. 303ff) give the details. We could also
use, as Nicolai (2014) does, the theory S3 introduced by Buss (1986), which would be an
advantage in some ways, since it is finitely axiomatized but has the same interpretability
strength as 1Aq + Q.

16For our purposes, it would be fine to allow a term for zero. It’s function symbols
that will cause problems below, since they give rise to complex terms. But it’s smoother
just to do away with terms that aren’t variables.

170ne does not have to assume such axioms. There are relational versions of Q that do
not assume the functionality of P, A, and M and yet that are still essentially undecidable
and, in fact, interpret Q itself (Hajek, 2007; Svejdar, 2007; Heck, 2014a).
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It should be clear that Q and Qg are interpretable in one another, in a
very straightforward way.'® Similar things can be said about relational
versions of the other theories mentioned.

2.4. The Method of Cuts. The proof of the main result below uses a
technique called ‘shortening of cuts’ that is due to Robert Solovay. Since
this method is not widely known among philosophers, I shall spend some
time introducing it.

Let 7 be an arithmetical theory that does not have full induction, in
the sense that there are formulae with the form of induction axioms
that are not theorems of 7. Then there will ordinarily be formulae ¢(z)
for which 7 proves the hypotheses of the relevant induction axiom, ¢(0)
and Vz(¢(z) — &(Sz)), but for which 7 does not prove its conclusion:
va(¢p(x)).r® Obviously, 7 will therefore prove ¢(0), ¢(1), ¢(2), and so
forth. So, from the point of view of 7, ¢(x) is a formula that is true of 0, 1,
2, and so on, but that is, for all 7 knows, false of some natural numbers.
And, by the completeness theorem, there will be models of 7 in which
¢(x) is not true of all of the ‘natural numbers’.

For example, as is well-known, Q does not prove that no number is its
own successor. But Q does prove both 0 # S0, which follows immediately
from the first axiom of Q, and = # Sx — Sz # SSz, which follows just as
immediately from the second. So x # Sz is the kind of formula Russell
called ‘inductive’, and that terminology has been adapted to the present
context.

Definition. A formula /() is said to be inductive in T if

(1) T HEW0)
(2) T EVz((z) — (Sx))

And the important thing about inductive formulas, for our purposes, is
that they can be used to construct relative interpretations. The crucial
result is this one.

Theorem 2.1. Let () be a formula that is inductive in T O Q and that
is no worse than I1;. Then T interprets Q + Vz(u(x)).

It’s not essential for what follows that the reader understand the proof of
Theorem 2.1. But the method used in its proof—the shortening of cuts—
is essential for the work we shall be doing below, so it is worth having
some sense for how it works in a simple case. I shall therefore explain
the ideas behind the proof of Theorem 2.1 by continuing to discuss the

18Terms in the language of Q will be translated by definite descriptions, as mentioned
in note 7. And the equivalence is actually much stronger: The theories are, in a precise
technical sense, ‘synonymous’.
191 the case of I13,,, one can actually exhibit such formulae (Hajek and Pudlak, 1993,
p. 172).
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example already mentioned: We’'ll see how to prove that Q interprets
Q + Vz(x # Sz).

The basic idea is simply to restrict the domain to the numbers that
satisfy x # Sx—which, one might say, might as well be the natural
numbers, so far as Q is concerned. But that isn’t quite right. The
problem is that we do not, in general, know that the numbers satisfying
an inductive formula constitute an initial segment of all the numbers
there are. The standard numbers will all satisfy ¢(z), but then there may
be some that don’t and then some more that do after the ones that don’t.
So if we want a formula that might play the role of a ‘new domain’, then
we need a slightly different notion, the notion of a cut.

Definition. A formula ((z) is a cut in a theory 7 if «(x) is inductive in T
and is 7 -provably closed downwards, i.e.:

T EVz[(z) = Vy < 2((y))]
If 7 does not prove Vz(.(x)), then «(x) is said to be a proper cut in T.

The numbers satisfying a formula that is a cut in 7 will constitute an
initial segment of 7’s natural numbers, and if the cut is proper, there
will be models in which they constitute a proper initial segment.

The key result relating inductive formulas and cuts is this one.

Lemma 2.2 (Hajek and Pudlak 1993, pp. 368-9). Let ((z) be inductive
in T 2 Q. Then there is a cut x(x) in T for which T + Vz(k(x) — 1(x)).
That is: Every T-inductive formula can be shortened to a T-cut.

Proof. The obvious idea is to consider Vy < z(:(x)) and to show that it
defines a cut. Unfortunately, this doesn’t quite work. The problem is that
the proof that the formula in question defines a cut needs the transitivity
of <, and Q does not prove that < is transitive.’

This obstacle can be overcome, however, and the way in which this
is done is a nice illustration of how the shortening of cuts works: We
can simply restrict our attention to numbers for which < is transitive.
Consider the formula:

d
X(w)EfL(x)/\Vsz(ySm/\zgy%zgx)

x(x) says, more or less, that = satisfies «(z) and that < is transitive below
x. It can be proven, in Q, that, if .(x) is inductive, then so is y(z). The
proof uses the following theorems of Q:

1 zz<0—=z2=0

(1) z2<y=Sx<Sy

(i) 0<z

We get x(0) from +(0) and (i). So suppose x(a). We want to show that
X(Sa). Certainly +(Sa), since ¢(a), and ¢(z) is inductive. So suppose y < Sa

20This can be shown by constructing a simple counter-model.
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and z < y. We want to show that z < Sa. If z = 0, then 0 < Sa, by (iii).
So suppose z # 0. Then z = Sb, for some b, and since z < y and z # 0, we
have y # 0, by (i), so y = Sc, for some c. Hence, Sb < Sc, so by (ii), b < c.
Moreover, Sc < Sa, so ¢ < a. By the induction hypothesis, then, b < a, so,
by (ii) again, Sb < Sa, i.e., z < Sa, and we are done.

We can then pursue the original idea, but with x(z) in place of +(x):

w(2) L v < o(x(w)
The verification that this defines a cut is left to the reader. O

So, although Q can’t prove that x # Sz is a cut, there is a ‘subcut’
k(z) of x # Sz in Q. So we might now try simply restricting attention to
k(z), the thought being that this will give us an interpretation in which
x # Sz holds and in which the axioms of Q just keep right on holding. But
this doesn’t quite work, either, the reason being that we need to ensure
that the domain of our interpretation is closed under the operations of
succession, addition, and multiplication. That it is closed under S follows
from the fact that x(z) is inductive. But we have no reason at this point
to think we can prove either of these:

Vavy(k(x) A k(y) = Kz +y))
VaVy(k(x) A k(y) — k(z X y))
What to do?
The answer is to use the method of shortening cuts to restrict atten-
tion to numbers that do have sums and products inside the cut we are

defining, much as we just restricted attention to the numbers for which
< is transitive.?! Doing so allows us to prove the following.

Lemma 2.3. If T D Q, then every T-inductive formula .(x) can be short-
ened to a T-cut k(x) on which T proves the relativizations of the axioms

of Q.
That is, 7 will prove the relativization of Q4:
Valr(z) = Vy(k(y) = S(z +y) =z + Sy)]

and similarly for the other axioms.

We can now see how to prove that Q interprets Q + Vx(x # Sz). Since
x # Sz is inductive in Q, there is, by Lemma 2.3, a subcut x(x) of x # Sz
on which Q proves the relativizations of the axioms of Q. So, if we take
as our interpretation the ‘pure relativization’ to «(x), that gives us an
interpretation of the axioms of Q in 7. So we need only show that Q
proves

Vr(k(x) — = # Sz)

But of course it does, since that says, precisely, that «(x) is a subcut of
x # Sx.

21Burgess (2005, §2.2) gives an accessible treatment of this part of the construction.
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Similar reasoning shows that, if «(z) is any 7 -inductive, quantifier-free
formula, then 7 interprets Q + Vz(:(z)). To prove Theorem 2.1, we need
only extend from there to the case of A formulae,?? and from there to the
case of IT; formulae.?? But it is not in general true that, if /(z) is a ¥; cut
in 7 D Q, then 7 interprets Q + Vx(¢(x)). The standard counterexample
is Jy(exp(z,y)). This is inductive even in Q, but Q does not interpret
Q + Vz3y(exp(z,y)) (Hajek and Pudlak, 1993, p. 391).

As it happens, shortening of cuts can be used to prove stronger forms
of Lemma 2.3 and so of Theorem 2.1.

Lemma 2.4. If T D Q, then every T-inductive formula .(x) can be short-
ened to a T-cut (x) on which T proves the relativizations of the axioms
of 1Ag + Q4.

Corollary 2.5. Let 1(x) be a formula that is inductive in T 2 Q and that
is no worse than 11,. Then T interprets 1A + Q1 + Vz(u(2)).

We'll need Lemma 2.4 below.

2.5. The Unprovability of ‘Small’ Consistency. Godel’s second in-
completeness theorem tells us that no ‘sufficiently strong” and ‘suffi-
ciently expressive’ theory proves its own consistency. We will need here
a beautiful strengthening of Godel’s result that was proved in the mid-
1980s by Pudlak. If we think of the numbers satisfying a cut as ‘small’
numbers,?* then what Pudlak’s result says is that no theory containing
Q can even prove that there are no ‘small’ proofs of contradictions from
its axioms. More formally, what Pudlak’s theorem says is that no theory
containing Q proves its own consistency on a cut.?’

22The basic point is that, if .(z) is Ao and x(z) is a cut in 7, then Va(x(z) — 1(z)) is
going to be 7 -provably equivalent to Va(k(x) — " (x)), where ."(x) is the relativization
of «(z) to x(z). The argument is by induction on the complexity of expressions and is
straightforward. Burgess (2005, pp. 101-4), again, gives an accessible treatment.

23Gince the extension to II; formulae is not often stated, it is worth sketching the
proof. Suppose that () is II1, say Vy(¢(x, y)), where ¢(z,y) is Ag. Then what we need
to show is that 7 proves

Vzl[k(z) = Yy(k(y) = ¢"(z,9))]
As mentioned in the previous note, 7 will prove
Vy(k(y) = ¢(2,y)) = Vy(s(y) = ¢"(2,y)),
so we need only show that 7 proves
Valk(z) = Vy(k(y) = é(z,y))]-
But we already know that 7 proves the stronger: Vz[x(z) — Vy(¢(z,y))], since x(z) is a
subcut of Vy(¢(z,y)) in T.
241f it sounds as if there are connections here with Wang’s Paradox, there are.
25Here, Bewr(z,y) is an appropriate (i.e., intensionally correct) formalization of ‘z is
a T -proof of /.
12



Theorem 2.6 (Pudlak 1985, Theorem 2.1). Suppose T O Q is consistent,
and let k(x) be a T-cut. Then T does not prove:

Va(k(z) — —Bews(xz,70 = 507))

This is a substantial strengthening of Gédel’s result, in three respects.
First, the usual form of the second incompleteness theorem applies only
to theories containing enough induction to prove the Hilbert-Bernays-
Godel-Lob derivability conditions. Pudlak’s version, by contrast, applies
to any theory containing Q, which certainly does not prove the derivabil-
ity conditions.?® Second, Godel’s result tells us only that 7 cannot show
that there are no proofs of contradictions, and this is compatible with 7’s
being able to show that there are no ‘small’ proofs of contradictions.

The third respect in which Pudlak’s result is an improvement emerges
from the following consequence of Theorem 2.6.%7

Theorem 2.7 (Pudlak 1985, Corollary 3.5). Suppose T is finitely axioma-
tized, sequential,?® and consistent. Then T does not interpret Q + Con(T).

Whereas Godel tells us that a (sufficiently strong and expressive) consis-
tent theory 7 cannot prove Con(7), Pudlédk tells us that, if 7 is finitely
axiomatized and sequential, it cannot even interpret Q+ Con(7), let alone
interpret 7 + Con(7), let alone prove Con(7).%

The proofs of these two results are (well) beyond the scope of the
present discussion.”

Proposition 2.8. Suppose S O Q proves Con(T) on a cut. Then S inter-
prets Q + Con(T) and even 1Ay + Q1 + Con(T).

Proof. To say that S proves Con(7) on a cut is to say that there is an
S-cut x(x) such that S proves Vz(k(z) — —Bewy (2,70 = 17)). That cut
can be shortened to one on which the axioms of IAy + 2; are available.
Relativizing to that cut then gives us an interpretation of 1Ay + €1 +
Con(T). O

26Wilkie and Paris (1987) show, however, that, with appropriate formulations, 1Ag+1
will do so.

