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1. Opening

Recent research has revealed three important points about Frege’s philosophy of arithmetic.

First, his attempt to derive axioms for arithmetic from principles of logic does not require Frege to

appeal to his Axiom V, the axiom which gives rise to Russell’s Paradox. The proofs sketched in Die

Grundlagen der Arithmetik depend only upon what (alluding to Frege’s method of introducing it) may be

called Hume’s Principle: The number of Fs is the same as the number of Gs just in case there is a one-

one correspondence between the Fs and the Gs.1 Formally, the relevant result is that, if a formalization of

this Principle is added as an axiom to standard, axiomatic second-order logic, second-order arithmetic

can be interpreted in the resulting theory.2 Secondly, this theory—which may be called Fregean

Arithmetic—is itself interpretable in second-order arithmetic and so, presumably, is consistent.3 And

thirdly, Frege’s own formal proofs of axioms for arithmetic, given in his Grundgesetze der Arithmetik,

do not depend essentially upon Axiom V.4 Indeed, Frege himself knew that he did not require any more

than Hume’s Principle, this being essential if he is to draw certain of the philosophical conclusions he

wishes to base upon his formal results.5

All of this having been said, the question arises why, upon receiving Russell’s famous letter,

Frege did not simply drop Axiom V, install Hume’s Principle as an axiom, and claim himself to have

established logicism anyway. The question is not only of historical interest. Though Frege did not

himself adopt it, this position has seemed to some a worthy heir to Frege’s logicism: On one version of

it, Hume’s Principle is thought of as embodying an explanation of the concept of number, whence, even

though it is not a principle of logic, perhaps it has a similarly privileged epistemological position. In

attempting to evaluate this contemporary view, I for one would very much like to know why Frege did

not adopt it.

The historical question is made pressing by the fact that, in a letter to Russell, Frege explicitly

considers adopting Hume’s Principle as an axiom, remarking only that the “difficulties here” are not the

same as those plaguing Axiom V.6 Frege says nothing else about these “difficulties”, but he must surely

have had in mind the “third doubt” discussed in Gl §§66ff. It is this which forces Frege to abandon
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Hume’s Principle, understood as a free-standing explanation of names of numbers, and to replace it with

an explicit definition from which Hume’s Principle may be derived. Transposed from the context of his

discussion of an analogous principle governing names of directions, the worry is this:

In the proposition
[“the number of Fs is the same as the number of Gs”]

[the number of Fs] plays the part of an object, and our definition affords us a means of
recognizing this object as the same again, in case it should happen to crop up in some
other guise, say as [the number of Gs]. But this means does not provide for all cases. It
will not, for instance, decide for us whether [Julius Caesar] is the same as [the number
zero]—if I may be forgiven an example which looks nonsensical. Naturally, no-one is
going to confuse [Julius Caesar] with [the number zero]; but that is no thanks to our
definition of [number]. That says nothing as to whether the proposition

[“the number of Fs is identical with q”]
is to be affirmed or denied, except for the one case where q is given in the form of [“the
number of Gs”]. What we lack is the concept of [number]; for if we had that, then we
could lay it down that, if q is not a [number], our proposition is to be denied, while if it is
a [number], our original definition will decide whether it is to be affirmed or denied. (Gl
§66)

This is what I shall call the Caesar objection. As said, it is his inability to answer this objection that

forces Frege to give an explicit definition in Gl §68, which definition requires reference to extensions

and so requires (something like) the disastrous Axiom V.

To understand why Frege could not treat Hume’s Principle as an axiom, we must understand the

Caesar objection. But this has proved far from easy. I myself have come to the conclusion that the Caesar

objection does not pose any single problem, but at least three different, though related, ones. I can not

discuss all of these here, so let me simply indicate two of them, if only to set them aside.

The first problem is epistemological. Frege raises the Caesar objection against a proposed

answer to the famous question of Gl §62, “How, then, are numbers to be given to us, if we cannot have

any ideas or intuitions of them?” Frege takes it that, to answer this question, it is necessary and sufficient

to explain the senses of identity-statements in which number-words occur (this claim being underwritten

by the context principle—see Gl p. x and §107). The suggestion Frege is considering when he raises the

Caesar objection is that this may be done by means of Hume’s Principle. So the view against which the

Caesar objection is offered is this: We recognize numbers as the referents of names of the form “the

number of Fs”, and our understanding of these names consists (wholly) in our grasp of Hume’s Principle.

Frege’s objection to this view is, once again, that Hume’s Principle “will not, for instance, decide for us

whether [Caesar] is the same as the [number zero]...” (Gl §66). He concludes, since he is unable to
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answer the objection, that Hume’s Principle fails as an explanation of the senses of identity-statements

containing names of numbers. Now, the Caesar objection does seem to show that Hume’s Principle, on

its own, does not provide a sense for all identity-statements containing names of numbers.7 But why

should that be thought a difficulty?

It is rarely mentioned that Frege takes for granted we do recognize that Caesar is not a number.

If, as is often said, his objection were that Hume’s Principle does not decide the truth-values of all

‘mixed’ identity-statements, then our intuitions about the truth-value of this particular ‘mixed’ identity-

statement would be quite irrelevant. But it is important to remember that Frege raises the Caesar

objection in the context of a particular argument: One should not be so distracted by its apparent

generality that one imagines it raised in a vacuum, so that it could only depend upon some general

requirement that every well-formed sentence must have a truth-value. The specific objection Frege raises

is not e.g. that Hume’s Principle does not decide whether the singleton of the null set is the number zero

(which, on Frege’s explicit definition, it happens to be). The example Frege chooses is one about which

he takes us to have strong intuitions: Whatever numbers may be, Caesar is not among them. Thus, one

might think, there must be more to our apprehension of numbers than a mere recognition that they are the

references of expressions governed by Hume’s Principle. Any complete account of our apprehension of

numbers as objects must include an account of what distinguishes people from numbers. But Hume’s

Principle alone yields no such explanation. That is why Frege writes: “Naturally, no one is going to

confuse [Caesar] with the [number zero]; but that is no thanks to our definition of [number]” (Gl §62).8

The second problem raised by the Caesar objection is semantical, though it has obvious

epistemological overtones. Hume’s Principle is supposed to explain names of numbers, expressions

which must be treated, semantically, as purporting to refer to objects, the numbers. Only if expressions of

the form “the number of Fs” are so understood, as purporting to refer to objects, can our capacity to refer

to numbers be explained in terms of our grasp of Hume’s Principle. But why is “The number of Fs is the

number of Gs”, as explained by Hume’s Principle, not just an idiomatic rendition of “There is a one-one

correlation between the Fs and the Gs”? On what ground is it claimed that the former sentence has the

sort of semantic, as opposed to orthographic, structure it needs to have? If this explanation of ‘identity-

statements’ involving ‘names of numbers’ really does license us so to treat those statements, then the



4

understanding conveyed by Hume’s Principle must enable us to understand such predicates as “� is the

number of Gs”, these being true or false of objects. These predicates are formed, after all, merely by

omitting a semantic constituent from the sentences so explained. To put the point differently, if “the

number of Fs” is a semantic constituent of such sentences, it must be replaceable by a variable: There

must be an intelligible question, as it were, whether the open sentence “x is the number of Gs” is true or

false of any particular object, independently of how it might be given to us (cf. Gl §67). But Hume’s

Principle does not even appear to explain sentences of the form “x is the number of Gs”, but only

statements of the form “the number of Fs is the number of Gs”.9 The best we seem able to do is to

understand such questions as whether the open sentence is true when a term of the form “the number of

Fs” is substituted for the variable. But that is to invite the question whether our understanding of

quantification over numbers is not merely substitutional; and if so, it would seem that our capacity to

refer to numbers (at least, as objects independent of our ways of thinking of them) has not been

explained.10

To summarize: To meet the Caesar objection, one must meet at least two challenges. The first is

to show how, on the basis of the understanding of names of numbers captured by Hume’s Principle, one

can come to understand questions of ‘trans-sortal identification’ and, in particular, to know that numbers

are of a sort different from people and other such objects.11 The second is to explain how, on the same

basis, one can arrive at an understanding of such predicates as “� is the number of Gs”. These two

challenges apply not only to the explanation of names of numbers embodied in Hume’s Principle, but to

any ‘contextual’ explanation of names, e.g., to the analogous explanation of names of directions

considered in Die Grundlagen. Since Frege raises the Caesar objection both against this explanation of

names of directions and against that of number in terms of Hume’s Principle, some quite general

problems must be raised by the Caesar objection. One should not conclude, however, that the Caesar

objection does not also raise quite specific problems in the case of numbers. Such an aspect of the Caesar

objection is what I wish to discuss here.

