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H I G H L I G H T S

• Defines mavericks as impact-seekers, scientists going in for high-risk high-reward research, in contrast to safety-seekers.

• Provides a model of a three-way tradeoff between impact, success probability, and speed.

• Rational credit-maximizing scientists do not form particularly effective communities in this model.

• An escape route from this result and its limitations are discussed.

A B S T R A C T

There is a commonly made distinction between two types of scientists: risk-taking, trailblazing mavericks and detail-oriented followers. A number of recent papers
have discussed the question what a desirable mixture of mavericks and followers looks like. Answering this question is most useful if a scientific community can be
steered toward such a desirable mixture. One attractive route is through credit incentives: manipulating rewards so that reward-seeking scientists are likely to form
the desired mixture of their own accord. Here I argue that (even in theory) this idea is less straightforward than it may seem. Interpreting mavericks as scientists who
prioritize rewards over speed and risk, I show in a deliberatively simple model that there is a fixed mixture which is not particularly likely to be desirable and which
credit incentives cannot alter. I consider a way around this result, but this has some major drawbacks. I conclude that credit incentives are not as promising a way to
create a desirable mixture of mavericks and followers as one might have thought.

1. Introduction

It is an old idea in the philosophy of science that there are different
ways to contribute to science. Kuhn famously distinguished between
normal science and extraordinary or revolutionary science, and he
strongly hinted that scientists were differentially suitable to these dif-
ferent types of work (Kuhn, 1996, pp. 82–89). Hull invokes a similar
idea, and makes the tie to individual scientists more explicit: “Most
scientists play it safe, making small, uncontroversial contributions. A
few attempt to revolutionize some area of science. They risk failing big”
(Hull, 1988, p. 474).

Let me unpack this distinction from Hull a bit. Many scientists work
in the context of established research programs or paradigms, using
standard methodologies to make incremental progress on relatively
specific pre-existing problems. Generally, they are able to produce re-
sults that are likely to be accepted by the scientific community, and do
so consistently over time. Some scientists instead go in for research in
relatively unexplored areas, or areas where the foundations are not as
settled. This type of work can yield major new discoveries if successful,
but it is more likely to take an unpredictable amount of time or fail

completely. For the moment I will refer to scientists of the latter type as
mavericks and to the former as followers.

The distinction has drawn some recent interest in the literature on
formal social epistemology, i.e., the study of epistemological questions
regarding the social structure of science using formal models. Weisberg
and Muldoon (2009) introduce epistemic landscape models and use them
to argue that a scientific community benefits from having a mixture of
mavericks and followers. A number of subsequent papers have extended
or criticized this (Grim et al., 2013; Alexander, Himmelreich, &
Thompson, 2015; Thoma, 2015; Pöyhönen, 2017; Avin, forthcoming).

One of the key underlying questions in these papers is: what dis-
tribution of researcher types (i.e., what proportion of mavericks, fol-
lowers, and possibly other types) makes for an effective scientific
community? Here, an effective community appears to be one that finds
and uses approaches that work well for the research question(s) it is
interested in.

The authors involved do not take this question about good (or op-
timal) distributions to be of purely theoretical interest. Rather, once a
satisfying answer to the question is obtained, it should be used nor-
matively: real scientific communities should be encouraged to adopt a
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good (preferably optimal) distribution of researcher types. In the words
of Kitcher, one of the first to write on formal social epistemology: “The
philosophers have ignored the social structure of science. The point,
however, is to change it” (Kitcher, 1990, p. 22).

On the whole, the papers mentioned above say very little about how
a socially beneficial distribution of researcher types, once determined,
should be realized. Thoma (2015) worries about this a little bit. To-
wards the end of her paper, she points out that in Weisberg and Mul-
doon's model, it is “unclear why anybody would choose to be a fol-
lower, given their lack of productivity” (Thoma, 2015, p. 470). In her
own model, where explorers and extractors play the role of mavericks
and followers respectively, a converse problem arises: “the question is
why anybody would choose to be an explorer” (p. 470). She then
suggests that rewards given to individual scientists may have a role to
play here: “social and financial rewards…could help to maintain an
epistemically beneficial diversity of research strategy by making sure
that the explorer strategy is attractive enough for some scientists to
choose it” (p. 471).

This idea has some plausibility. It is a well-known fact that scientists
are mainly rewarded for their work through credit: the recognition of
achievements by peers, made visible in the form of publications in
prestigious journals, citations, prizes, and prestigious appointments
(Hull, 1988; Merton, 1957, 1973). This affects scientists' behavior in a
predictable way: they are more likely to do things which they believe
will yield credit (Dasgupta & David, 1994; Merton, 1969; Strevens,
2003). Formal social epistemologists like Kitcher (1990) and Strevens
(2003) have suggested that this may affect scientists' choice of metho-
dological approach—creating a socially beneficial division of cognitive
labor in Kitcher's terminology. A number of authors have argued for
other positive side effects of the credit motive (Boyer-Kassem & Imbert,
2015; Dasgupta & David, 1994; Heesen, 2017; Zollman, 2018).

The question, then, that I focus on here is whether credit incentives
can be used to encourage scientists to create a socially beneficial dis-
tribution of researcher types. In other words, where previous work has
asked what a good distribution of researcher types looks like, I ask
whether credit can be used to get there. I use a deliberately simple
model (abstracting away from epistemic landscapes) as a starting point
for my discussion.

I claim that under quite general conditions the key factor that in-
fluences whether a credit-maximizing scientist chooses to be a maverick
or a follower is her predisposition for producing the type of work typical
of a maverick or a follower. I use this to argue for a negative conclusion:
there is no reason to think that the predisposition to be a maverick
occurs among scientists at anything like the frequency at which it needs
to occur to produce a particularly good distribution of researcher types.