27Although Q is not sequential, it does still follow from this result that Q does not
interpret Q + Con(Q). The reason is that, in Q + Con(Q), we can construct a cut on which
the axioms of Buss’s S5 are true; the relativization of Con(Q) to this cut is then trivially
provable. So Q + Con(Q) interprets S3 4+ Con(Q). So if Q interpreted Q + Con(Q), it would
also interpret S + Con(Q). But S} contains Q, so it would interpret S3 + Con(Q). Since
S3 is finitely axiomatized, however, that contradicts Theorem 2.7.

283ee Section 3.1 for the definition of a sequential theory.

29Feferman (1960, p. 76, theorem 6.5) proved an antecedent of Pudlak’s result: If
PA C T, then 7 does not interpret 7 + Con(7), assuming that the axioms of 7 are
represented by a X, formula.

30As well as the paper of Pudldk’s already cited, the interested reader may consult
Hajék and Pudlak (1993, pp. 173ff) and Visser (2009a).
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Putting these together, we have:!

Corollary 2.9. Suppose that T 2O Q is a consistent, finitely axiomatized,
sequential theory, and that S proves Con(T) on a cut. Then S is not
interpretable in T.

Proof. If S proves the consistency of 7 on a cut, then by Proposition
2.8 it will interpret Q + Con(7). But if S were interpretable in 7, then
Q + Con(7) would be interpretable in 7, contradicting Theorem 2.7. O

It is Corollary 2.9 that will do much of the work below.

3. THE STRENGTH OF TRUTH-THEORIES

We are interested here in what happens when we ‘add a theory of
truth’ to some object theory 7. What do we mean by adding a theory of
truth? In this section, we will approach this question in the usual sort of
way, where we begin with a certain ‘base theory’ 7, use 7 to formalize its
own syntax, and then add various sorts of semantic axioms. It is going
to turn out that, for our purposes, this is not the best approach. But to
see that, we need to try it.

3.1. Formalizing Compositional Truth-theories. Since the seman-
tic axioms for the quantifiers, as Tarski bequeathed them to us, make use
of sequences of elements from the domain, we shall need a nice theory of
sequences if we're to formalize theories of truth. Technically, we'll need
our base theory to be sequential.

Definition. Let 7 be a theory that contains Q, either straightforwardly
or by interpretation. 7 is said to be sequential if, in short, it can code
finite sequences of its elements. More precisely, 7 is sequential if there
are formulae seq(s), Ih(s, h) and val(s, n, z) for which 7 proves:

Vs(seq(s) — In(lh(s,n)))
ds(seq(s) A Th(s,0))
VsVn{seq(s) A lh(s,n) — Vm < n3z(val(s,m,z))}
VsVn{seq(s) A lh(s,n) — Vy3t[seq(t) A lh(t,Sn) A val(t,n,y) A
V2Vk < n(val(s, k, z) = val(t, k, z))|}
Here, Ih(s,n) means: s is a sequence of length n; val(s,n,z) means: the
(n+1)-st element of s is . So the third principle says that every sequence
of length n has an element at each position below n; the fourth, that

each sequence can be extended by appending an arbitrary element of
the domain; the second assures us that there is a ‘null’ sequence with

31Note that we do not need the hypothesis that S is consistent, since no consistent

theory containing Q falsely proves the consistency of any (axiomatizable) theory. That is

because Q already proves the inconsistency of every inconsistent (axiomatizable) theory.
14



which we can begin. We shall use ‘<>’ as a term denoting one of°2 the
null sequences whose existence is so guaranteed.

Q is not sequential, but there are lots of sequential theories that are
interpretable in Q. For example, |A is sequential, and it is interpretable
in Q. More importantly, for our purposes, we can simply take the for-
mulae seq(s), Ih(s, h) and val(s, n, x) that make 1A, sequential and add
the principles that characterize sequential theories to Q as new axioms.
This theory, which we might call Qgeq, is interpretable in Q, since it is
obviously intepretable in any sequential theory. This fact will allow us to
extend our main results to Q, even though they do not apply to Q directly.
Note, morever, that every sequential theory interprets Q, so every such
theory can ‘do syntax’ in the same sense in which Q can.?

It should be obvious that we can easily allow val(s,n, z) to have some
fixed value, say, 0, if n is beyond the length of s. That is: A theory that
contained an axiom to that effect would trivially be interpretable in one
that did not. So we shall assume this principle, as well, since it allows
us to pretend that our sequences are infinite, which simplifies matters
considerably.

Although, officially, Ih(s,h) and val(s,n,z) are relations, I'll also use
the notation Ih(s) and val(s,n) from time to time, in accord with Russell’s
theory of descriptions. The descriptions will always be (provably) proper
in the cases that matter, and it makes many of the formulations much
cleaner.

The theory of truth itself will consist of Tarski-style axioms for the
logical and non-logical vocabulary. The axioms for the logical part of the
language will always be the same:

(v)  Deng(vi,z) = val(o,4, ), where v; is the i*" variable
(=) Saty("t =u") = 3xTFy[Den,(t, z) A Deny(u,y) Az = y]
(=) Sat,(T—A7) = —Sat, (A)

(A)  Saty("A A B7) = Sat,(A) A Sat,(B)

(V) Sat,("VuiA(v;)7) = Vr[r ~ 0 — Sat(TA(v;) )]

And similarly for the other logical constants.?* Here, ‘Den, (¢, z)’ means:
t denotes x with respect to the sequence o; ‘Sat,(A)’ means: o satisfies

A; and ‘T ~ ¢’ means that 7 and o agree on what they assign to each
variable, with the possible exception of v;, i.e.:

Vk < Ih(o)[k # i — Vx(val(o, k) = val(T, k)]

32Nothing in the defintion requires the theory of sequences to be extensional.

33visser (2008) gives lots of details about sequential theories, including the facts
mentioned here. Note that we shall also need to use such facts as that the code of a
sequence is always greater than its length. We can always arrange for this sort of thing
to be true.

34of course, the other constants are definable in terms of the ones already mentioned,
but, in the present context, this is not a particularly interesting or important fact.
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In the case of the language of arithmetic, we’ll also have these axioms
for the non-logical constants:3
(0) Deny("0x)=x=0
(S) Deny,("St, x) = Jy(Deny(t,y) Ay = Sx)
(+)  Deny("t+u,x) = Jy3z[Deny(t,y) A Deng(u,z) ANz =y + 2]
(x)  Deny("t x u,x) = Jy3Iz[Deny(t,y) A Deng(u,z) ANz =1y X 2|
(<) Saty("t <u’) =3JyIz[Deny(t,y) A Deny(u, 2) ANy < 2]
The pattern should be clear.?®
Finally, then, we need to define the notion of truth itself:

(T) T(A)= Ais asentence AVo(Sat,(A))

That is Tarski’s definition: Truth is satisfaction by every sequence.
So, that’s what a theory of truth is. Here is some notation.*®

Definition. Let 7 be sequential. Then CT[7] is the theory that extends
T by adding truth-theoretic axioms of the sort just discussed for the
logical and non-logical vocabulary of the language of 7.

37

Note that CT~[7] does not extend any induction scheme that might be
present in 7. There is no real chance, then, that CT~[7] is going to prove
the consistency of 7. So one might suspect that CT~[7] would logically
be no stronger than 7. If so, then, as we shall see in Section 3.2, one
would suspect wrongly, at least in general.

35As is well known, denotation is actually definable in the language of arithmetic in
such a way that the clauses involving it can be proven in PA and, in fact, in much weaker
theories, so those clauses are often regarded as not really necessary. One can also forego
the use of sequences and instead treat quantification substitutionally: Vv;(A(v;)) is true
iff, for each n, A(n)—the result of substituting the numeral for n for v;—is true. But
both these manoeuvers are specific to the language of arithmetic and are not available
in general. Since we want our results to extend smoothly and naturally to other cases,
such as the language of set theory, we will not use these shortcuts.

367¢ appears to have been Wang (1952) who first worked out the details of this sort of
construction.

3TWhere we are discussing theories of truth over weak arithmetics, there is a worry
about Tarski’s definition, namely, that it ‘hides’ a quantifier in the definition of truth,
so that elimination of that definition can make a formula in which T(z) occurs logically
more complex after the elimination than it appeared to be. If we use Tarski’s definition,
for example, then CT~[T] (which will be defined shortly) will in many cases not prove:
T("—A") = -T("A"). The usual proof of this rests upon the fact that, if A is a sentence,
then Vo (Sat,(A)) iff 3o(Sats(A)), and that in turn is normally proven by an induction
that is not formalizable in CT~[T]. For this reason, it is sometimes preferable to use an
alternate definition:

T: T(A) = Ais a sentence A Sates(A)
on which truth is satisfaction by the null sequence.

Thanks to Cezary Cieslinski for bringing this issue to my attention. As it happens,
however, it is actually better, for our purposes, to use Tarski’s original definition, so we
shall stick with it.

3%Here, CT stands for: compositional truth.
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First, however, let us note that CT 7] is by no means a trivial exten-
sion of 7.

Lemma 3.1. CT [T] is a materially adequate, fully compositional the-
ory of truth for the language of T. In particular: For each formula
A(vy,...,v,) in the language of T, CT~[T] proves:

Saty("A(v1,...,v,) ") = A(val(o,1),...val(o,n))
A fortiori, for each sentence A, CT [T] proves: T("A™) = A.

Proof. A rigorous proof would be by induction on the complexity of sen-
tences of £, the induction here being ‘external’, not induction in 7 itself.
But this should be fairly obvious.? A little experimentation will reveal
that proofs of “I-sentences’ need no more than is available in Qgeq: We're
not proving any general laws, just a bunch of particular facts, and Q is
very good at proving particular facts, no matter how bad it may be at
proving general laws. O

To put this differently: CT~[7] defines truth for sentences in the language
of 7. Since 7T is sequential, it interprets Q, so we know from Tarski’s
indefinability theorem that 7 itself cannot define truth for all sentences
in the language of 7 (assuming it is consistent). So CT[7] is always
expressively more powerful than 7.

Before we continue to explore CT [T, let me state a couple of obvious
corollaries of Lemma 3.1 that we shall need below.

Corollary 3.2. CT ™ [Qgeq] is @ materially adequate, fully compositional
theory of truth for the language of arithmetic. So a fortiori is CT[T], so
long as T O Qgeq-

Since any theory in which a compositional theory of truth might be
formulated has to be sequential, and every sequential theory inteprets
Q, Corollary 3.2 is best possible: A compositional theory of truth for the
language of arithmetic can be built upon the weakest possible basis.

Corollary 3.3. CT[T] proves, of each axiom of T, that it is true.

Proof. Let Abe an axiom of 7. By Lemma 3.1, CT [T ] proves T("A") = A.
Since CT~[T] obviously proves A, it proves T("A™), too. O

The same, of course, goes for the theorems of 7,*° but we shall not need
that fact.

Corollary 3.4. Let T be a finitely axiomatized sequential theory. Then
CT~[T] proves the obvious, disjunctive formalization of “all axioms of T
are true”.

39Leigh and Nicolai (2013, §3.1) give a detailed proof, though for the disentangled
case, which is Lemma 4.1 below.
4OI.e., CT~[T] proves, of each theorem of T, that it is true.
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Note the contrast with Corollary 3.3: If 7 is infinitely axiomatized, there
is no reason whatsoever to suspect that CT[7] will prove that all axioms
of T are true, although it does prove that each axiom of T is true.

3.2. CT[T] is Stronger than 7. We are now ready to prove our first
main result.*!

Theorem 3.5. Let T O I1Ag+ 4, and suppose that CT~[T] proves that all
axioms of T are true.*?> Then CT~ [T] proves the consistency of T on a cut

and so is not interpretable in T. Moreover, CT[T| interprets Q + Con(T)
and even 1Ay + Q1 + Con(T).

The natural proof of this needs to use |Ag + Q1 because, as I said earlier,
it is only here that we can do syntax naturally. We'll see later that this
assumption can be weakened. I'll also limit discussion to arithmetical
theories. The results will transfer naturally to theories in other sorts of
languages. In that case, the various conditions will need to be stated in
terms of interpretability.

The key to the proof of Theorem 3.5 is the realization that we can
almost mimic the ‘trivial’ proof of the consistency of 7 that we learned
from Tarski. That proof proceeds as follows: First, we show that all 7’s
axioms are true; then we show that the rules of inference preserve truth;
then we conclude, by induction, that all 7’s theorems are true. Since
‘0 = SO’ is not true, it isn’t a theorem of 7, and so 7 is consistent.