The Caesar objection is first raised in quite a different context. In Gl §55, Frege considers an

‘inductive’ definition of cardinal numbers, the two important clauses of which are:

the number 0 belongs to a concept, if the proposition that a does not fall under that
concept is true universally, whatever a may be.
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the number (n+1) belongs to a concept F, if there is an object a falling under F and such
that the number n belongs to the concept “falling under F, but not a”.

Among the objections Frege makes to these definitions is that “we can never—to take a crude example—

decide by means of our definitions whether any concept has the number Julius Caesar belonging to it, or

whether that same familiar conqueror of Gaul is a number or not” (Gl §56). It is utterly implausible that

this occurrence of the Caesar objection should not be closely related to that in Gl §66. Part of my goal

here is to explain how these two objections are related and so to throw light on them both.

The remainder of this paper consists of four sections. In section 2, I shall discuss a version of the

Caesar objection which Frege raises in Grundgesetze. Explaining why Frege is compelled to answer the

question whether the True is a ‘value-range’ will motivate my treatment of the Caesar objection, as it

arises in Die Grundlagen. In section 3, I shall argue that the Caesar objection arises, in Gl §56, as a

manifestation of a technical obstacle to the development of arithmetic on the basis of the inductive

definitions considered in §55. Furthermore, the later occurence of it, in §66, is connected to a similar

technical obstacle to the development of arithmetic on the basis of Hume’s Priniciple, the most obvious

way of overcoming which forces Frege to provide a sense for such sentences as “Caesar is the number

zero”. In section 4, I shall argue that the technical obstacle can be overcome in an unobvious way, and so

that there is a way of founding our knowledge of arithmetic on (an analogue of) Hume’s Principle which,

to some extent, sidesteps the Caesar objection. The resulting conception of the genesis of our knowledge

of arithmetic has, I think, independent virtues, some of which I shall mention in the closing section 5.

2. Why the Caesar Objection Has To Be Taken Seriously

One common view about the Caesar objection is that the demand that a sense be provided for

“Caesar is the number zero” is a consequence of Frege’s general “requirement as regards concepts that,

for any argument, they shall have a truth-value as their value...”.12 It follows from this that, if “F(0)” has

a truth-value, every sentence resulting from the replacement of “0” by some other proper name must also

have a truth-value. But there is no indication that, at the time of writing Die Grundlagen, Frege

subscribed to this ‘requirement of complete determination’; this interpretation of the Caesar objection

thus reads post-1891 doctrines back into Die Grundlagen without independent justification. 
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Indeed, even though Frege does subscribe to the requirement of complete determination in his

mature period, and even though it does lead to the Caesar objection, Frege does not raise analogues of

the Caesar objection, even in his mature period, solely because he subscribes to this requirement. In

Gg I §10, Frege considers the question whether truth-values—which, for him, are the referents of

sentences—are value-ranges, and if so, which value-ranges they are; that is, whether such sentences as

“The True is the value-range of the concept non-self-identical” are true or false. Frege shows, by means

of the so-called ‘permutation argument’ presented in Gg I §10, that the semantical stipulations he has

made up to that point do not decide such questions.13 Frege eventually stipulates that the True is to be its

own unit-class, and the False, its own unit-class, and argues, in Gg I §31, that this stipulation, together

with those made earlier, suffices to provide every expression of the theory with a unique reference.14

Obviously, however, the requirement of complete determination will force Frege to provide the

sentence “The True is the value-range of the concept non-self-identical” with a sense only if it is well-

formed. Once made, the point is obvious: The version of the Caesar objection discussed in Gg I §10

would not arise if Frege did not treat truth-values as objects, sentences as singular terms; and so, his

insistence that every well-formed sentence must have a truth-value can not, on its own, explain why this

or any other instance of the Caesar objection should arise. The question is why Frege insists upon

treating sentences as singular terms when doing so causes so much trouble. Answering this question will

help us to understand the answer to the analogous question concerning the instance of the Caesar

objection discussed in Die Grundlagen.

It is almost cliché to remark that Frege’s texts are conspicuously thin on argument for the claim

that sentences are proper names. His argument, such as it is, is that sentences are ‘saturated’, like proper

names; hence, sentences can not be functional expressions, and so must be proper names. But this

argument is, to put it kindly, unpersuasive: Why shouldn’t there be more than one kind of saturated

expression, just as there are different kinds of ‘unsaturated’ expressions? Given just how poor this

argument is, I strongly suspect that Frege is not concerned to establish that truth-values ‘really are’

objects at all, but rather that they can be so treated, should that be convenient.15 So perhaps it would be

best to inquire why one might want to treat truth-values as objects.



7

Dummett has suggested that doing so simplifies Frege’s formal system by simplifying its

ontology. If we treat truth-values as objects, then we need not distinguish between concepts (that is,

functions whose values are always truth-values) and functions more generally. Nor need we distinguish

between one-place functions whose arguments are always truth-values and others.16 Now, I have no

quarrel with Dummett’s claim that Frege was motivated to treat truth-values as objects because doing so

simplifies his system somehow, but I am not sure he has identified the nature of the simplification the

identification effects.

Frege’s Axiom V governs terms which (purport to) stand for what he calls value-ranges. As it is

often formulated, Axiom V is:

(Vc) �.F� = �.G� iff �x(Fx � Gx)

Thus, the extension of the concept F� is the same as that of the concept G� just in case these concepts are

co-extensive. As Frege formulates Axiom V, however, it reads:

(Vf) �.F� = �.G� iff �x(Fx = Gx)

Thus, the value-range of the function F� is the same as that of the function G� just in case these

functions have the same value for every argument. Now, in the sort of theory with which we are most

familiar—namely, one which distinguishes the logical types of sentences from those of proper names—

one might well want to take both Vc and Vf as axioms.17 In Frege’s theory, however, since sentences are

of the same logical type as proper names, one-place (first-level) functions are of the same logical type as

one-place (first-level) concepts. So, for Frege, Axiom Vf includes Axiom Vc as a kind of special case.

Frege uses Axiom Vf, in large part, so that he may speak of the value-ranges of one-place

functions, instead of speaking of the functions themselves.18 But it also allows him to speak of the value-

ranges of two-place functions, which he calls double value-ranges. Consider, for example, the function

‘�+�’. Fix one of its arguments, say the second, and consider the function ‘�+2’. The value-range of this

function, �.�+2, is the graph of the function whose value, for a given argument x, is x+2. Suppose the

second argument is now allowed to vary; the resulting value-range, �.�+n, will be the graph of the

function whose value, for given argument x, is x+n. What then is the value-range of the function �.�+�?

It is the double value-range �[�.�+�], the graph of the function whose value, for argument y, is the

value-range �.�+y.19 This double value-range Frege uses as if it were the value-range of the two-place
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function itself. And it is easy to see that ��.f�� = ��.g�� if, and only if, �x�y(fxy = gxy), this being

Theorem 2 of Grundgesetze.

By means of this lovely construction,20 Frege manages to do without special axioms governing

the value-ranges of two-place (and similarly, many-place) functions. Not that it would have been a

difficult matter to formulate such axioms, but the use of double value-ranges certainly does simplify

Frege’s system. The same construction enables Frege to utilize the double value-range ��.�R� of the

relation �R� as if it were its extension. And it is at this point that the utility of Frege’s identification of

truth-values as objects becomes apparent: One can see this by considering what would happen were we

to try to mimic Frege’s use of double-value-ranges in a theory which did not treat truth-values as objects.

Consider, first, a theory containing only Axiom Vc. The ‘double extension’ term “�[�.�<�]”, which one

might have supposed could serve as a term denoting the extension of the relation �<�, is not even well-

formed. Extension terms are formed by prefixing ‘�’, say, to a one-place predicate, the argument-place

of which is then filled by ‘�’. But “�.�<�” is not a predicate at all; it is a functional expression. That this

expression is not of the correct type for the formation of extension terms is a consequence of the fact that

truth-values are of a different logical type from extensions: Only if truth-values are of the same logical

type as extensions, will concepts—i.e., functions from objects to truth-values—be of the same logical

type as functions from objects to extensions.

Now, it is true that one does not have to treat truth-values as objects to effect something like

Frege’s reduction of the extensions of relations to those of concepts. One remedy is to add Axiom Vf to

the theory and write “�[�.�<�]” instead of “�[�.�<�]”; the extension of �<� is then the value-range of

the function �.�<�. Really to see to what Frege’s treating truth-values as objects amounts, however, one

needs to consider a different remedy, which involves neither identifying truth-values as objects nor

taking both Vc and Vf as axioms.21

We continue to suppose that we working in a language which distinguishes the logical types of

names and sentences. Suppose, now, that we limit ourselves to Axiom Vf. We can then speak, easily

enough, of the single and multiple value-ranges of functions. Can we also be speak of the extensions of

concepts? A familiar trick will enable us to do that, too: We can employ characteristic functions.22 To do
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so, we require a description-operator ‘	’ 23 and two arbitrary objects—which we denote by ‘F’ and ‘T’.