This won’t work in the present case, of course, because we do not
have ‘semantic induction’, that is, induction for formulae containing
semantic vocabulary. But we could overcome that lack by the method of
cuts if we could show that the formalization of “n line proofs have true
conclusions” is inductive. Then we would have that, although CT[T]
does not prove Con(7), it does prove it on a a subcut of the inductive
formula just mentioned.

If that were the only obstacle, the proof would be easy. But there
is another. It is an hypothesis of Theorem 3.5 that CT~[7] can prove
that all of 7’s non-logical axioms are true. But, to mimic Tarski’s proof,

4his result, and the others reported in this section, were taught to me by Albert
Visser, who tells me he regards them as folklore. The proofs are my own, and the
complications we shall meet arose as I tried to work out the details. Fischer (2009) also
explores the interpretability of truth-theories in their respective base theories, but his
investigations are limited to theories extending PA. In a more recent paper (Fischer,
2014), he uses such considerations to investigate whether having a truth-theory allows
proofs to be ‘sped-up’.

2Note that, if 7 is infinitely axiomatized, we will have to choose some specification of
its axioms, both in order to formalize “all axioms of 7 are true” and to formalize Con(7).
In Theorem 3.5, then, we are using the same specification both times. So if, as mentioned
in footnote 53, we are using a ‘funny’ specification of the axioms of some theory 7 that
allows 7 to prove that all its axioms, so specified, are true, then 7 will also prove the
consistency on a cut of the theory whose axioms are so specified. That is why we need to
think of theories intensionally.
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we also need to prove that all of the logical axioms are true and that
the rules of inference are truth-preserving. This turns out to be more
difficult than one might have expected. It helps to assume that the logic
in which we’re working is formulated as a Hilbert-style proof system
rather than a natural deduction system, with just two rules of inference:
modus ponens and universal generalization. This allows us to speak
simply in terms of the truth of the various lines of a proof, rather than in
terms of whether the formula on a given line follows from the premises
on which that line depends.*?

The propositional axioms are easy enough.** Consider, for example,
p — (¢ — p) and reason in CT[T]. Let A and B be formulae. Using
the clause for — twice, Sat,("A — (B — A) ) iff Sat,(A) — (Sat,(B) —
Sat,(A)). But the latter is of course a logical truth. So, generalizing, for
any A and B, and for all o, Sat,("A — (B — A) '), which is to say that
all instances of p — (¢ — p) are true.

The propositional rule, modus ponens, is also easy. What we need to
show is that, if both A and A — B are satisfied by all sequences, then
so is B. If Vo(Sat,("A — B7)), then, by the clause for the conditional:
Vo(Sat,(A) — Sat,(B)). But then, by logic: Vo(Sat,(A)) — Vo (Sat,(B)).
So, if Vo (Sat,(A)), then Vo (Sat,(B)).

Unfortunately, we run into problems with quantification. (Don’t we
always.) Consider universal instantiation, the simplest formulation of
which is:

Vvi (¢U1) — <bvj

subject to the usual restrictions. The argument for its truth proceeds as
follows. Suppose some sequence o does not satisfy some instance. Then,
by the clause for —, we have Sat, (" Vv;(¢v;) ') and —Sat,("¢v;"). Now
consider a sequence 7 that is just like o, except that what it assigns to v;

is whatever o assigns to v;. So 7 ~ 7, and hence Sat.("¢v; 7). But:

(i)  v; stands in ¢v; only where v; stands in ¢v;
(i) 7 assigns v; the same value that o assigns v;

So we must have —Sat("¢v; ), since —Sat,("¢v; ). Contradiction.
In making the last move in that argument, however, we were appealing
to a general principle concerning ‘variable-switching’:

43The difficulty presented by a natural deduction system is that the correctness of a
line then involves the consequent’s being satisfied by a sequence if all the premises are,
and this introduces more logical complexity than we have with the axiomatic treatment.

44Assuming we define truth as Tarski did, in terms of satisfaction by all sequences.
If we use the alternate definition mentioned in note 37, and say that a line is true
iff its universal closure is satisifed by <>, then we find ourselves needing to prove:
Vo(Sats(A)) = Sat<~ (ucl(A)). That only adds to our problems. This could probably be
avoided, though, if we truncated sequences in the way suggested in note 45.
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If ¢v; results from replacing all free occurrences of v; in
¢v; by vj, and if 7 is just like o but sets 7; = o, then
Sat,("¢uv; ") iff Sat, ("¢v; 7).
There is clearly no hope of proving this without ‘semantic’ induction.
The problem is all the more serious if we allow instantiation not just
by variables but by arbitrary terms and so formulate Ul in the form:

V’Uz‘(¢’UZ’) — ¢t
In that case, the proof also requires the claim that all terms denote. And
we will have to face some form of this problem so long as our language

does indeed contain terms that are not variables.
There are similar problems concerning universal generalization:

where of course A must not contain v; free. Suppose that A — Vv;(¢(v;))
is not satisfied by all sequences. Then there is a sequence o such that
Sat,(A) and —Sat, (" Vv;¢(v;) '). By the clause for V, we have a sequence

T ~ o such that =Sat, ("¢ (v;)7). Since v; is not free in A, then, we have
Sat,(A), as well. But how do we know that? Because whether a formula
is satisfied by a sequence depends only upon what is assigned to variables
that occur free in that formula, viz.:

Vilfree-in(A, v;) — val(o,i) = val(r,i)] — Sat,(A) = Sat,(A)
But we will not be able to prove this without semantic induction.*
Careful examination of the proofs that the logical axioms are true, and

that the rules are truth-preserving, shows that those proofs need the
following semantic claims.

5

1) If ¢t is the result of replacing all free occurrences of v; in ¢v;
with ¢, and if Den, (t,a), T ~ o, and val(7, i) = a, then Sat,(¢t) iff
SatT(qva-).

(2) If o and 7 agree on all free variables contained in A, then Sat,(A)
iff Sat,(A).

The proofs of these depend upon the corresponding claims for terms:

3) If u(t) is the result of replacing all occurrences of v; in u(v;) with
t, and if Den,(t,a), 7 L o, and val(7,i) = a, then Den,(u(t),a) iff
Den,(u(v;),a).

(4) If o and 7 agree on all free variables contained in ¢, then Den, (¢, a)
iff Den,(t, a).

We also need:

5) For every term ¢, 32(Den,(t, z)).

4545 Visser pointed out to me, this particular issue can be avoided if we reformulate
our truth-theory so that a sequence satisfies a formula only if it assigns values to all and
only the variables free in that formula. This complicates the statement of the theory,
however, and it does not help with our other problems.
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This last will be trivial, however, if there are no terms in the language
other than variables. The other claims are greatly simplified in that case,
too, since ¢ will always be a variable.

We thus have no hope whatsoever of showing that CT~[7] proves that
‘logic is true’, i.e., that the logical axioms are all true and that the rules of
inference are truth-preserving. All is not lost, however, because we can
use the method of cuts. The idea is to show that, though CT~[7] does not
prove the listed semantic principles, it does prove their relativizations
to some cut. Then it will follow that any formula that is on the cut and
is an instance of a logical axiom is true, and that any rule of inference
involving only formulae on the cut will be truth-preserving. And that
will allow us to show that there can be no 7 -proof of a contradiction on
that cut.

Consider, for example:

(1*)  For all o and 7, if ¢t is of complexity < n and is the result of
replacing all occurrences of v; in ¢v; with ¢, and if Den,(¢,a),
T ~ o, and val(7,7) = a, then Sat,("¢t7) iff Sat, ("¢v; ).

The usual proof of (1) can be adapted to show that (1*) is inductive with

respect to n. The usual proofs of (2)—(4) can similarly be adapted to

show that their ‘starred versions’ are inductive. The case of (5) is more
complicated, however. The corresponding inductive formula is:
(5%)  Iftis of complexity < n, then 3z (Den,(t,z)).
In the case of the language of arithmetic, this will certainly be inductive.
But if we were to add expressions to the language for fast growing
functions, then we might have difficulty keeping the value of the term
in the cut, so to speak. The problem can be side-stepped, however, by
considering, in the first instance, only purely relational languages, such
as the langauge of relational arithmetic. Then, as mentioned earlier, (5)
is trivial.

We first prove Theorem 3.5, then, for the special case of relational
languages.

Theorem 3.6. Let T 2 (1Ag + Q1)g, the relational version of 1A + €,
where Lt is relational, and suppose that CT~[T] proves that all axioms
of T are true. Then CT[T| proves the consistency of T on a cut and so is
not interpretable in T. Moreover, CT~[T] interprets Q + Con(T) and even
1Ag + Q1 + COH(T)

Proof. As noted, the usual proofs of (1)-(4) can be adapted to show that
their starred versions are inductive, so, by Lemma 2.4, CT[T] proves
their relativizations to some cut and therefore proves that ‘logic is true’
on this cut; we can also assume that CT [7] proves that the axioms
of I1Ag + €1 hold on the cut. We now ‘work on this cut’, as it is said:
Relativizing everything to the cut, we can prove that “n line proofs have
true conclusions” is inductive and will therefore be able to construct a
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subcut on which the relativization of “for all n, n line proofs have true
conclusions” is true. The relativization of “all theorems of 7 are true”
to that cut will then be provable, and so we will be able to prove the
consistency of 7 on that cut.

To fill in a little detail, consider a formula ¢(n) that says: if n is
the Godel number of a proof such that (i) n lies in our cut and (ii) every
formula in the proof also lies in this cut, then (iii) every formula occurring
in the proof'is true. IL.e., if we let A\(x) be a formula describing the cut on

which logic is true, then ¢(n) is:*®

A(n) A Bews(n) AVm < Ih(n)[A(val(n,m))] —
Vm < Ih(n)[T(val(n, m))]
Now consider:
Vi < n((k))

The usual argument that establishes that all proofs have true conclusions

can be used to show that this is inductive, since all the formulas involved

here lie in our cut, and logic is true on that cut. By Lemma 2.2, there

is a cut k(x) on which Vk < n(¢(k)) holds, and, by Lemma 2.3, we can

assume that the axioms of |Aj + 7 are available on this cut, as well.
So we have:*’

Vn{k(n) —
Vk < n[A(k) A Bewr (k) AVm < lh(k)[A(val(k,m))] —

Vm < lh(k)[T(val(k,m))]}

Taking k to be n, we thus have:

Vn{k(n) A A(n) A Bewr(n) AVm < lh(n)[A(val(n,m))] —

Vm < lh(n)[T(val(n,m))]}

What we want is:

(*) Vn{k(n) A Bews(n) — ¥m < Ih(n)[T(val(n,m))]}

We thus need to eliminate the other conjuncts of the antecedent:

A(n) and  Vm < Ih(n)[A(val(n,m))]

by showing that they follow from the other two: x(n) and Bew(n). But
k(z) is a sub-cut of A\(z), and, for the other, we need only make sure that,
if A(n), then:

seq(n) — Vm < lh(n)(val(n,m) < n)

46The third conjunct will often be redundant, given the usual sorts of Gédel number-
ings: If n lies in the cut, then the Godel numbers of the formulae occurring in the proof
it codes will be < n. But of course it cannot hurt to include it.
47The bounded quantifiers here are relativized to x(z), as well, but the relativization
is redundant, since cuts are closed downwards and < is transitive on this cut.
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But if we have a reasonable coding of sequences, we will be able to prove
that this is true on our cut, since 1Ag + €27 is available there.
From (*), then, we easily derive

YnVm{k(n) A k(m) A Bews(n,m) — T(m)}
in which case also:
Vn{k(n) — -Bews(n,"0=17)}

since =T("0 = 17). So 7 is consistent on x(z).
The rest now follows from Proposition 2.8. O

With Theorem 3.6 in hand, we can extend the result to non-relational
languages and so establish Theorem 3.5.

Proof of Theorem 3.5. Let Tg be the relational version of 7. What we are
going to see is that CT~[7y] is interpretable in CT[7T]. It is easy enough
to interpret 7 in 7, of course, via such translations as:

r(TAzyz") =" +y=2"

That is not all we need to do, however. We need to interpret the semantics
of the relational language in that of the non-relational language, as well.
But we can just translate Sat,(A) as Sat,(r(A)), where r(x) is a formula of
the language of 7 that expresses the translation from L7, to L7.48 Since
r(z) commutes with the logical connectives, proving the translations of
the semantic axioms for the connectives will be easy. For example, the
translation of
Saty("A A B7) = Sat,(A) A Sat,(B)
is
Sat,(r("A A B7)) = Sat,(r(A)) A Sats(r(B))

But 7("A A B7) justis "r(A) Ar(B) . And since we did not relativize the
interpretation, the case of quantification is no harder.