We then define the extension of the concept 
� as follows:

�.
� = �.	x.[(
� & x=T) � (¬
� & x=F)]

Thus, the extension of 
� is the value-range of the function whose value, for given argument x, is T if x

is 
; F, if x is not 
. It is easy enough to show that, so defined, ‘�.
�’ satisfies Axiom Vc.

In fact, one could go yet further and refuse to make any serious use of anything but characteristic

functions. Instead of introducing primitive relations into the system, for example, one would introduce

their characteristic functions. One could even introduce the logical constants in terms of their

characteristic functions: Expressions such as “2+2=4 � 1+1=3” would then be names, not sentences. To

be able to form sentences (and so make any assertions), one would need to have at least one real

predicate in the language, and the most natural choice for such a predicate would be one which meant: �

is identical with T. This predicate would be remarkably like Frege’s horizontal, which means: � is

identical with the True; indeed, one might wonder whether he had something like this construction in

mind when he wrote, in Begriffsschrift, that the system has only one predicate.24 Thus, although Frege

could have distinguished truth-values from objects and still been able to make do with Axiom Vf, he

does not take this course: What he effectively does is to identify concepts with their characteristic

functions. Once the identification is made, the truth-values become the objects T and F, in terms of

which the characteristic functions were defined. Nothing could be more natural, mathematically

speaking.25

Treating sentences as of the same logical type as proper names thus has substantial technical

advantages in the context of Frege’s system. Once one sees that it amounts to identifying concepts with

their characteristic functions, it should not seem all that perplexing. Nonetheless, Frege’s making this

move imposes certain obligations on him. As he understands the notion of logical type, two expressions

are of the same logical type only if they are intersubstitutable salva significatione. Thus, if there is any

sentence of the form ‘...t...’ which has a sense, and a corresponding sentence of the form ‘...u...’ which

does not, then t and u can not be of the same logical ‘Sort’.26 Hence, if truth-values are of the same Sort

as value-ranges, identity-statements such as “The True = �.���” simply must have a sense, since “�.���

= �.���” most certainly does.



10

3. The Caesar Objection and the Feasibility of the Logicist Project

We have seen that the version of the Caesar objection Frege considers in Grundgesetze arises

because he takes value-ranges and truth-values to be of the same logical Sort. More generally, a version

of the Caesar objection will arise whenever one makes such suppositions about the Sorts of objects of

apparently different kinds. For example, if one supposed that (names of) directions had to be of the same

logical Sort as (names of) the lines whose directions they were, “� = dir(�)” would have to have a sense.

For to say that ‘�’ and ‘dir(�)’ are of the same logical Sort is just to say that they are intersubstitutable

salva significatione, whence this sentence must have a sense, since “dir(�) = dir(�)” does.

Why, then, does Frege raise the question whether Caesar is a number in Die Grundlagen? One

might suggest that it is because he is assuming that all objects are of a single logical Sort: That would

certainly give rise to the Caesar objection. But Frege does not argue for this claim, which is not so much

as mentioned. A similar answer could, of course, be given to the question why Frege raises the Caesar

objection in Grundgesetze. But, even though Frege did then hold that all objects belong to a single Sort,

he had a specific, technical reason to suppose that truth-values and value-ranges were of the same Sort.

One might wonder, therefore, whether there is not, in the case of Hume’s Principle, too, a similarly

specific reason Frege needed to suppose that numbers were of the same Sort as objects of other kinds.

Imagine a language, devoid of mechanisms for reference to numbers, into which names of

numbers are to be introduced by means of Hume’s Principle. Prior to the definition of names of numbers,

the speakers of this language may be supposed to understand names of, and predicates true or false of,

objects of various other kinds; among these basic objects, one might suppose, will be such things as

people and trees and rocks and rivers.27 Hume’s Principle will, in the first instance, explain (or define)

terms of the form “the number of Fs”, where “F�” is a predicate true or false of basic objects. Once

speakers have understood the contextual explanation of these terms, they will understand terms which

refer to numbers, such as “the number of Roman emperors”, and predicates true or false of numbers,

such as “� is a number less than 5”.28 Now, if names of numbers, so explained, were of the same Sort as

names of basic objects, a version of the Caesar objection would arise: The question whether Caesar is a

number, and, if so, which one he is, would have to be provided with an answer. But why does Frege

suppose that numbers are of the same Sort as basic objects?
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This supposition is not gratuitous; nor is it based upon some prior assumption that all objects are

of the same Sort. The need for the supposition is connected with Frege’s oft-repeated insistence that

numbers can themselves be counted.29 One way to explain the force of this idea would be to observe that,

once names of numbers have been introduced by means of Hume’s Principle, no further explanation of

such expressions as “the number of numbers less than 5” would appear to be required. One would expect

speakers immediately to understand such expressions and to know, for example, that “the number of

Roman emperors is the same as the number of numbers less than 5” is true if, and only if, there is a one-

one correlation between the Roman emperors and the numbers less than 5. It would appear to follow that

the predicates “� was a Roman emperor” and “� is a number less than 5” must be of the same Sort, for

the names explained by Hume’s Principle contain predicates of a single Sort, namely, those of the same

Sort as “� was a Roman emperor”. But predicates of this Sort are predicates true or false of objects of the

same Sort as basic objects (for the Sorts of predicates are determined by the Sorts of their acceptable

arguments). Hence numbers must be of the same Sort as basic objects; hence the question what to make

of “Caesar is the number zero”.30

Frege’s insistence that numbers can be counted is also important within the context of his

logicism. The counting of numbers—that is, the use of terms of the form “the number of numbers less

than 5”—is essential to the execution of the logicist project, as Frege envisions it. Frege proves that

every number has a successor by showing that every natural number n is succeeded by the number of

numbers less than or equal to n; the proof thus makes essential use of numerical terms which contain

predicates true or false of numbers. Hence—to reprise the above—if expressions such as “the number of

numbers less than 5” are supposed to have been explained by Hume’s Principle, names of numbers

apparently must be of the same Sort as names of persons.

There is a deep misunderstanding of what has just been argued which must be avoided here. One

might well remark that the use of terms of the form “the number of numbers less than or equal to n” is

not essential to Frege’s proofs, since he could equally well have used terms formed from predicates true

or false of objects of other sorts. Suppose, for example, that Axiom V is in place and that predicates true

or false of value-ranges are substitutable into Hume’s Principle (i.e., that value-ranges are ‘basic

objects’). Consider the sequence of value-ranges: �.���, �.�=�.���, etc., i.e., the sequence beginning
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with the empty value-range which is determined by taking, at each step, the singleton of that at the

previous step. It is not difficult to show that, for each natural number n, there is a concept true of exactly

the first n members of this series; since the series is unending, there will be a concept F� under which fall

those value-ranges and the next one in the series.31 It will then be an easy matter to show that the number

of Fs is the successor of n.

As a technical observation, this is plainly correct: If Frege had been willing to make such an

appeal to Axiom V, or if he had been willing to appeal to an axiom of infinity, he could have done

without the claim that numbers are of the same Sort as ‘basic objects’. But it is precisely appeal to a

special axiom of infinity that Frege is trying to avoid, since part of his purpose is to explain the genesis

of our knowledge that there are infinitely many objects. Of course, Hume’s Principle, as it is usually

formulated, is an axiom of infinity; but that fact is uninteresting, since it is completely obvious that any

principles from which the truths of arithmetic can be derived will imply the existence of infinitely many

objects. To object to Frege’s use of Hume’s Principle simply on the ground that it is an axiom of infinity

is to object that his premises imply his conclusion. What is interesting about Hume’s Principle is not so

much that it implies the existence of infinitely many objects, but that the infinitely many objects whose

existence it implies are, or at least are intended to be, precisely the natural numbers.32 Even if one does

not go on to claim that Hume’s Principle is a conceptual truth, or an explanatory principle, or any other

such thing, it is still one thing to rest one’s development of arithmetic upon a principle implying that

there are infinitely many cardinal numbers, and something else entirely to presuppose that there are

infinitely many objects of some other, possibly even non-mathematical, kind (as do both Dedekind and

Russell). This is why I said, above, that Frege wants to avoid appeal to a special axiom of infinity.