The clauses for the non-logical constants are also easy. Consider, for
example, that for Axzyz, which is essentially:

Saty ("Avivju, ) = A(val(o, 1), val(o, j), val(o, k))
Its translation is:
Sat, (r("Avvjvg ")) = val(o, i) + val(o, j) = val(o, k)
But r("Avsvjui ) is v; + v; = vy, so this becomes:
Saty("v; + v = v ") = val(o, i) + val(o, j) = val(o, k)
48Gince the translation is recursive, it will of course be representable in 7. (In fact,
as Visser (1992, §7.3) notes, careful formulation makes it p-time.) In general, of course,
it will be represented by some formula R(z,y), not by a term like r(x). But this point
affects nothing that follows and only complicates the exposition. (We certainly need to
know that every formula has a translation, and we may need to know that every formula

has exactly one translation. But IAy + Q; will prove such facts.)
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which is immediate from the clauses for + and for variables.

So CT~[Tg] is interpretable in CT~[T].

Now, CT~[Tg] proves the consistency of 7z on a cut. That is, CT[Tg]
proves

(*) Vn{k(n) — -Bewr,(n,"0 =17)}

for some cut formula x(z). So CT~[T] proves the translation of (*), since
it proves the translation of any theorem of CT~[7j].

What we want to see now is that CT~[7] actually proves (*) itself. This
is true, but we need to be careful. The version of (*) that CT[7y] proves
is formulated in the language of relational arithmetic; any version of
(*) that CT~[7] might prove would be formulated in the language of
arithmetic itself. So what we want to see is that CT~[7] proves its own
version of (*). But, of course, the translation of (¥) that CT~[T] proves is
already formulated in the language of arithmetic, and the simplistic, and
unrelativized, nature of that translation guarantees that CT~[7] does
indeed prove its own version of (¥).

Now, suppose Bews(n,”0 = 17). Then, since 7 is interpretable in 75,
also Bewr, (m,"0 = 17), for some m. We would therefore have that

(%) Vn{k(n) = -Bewr(n,"0=1")}
if we knew that CT~[7] could prove:
k(n) A Bewr(n,"0 =17) — Im[k(m) A Bews,(m," 0 = 17)]

I.e, we need to know that the translation of proofs does not cause them
to grow so fast that they take us out of our cut. But we can suppose that
the axioms of A + 2, are available on x(x), and that will suffice. O

Theorem 3.7. CT ™ [IAg + Q4] is interpretable in CT ™ [Qgeq-

Proof. The technique involved in this proof is similar to that used in the
proof of Theorem 3.5, but it is applied more subtly. It will be clear that it
is not special to this particular case. What the proof shows, in effect, is
that we can always relativize the semantic part of a theory like CT ™ [Qgeq]
to a cut, assuming the cut itself is defined purely arithmetically, and that
means that the method of cuts can be used with semantic theories like
CT ™ [Qseq]-

We know, of course, that we can interpret 1Ay + Q; in Q by relativizing
to a cut k(z). The problem is to do so while preserving the semantic
part of CT™ [Qgeq]. We cannot actually expect CT[IAg + 4] to prove the
relativizations of the semantic axioms of CT~ [Qgeq]. That would mean, in
particular, proving the relativization of the clause for 3, which would be:

k(o) = Saty (" v () ) = Ir[k(T) AT Lo Sat,(Tov; )]

This says, in effect, that Jv;(¢v;) is true iff there is a number in the cut

that satisfies ¢v;, and, in general, that is false. But what we can do is

re-interpret satisfaction itself so that Sat,(A) means: the relativization
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of A is satisfied by 0. That is, we translate Sat,(A) as: Sat,(t"(A)), where
t"(z) is a syntactic function meaning: the relativization of A to x(x).*
So what we need to prove is:

k(o) = Saty (t"("Fvi(dv;) ")) = IT[k(T) AT Lo Sat, (t"("puv; )]
Now, t"(" Jv;(¢pv;) ) is Fv;(k(v;) A t5(pv;)), so this becomes:
k(o) = Saty (" v (k(v;) At (dvi)) 1) =
Ir[k(T) AT & o ASat, (£ (T )]

And this is easily proven.
Left to right: By the clauses for 3 and A, Sat, (" Jv;(k(v;) A t7(¢v;)) ) iff

Ir[r ~ o ASat.("r(v;) ) ASat, (t5(T¢v; 7))]. But s(v;) is a concrete formula
of the language of arithmetic that defines the cut—a long one, but one
we could actually write down—so we can prove a Sat-sentence for it. In
particular, we have:

CT[T] + Sat, ("r(vi) ) = r(val(r, )

But if x(val(7,1)), then, since x(o), also (7). That is: If a sequence is
in the cut, and some number is in the cut, then the sequence we get
by replacing some member of the original sequence by the new number
is also in the cut. Although this is not provable in Q, it is provable in
[Ag + 24, so it will be true on the cut given by x(z), and we are done.
The converse is similar, and similar arguments work for the other
semantic clauses. O

Theorem 3.8. Let T O Q and suppose that CT~[T] proves that all axioms
of T are true. Then CT[T| proves the consistency of T on a cut and
interprets Q + Con(7T) and even 1Ay + Q1 + Con(T).

Proof. From Theorem 3.5 and Theorem 3.7. O

Corollary 3.9. Suppose T 2O Q is finitely axiomatized and consistent.
Then CT~[T] interprets Q + Con(T) and hence is not interpretable in T.

Proof. By Corollary 2.9, Corollary 3.4, and Theorem 3.8. O

So, in the case of finitely axiomatized theories, CT~[T] is always stronger
than 7 in the precise sense that it is not interpretable in 7.

Can we say, however, just how much stronger CT~[7] is than 7? What
would be really nice is if we could prove a converse of Corollary 3.9.

Hoped For Result 3.10. Let T be a finitely axiomatized theory in a finite
language. Then CT~[T] is interpretable in Q + Con(T), and so CT™[T]
and Q + Con(T) are mutually interpretable.

49Being primitive recursive, 77 (x) is of course repesentable in Q. As above, it will
actually be represented by a formula, but this will make no difference to what follows.
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If we could prove 3.10, then we would have shown that, at least in the
finitely axiomatized case, Q + Con(7) was, in one good sense, of the same
strength as CT~[T]. Unfortunately, however, while I do not know of any
definite reason to think that 3.10 is false, the sort of proof given below of
the closely related Theorem 4.7 does not work in the present setting.?°
But it is known that one can get fairly close to 3.10.

Theorem 3.11. Let T be a finitely axiomatized, sequential theory. Then
CT~[T] is interpretable in 13, + Con(T7).

This follows from results proven by Enayat and Visser (2014, esp.
Theorem 4.5) in their recent explorations of full satisfaction classes. Note,
however, that Theorem 3.11 does not lead to mutual interpretability,
since we have no reason to suppose that [3; + Con(7) is interpretable in
CT™[T], even if T contains I¥;.

3.3. Peano Arithmetic Is a Special Case (I). The proof of Corollary
3.9 depends essentially upon the assumption that 7 is finitely axioma-
tized. This is because, as mentioned previously, if 7 is infinitely axiom-
atized, then there is no reason, in general, to suppose that CT~[7] will
prove that all of T’s axioms are true, although it will prove that each of
them is. But then Theorem 3.5 will not apply. We do, however, have the
following obvious corollaries.?!

Corollary 3.12. Let T be sequential. Then CT~[T]is locally interpretable
in 131 + U{Con(Uf) : U a finite, sequential fragment of T }.

Proof. Every finite fragment of CT~[T] is contained in CT [i/], for some
finite fragment ¢/ O T; we may assume that U/ is sequential. Then CT ™ [/]

is interpretable in I1X; + Con(U) C 13, + |J{Con(U)}. O
Corollary 3.13. If T D 13 is reflexive, then CT [T] is interpretable in
T.

Proof. A reflexive theory, by definition, is one that proves the consistency
of each of its finite sub-theories. So 7 contains I3; + [J{Con(/)} and so
itself locally interprets CT[7]. It then follows from Orey’s Compactness
Theorem that 7 globally interprets CT[T]. O

So, in particular, we have:

Corollary 3.14 (Enayat and Visser, 2012, Theorem 5.1). CT [PA] is
intepretable in PA.

508ee footnote 73 for an explanation of why.

51We need the finite fragments I/ in question to be sequential because the proof talks
about CT~ [i/], and that only makes sense if I/ is sequential. One might therefore wonder
how we know that there are any finite, sequential fragments of 7. But 7 is sequential,
by hypothesis, and its being so involves there being a certain finite set of formulae that
T can prove. So there is some finite fragment of 7 that is sequential, and so then is
every fragment containing it.
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That gives us one sense in which what happens when one adds a truth-
theory to PA can be very different from what happens when one adds a
truth-theory to some other theory, in particular, to a finitely axiomatized
theory.

It’s worth emphasizing that the reason we get Corollary 3.14 is not
that PA has full induction, or anything of that sort.®> There are really
two reasons for PA’s anomalous behavior. The first is that, as I have
mentioned several times already, if 7 is not finitely axiomatizable, then
there is no reason to expect that CT~[7] will prove that all axioms of 7
are trslge, although it will prove that each of them is. And, indeed, we
have:

Corollary 3.15. CT~[PA] does not prove that all axioms of PA are true.
Proof. From Theorem 3.5 and Corollary 3.14. O

The second reason is that PA is not just not finitely axiomatizable but
is reflexive. As Corollary 3.13 shows, we have the analogue of Corollary
3.14 for any reflexive theory. That means, for example, that it holds for
arbitrary theories constructed in the following sort of way:

Ty = 1% Cy = Con(IX%)
Ty = 137 + Con(1%) C1 = Con(IX; + Con(I%4))
Th1 =T, +Cy Crt1 = Con(Th11)
15§ = uT,

It is obvious that 13X is reflexive, since every finite sub-theory of IX¢ is
contained in one of the 7,,, and 7, proves Con(7},), trivially.54

3.4. Semantic Consistency Proofs. As I have emphasized, what was
shown in Section 3.2 is not that CT~[T] proves that 7 is consistent. If
T is a finitely axiomatized (sequential) theory, then CT~[7] will prove
that 7’s axioms are true, but CT~[7] does not have the induction axioms
needed to prove that all of 7’s theorems are true (or even that all the
theorems of pure logic are true). The natural question to ask, then, is:
What exactly do we need to get a proof of 7’s consistency? We need 7
to contain some induction axioms in the first place, and then we need

52Although, as Enayat and Visser mention, we do get the analogue of Corollary
3.14 for “theories. .. that have access to the full scheme of induction over their ambient
‘numbers™ (Enayat and Visser, 2012, p. 13, fn. 12).

530f course, this depends upon how the axioms of PA are specified. I am assuming
them to be given by some purely syntactic, ¥; formula. If we specify the axioms as
“those axioms of PA, syntactically specified, that are true”, then CT~[PA] will trivially
prove that all the axioms of that theory are true. As said, however, we treat theories
intensionally.

54Another well-known reflexive theory is Primitive Recursive Arithmetic, or PRA,
but as usually formulated, the language of PRA is not finite, so I am not sure whether or
how the results proven here apply to it.
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to replace CT~[7] with a version that extends the induction axioms to
permit semantic predicates—in particular, the satisfaction predicate—to
occur therein. But how much ‘semantic induction’ do we require?

It is not at all obvious, in general, what it means to ‘extend a theory’s
induction scheme’. The scheme might itself be stated in such a way as
to exclude formulae containing semantic vocabulary. To take a trivial
example, the scheme might require that its instances contain no predi-
cates other than identity. In the cases in which we shall be interested,
however, the right way to proceed is both clear and well established.
Intuitively, the point is that we may simply regard such formulae as
Sat,(x) as being among the atomic formulae from which the construction
of more complex formulae begins. More precisely, we may make use of
the so-called relativized arithmetical hierarchy (Hajek and Pudlak, 1993,
pp. 81ff).

Definition. Let X be any set of formulas. A formula is said to be Ay (X)
if it belongs to the smallest class of formulae that (i) contains all atomic
(arithmetical) formulae and all formulae in X and (ii) is closed under
Boolean operations and bounded quantification.

A formula is ¥;(X) if it is of the form Jy(4(y)), where ¢(y) is Ap(X),
etc.