What then of proving the infinity of the series of natural numbers by means of a direct appeal to

Axiom V? The answer is similar, but more complicated. Note first that Frege would certainly have

refused to make any direct appeal to his explicit definition of numbers in giving his proofs. Though

Hume’s Principle is derived from the explicit definition, by means of Axiom V, it is essential, if he is to

draw certain of the philosophical conclusions he bases upon his formal project, that Frege make no

further appeal to the explicit definition. The reason is easy enough to state. Any explicit definition of the

natural numbers as value-ranges will have some arbitrary features. There is no reason Frege had to define
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the number of Fs as the class of all concepts equinumerous with F�; he could just as well have defined it

as the class of all concepts smaller than F�, or as any of indefinitely many other classes. Now, Frege

wishes to claim that the truths of arithmetic, being consequences of this definition, are analytic of the

concept of number. But how can that be, if the definition has admittedly arbitrary features? The answer is

that Frege need not claim that all consequences of the definition are analytic of the concept of number,

but only that those which do not depend upon any of its arbitrary features are. But what is non-arbitrary

about the definition is precisely that it yields Hume’s Principle: So a theorem depends upon no arbitrary

features of the definition just in case it is provable from Hume’s Principle, without any further appeal to

the explicit definition.33

In itself, this does not show that Frege would have refused to appeal directly to Axiom V in his

proof of the infinity of the number-series. That he would is suggested by the fact that he did not do so,

for it would be at least a little bit surprising if he had avoided making essential appeal to Axiom V in his

proofs of the axioms of arithmetic for no very good reason. My own view is that Frege thought that

arithmetic rests, in a sense, upon Hume’s Principle alone, that nothing besides logic and this very general

principle concerning the conditions under which numbers are to be ascribed to concepts is required for

the proof of the axioms of arithmetic. That proof, however, does not establish logicism, for the question

of the epistemological status of Hume’s Principle just begs to be asked. The role of Axiom V, I think, is

simply to underwrite the logical status of Hume’s Principle and not in any way to undermine its

centrality. But all of that is really just so much speculation at this point. I shall have to leave matters

there for the present and simply claim that, for some such reasons as these, Frege would politely have

declined the appeal to Axiom V offered him earlier. If so, then he would have had reason to regard the

claim that numbers are of the same Sort as basic objects as essential to the sort of proof of the infinity of

the number-series required by his philosophical purposes.

The argument given so far shows merely that the proofs Frege gave of the axioms of arithmetic

require the assumption that numbers are of the same Sort as basic objects: It does not show that those

axioms can not be proven, or that Frege would have had reason to suppose they can not be proven,

without that assumption. Consider, then, a formulation of Hume’s Principle in a two-sorted language.

There are ‘basic’ individual variables, ‘x’, ‘y’, and the like, and ‘numeric’ individual variables, ‘x’, ‘ y’,
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and the like. There are also basic and numeric predicate variables, ‘F’, ‘G’, and ‘F’, ‘ G’, respectively.

And there are relation variables of various kinds, the logical types of which may be indicated by

subscripts: ‘Rbn’ is a relation variable whose first argument must be basic and whose second must be

numeric; ‘Rbb’, one both of whose arguments must be basic; and so on.34 As for identity, there is not one

identity-sign in this language, but two, which we might write as ‘=b’ and ‘=n’; no ‘mixed’ identity-

statement will be well-formed. A version of Hume’s Principle may then be formulated as follows:

Nx:Fx =n Nx:Gx iff �Rbb{�x�y�z�w(Rbbxy & Rbbzw � x=bz � y=bw) & 
�x[Fx � �y(Gy & Rbbxy)] & �y[Gy � �x(Fx & Rbbxy)]}

That the ‘N’ is boldface indicates that terms governed by Hume’s Principle are numeric. Note that, in

this language, there is no well-formed term such as “Nx:(x =? Ny:y�y)”, the terms appearing on either

side of ‘=’ being of different Sorts.

What will one be able to prove in a theory whose sole non-logical axiom is this version of

Hume’s Principle? The answer is somewhat surprising. Frege’s definition of predecession can be

formulated as follows:

P(m,n) iff �F�x[n =n Nx:Fx & Fy & m =n Nx:(Fx & x�by)]

His definitions of “0” and the predicate “� is a natural number” can also be stated without difficulty:35

0 =ndf Nx:x�x
�n �df �F[F0 & �x(Fx & P(x,y) � Fy) � Fn]

Now, where ‘P*(�,�)’ denotes the strong ancestral of ‘P(�,�)’, the axioms of arithmetic, as Frege

formulates them, may be stated as follows:36

1. �x�y�z[P(x,y) & P(x,z) � y =n z)
2. ¬�x.[�x & P*(x,x)]
3. �x[�x � �y.P(x,y)]
4. �n � �F[F0 & �x(Fx & P(x,y) � Fy) � Fn]

Frege’s own proofs of axioms (1) and (2) may simply be carried over into this new theory; axiom (4)

follows immediately from the definition of ‘��’. That one can not prove axiom (3), however, may be

easily shown: Simply consider the model in which the basic domain contains only Caesar, in which the

numerical domain contains only 0 and 1, and in which terms of the form “Nx:Fx” are interpreted in the

obvious fashion. It follows that all of Frege’s axioms for arithmetic, other than the third, may be proven

in this theory.
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The foregoing was known to Frege. He should be understood as arguing, when he first raises the

Caesar objection in Die Grundlagen, precisely this: That, without the assumption that numbers are of the

same Sort as basic objects, the logicist program is impossible. Recall that the inductive definition of

cardinal numbers which Frege considers in Gl §55 may be formalized as follows:37

�0x.Fx �df ¬�x.Fx
�n+1x.Fx �df �y[Fy & �nx(Fx & x�y)]

In Gl §56, he writes that “these definitions suggest themselves so spontaneously in the light of our

previous results that we shall have to go into the reasons why they cannot be reckoned satisfactory”. He

makes three objections. The first is that “we can never...decide whether any concept has the number

Julius Caesar belonging to it, or whether that same familiar conqueror of Gaul is a number or not”. The

second is that “we cannot by the aid of our suggested definitions prove that, if the number a belongs to

the concept F and the number b belongs to this same concept, then necessarily a=b”. The third is that

“[i]t is only an illusion that we have defined 0 and 1; in reality we have only fixed the senses of the

phrases ‘the number 0 belongs to’ and ‘the number 1 belongs to’...”. Our task here is to understand the

nature of these objections.

Note first that Frege’s concern, in Gl §§55-6, is not just with the question whether the inductive

definition suffices to explain ascriptions of number to concepts. Were that Frege’s chief concern, one

would have expected him to point out that, if the numbers are defined in accord with the inductive

definition, one can not prove that each concept has at least one number.38 What are defined are the

second-level predicates: �0x.
x, �1x.
x, �1+1x.
x, and so on. The inductive definition does not provide

an answer for every question of the form “How many Fs are there?” and, in particular, does not do so if

there are infinitely many Fs. But Frege does not even raise this objection: He is here concerned only with

finite numbers. 

At this point in Die Grundlagen, Frege is beginning his discussion of the concept of number. As

noted, he says that the inductive definitions “suggest themselves...spontaneously in the light of our

previous results...” (Gl §56). The results in question are, essentially, two: First, “that the individual

numbers are best derived...from the number one [better, zero] together with increase by one” (Gl §18);

and, secondly, “that the content of a statement of number is an assertion about a concept” (Gl §46). Now,

the ‘inductive’ character of the definitions certainly embodies the first of these results. What embodies
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the second is the fact that, as the numbers are here defined, they are second-level concepts, properties of

concepts. That this view is Frege’s target is confirmed by his pointing out, at the beginning of Gl §57,

that, contrary to what one might have thought, it does not follows from the fact that a statement of

number ascribes a property to a concept that “a number [is] a property of a concept”. It is by disposing of

this view that Frege means to motivate his alternate view, that numbers are objects.39 His central point,

I think, is that, if the numbers are defined as second-level concepts, as numerically definite quantifiers,

the basic laws of arithmetic will not be provable, not at least without some further assumptions.

There is no difficulty with the definitions of the fundamental notions. ‘Zero’ may be defined as

‘�0x.
x’; and the ‘inductive’ part of the definition may be recast as a definition of the relation of

predecession:40

Pred�[Qx.
x,Rx.
x] �df �F[Rx.Fx � �y(Fy & Qx.(Fx & y�x))]

That is to say, the second-level concept Rx.
x will be the successor of the second-level concept Qx.
x

just in case: A concept F� falls under Rx.
x if, and only if, there is an object, y, which is F, such that the

concept F� & y�� falls under Qx.
x. Finally, then, the concept of a natural number may be defined by

means of a fourth-order analogue of Frege’s definition of the ancestral. An easily proven Lemma, to be

needed shortly, is that, if Qx.
x is a ‘natural number’, then the concepts falling under Qx.
x are

equinumerous with one another, that is, Qx.
x is numerically definite.

Given these definitions, versions of Frege’s axioms of arithmetic will be formulable. The first

axiom, stating that the relation of predecession is functional, is a trivial consequence of the extensionality

of (second-level) concepts: For if both Rx.
x and Tx.
x succeed Qx.
x, then Rx.Fx � �y(Fy & Qx.(Fx

& y�x)) � Tx.Fx, so �F(Rx.Fx � Tx.Fx).41 The fourth axiom, induction, is again a trivial consequence

of the definition of natural number. In this case, moreover, it is immediate that every number has a

successor. For Qx.
x will have a successor just in case some second-level concept Rx.
x satisfies

�F[Rx.Fx � �y(Fy & Qx.(Fx & y�x))]

But the sentence stating that there is such a concept is just an instance of (third-order) comprehension.

The only interesting case, really, is that in which there are exactly n objects in the domain, for some

natural number n. In this case, the successor of �nx.
x will be the empty second-level concept, 	x.
x,
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which is false of every concept: For, if there are exactly n objects, then there are no concepts F� for

which there is some object y such that F� & y�� falls under �nx.
x. Similarly, 	x.
x succeeds itself.

Thus is the third of Frege’s axioms for arithmetic proved. But the second axiom, which states

that no natural number ancestrally follows itself, is not provable. For, as just noted, if the domain is

finite, 	x.
x will be a ‘natural number’ which immediately, and so ancestrally, succeeds itself. Where,

then, would an attempt to mimic Frege’s proof of this axiom fail? As an examination of the proof will

show, the only arithmetical facts upon which it depends are that zero has no predecessor and that

different numbers have different successors.42 But the latter is not provable. For suppose that the domain

contains exactly Caesar. Then the concept ��� will be the only concept falling under �0x.
x; the

concept �=�, the only concept falling under �1x.
x; and there will be no concept falling under �1+1x.
x,

nor any falling under �1+1+1x.
x; and so on. �1+1x.
x will therefore be the same second-level concept as

�1+1+1x.
x, namely 	x.
x; hence, the successor of �1x.
x will be the same as that of �1+1x.
x.

What is needed if we are to prove that �1+1x.
x is different from �1+1+1x.
x is a proof that there

are at least two objects. What is needed to prove that �nx.
x is different from �n+1x.
x is a proof that

there are at least n objects. What is needed if we are to prove that all such quantifiers are distinct is a

proof that, for each n, there are at least n objects. What Russell and Whitehead do in Principia

Mathematica is simply to assume this claim: It is their axiom of infinity. Frege’s objection to this would

have been that to adopt an axiom of infinity is to abandon the epistemological project of accounting for

our knowledge of the basic laws of arithmetic, for our knowledge of the infinity of the series of natural

numbers, in particular. It would be more honest simply to assume that different numbers have different

successors (a proposition to which the axiom of infinity is equivalent in Principia).43

Frege’s own proof that there are infinitely many numbers will not even be formulable, for one

can not, given the inductive definitions alone, so much as make sense of such predicates as “�=0 � �=1”,

which is what is required if “�2x.(x=0 � x=1)” is to be proven. We unable to make sense of such

predicates because, as Frege points out in his third objection, the inductive definitions do not so much as

define the expressions ‘0’ and ‘1’, but only the (orthographically) complex expressions ‘�0x.
x’ and

‘�1x.
x’. Even if we waive this objection, we have the first objection, the Caesar objection, to face. We
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can not simply assume that the numerals, so defined, are of the same Sort as the variables bound by these

quantifiers. And, as we saw earlier, without that assumption, the proof of the third axiom will fail.

Frege’s second objection was that “we cannot by the aid of our suggested definitions prove that,

if the number a belongs to the concept F and the number b belongs to this same concept, then necessarily

a=b”. What exactly does Frege mean that we can not prove? One idea would be that he is anticipating the

third objection, that he really means that we have not even given a sense to sentences of the form “the

number a is the same as the number b”. But, even so, one can formulate something like a notion of

identity for the second-level concepts introuduced by the inductive definition, in terms of their being co-

extensive. And it is not difficult to show that no concept can fall under more than one second-level

concept of the relevant kind, one numerically definite quantifier.44 So either Frege is blundering badly,

whence we must agree with Dummett that “§56 [is] the weakest in the whole of Grundlagen”,45 or this

interpretation of the second objection is unsatisfactory.

What is at issue in the second objection is whether we can show that every concept has at most

one number. Frege mentions this question only one other time in his (extant) writings, when introducing

his second axiom in Grundgesetze. In Gg I §108, he argues that it follows from the second axiom that the

fact that the results of counting are well-defined—that is to say, that any counting of the objects falling

under a given (finite) concept must yield the same number. It is thus clear that Frege at least connected

the second axiom with the question whether every concept has at most one number. Perhaps the second

objection is, then, but a misleading way of putting the claim that the second axiom can not be proven

from the inductive definitions. Frege misspeaks in so far as the problem is not that a single concept might

fall under two of the quantifiers defined by the inductive definition: The problem concerns, not the non-

empty quantifiers so defined, but rather any empty ones. Such sloppiness would be excusable, for it is not

at all easy to express the point precisely, not at least without greater technicality than would have been

appropriate to Gl §56. One could try putting the point by saying that one can not prove that all the

quantifiers occuring in the series �0x.
x, �1x.
x, �1+1x.
x, etc., are distinct. But this too is misleading,

because the concepts belonging to this series are, of course, distinct from one another—unless one means

to allow that a given concept might ‘belong’ to the series more than once. The only precise way to state

this claim with its intended meaning is to say that what is wanted is a proof that no concept ever occurs
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twice in this series. But this will remain obscure until the notion of ‘series’ being employed is

explained—which would require the introduction of the ancestral, which is in fact delayed until Gl §79

and would have been quite out of place in the context of Gl §56.

4. Avoiding the Caesar Objection

Frege thus thought, for good reason, that the sort of proof of the axioms of arithmetic he needed

required numbers to be treated as being of the same Sort as basic objects. It is for this reason, and not

because of some dubious metaphysical thesis that all objects simply must be of a single Sort, that the

Caesar objection arises: The Caesar objection is a reflection of a deep formal difficulty, one which

Russell and Whitehead would rediscover some twenty-five years later. What I want to argue now,

however, is that the foregoing considerations do not really show that Frege’s project requires numbers to

be of the same Sort as basic objects, that Frege has overlooked a way of carrying out his project in the

context of the many-sorted theory mentioned above.

Our knowledge of arithmetic begins with our understanding of attributions of number to

concepts true or false of basic objects. At this early stage, our use of names of numbers is formalizable

by means of the higher-order theory discussed in the last section, numerals being understood merely as

orthographic parts of numerically definite quantifiers. What further is required if one is to achieve an

understanding of names of numbers sufficient to ground our knowledge of the infinity of the number-

series? A very natural suggestion, compatible with Frege’s general outlook, is that one must come to

know that numbers are objects. But clearly that is not sufficient: If one treats numbers as objects of a

Sort different from that of basic objects—and so in a way formalizable by means of the two-sorted

theory discussed in the last section—then one will have no way of proving that there are infinitely many

numbers. So, it would seem, if anything like Frege’s explanation of the genesis of our knowledge of the

axioms of arithmetic is to succeed, we must confront the question with what right we suppose that

numbers are of the same Sort as basic objects.46 One way to press this point is to note that no sense has

been given to such statements as “Caesar is the number zero”: For that such statements do make sense is

precisely the content of the claim that numbers are of the same Sort as basic objects, that numbers and

basic objects are members of a single domain of quantification. Now, I am not going to discuss the
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question whether a general solution to the Caesar problem might be possible. Even if one is, it would

surely be better if Frege’s position did not have to rest upon it.

Consider a speaker who has mastered only attributions of number to concepts true or false of

basic objects. What distinguishes our mature understanding of names of numbers from hers is, most

fundamentally, that we know that numbers can themselves be counted. What this comes to is that we

understand terms of the form “the number of numbers satisfying such-and-such a condition”. How is our

understanding of such terms to be explained? Plainly, the two-sorted form of Hume’s Principle discussed

in the last section utterly fails to explain terms of this form; equally plainly, the familiar single-sorted

version of Hume’s Principle does explain such terms. If such terms can be explained only in terms of the

single-sorted version of Hume’s Principle, then Frege’s project really does require numbers to be of the

same Sort as basic objects. What I am going to argue, however, is that there is another way of explaining

these terms, one equally in the spirit of Frege’s project, which does not lead to a problematic instance of

the Caesar objection.