In our case, if we take Sem to be the set of atomic semantic formulae—
Den,(t, ), Sat,(z), and so forth—then what it means to ‘extend induction’
in the case of 1A, say, is that we permit induction on Ay(Sem) formulae.
The resulting theory is thus 1Ay(Sem). Similarly for 13, etc.

Definition. Suppose that 7 is among |A, 13, and so forth. Then:
CT[T] is the result of (i) adding a fully compositional truth-theory, in the
same sense as with CT~[7], and (ii) extending the induction scheme to
permit semantic vocabulary, i.e., extending it to formulae in Ay(Sem) or
Y, (Sem).

Since CT[7] does extend whatever induction scheme might be present
in 7, it does at least have a chance of formalizing the usual sort of
semantic proof of Con(7). To do so, CT[T] will need to be able to do two
things: (i) Carry out the induction at the core of that proof; and (ii) Prove
that all of the logical and non-logical axioms of 7 are true.

The inductive core of the proof can be carried out using the same
formula used in the proof of Theorem 3.6, namely:

Bewr(n) A A(n) AVm < lh(n)[A(val(n,m))] —
Vm < Ih(n)Vo[Sat,(val(n,m))]

This is IT; (Sem), since Bew(n) is £1.%5 Moreover, as a look back at (1)—
(5) will show, the formulae involved in the various inductions needed

551t also important that val(z,y, z) and lh(z,y) are A;. But they certainly will be in
132,
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to prove that logic is true are all II; (Sem), as well—except for the one
concerning denotation, which is ¥;(Sem). But I¥X; has induction for IT;
formulae (Hajek and Pudlak, 1993, p. 63, theorem 2.4). So we have:?%

Theorem 3.16. Suppose T 2 |12, and suppose further that CT[T] proves
that all axioms of S (which may or may not be T) are true. Then CT[T]
proves Con(S).

Corollary 3.17. Suppose T O 1%, is finitely axiomatized. Then CT[T]
proves Con(T).

This might seem like a nice, neat result. Since |X,, is finitely axiomated,
we'll get that CT[IX;] proves Con(1X;), that CT[IX2] proves Con(I1X2), and
so forth. Unfortunately, however, things are not nearly so tidy.

Everyone knows that CT[PA] proves Con(PA). But it’s a good deal less
obvious how it does so than people often seem to suppose. What you
usually hear people say—and what I myself usually say—is that the
proof goes like this: First, you prove that all of the axioms are true; then
you prove.... But wait! How are we supposed to prove that all of the
axioms of PA are true?®” We can easily enough prove, of each axiom, that
it is true, since we can prove its T-sentence and we can prove it. But that
is an entirely different matter. There are truckloads of very important
cases where PA can prove that each number blurgs without being able
to prove that every number blurgs, not least of which is when ‘z blurgs’
means: = does not code a proof of a contradiction. So again: How do we
prove that all of PA’s axioms are true?

The answer is that the truth of all the axioms falls out of a single
instance of the extended induction scheme. Consider the formula:

d
o(a,z,0) Y3 [720n val(r,0, z) A Sat,(a)

Here, a is meant to code a formula with v free, e.g., A(vg, i), where ¢ indi-
cates additional free variables that might occur. So what ¢(" A(v, %) ', 0, 2)
says is that A(vo, %) is satisfied by the sequence that is just like o except
that it assigns z to vp—roughly speaking, that A(vg, 7) is true of z.

The formula A(vo, %) is what we really care about, so I will henceforth
use A(vg,y) as if it were a variable with which we are reasoning in
CT[PA], in order to make what follows intelligible.

56Kotlarski (1986) seems to imply that this result can be strengthened to 7 D 1Ao.
But Kotlarski is simply not careful enough about the case of the logical axioms. Enayat
and Visser (2012) have shown that Kotlarski’s result can be salvaged in the model-
theoretic setting in which he is working by strengthening the conditions on satisfaction
classes. In the present axiomatic setting, one could similarly add an axiom to the truth-
theory stipulating that ‘variable switching’ works as it should. But that does not seem
very interesting. It thus remains an open question whether the theory I am calling
CTI[lIAo] proves Con(1A¢), let alone whether it proves Con(PA).

57Wang (1952, p. 260) credits Rosser with the observation that this question needs to
be addressed.
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We want to show that all instances of the induction scheme are true.
So, what we want to show is that
() A(0, ) A Vo [A(vo, §) — A(Svo, §)] — Yvo(A(vo, ¥))

is true, for all A(vg, 7). And (*) will be true just in case it is satisfied

by every sequence o. But then, by the clauses for the connectives, that

holds just in case, for every sequence o:°®

Sat, ("A(0, 7)) A
Saty (" Vuo[A(vo, §) = A(Svo,9)]") —
Sat, (" Vo (A(vo, %)) )
This is what we now need to prove. We have the induction axiom:
o(" A(vo,9) ', 0,0) A
Voo o(" A(vo, §) ', vo, 0) = ¢(" A(vo, §) 7, Svo, 0)] —
Vuolo(" A(vo, §) ', vo, 0)]
So it will be enough to show that:
(a) Sat,("A(0,%)") implies ¢(" A(vo,7) ', 0,0)
(b) Sat,("Vug[A(vo,y) — A(Swvo,¥)] ") implies

VUO [qb(l—A(/UOv g‘)—l’ Vo, 0) — ¢(I—A(U07 :lj)jv SU, U)]
(©) Yuolo(" A(vo, §) ', vo, 0)] implies Sat, (" VvgA(vg, ) ")

None of these are terribly difficult, given three important facts:

(i) If o and 7 agree on the free variables present in some formula ),
then Sat, () iff Sat,(v)).
(i) If Sat,("¢(0)") and 0 = val(o,0), then Sat, ("¢ (vg) ).
(iii) IfSat,("¢(Svo)"), T X &, and val(r, 0) = S(val(c,0)), then Sat.("t(vg) 7).
All of these are provable in CT[PA] by the usual sorts of arguments.
We get (a) immediately from (ii).
For (b), we need to derive:

Yoo{3r[r X o Aval(r,0,v0) A Sat, (" A(vo, 7)) —
Ir(r RoA val(7,0,Svg) A Sat (" A(vo, ¥) )]}

from Sat, ("Vug[A(vo, ¥) — A(Svo,¥)] ). Applying the semantic clauses to
the latter, we have:

(*) Vx 2 o [Saty (TA(vo, 7)) — Saty (TA(Svo, ) 7))

Now fix vy and suppose that for some 7 such that 7 L o and val(7,0,vo),
Sat-("A(vo, %) ). So by (*), Sat-(" A(Svo, %) '). Now let x be just like 7

5830 here, TA(0, %) really means: the Godel number of the result of substituting the
Godel number for 0 for vy in the formula whose Gédel number is a. Similarly elsewhere.
59We're assuming, of course, that all free occurences of vy have been replaced by
occurrences of Svy.
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except that it assigns the variable ‘vy’ the successor of what T assigns it.
Then, by (iii), Sat, (" A(vo, %) '). So we have

X Lon val(x, 0, Svg) A Saty (" A(vo, ¥) ")

as wanted.

The argument for (c) is similar and is left to the reader.

What makes all of this go, then, is the fact that PA is schematically
axiomatized: An extended instance of the induction scheme for PA can
be made to yield all of the unextended instances. But, by the same token,
the argument works only because PA is schematically axiomatized. If T
is an infinitely axiomatized theory that is not schematically axiomatized,
then there is no reason whatsoever to expect that CT[7] should prove
that all of 7’s axioms are true.

So, as Visser once put it, the fact that CT[PA] proves Con(PA) is some-
thing of a happy accident. Too happy, for our purposes, as we are about
to see.

Theorem 3.18. CT[IX;] proves that all axioms of PA are true.

Proof. The argument just given needed only a handful of instances of
extended induction. One was for the formula ¢(a, o, z). This is ¥;(Sem).
The other thing we need to check is that the general principles (i)—(iii) on
which we relied can be proven in CT|[IX;]. The proofs of these are all by
induction, but, other than the semantic notions, there is nothing in these
that isn’t primtive recursive and so A; in 131;% the universal quantifier
over sequences makes the relevant claims IT; (Sem). So the proof that all

axioms of PA are true can be carried out in CT[IX;]. O
Corollary 3.19. CT[IX;] proves Con(PA).
Proof. By Theorem 3.16 and Theorem 3.18. O

If Corollary 3.19 seems surprising, it is because one might have
thought we needed to assume the axioms of PA in order to able to prove
that all of the axioms of PA are true. Well, we don’t.5! As Tarski him-
self put it, we need not assume “axioms which have the same meaning
as the axioms of the science under investigation”, but only ones that
“suffice. . . for the establishment of all sentences having the same mean-
ing as the theorems of the science being investigated” (Tarski, 1958, p.
211). And it turns out that assuming extended ¥; induction is assuming
axioms that suffice to establish all axioms of PA.

Indeed, since Con(PA) is a single theorem of CT[PA], the full power of
CT[PA] can’t be needed for the proof, anyway: Only finitely many axioms
of CT[PA] will be needed, so Con(PA) has to be provable in CT[I%,], for

60The quantifier over variables in the antecedent of (i) can be bounded by ).
61And, for the reason to be given in the next paragraph, it wouldn’t help us if we did:
There’s no way we can use all the axioms of PA in a single proof.
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some n. Nonetheless, I take Corollary 3.19 to be a bad result in the
context of the present investigation, in so far as it suggests that we do
not yet have things properly formulated. It’s a perfectly natural question
what sort of truth-theory you need to formalize the obvious semantic
consistency proof of IX;. It’s disappointing if the answer turns out to be,
“One that proves Con(PA)”.%2

More importantly, the thought guiding this investigation is that truth
is, somehow, closely related to consistency. There is a clear sense in
which adding a theory of truth to a theory gives us consistency: Corollary
3.9 and Corollary 3.17 gives us that. But we would also like to find some
sense in which adding a consistency statement to some theory gives
us a theory of truth for that theory’s language. But we are unable to
prove Hoped For Result 3.10, and it follows from Corollary 3.19 that its
analogue in this case—something like: 7 + Con(7) is interpretable in
CT[T]—is certainly false.%?

Fortunately, it turns out that we can do better.

4. DISENTANGLING SYNTAX FROM THE OBJECT THEORY

4.1. Reviving an Old Approach to Truth-theories. What'’s respon-
sible for Corollary 3.19?

Semantic consistency proofs make use of two different sorts of theories,
for two very different sorts of reasons. On the one hand, we have a ‘base
theory’ that gives us the syntactic machinery we need to formulate
our truth-theory and then to reason within it. Among other things,
for example, the induction axioms allow us to formalize arguments by
induction on the complexity of expressions, or the length of proofs, or
what have you. On the other hand, there is the object theory, which is
the theory we mean to be reasoning about: the theory whose consistency
we mean to be proving, for example. We need to know that all the axioms
of the object theory are true, and the idea is to get the truth of the axioms
from the axioms themselves, deriving their truth via their T-sentences.

As we have seen, however, that is not at all how things work in the
case of PA. The fact that all of the axioms of PA are true is not derived
from the axioms of PA via the T-sentences, and, on reflection, it’s easy
to see that it can’t be: The truth of each axiom of PA can be derived
from that very axiom, but that’s it; the truth of all the axioms of PA
is a consequence, not of those axioms, but of a handful of instances
of extended ¥; induction. So what leads to Corollary 3.19 is the fact
that a single theory is playing both of the roles I just distinguished: In

620f course, PA itself proves Con(IX;), and the argument is semantic in character—it
uses a partial truth-theory for the language of arithmetic—but it is very much not the
sort of argument that we are discussing.
63] have discussed some other reasons to be dissatisfied with the usual way of
handling theories of truth elsewhere (Heck, 2014b, §3.3).
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CT[I1X4], 13X is both the underlying syntax and what provides us with
the axioms of the theory we had meant to be reasoning about. We must
extend induction to X; formulae containing semantic vocabulary in order
to formalize certain sorts of arguments, but there are instances of that
same form that entail the truth of principles stated in the object language
that go well beyond what we’d meant to be assuming in our object theory.
The problem, to put it as directly as possible, is that we can’t strengthen
the syntax without thereby strengthening the object theory.

The solution to the problem is therefore obvious: We need to disen-
tangle the syntactic theory from the object theory. And, interestingly
enough, this is how Tarski himself proceeds in “The Concept of Truth in
Formalized Languages”:

A meta-language which meets our requirements must con-
tain three groups of expressions: (1) expressions of a gen-
eral logical kind; (2) expressions having the same meaning
as all the constants of the language to be discussed...;
(3) expressions of the structural-descriptive type which
denote single signs and expressions of the language con-
sidered, whole classes and sequences of such expressions
or, finally, the relations existing between them. (Tarski,
1958, pp. 210-1)

The expressions mentioned under (3) belong, of course, to syntax. Tarski
does not actually say that these expressions will be disjoint from those
mentioned under (2), but it is natural to read him that way. That is
plainly how he conceives the matter in his discussion of the calculus
of classes (Tarski, 1958, pp. 172ff), which is far too weak to interpret
syntax. Tarski was of course aware—at least by the time his paper was
published—that syntax can be interpreted in arithmetic: His famous
theorem on the indefinability of truth depends upon that fact. But the
positive part of Tarski’s project—showing how it is possible to define truth
in a consistent manner, suitable for the purposes of meta-mathematics—
in no way depends upon this now common manoeuver. The basic idea of
separating the syntax from the object theory is thus an old one.

So let £ be the (finite) language for which we want to give a truth-
theory. We let S be a disjoint (and fixed) language in which we will
formalize syntax. The most natural choice for S, and the one that
would be closest to Tarksi’s original intentions, would be the language
whose sole primitive is the binary function-symbol: ¢ —~ b, intended to
mean: the concatenation of a and b (Quine, 1946; Corcoran et al., 1974;
Grzegorczyk, 2005). To keep things familiar, however, we shall take S
to be isomorphic to the language of arithmetic and assume that syntax
is coded in the usual way.®* Think of S as the language of arithmetic

64The fact that £ is disjoint from S is of course no obstacle to our coding facts about
Lin S.
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written in boldface, or something of the sort. Our theory of syntax can
then be taken be Q, or 137, or whatever we wish.

Now, if we’re going to do the semantics of £, then we’re going to need
to be able to talk about the things £ talks about. In particular, if we're
going to have the usual Tarski-style clauses for the primitive expressions
of the object language, then we are going to need to have the expressive
resources of £ available to us, as Tarski notes at (2). So the obvious
choice for the language of our semantic theory would be S U £. There
are, however, complications. Suppose that £ is the language of set theory.
Then the quantifiers in sentences of £ would normally be understood
as ranging over all and only the sets. The quantifiers in sentences of
S, however, do not range over all sets. So we need to keep the domains
of S and L separate. The simplest way to do so is to let the semantic
theory be many-sorted, so that’s what we’ll do. Variables ranging over
the domain of S will be italic; those ranging over the domain of £ will be
upright.5®

If we do go this way, then we’re also going to need a separate theory of
sequences or, better, of assignments of objects to variables: There will
be no hope at all of coding sequences of objects from the domain of £ as
objects in S, at least not in general. So we shall takes ourselves to have
the following theory of assignments available:%¢

Volvar(v) — Yavx3B(B ~ a Aval(B,v) = x)]

What this says is that, given any assignment, the value it assigns to a

given variable can always be changed as one pleases. Assignments live

in yet a third sort. Variables ranging over them will be Greek letters.

That there is at least one assignment, and that every assignment assigns

a unique object to each variable, are truths of logic, in this formulation.%”
Given this theory of assignments, we can then state a truth-theory for

L. The theory will be the familiar one, though with some adjustments

to take account of the present framework. For example, the universal

closures of the following will be axioms common to all semantic theories,

independent of L:

(v)  var(v) — Deny(v,x) = x = val(a, v)

(=)  Saty("T—A7) = —Sat,(A)

(A)  Satq(TA A B7) = Sat,(A) A Saty(B)

(V) Sato("WVi(A(v;))T) = VBB ~ a — Satz("A(v;) )]

The other axioms of the theory will depend upon L. If £ is the language

of set theory, then the only other axiom will be:

65The two-sorted theory can of course be interpreted in a single sorted theory via the
usual relativization to a pair of domains. This is more or less what Craig and Vaught
(1958) do. We'll discuss their work further below.

6650 8 X a now abbreviates: Yw(w # v — val(8, w) = val(8, v)).
67This sort of idea is borrowed from Craig and Vaught (1958).
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(e) Sat,("t € u) = IxTy[Den, (t,x) A Deny(u,y) Ax € Y]
In the case of the language of arithmetic, we’ll have axioms like:
(0)  Den,("0",x)=x=0
(+) Deny("t+ u',x) = Jy3z[Den,(t,y) A Deny(u,z) AX =y + 2
Note that, in both these cases, the used expressions ‘0’ and ‘+’ are expres-
sions of £, not of S.
So that is the theory in which I propose henceforth to work. As for
notation:%®

Definition. Let 7 be an arithmetical theory. Then TT,[7] is the seman-
tics for £ just described.

We can think of TT, [{] as a two-place functor: Given a theory 7 in S
and a language L, it returns a new theory that constitutes a semantics
for £ based upon 7 as syntax. Our interest is in the properties of this
functor.5

Note that we are not (yet) extending any induction scheme that might
be present in 7, so TT,[T] is not going to be formalizing semantic
consistency proofs of the sort discussed in Section 3.4. More generally,
induction in TT,[7] does not apply to statements involving assignments,
or semantics, or the object language. The induction axioms must be
‘purely syntactical’.

4.2. The Weakness of Tarskian Truth-theories. Our goal now is to
show that the various results proven in Section 3.2 hold also in the
present setting. As we shall see, however, these results are usually
available in an improved form.

Lemma 4.1. TT,[Q] is a materially adequate theory of truth for L. In
particular: For each formula A(vy,...,v,) of L, TT,[Q] proves:

Saty("A(v1,...,v,) ") = A(val(o,1),...val(o,n))
A fortiori, for each sentence A, TT,[Q] proves: T("A™) = A.
Proof. Essentially the same as that of Lemma 3.1. O
Lemma 4.2. TT,[Q] is interpretable in Q.

Proof. The basic idea here is very simple: Since no theory stated in £ is
so far in evidence, we can give £ the completely trivial interpretation
whose domain is {0}, that takes each term to denote 0, and that takes
every predicate to have an empty extension. The theory of assignments

68Here, TT stands for: Tarskian truth.
69There are some other choices hidden here about how exactly syntax is being formal-
ized. That, as Visser emphasized to me, is true even when we are working in a theory
of concatentation. I am assuming for the moment that these choices are made in some
sensible, uniform fashion. I.e., I am bracketing any intensionality due to decisions about
how exactly to code syntax.
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is then completely trivial: val(v, x) will always be true, for each v and x.
A semantic theory for £, so interpreted, is then easily constructed. [

A similar proof works for languages other than the language of arith-
metic, though there are complications if £ contains no terms other than
variables.”®

Lemma 4.2 gives us a first indication of why it is worth disentangling
syntax from the object theory. If we develop our truth-theory in the
usual way, where syntax and the object-theory are intertwined, then the
weakest materially adequate truth-theory is CT™ [Qgeq]. And it follows
from Theorem 3.8 that CT ™ [Qgeq] is not interpretable in Q. In the disen-
tangled setting, however, there is a materially adequate truth-theory for
the language of arithmetic that is as weak as it could possibly be: It is
interpretable in Q.”*

It is worth emphasizing, as well, that TT,[Q] is not just a curiosity
but is of real mathematical utility. Lemma 4.1 plays an important role
in the proof, due to Craig and Vaught (1958), that every axiomatizable
theory that has no finite models has a finitely axiomatizable conservative
extension. Their argument is an extension of one due to Kleene (1952).

Consider some recursively axiomatizable theory 7. We take a weak,
finitely axiomatizable theory of syntax—Q, basically—a weak theory of
assignments, and the Tarski clauses for the language of 7. I.e., we work
in TT,[Q]. Then we can prove the T-sentence for each sentence of the
language of 7 (Craig and Vaught, 1958, p. 296, Lemma 2.4). So now,
since the set of 7’s axioms is recursive, it is representable in Q, and we
need only add one more axiom: All of 7’s axioms are true. This theory
clearly contains 7, and the fact that it is a conservative extension of 7
can be proven by the usual sort of model-theoretic argument (Craig and
Vaught, 1958, p. 298, Lemma 2.7).

70The problem is that, in this case, we will not be able to specify the domain via
a formula §(z) with just = free. What we can do, however, is use a parameter. This
gives us an interpretation with a parameter, so, in the general case, TT;[Q] will only be
parametrically interpretable in Q.

71Moreover, we see that a materially adequate theory of truth for £ need make use
of no information whatsoever about whatever it is that £ talks about. As said, any
theory of truth that is going to be materially adequate, in the sense that it proves all
‘disquotational’ T-sentences, is of course going to have to have the expressive resources
of the object language available to it. But that is all. We haven’t even mentioned any
theory formulated in £ to this point, let alone made use of one.

These results have another sort of significance. If, as I am inclined to believe (Heck,
2005, 2007), a speaker’s semantic competence consists in her tacitly knowing a truth-
theory for her language, one might worry that this would credit ordinary speakers
with far too much tacit knowledge. But knowing such a theory need involve no more
than knowing TT,[Q], and the logical strength of that theory derives entirely from its
syntactic component.
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4.3. The Strength of Tarskian Truth-theories. Our next set of re-
sults concern the logical strength of TT[Q].

Lemma 4.2 tells us that TT,[Q] is very weak. But this does not really
help us to characterize the strength of truth-theories. For one thing,
the interpretation of TT,[Q] in Q wreaks havoc on the meanings of the
primitives of £: It all but treats £ as uninterpreted. How, then, might
we force the truth-theory to respect the meanings of £’s primitives?
One plausible answer is to require the interpretation to preserve some
theory stated in £. Indeed, we might well understand Tarski as taking
the object theory to play something like this role. (Though we do not
need to suppose, as Tarski may have, that this theory should in any
sense consist of ‘meaning postulates’.)’> Moreover, the question how
strong truth-theories are is best understood as the question: What does
‘adding a truth-theory’ give us, in terms of logical strength? That is, if we
have some theory 7 and we ‘add a truth-theory’ to it, how strong is the
resulting theory, compared to 7 itself? In our terminology, the question
is thus how TT,[Q] + 7 compares, in logical strength, to 7. Lemma 4.2
just concerns the special case where 7 is the null theory.

As was explained in Section 2.2, there are different ways of comparing
theories, so we can ask various sorts of questions about the relationship
between TT,[Q] + 7 and 7. One question is whether TT,[Q] + 7 is a
conservative extension of 7. And we have, in fact, already seen that
it is: That is just the result due to Craig and Vaught (1958) that was
mentioned above.

But there is a different, and ultimately more interesting, question
we can ask, namely, whether TT,[Q] + 7 is interpretable in 7. And to
this question, the answer is “no”, at least if 7 is finitely axiomatized, for
essentially the reasons we saw earlier.

Corollary 4.3. TT,[Q] 4 T proves, of each axiom of T, that it is true.

Proof From Lemma 4.1, as Corollary 3.3 was derived from Lemma
3.1. O

Corollary 4.4. Let T be a finitely axiomatized sequential theory. Then
TT,[Q] + L proves the obvious, disjunctive formalization of “all axioms of
T are true”.

Theorem 4.5. Let T be a consistent theory in L. Then TT,[Q] plus “all
axioms of T are true” proves the consistency of T on a cut and interprets

Q + Con(T).
Proof. Essentially the same as that of Theorem 3.8. O

It’s worth emphasizing that the hypothesis that all axioms of 7 are true
does no significant work in this proof beyond giving us the ‘base case’ of

"2These remarks are largely based upon observations due to John Burgess.
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the argument that allows us to prove Con(7) on a cut. The actual work
is all done in TT,[Q].

Corollary 4.6. Let T be a finitely axiomatized, consistent theory in L.
Then TT,[Q] + T proves the consistency of T on a cut and interprets
Q + Con(T), hence is not interpretable in T.

Proof. From Corollary 2.9, Corollary 4.4, and Theorem 4.5. O

We thus see again that compositional truth-theories have at least some
logical power: If we start with a finitely axiomatized theory 7 and add
an absolutely minimal but still compositional theory of truth for the
language of 7, the result is a theory that is logically stronger than 7 in
the sense that it is not interpretable in 7.

So we can still prove the central result of Section 3.2 in the ‘disentan-
gled’ setting. More interestingly, we can now prove a sort of converse of
Corollary 4.6, as well, one that tells us exactly how strong TT[Q] + T is,

at least when 7 is finitely axiomatized.”

Theorem 4.7. Let T be a finitely axiomatized, consistent theory in L.
Then TT,[Q] + T is interpretable in Q + Con(T).