One tempting suggestion is that an analogue of Hume’s Principle may be introduced, one which

specifically governs terms of the form “the number of numbers which are F”. One way of taking this

proposal may be explained by formalizing it within a many-sorted, higher-order language. There are to

be variables of various types, the types indexed by numerals: Thus, variables of type 0 are written ‘x0’,

‘y 0’, etc.; variables of type 1, ‘x1’, ‘y 1’, etc.; and so forth. Similarly, there will be predicate variables and

relation variables of various types, the types of whose arguments are indicated by subscripts: written ‘F0’,

‘G0’, ‘F 1’, etc.; ‘R0,0’, ‘R0,1’, ‘R5,2,3’, and so forth. The language also contains countably many term-

forming operators “Nn+1vn:
nvn”, which form terms of type n+1 from formulae containing a free variable

of type n. Hume’s Principle, in its original form, may then be formalized as:47

N1x0:F0x0 = N1x0:G0x0 iff 
�R0,0{�x0�y0�z0�w0(R0,0x0y0 & R0,0z0w0 � x0=z0 � y0=w0) & 
�x0[F0x0 � �y0(G0y0 & R0,0x0y0 )] & �x0[G0x0 � �y0(F0y0 & R0,0y0x0 )]}

The suggested analogue of Hume’s Principle, required for ‘counting numbers’, may then be formalized

as:

N2x1:F1x1 = N2x1:G1x1 iff 
�R1,1{�x1�y1�z1�w1(R1,1x1y1 & R1,1z1w1 � x1=z1 � y1=w1) & 
�x1[F1x1 � �y1(G1y1 & R1,1x1y1 )] & �x1[G1x1 � �y1(F1y1 & R1,1y1x1 )]}
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Thus, the number of type 1 numbers satisfying a given condition is a type 2 number. And, more

generally, the number of type n numbers satisfying a given condition will be a type n+1 number:

Nn+1xn:Fnxn = Nn+1xn:Gnxn iff 
�Rn,n{�xn�yn�zn�wn(Rn,nxnyn & Rn,nznwn � xn=zn � yn=wn) & 
�xn[Fnxn � �yn(Gnyn & Rn,nxnyn )] & �xn[Gnxn � �yn(Fnyn & Rn,nynxn )]}

Similarities to the theory of types are, of course, non-accidental. In this theory, as in the two-sorted

theory discussed earlier, it will be possible, at each type i>0, to formulate versions of the Frege’s axioms

for arithmetic and to prove all of them except that every number has a successor, for the same reason

discussed above in connection with the two-sorted theory.

But is this treatment really compatible with Frege’s observation that numbers can themselves be

counted? Does this theory really capture our mature understanding of names of numbers? I think not.

Consider the question what, on this view, is to be said about the use of numerals in ordinary language

(or, for that matter, in informal mathematics). Presumably, when speakers make remarks such as “The

number of numbers greater than 5 but less than 15 is 9”,48 this is to be taken as systematically ambiguous.

The speaker should be understood not as making some specific claim of the form “The numbern+1 of

numbersn greater than 5n but less than 15n is 9n+1”, but rather as making an ambiguous claim: Roughly

speaking, she claims that, for all permissible assignments of types, the resulting sentence is true.49

Whatever the prospects of this sort of manoeuver elsewhere, it will not work here. When one

asks oneself, say, how many numbers there are which are less than 5, one supposes that the answer will

be a number, an object which (logically speaking) could be, though it is not, one of the numbers less than

5; the type-theoretic treatment has it, however, that the answer is a ‘number’ of a different type, a

different Sort. To put the point differently, one supposes that the statement “The number of numbers less

than 5 is 5” is at least well-formed. The type-theoretic view can, of course, concede this point and suggest

that what is really meant is something like: “The numbern+1 of numbersn less thann,n 5n isn+1 5n+1”. But

even if this re-interpretation of the claim should be deemed acceptable, the trick does not work more

generally. Consider the statement “There is a number which is the number of numbers less than it”,

formally: �x.[x = Ny:y<x]. This claim admits of no acceptable assignment of types, for “�xn[xn =?

Nn+1yn:yn<n,nxn]” is not well-formed, since terms of different types appear on the two sides of the identity-

sign. Or again, consider the (Boolosese) claim “There are some numbers the number of which is one of
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them”, formally: �F.F(Nx:Fx). This claim, again, is not only well-formed but true. But there is no

permissible assignment of types.

What do these examples show? Not, admittedly, that there is no type-theoretic way to handle

such statements. I am not about to make such a prediction, given the malleability of formal methods and

the general cleverness of logicians.50 What the examples show is that, though we have no strong

intuitions regarding whether numbers and people are of a single Sort, we do consider all numbers to be of

a single Sort. That is to say, we regard terms of the form “the number of Roman emperors” and “the

number of numbers less than 5” as being of the same Sort. Of course, if we so regard them, we must be

prepared to face an instance of the Caesar objection. But this instance of the Caesar objection is

innocuous. For consider an identity-statement linking terms of these two kinds:

The number of Roman emperors is the same as the number of numbers less than 5

We discussed this statement earlier, and whether numbers are of the same Sort as people is irrelevant to

its truth-conditions: The sentence will be true just in case there is a one-one correlation between the

Roman emperors and the numbers less than 5. More generally, a statement of the form “The number of

basic objects which are F is the same as the number of numbers which are G” will be true just in case

there is a one-one correlation between the Fs and the Gs. This specific instance of the Caesar objection

thus has a simple, obvious, and obviously correct answer.

Now, should we conclude from this that numbers must be of the same Sort as basic objects?

Such an inference would be completely fallacious. The fact that “the number of basic objects which are

F” is of the same Sort as “the number of numbers which are F” says nothing whatsoever about the Sorts

of the predicates in question. That functional expressions have values of the same Sort does not imply

that they have arguments of the same sort. What we need, then, is to formulate a theory which

distinguishes the Sorts of numbers and basic objects, but which treats terms of the form “the number of

Fs” and “the number of Fs” as being of the same sort.

We revert to the two-sorted language employed in the last section. A version of Hume’s

Principle for concepts true or false of basic objects may be formulated as follows:

(HPbb) Nx:Fx = Nx:Gx iff �Rbb{�x�y�z�w(Rbbxy & Rbbzw � x=z � y=w) &
�x[Fx � �y(Gy & Rbbxy) & �y(Gy � �x(Fx & Rbbxy)]}
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A version of Hume’s Principle which governs concepts true or false of numbers themselves may then be

formulated as:

(HPnn) Nx:Fx = Nx:Gx iff �Rnn{�x�y�z�w(Rnnxy & Rnnzw � x=z � y=w) &
�x[Fx � �y(Gy & Rnnxy)] & �y[Gy � �x(Fx & Rnnxy)]}

Note that terms of the form “Nx:Fx” are to be of the same Sort as those of the form “Nx:Fx”. The

version of Hume’s Principle which governs mixed identities is then:51

(HPbn) Nx:Fx = Nx:Gx iff �Rbn{�x�y�z�w(Rbnxy & Rbnzw � x=z � y=w) &
�x[Fx � �y(Gy & Rbnxy) & �y(Gy � �x(Fx & Rbnxy)]}

There is no formal obstacle to formulating such a principle, even if basic objects and numbers are

assumed to be of different Sorts.

Call the two-sorted, second-order theory whose (non-logical) axioms are (HPbb), (HPnn), and

(HPbn), Two-sorted Fregean Arithmetic (2FA). Axioms for arithmetic are provable in 2FA. What is

required for Frege’s proof of the infinity of the number-series is that we should be able to prove that the

number of numbers less than or equal to n is the successor of n (if n is a natural number). As was seen

above, if this is to be proven, all that is required is that “the number of numbers less than or equal to n”

be of the same Sort as “n” itself. But, in 2FA, this is so. More formally, suppose we simply drop all

reference to basic objects from 2FA. What remains is a single-sorted theory whose sole (non-logical)

axiom is:

Nx:Fx = Nx:Gx iff �R{�x�y�z�w(Rxy & Rzw � x=z � y=w) &
�x[Fx � �y(Gy & Rxy) & �y(Gy � �x(Fx & Rxy)]}

But this axiom, modulo the boldface, is just Hume’s Principle in its simple form: So 2FA is an extension

of single-sorted Fregean Arithmetic and so proves whatever it does.52

To see how insignificant it ultimately is that numbers and basic objects belong to different Sorts,

consider the fact that not just objects but also concepts and functions can be counted.53 Not only is it a

sensible question how many (Fregean) concepts there are which are true of only Caesar, the answer is

obvious: One. Nor does the fact that one is counting concepts rather than objects imply that the answer is

not a number of the usual kind. Nor is there any difficulty in saying under what circumstances the

number of concepts F� falling under some second-level concept 
x�x is the same as the number of

objects x falling under some first-level concept P�: The numbers will be the same just in case there is a
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one-one correlation between the concepts and the objects. Where ‘
z’ ranges over relations between

concepts and objects, ‘
z’, over second-level concepts, this thought can be formalized as follows:

NF:
xFx = Nx:Px iff ��{�x�F�y�G[�z(x,Fz) & �z(y,Gz) � x=y � �x(Fx � Gx)] &
�x[Px � �F(
zFz & �z(x,Fz))] & �F[
zFz � �x(Px & �z(xFz))]}

There is no formal obstacle even to the formulation of a version of Hume’s Principle governing mixed

identity-statements of this kind. Indeed, one can formulate versions of Hume’s Principle to govern terms

of the form “the number of entities satisfying such and such a condition”, in both pure and mixed

identity-statements, no matter what sorts of entities might be in question.54 Hume’s Principle may now be

thought of as schematic, as specifying the truth-conditions of pure and mixed identity-statements

containing terms ascribing number to concepts (whose arguments may be) of any level or Sort.