The proof of Theorem 4.7 is similar to the proof of Theorem 4.10. It
is in one sense easier, since Theorem 4.10 applies to theories in which
induction has been extended to semantic vocabulary and that gives us
more work to do. But it is, in a different sense, more complicated, since
Q is so weak. Nicolai (2014, §4) gives all the details.

Corollary 4.8. Let T be a finitely axiomatized, consistent theory in L.
Then TT,[Q] 4 T is mutually interpretable with Q + Con(T).

73That some such result should be provable was first suggested to me by Visser, with
reference to his paper “The Predicative Frege Hierarchy” (Visser, 2009¢c), and Theorem
4.7 should probably be credited to Visser. My initial thought was that arguments like
those he uses to prove his Theorem 5.2 could be used to prove Hoped For Result 3.10.
Indeed, in an earlier version of this material (Heck, 2009, Theorem 5.10), I even claimed
as much. As Carlo Nicolai eventually pointed out to me, however, no such proof can
work.

The obstacle to proving 3.10 is roughly this. We can use the Henkin—Feferman
construction to build a model of 7 inside Q + Con(7), and this construction in effect
delivers a semantic theory for the language of T, just as in the proof of Theorem 4.10
below. But the expressions to which that semantic theory applies live in the original
model of Q + Con(7), not in the model of 7 we have built. That is no problem if we are
trying to interpret TT,[Q]+ 7, since the syntactic objects do not live in the domain of the
object theory, and that is precisely because of how the syntax and the object theory have
been disentangled. If we are trying to interpret CT [T ], however, then the syntax itself
does have to be interpreted inside the model of 7 we have built. And there is no reason
to think that can be done. If we knew that the domain of the model 7 was isomorphic
to, or at least embeddable in, the domain of our original model, then we would stand a
chance. But that clearly need not be true, since the original model could perfectly well
be standard and yet 7 could be, say, Q + -Con(Q), which has only non-standard models.

Nicolai (2014, §4.1) discusses some related issues.
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So we may think of TT.[Q] + (-) as a functor that, given a finitely axiom-
atized theory, always hands you back a stronger theory. In fact, what
it does is ‘upGodel’ that theory.”* We can think of Pudlak’s form of the
second incompleteness theorem, too, as defining a functor: Given a con-
sistent, sequential, finitely axiomatized theory 7 containing Q, it hands
us Q + Con(T), which is guaranteed to be logically stronger than 7 itself
in the sense that it is not interpretable in 7. What we have found, then,
is that, for finitely axiomatized theories, TT.[Q] + (-) is the same functor,
modulo mutual interpretability.

4.4. Semantic Consistency Proofs, Again. We have seen that, if 7 is
finitely axiomatized, then TT,[Q]+7 is not interpretable in 7, because it
proves the consistency of 7 on a cut. It does so because it proves the basis
case and the induction step of a semantic proof of 7’s consistency. That
leaves us where we were at the end of Section 3.2. The next question to
ask, then, is what we need to add if we are to get a proof of the consistency
of 7. As we saw in Section 3.4, the answer is going to be something along
the lines of ‘induction for ¥; formulae’. In the framework in which we
were then working, however, this answer turned out to be disappointing,
even if correct. It’s true that CT[I3;] proves the consistency of 131, but it
also proves the consistency of PA.

The disentangled setting in which we are now working allows us to
resolve this problem.”> What we need to add is, indeed, something along
the lines of ‘induction for ¥; formulae’. But we can now strengthen
our theory of syntax without thereby strengthening the object theory
whose consistency we are trying to prove. Let me emphasize what
this says about the role induction plays in semantic consistency proofs:
The induction we need for the proof is a syntactic principle, not an
arithmetical one. It’s a principle that has to do, at least in the application
we need to make of it, with inductions on proofs; it has nothing to do
with whatever the object language happens to be about, which could be
numbers, sets, graphs, or what have you. This is obvious once stated,
but the usual way of formulating truth-theories obscures the point.

So now we need a definition paralleling that of CT[T].

Definition. TT[7]is TT,[7] with the induction axioms in 7 extended
to permit semantic vocabulary, reference to assignments, and vocabulary
from the object language.

"4Thanks to Visser for the wonderful neologism.

"5This sort of idea is taken up as well by Leigh and Nicolai (2013), who discuss
‘disentangled’ theories of the sort I am about to describe at some length. (As they note,
such theories were first presented in an earlier version of this material (Heck, 2009).)
The main difference between their discussion and mine is that they fix the syntactic
theory to be PA, whereas I allow it to vary. So their CDT[O] is what I would call
TT.[PA] + O.
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As before, this definition isn’t perfectly general. But we know how to
apply it to the cases that matter here: We simply allow all the new
vocabulary to occur in the induction axioms, treating the new primitives
as, well, primitives. A complication is that there are now three different
sorts of quantifiers—over syntactic objects, assignments, and whatever
is in the domain of the object language—that can occur in a formula. But
we can just ignore this difference when determining the complexity of
a formula. Thus, e.g., ‘Ix(Den,(¢,x))’ counts as ¥; for our purposes, and
Vo3t3x(Deny(t,x)) counts as Ils.

It is clear that we can now adapt the arguments given in Section 3.4 to
our new framework. In particular, we will be able to formalize a semantic
proof of Con(7) in TT.[IX;] + T, where L is the language of 7. So we
have:’®

Theorem 4.9. Let T be a theory in a finite language L. Then TT[I%;]
plus “all axioms of T are true” proves Con(T).
Hence, if T is finitely axiomatized, then TT[I31] + T proves Con(T).

This, I suggest, is the right way to think about the formalization of
semantic consistency proofs.

I should emphasize, before we continue, that the sentence Con(7)
that Theorem 4.9 asserts can be proved in TT.[I¥;] + 7 is a sentence
of the syntactic language S, not of the object language L, that is, the
language of the theory 7.7 Of course, so long as the object language
is not ridiculously lacking in expressive power—if it is the language of
arithmetic, say, or the language of set theory—and so long as 7 is not too
terribly weak, then there will also be a sentence of £ that ‘expresses’ the
statement that 7 is consistent via coding. So we need to distinguish the
sentence Cong(7) of the syntactic language that Theorem 4.9 says can be
proven in TT.[IX;] + 7 from the sentence Con,(7) of the object language
about which nothing has yet been said. And it can be shown that the
object language sentence Con(7) cannot be proven in TT.[I¥]+ 7. This
follows from a much more general observation, due to Halbach, that even
TT.[PA] + T is a conservative extension of 7 (Leigh and Nicolai, 2013,
§3.2). That might well seem peculiar, but, as I have argued elsewhere
(Heck, 2014b, §5), it simply highlights in a different way how the usual
approach to theories of truth conflates the syntactic theory with the
object theory.

Henceforth, then, Con(7) always means: Cons(7).

4.5. Limitative Results. We can now establish an analogue of Theo-
rem 4.7 for the case in which induction has been extended, thus showing

"6The remarks in footnote 42, about how the axioms of 7 are specified, apply here,
too, of course.
""Thanks to Volker Halbach for making me take account of this point.
40



that the disentangled setting really does allow us to resolve the problem
revealed by Corollary 3.19.

Theorem 4.10. Let T be a finitely axiomatized theory in a finite language.
Then TT.[IX1] + T is interpretable in 1%, + Con(T7).

Indeed, this same pattern extends through the arithmetical hierarchy.

Theorem 4.11. Let T be a finitely axiomatized theory in a finite language.
Then, for all n > 1, TT2[IX,] + T is interpretable in 1%, + Con(T).

I'll present the proofs of these two results in the next section. First, let
me note a few corollaries.

Corollary 4.12. Let T be a finitely axiomatized theory in a finite lan-
guage. Then TT.[IX,,] + T is mutually interpretable with 1%, + Con(T).

Proof. If T is finitely axiomatized, then TT.[I%,] + 7 proves Con(T), by
Theorem 4.9, and so contains |13,, + Con(7) as a sub-theory. O

Corollary 4.13. If n > m > 1, then TT4[IX,,] + I1X,, ¥ Con(IX,4+1). In
particular, TT A[IX1] + 15, ¥ Con(1X,,41).

Proof. By Theorem 4.10, TT 4[I%,,,]+1%,, is interpretable in I1%,,+Con(1%,,).
But Con(IX,) is provable in 13, ;; (Hajek and Pudlak, 1993, p. 108),
so if n > m, 1%, + Con(IX,) is actually a sub-theory of I¥, ;. Thus,
TT 4[] + 1%, is interpretable in 13,4 .

So, if TT4[IX,,] + 1X, F Con(IX,+1), then Q + Con(IX,,41) is a sub-
theory of TT 4[I1%,,] + IX,, and hence is also interpretable in 1%, ;. But
that contradicts Pudlak’s version of Godel’s second. O

So, while CT[IX;] proves Con(PA), TT 4[IX;] + I¥; most certainly does not,
since it does not even prove Con(IX2). In fact, TT 4[IX1] + I3, does not
even interpret 13,.7®

This sort of result even extends to TT.[PA] + 7, in which induction
is completely unrestricted and is available for every formula (subject to
the usual restrictions on capturing of variables, etc), no matter what mix
of vocabulary from syntax, semantics, and the object language it might
contain.

Corollary 4.14. Let T be a finitely axiomatized theory in a finite lan-
guage. Then TT.[PA] + T is mutually locally interpretable with PA +
Con(T).

Proof. Each finite fragment of PA+4Con(7) is contained in one of the I1%,, +
Con(T), which is interpretable in TT.[IX,,]+7 and soin TT.[PA]+7. And
each finite fragment of TT[PA]+7 is contained in one of the TT.[IX,,]+7T
and so is interpretable in 13,, + Con(7) and so in PA + Con(7). O

"8This is because I¥2 is the same theory as 13; plus reflection for X3 formulas
(Beklemishev, 2005, p. 231, Theorem 7). So 13> proves Con(I1X; + Con(I31)). Thanks to
Volodya Shavrukov for confirming my suspicion and for the reference.
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Since PA + Con(T) is, like PA, reflexive,’® TT:[PA] + T is globally inter-
pretable in PA 4+ Con(7), by Orey’s Compactness Theorem. It is not at all
obvious, however, whether TT.[PA] + T is reflexive (when 7 is finitely
axiomatized). It would be nice if it was, though, since then we could
remove “locally” from Corollary 4.14.

4.6. The Proof of Theorem 4.10. We are going to need a version of the
so-called arithmetized completeness theorem (Hajek and Pudlak, 1993,
pp. 104-5) that is provable in 12;.8° There are two different ways one
often sees this theorem stated, and the proof of Theorem 4.10 rests upon
the way these two statements of it relate to one another.

Theorem 4.15 (Arithmetized Completeness Theorem). Let 7 be a recur-
sively axiomatized theory. Then:

(1) 1% + Con(T) interprets T.
(2) 1X1 + Con(T) proves that T has a model, one whose complexity is
what Hajék and Pudldk call low 3§5(X1), or LL;.

By a ‘model’ here is meant precisely what one would think is meant:
A certain sort of set, arithmetically coded, of course.®! The model is
understood to come with a corresponding compositional truth-theory,
that is, with notions of denotation, satisfaction, and truth for which the
usual Tarskian clauses can be proved, and of course sequences will serve
to code the theory of assignments.” That the model is a model of T
amounts to its being provable, in 13; + Con(7), that each axiom of 7 is,
in the sense of truth associated with the model, true, that is, true in the
model.

To say that the model is low ¥j(X1), or LL;, means that everything that
occurs in it—the formulae that determine the domain, the interpretations
of the primitives of £, and the associated notion of satisfaction—are all
LL;. T am not going to attempt to explain what ‘low ¥§(X;) means.
It doesn’t really matter for our purposes—and, frankly, I don’t really

"9This is because PA is not just reflexive but essentially reflexive: Every extension of
PA in the same language is reflexive.

80The proof of Theorem 4.7 rests upon the availability of the same sort of result in
1Ap + Q1 (Visser, 2009c¢, §5; Nicolai, 2014, §4).

811t does not seem to be widely appreciated among philosophers how much set theory
can be coded even in very weak theories of arithmetic. Everyone knows that PA is
capable of talking about finite sets of numbers, but PA can talk about lots of infinite sets,
too. This is because, even though PA cannot define truth for the whole of the language
of arithmetic, it can define truth for ever larger fragments. In particular, there is a ¥,
sentence Sat, . (z) such that I3; proves the Tarski clauses for ¥, formulae and therefore
proves, for each X,, formula A(z) the Sat-sentence: Sat, -("A(vo)”) = A(val(c,0)). One
can therefore use ¥,, formulae as codes for ¥,,-definable sets when working in I3; (Hajek
and Pudlak, 1993, §1.1(d), esp. p. 60, Remark 1.80).

82Note that this works because the model we get is, obviously, one in the natural
numbers (as 12; understands them), and this is true even if T is, say, ZFC.
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understand it very well.33 I will explain why the complexity of the
model matters and why its being L L, is enough for the proof of Theorem
4.10. The really important thing is that the complexity of the model is
independent of 7.

Proof of Theorem 4.10. If we are going to intepret TT[IX1] + 7 in IX; +
Con(T), we need to deal with three things:

@ 7T

(i1)) the semantic theory for £, including the theory of assignments
(iii) the underlying syntax, 13>;

A significant part of the last will be no problem, since we already have
I¥; available. But we will need to make sure that we can prove the
extended induction axioms. We'll deal with that last.

The arithmetized completeness theorem tells us that 13; + Con(7)
can give us (i) and (ii): It interprets 7, and it gives us a a model for
T, with which we get a semantics for £. But these aren’t enough by
themselves: We need to make sure that they fit together the right way.
To see why, suppose 7 is IX5. Then “0” is a term, and among the axioms
of TT4[IX;] + X2 that we need to interpret are these two:

V(0 # Sz)
Den, (707, 0)

The first comes from |3, itself; the second, from the semantics. The
point to note is that the term “0” occurs in both of these and so must
be interpreted the same way both times, or at least in ways that are
compatible. The mere fact that 1X; + Con(IX2) both interprets 139 and
gives us a semantics for the language of I35 doesn’t guarantee that. For
all we know so far, the former could interpret “0” as “S0” while the latter
told us that “0” denotes SSSO.

This needn’t happen, however, because the two versions of the arith-
metized completeness theorem are closely related. It is really the second
that is more fundamental. The way you get an interpretation of 7 once
you have a model of 7 is the same way you can always get an interpre-
tation of 7 once you have a model of 7: You just interpret it the way
the model tells you to interpret it. So if the model tells you that some
term ¢ denotes u, you translate ¢ as ‘u’. If the model tells you that some
predicate R(z,y) has as its extension the set S, then you translate R(z,y)
as meaning: <z,y> € 5.8% And, of course, you restrict the quantifiers
to the domain of the model. The fact that the model is a model of T

83The definition is on p- 85 of Hajék and Pudlak’s book, for those who would like to
explore it.
84Note that this is all intensional: In the theory in which we are working, we’ll be
given the extension of R(z,y) in a certain way, that is, by means of a certain formula; we
then use that very formula to construct the translation of R(z,y).
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will then imply that 7’s axioms, so translated, are provably true. Which
means that we’ve successfully interpreted 7.

What this means in our case is that the interpretation and the model
do ‘fit together in the right way’. If the semantic theory says that “0”
denotes S0, then the interpretation of “0” will be “S0”.

So that takes care of the interpretation of 7 and the interpretation of
the semantics for £. What'’s left is (iii), the underlying syntax, 13;. As
noted earlier, much of that is trivial, since we’re working in 1¥; + Con(7)
and so have IX; readily available. So if we were just trying to interpret
TT,[I31] + 7, we'd be done. What we’re actually trying to interpret,
however, is TT£[IX1]+ 7, and so what we lack at this point—all we lack—
is a demonstration that the extended induction axioms can be proven in
137 4+ Con(T7), given the interpretation of 7, and of the semantics for £,
that we’ve already got.

It is here, then, that we need to make use of what we know about
the complexity of the model and, in particular, of its associated notions
of denotation, satisfaction, and truth. If the formula we were using
to interpret Sat,(x) were, say, ¥, then we’d have no hope whatsoever
of proving the translations of induction axioms containing Sat,(z) in
I¥;. But we know that everything that appears in the model—including
Sat,(z) and its friends—is LL;.

Now, the induction axioms we’re trying to prove are those for formulae
of the form Jv; - - - Jv,(¢), where the initial quantifers may be of any
of the three available types, and ¢ is built from atomic formulae of S
and from the translations of the expressions of the object language and
atomic semantic formulae (Den,, (¢, x), val(c, x), etc). All of that is LL4, so
the induction axioms we'’re trying to prove are thus X;(LL1). And it just
so happens that 13, proves induction for ¥, (LL;) formulae (Hajek and
Pudlak, 1993, p. 85, Lemma 2.78). O

Proof of Theorem 4.11. The proof is essentially the same as the one just
given. In X5, however, we get a better bound on the complexity of the
model: It is low As. So the question is whether IX,, proves induction for
S, (low Ay) formulae, when n > 2. It does.®® O

4.7. Peano Arithmetic Is a Special Case (II). I've remarked several
times now that PA is in certain respects unrepresentative. We’re now in
a position to see another way in which that is so.

Corollary 4.16. TT 4[IX,,] + PA is interpretable in PA.

851t is provable in I3, that the Xo (low A) sets just are the X, sets (H4jek and Pudlék,
1993, p. 83, Theorem 2.71). That is much stronger than, but implies, the claim that 12,
has induction for 32 (low A,) formulae. It is easy to generalize this result to show that
the ¥, (low Az) sets are just the ¥, sets and so that I1X,, has induction for %, (low A3)
formulae.
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Proof. Any finite fragment of TT 4[IX,,] + PA is contained in one of the
theories: TT4[IX,,] + 132, and so by Theorem 4.11 is interpretable in
[¥,, + Con(1X,,). But PA, being reflexive, contains every such theory. So
every finite fragment of TT 4[IX,,,]+PA is interpretable in PA, which shows
that TT 4[I13,,] + PA is locally interpretable in PA. Orey’s Compactness
Theorem then does the rest. O

Corollary 4.17. TT 4[PA] + PA is interpretable in PA.

Proof. Any finite fragment of TT 4[PA] + PA is contained in one of the
TTA[IX] + PA. So TT 4[PA] + PA is locally interpretable in PA and hence
is globally interpretable in PA. O

Thus, the nice pattern we had with Theorem 4.10 and Theorem 4.11
breaks down when we take PA as object theory.®® This is because, as
previously, there is no reason to expect TT.[PA| + T to be able to prove
that all axioms of 7 are true when 7 is infinitely axiomatized.

Indeed, we can easily prove that TT 4[PA] + PA does not prove that all
axioms of PA are true.

Corollary 4.18. TT 4[PA| plus “all axioms of PA are true” proves Con(PA).
Indeed, TT 4[IX1] plus “all axioms of PA are true” proves Con(PA).

Proof. From Theorem 4.9. O
Corollary 4.19. TT.[PA] + PA does not prove that all axioms of PA are
true.

Proof. From Corollary 4.17, Corollary 4.18, and Goédel’s second. O

What this means is that, once we have disentangled the syntax from
the object-language, the ‘happy accident’ that permits CT[PA] to prove
Con(PA) is revealed as something more like a dirty trick. It is only
because of the interaction between the extended induction principle and
the theory whose consistency we are trying to prove that CT[PA] proves
Con(PA).

5. CLOSING
We may summarize the central results of this paper as follows.

Theorem. Let T be a finitely axiomatized, consistent theory in L.

i) If T 2 Q, then CT [T] interprets Q + Con(T) and hence is not
interpretable in T. (Corollary 3.9)

(i) If T 2134, then CT[T] proves Con(T). (Corollary 3.17)

(iii) CTIIX;] proves Con(PA) (Corollary 3.19)

(iv) TT,[Q] + T is mutually interpretable with Q 4+ Con(T), and so is
not interpretable in T. (Corollary 4.8)

86Similar results, as one can easily see, will hold for other reflexive theories.
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(v)  TT.[IX,]+ T is mutually interpretable with 13, + Con(T), for n > 0.
(Theorem 4.11)

(vi) TT,[PA] + T is mutually locally interpretable with PA + Con(T).
(Corollary 4.14)

Note that nothing has been said specifically about such theories as
TT,[I3], and I think it would be well worth investigating them. It’s of
course immediate that TT,[I3;] + 7 is not interpretable in 7, since even
TT,[Q] + 7 isn’t. But is there some nice characterization of exactly how
strong TT,[I3] + 7 is? In general, one would suppose it is stronger than
TT,[Q] + 7. On the other hand, one would suppose that TT[I%] + 7 is
weaker than TT,[IX;] + 7 and, in particular, that it does not interpret
I31 + Con(T). So where precisely does it sit? And what of intermediate
theories, like TT,[IAg] + 77

The results proven here are obviously similar to one of the central
results of Visser’s paper “Can We Make the Second Incompleteness
Theorem Coordinate Free?”

Theorem 5.1 (Visser, 2009a, Theorem 4.1). Suppose T is sequential.
Then PC(T) is mutually interpretable with Q + Con(T).

Here, PC(T7) is the result of adding predicative second-order logic to 7.
And that result gives rise to a characterization of consistency statements.

Theorem 5.2 (Visser, 2009a, Theorem 4.4). Con(7) is the unique II;
sentence P (modulo 1A + exp-provable equivalence) such that PC(T) is
mutually interpretable with Q + P.

A similar characterization is forthcoming from our results.®”

Theorem 5.3 (Nicolai, 2014, Proposition 3). If T is finitely axiomatizable,
then Con(T) is the unique I1; sentence P (modulo |Ag + exp-provable
equivalence) such that TT;[Q] + T is mutually interpretable with Q + P.

Unfortunately, this result, unlike Visser’s, is limited to finitely axioma-
tized theories. But it is natural to wonder whether we might not be able
to handle non-finitely axiomatized theories by proving something like:

Conjecture 5.4. Let T be a consistent theory in L. Then TT.[Q] plus
“all axioms of T are true” is mutually interpretable with Q + Con(7).

And if we could prove that, then perhaps we would also be able to prove:

Conjecture 5.5. Con(7) is the unique 11, sentence P (modulo 1A + exp-
provable equivalence) such that TT,[Q] + “all axioms of T are true” is
mutually interpretable with Q + P.

This suspicion has now been borne out. Nicolai (2014, Corollaries 6-8)
has recently proven both Conjecture 5.4 and Conjecture 5.5.

87This was conjectured in an earlier version of this paper.
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It also seems worth asking whether we get similar results for the case
in which induction has been extended:

Conjecture 5.6. Let T be a consistent theory in L. Then TT.[IX;] plus
“all axioms of T are true” is mutually interpretable with 1%, + Con(T).

Conjecture 5.7. Con(T) is the unique 11, sentence P (modulo 1A + exp-
provable equivalence) such that TT[I31] plus “all axioms of T are true”
is mutually interpretable with 13, + P.

These remain open as does, of course, the question whether some restric-
tion on the complexity of the formula specifying the axioms is needed.

Even when provable, however, such results do not serve the central
purpose Visser wanted his to serve, which was to give a characterization
of consistency statements that is independent of any issues involving cod-
ing. One can take some steps to minimize the extent to which the results
proven here do depend upon coding. As mentioned earlier, the syntactic
part of e.g. TT,[Q] could be (and maybe even should be) formulated using
a theory of concatenation, say, the theory TC due to Grzegorczyk (2005),
which is mutually interpretable with Q (Visser, 2009b). We can then add
the obvious sorts of induction axioms to TC, thus arriving at theories we
can use in place of 1X,, and PA. The proofs of the results just summarized
will transfer smoothly to such a framework. But, as Visser pointed out to
me, there are still many choices to be made about, for example, whether
we are using prefix, infix, or postfix notation, exactly what we take a
variable to be, and so forth. So some seemingly inessential choices still
seem to need making.

Still, the results proven here make it clear how close the connection
is between truth and consistency and also, in light of Visser’s results,
between truth and predicative comprehension.?® They should also make
it clear that theories of truth in which the syntactic theory is disentangled
from the object theory are of substantial technical utility, at least, since
they allow us to formulate and prove a number of nice results that are
otherwise unavailable.

My own view is that these results also have significant philosophical
implications, but that matter will have to be left to another occasion
(Heck, 2014b).%%

88Mostowski (1950) seems to have been the first to realize that there is some such
connection. Philosophers’ appreciation of it is largely due to Parsons (1974). Van Wesep
(2013) has returned to the issue recently.

89This paper is one of several to emerge from an earlier manuscript, “The Strength
of Truth Theories” (Heck, 2009). That paper not only contained the technical material
presented here but a discussion of its philosophical significance and its bearing upon
questions about the nature of what Tarski called “essential richness”. For reasons that
ought to have been obvious to me much sooner, that paper became unmanageable and
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