5. Closing

The fundamental epistemological question of the philosophy of arithmetic is of the basis of our

knowledge of the infinity of the series of natural numbers. On the position developed here, the

acquisition of such knowledge occurs in three stages: First, one must come to understand ascriptions of

number to concepts true or false of basic objects, of the various objects to which one is capable of

referring before acquiring a capacity to refer to numbers; Secondly, one must come to understand

ascriptions of number to concepts true or false of numbers themselves; and, Thirdly, one must come to

understand the conditions under which a number ascribed to a concept true or false of basic objects will

be the same as one ascribed to a concept true or false of numbers. (These three stages correspond to the

three axioms of 2FA: The first and second correspond to the axioms governing the ‘pure’ identity-

statements involving terms ascribing number to concepts true or false of basic objects and numbers,

respectively; the third, to the axiom governing mixed identity-statements.) At this point, one will know

that terms of the form “the number of numbers which are F” and “the number of basic objects which are

F” are of the same logical Sort and so will have acquired knowledge from which the infinity of the series

of natural numbers may be inferred. I find this philosophical ‘reconstruction’ of the genesis of our

knowledge of arithmetic extremely compelling.

This position is subtly but importantly different from that mentioned at the beginning of §4. On

that view, there is, in place of the second and third steps, a single step at which the speaker comes to



25

understand ‘that numbers are objects’, that numbers are objects of the same Sort as basic objects. If one

formulates what a speaker must come to know in this way, the Caesar objection looms; the question with

what right we suppose ourselves to know that numbers are of the same Sort as basic objects may well be

unanswerable. However, though one could acquire ‘knowledge’ from which the axioms of arithmetic are

derivable by coming to ‘know’ that numbers are of the same Sort as basic objects, such ‘knowledge’ is

not necessary: What one needs to know is that numbers ascribed to concepts true or false of numbers are

of the same Sort as numbers ascribed to concepts true or false of basic objects. It is quite fallacious to

infer from this that numbers must be of the same Sort as basic objects—and it is, I think, just such a

fallacious inference that explains Frege’s obsession with the Caesar problem.

Moreover, we are now in a position to see that not even the claim that numbers are objects is

required for Frege’s proofs of the axioms of arithmetic. What is required is that expressions of the form

“the number of numbers less than 5” should be of the same logical Sort as those of the form “the number

of Roman emperors”. It matters not one bit whether this Sort is that of basic objects, of objects of some

other kind, or of second-level concepts.55 What are required are axioms similar to those of 2FA. Write

‘Eq’ for ‘...is equinumerous with...’. The first axiom is then:

(HP1,1) �H{N xy(Fx)(Hy) � Nxy(Gx)(Hy)} iff Eqx(Fx,Gx)

What this says is that, for each concept F�, the second-level concept Nxy(Fx)(�y) is (co-extensive with)

the concept Nxy(Gx)(�y) if, and only if, F� and G� are equinumerous. What we now require is an

analogue of this for third-level concepts, i.e., for concepts true or false of the ‘numbers’, which are the

second-level concepts Nxy(Fx)(�y). Let ‘�’ and ‘
’ be variables for third-level concepts; ‘�’, for

second-level. Then the needed axiom is:

(HP3,3) �H{N �,x[�(�)](Hx) � N�,x[
(�)](Hx)} iff Eq �[�(�),
(�)]

What this says is that, for each third-level concept �, the second-level concept N�,x[�(�)](�y) is (co-

extensive with) the concept N�,x[
(�)](�y) if, and only if, �(�) and 
(�) are equinumerous. The third

axiom is that governing mixed identities:

(HP1,3) �H{N �,x[�(�)](Hx) � Nxy(Gx)(Hy)} iff Eq�,x[�(�),Gx]

It is easy to see that the resulting system is consistent and proves axioms for arithmetic.56 Frege’s proofs

can simply be mimicked, using (HP3,3).
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It does not follow, of course, that there are no objections to a form of logicism based upon the

derivability of axioms for arithmetic in 2FA. In particular, I have not addressed the ‘bad company’

objections to the claim that Hume’s Principle’s has a favored epistemological status—objections which

derive from the observation that formally similar principles are inconsistent, are (though consistent)

inconsistent with Hume’s Principle, or are otherwise naughty.57 But let us not forget, in our haste to

evaluate such a version of logicism, that the attractions of the genetic story told at the beginning of this

section do not depend upon the claim that the various instances of Hume’s Principle are logical truths,

analytic truths, or any such thing. Frege’s most fundamental thought—that our knowledge of the truths

of arithmetic derives, in some sense, from our knowledge of Hume’s Principle—could well be true, even

if it does not have the epistemological implications he had hoped it would.58
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21. Thanks to Michael Glanzberg for asking a question which made what follows clear to me.

22. In set-theory, the characteristic function associated with a set S is the function �S(�) whose value, for
argument x, is 1 if x
S; 0, otherwise.

23. Frege has a description operator in the formal system of Grundgesetze, but it is applied to value-
range terms, not to predicates. What is needed here is description operator of the more usual sort. The
axiom “a = 	x.Fx iff Fa & �x�y(Fx & Fy � x=y)” will serve as an analogue of Frege’s Axiom VI. A
pure analogue of Axiom VI would be “a = 	x.x=a”, but this will not imply the above without an axiom
asserting the extensionality of concepts. Such an axiom is not present in Frege’s system (and is not
usually present in axiomatic second-order logic), though his semantics for second-order logic does
justify it.

24. See Gottlob Frege, Begriffsschrift: A Formula Language, Modeled Upon That of Arithmetic, for Pure
Thought, in J. van Heijenoort, ed., 1-82, §3.

25. Moreover, we can see now why Frege thought himself free to stipulate which value-ranges the truth-
values are: For the selection of objects in terms of which to define the characteristic functions is
arbitrary, constrained only by the resources available in the language. One might wonder, though, how
Frege might have proven that there are two objects in the domain. Treating the truth-values as objects
does resolve this problem (as well as the more general problem of the non-emptiness of the domain).

26. To emphasize that I am using the term, on Frege’s behalf, in this sense, I shall speak of expressions
as being of the same logical Sort, rather than of the same logical type.

27. For simplicity, I assume that these are of a single Sort. Just how unimportant this assumption is will
be clear by the end of the paper.

28. It is exactly at this point that the second problem raised by the Caesar objection, discussed in section
1, becomes pressing.

29. See Gl §14: “The truths of arithmetic govern all that is numerable. This is the widest domain of all;
for to it belongs..everything thinkable”. See also “Formal Theories of Arithmetic”, in the Collected
Papers, 112-21, at original page 94: “...[W]e can count just about everything that can be an object of
thought: ...even numbers can in their turn be counted”. 

30. It is more usual to make this argument by concentrating on the Sort of object over which the bound
variables appearing in Hume’s Principle range. The argument given here is really equivalent to that one,
though putting it in the terms in which it is put here sheds some additional light on it and makes for a
change of pace.

31. This is done, of course, by inductively defining a map from the numbers into this series. The
techniques for doing so were known to Frege. See my “Definition by Induction in Frege’s Grundgesetze
der Arithmetik”, in W. Demopoulos, ed., Frege’s Philosophy of Mathematics (Cambridge MA, 1995),
295-333, and “The Finite and the Infinite in Frege’s Grundgesetze der Arithmetik”, forthcoming in
M. Schirn, ed., Philosophy of Mathematics Today.

It is worth mentioning that this same construction can be carried out given various consistent
axioms weaker than Axiom V. For example, the same construction can be carried out given George’s
Boolos’s Axiom New V, and an analogous construction can be carried out given the ordered pair axiom
and another axiom asserting that there are at least two objects.

32. Another way to put this point is as follows:  Any (reasonably typical, non-modal, etc.) development
of arithmetic will imply the existence of the natural numbers, but Frege’s has the virtue of implying the
existence of nothing else.—Actually, Hume’s Principle does imply the existence of the first transfinite
cardinal, though that is not really relevant in the present context. Frege is looking for a general theory of
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cardinal number.

33. I owe W.W. Tait special thanks for discussions connected with the preceding few paragraphs.

34. Here and below, the comprehension axioms for the theory are to be of the usual, impredicative sort.
That is to say, where ‘F’ and ‘F’ are not free in ‘A(x)’ and ‘A(x)’, respectively, all formulae of the forms

�F�x[Fx � A(x)]
�F�x[Fx � A(x)]

and so forth are to be comprehension axioms.

35. I ignore here some of the complexity inherent if Frege’s actual definition of “� is a natural number”.
See “Development of Arithmetic”, 590-1, for discussion of this.

36. The strong ancestral of a relation R�� is defined as follows:
R*(a,b) �df �F[�x(Rax � Fx) & �x�y(Fx & Rxy � Fy) � Fb]

Intuitively, a bears the strong ancestral of R�� to b if there is a non-empty, but finite, sequence of R-
steps connecting a to b. Thus, an object does not, in general, bear the strong ancestral of a relation to
itself, but only to its ‘proper’ ancestors.

The second axiom requires that there be no ‘loops’ in the sequence of natural numbers. For a
discussion of Frege’s axioms for arithmetic, see “Definition by Induction”. It is perhaps worth noting,
too, that the second axiom is specially emphasized in Frege’s discussion in Gl §83.

37. The second definition should, strictly speaking, be understood as a schema. This is the point of
Frege’s remark that we can so explain only expressions of the form “the number 1+1+...+1 belongs to the
concept F” (Gl §56). An analogue of this point was made in §vi of Wright’s Frege’s Conception of
Numbers as Objects. My work on Gl §§55-6 owes heavily to Wright’s discussion, as well as to that in
Ch. 9 of Michael Dummett’s Frege: Philosophy of Mathematics (Cambridge MA, 1992).

38. Thanks to Ori Simchen for emphasizing this point to me.

39. This is how Michael Dummett reads these sections in Frege: Philosophy of Mathematics. My debt to
his discussion there is enormous.

40. Note that ‘
’, on the left-had side, is just a bound (second-order) variable. That the definition is so
easily recast perhaps further supports my claim that the inductive definitions are intended as a ‘first
attempt’ at proving the axioms of arithmetic.

41. One might have wanted to suggest that it is this Frege thinks can not be proved: The proof does
require an axiom stating that second-level concepts are extensional, and one might have supposed that
Frege did not come to that view until later. But see the footnote to Gl §68.

42. See “Development of Arithmetic”, 593-5.

43. See Alfred North Whitehead and Bertrand Russell, Principia Mathematica, 2nd. ed. (Cambridge,
1925). The axiom of infinity is introduced at *120.03 and is discussed on the following two pages, vol.
II, 203-4. The equivalence mentioned is proved at *125.14. Interestingly enough, the axiom of infinity is
also equivalent to the claim that 	x.
x is not a natural number: see *125.13. For a more sympathetic
discussion of the role of the axiom of infinity in the theory of types, see George Boolos, “The
Advantages of Honest Toil over Theft”, in Alexander George, ed., Mathematics and Mind (Oxford,
1994), 27-44.

44. A numerically definite quantifier is one all the concepts falling under which are equinumerous with
one another: I.e., one equivalent, for some F�, to: 
� is equinumerous with F�. I shall abuse use and
mention and use ‘quantifier’ to speak both of the symbols in question and of the second-level concepts
they denote.
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45. See Dummett, Frege: Philosophy of Mathematics, 102-8. The quotation is taken from p. 105.

46. The importance of this question was first suggested to me by Charles Parsons’s paper “Intuition and
Number”, in George, ed., 141-57, see esp. pp. 150-1.

47. I apologize for the low level of readability of this formula, due to the presence of so many subscripts.
It is crucial, though, that it be clear that everything being done here can be done without violating any
type-restrictions, and the only way to establish this point is to be as rigorous as possible.

48. It is frequently noted in such contexts that number theory does concern itself with e.g. the number of
prime numbers less than a given number. This is, indeed, the example Dummett uses in his discussion of
this matter.

49. On the notion of systematic ambiguity, see Charles Parsons, “Sets and Classes”, reprinted in his
Mathematics in Philosophy, 209-20. If one were to insist that such statements involve definite
assignments of types, that would only make matters worse.

50. It should be said, however, that there is reason to suppose that no such treatment will be forthcoming.
The reason is simple: If there is some way of construing such claims so that they are well-formed and
have the correct truth-conditions, then “If n is finite, the number of numbers less than or equal to n is the
successor of n” will have to come out true. But then Frege’s project goes forward. Compare my “Critical
Notice of Michael Dummett, Frege: Philosophy of Mathematics”, Philosophical Quarterly 43 (1993),
223-33, at 231.

51. Identity-statements of the form “Nx:Fx = Nx:Fx” may either be governed by another form of Hume’s
Principle, whose formulation should be obvious at this point, or simply be stipulated to be equivalent to
those of the form “Nx:Fx = Nx:Fx”.

52. Frege’s actual proofs of the axioms of arithmetic, that is to say, can simply be carried out by
boldfacing all his object- and concept- variables and adding the subscript ‘nn’ to all relation-variables.

53. Frege makes this claim in at least two different places. First, in his letter to Marty of 29 August 1882:
“Everything is enumerable, ...even concepts...” (Correspondence 100, letter xxx/1). Secondly, in “Formal
Theories of Arithmetic” (1885), op. 94: “...[W]e can count just about everything that can be an object of
thought: ...concepts as well as objects...”. Frege’s insistence that “everything thinkable” can be counted,
at Gl §14, must presumably include concepts as well as objects. (Thanks to Jamie Tappenden for these
references.)

54. The higher-order theory containing as (non-logical) axioms all the infinitely many such Principles is
provably (formally) consistent. For a sketch of the proof, see my “Critical Notice”, 231. (The proof as
formulated there is, unfortunately, a bit sloppier than I would now have it be.)

55. This point is made in my “Critical Notice”, 230, but I have only recently understood its force. What
this means is that something like the program David Bostock pursues in his Logic and Arithmetic:
Natural Numbers (Oxford, 1974) can be executed. Bostock’s idea was to treat numbers as second-level
concepts, but Dana Scott showed the system in which he worked to be inconsistent.

56. It is crucial that these axioms say nothing about what kinds of second-level concepts the numbers are.
For all the axioms say, Nxy(x�x)(�y) might be the second-level concept: �(Caesar). One could try to
proceed differently and simply define ‘Nxy(Gx)(�y)’ as ‘Eqx(Gx,�x)’, whence (HP1,1) will be provable.
Indeed, one should probably think of Frege’s discussion in Gl §§55-6 as being directed toward a theory
whose sole axiom (really, definition) is

Nxy(Gx)(Fy) � Eqx(Gx,Fx)
But, though one can also define ‘N�,x[�(�)](�x)’ as ‘Eq�,x[�(�),�x]’, one will not them be able to
prove (HP3,3); the numbers of non-equinumerous concepts will end up being the same, namely, the empty
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second-level concept.
The difficulty with a theory based upon (HP3,3) is, to my mind, that it will imply the existence of

infinitely many objects. The numbers here are not objects, so the theory is implying that there are
infinitely many objects of what kind, exactly? Compare here the discussion of the “deep
misunderstanding” in §3.

57. See, for example, George Boolos, “The Standard of Equality of Numbers”, in G. Boolos, ed.,
Meaning and Method (Cambridge, 1990), 261-77, reprinted in Demopoulos, ed., 234-54; Michael
Dummett, Frege: Philosophy of Mathematics, 187-89; and my ”On the Consistency of Second-order
Contextual Definitions”, Noûs 26 (1992), 491-4. For further discussion, see the papers by Wright and
Boolos in this volume.

58. Thanks to Peter Clark, Michael Glanzberg, Warren Goldfarb, Bob, Hale, Charles Parsons, Ian
Proops, Thomas Ricketts, Ori Simchen, Jason Stanley, Jamie Tappenden, Bill Tait, and Crispin Wright
for discussion and criticism. Thanks especially to George Boolos for providing helpful comments on the
penultimate draft. I shall miss him.