As will become clear, I do not intend to make any strong nativist
claims about predispositions. In particular, I remain agnostic about
when and how a scientist's predisposition gets fixed (at birth, in
childhood, or as a part of professional training). However, it is key to
my argument that this predisposition is specific to an individual sci-
entist and is unlikely to change much over the course of a scientific
career.

My argument uncovers serious limitations to the idea of using credit
incentives to create a beneficial distribution of researcher types. Credit
incentives do not act like an “invisible hand”, steering the scientific
community toward the optimal distribution, as they have been claimed
to do for the division of cognitive labor (Strevens, 2003) and inter-
mediate results sharing (Heesen, 2017).

Not all is lost though. After presenting my formal result, I discuss in
more detail what kinds of manipulation through credit incentives are
ruled out by it, and what remains possible. The relationship between
the division of cognitive labor (studied by Kitcher and Strevens) and the
distribution of researcher types (studied by Weisberg and Muldoon and
Thoma) turns out to be more complicated than previously thought.
Where Weisberg and Muldoon and Thoma saw an analogy, I argue there
is a tradeoff instead.

2. Mavericks as impact-seekers

What exactly is a maverick? The various authors mentioned in the
introduction all use slightly different definitions so it is useful to clarify
the version of the idea I work with.

Weisberg and Muldoon put their definitions in terms of a desire to
deviate from (or imitate) what others have done: “mavericks avoid
previously examined approaches, while followers emulate them”
(Weisberg and Muldoon, 2009, p. 243). In a variation on this theme,
Thoma's explorer types “like to follow approaches that are very dif-
ferent from those of others, while extractor-types like to do work that is
very similar to but not the same as that done by others” (Thoma, 2015,
p. 463). No analysis is given of what these desires are based on.

Kuhn (1996) does not explicitly discuss different types of scientists,
but associates different skills with periods of normal science as opposed
to extraordinary or revolutionary science. His most explicit claim in this
regard, repeated multiple times (pp. 90, 144, 166), is that younger
scientists are more suitable to instigate revolutions (cf. Wray, 2003).

Hull (1988, p. 474) draws the distinction in terms of the tradeoff
between risk and reward. This way of drawing the line is most con-
genial to my purposes. It avoids building into the definition any as-
sumption about a psychological explanation for the existence of dif-
ferent researcher types, and it also avoids building in an assumption
that the distinction has to be binary (as opposed to graded).

So on my definition, a “maverick” is a scientist (used broadly to
include any academic researcher) who works on high-risk high-reward
projects, i.e., a scientist who aims “to revolutionize some area of sci-
ence” (Hull, 1988, p. 474). This presupposes that scientists are in a
position to decide in advance whether to attempt a high-risk high-re-
ward project as opposed to something less ambitious. An opposing view
holds that scientists pick projects for other reasons (e.g., intellectual
interest, or the availability of instruments or materials) and that high-
reward projects are simply regular projects carried out by particularly
skillful or lucky scientists. I do not provide an argument against this
view, but I assume that, at least, the truth is somewhere in the middle:
scientists can form expectations about the likely rewards of particular
projects and such expectations factor into their decisions. Let me say
more now about what I mean by rewards and risks.

As mentioned, the main unit of reward in science is credit: prestige
conferred by the scientist's peers in the form of prizes, publications,
citations, and appointments. Founding or revolutionizing a (sub)field of
science is the highest possible achievement, and as such yields the most
credit. Contributions that change a (sub)field in some smaller way yield
less credit. Whereas scientific work that is completely ignored sits at the
bottom and yields no credit. Hence credit is given for a contribution to
science broadly in proportion to its scientific impact.

That credit is proportional to impact is an empirical claim which I
build into my model. It is defended by Merton (1957, especially pp.
642–645) who argues that “rewards are to be meted out in accord with
the measure of accomplishment” (p. 659). Cole and Cole (1967, p. 385)
provide some limited quantitative evidence by showing that scientists
who write high-impact papers tend to get prestigious awards and have
better name recognition. It is perhaps telling that both credit and im-
pact tend to be measured using citation counts (e.g., Sinatra, Wang,
Deville, Song, & Barabási, 2016, Cole & Cole, 1973, with the latter using
citations in both senses; see Bornmann & Daniel, 2008 and citations
therein for discussion). I discuss what happens if this assumption is
relaxed in section 4.

The risk of aiming for high impact is twofold. First, the project may
fail, as most attempts to revolutionize an area of science do. (In con-
trast, less world-shocking projects often have a greater chance of suc-
cess.) Second, projects that aim for high impact tend to take more time
to complete. In some sense this exacerbates the first risk: if the project
fails, potentially a lot of time has been wasted, at least compared to the
time wasted when a less ambitious project fails. But even if the project
succeeds the risk of taking a long time is relevant: if the scientist could
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have completed multiple less ambitious projects in the same amount of
time, the combined credit from those projects might have been higher
than that of the high impact project, even if it is more impactful than
any one of the less ambitious projects.

So while Hull describes a two-way tradeoff between risk and re-
ward, I suggest that the risk component of this tradeoff may be broken
down into a risk of failure and a risk of being slow (which carries an
opportunity cost). The next section discusses a simple model of the
three-way tradeoff between what I will call impact, speed, and success
probability. Insofar as I continue to use the terminology of risk, it will
refer to the risk of failure (the complement of the success probability)
rather than the risk of being slow.

To distinguish my conception of different researcher types from that
of authors like Weisberg and Muldoon and Thoma, I will use different
terms from here on out. Emphasizing Hull's tradeoff, I refer to a scientist
who works on high-risk high-reward projects as an impact-seeker (my
analogue of the maverick) and to the contrast case as a safety-seeker.

3. A simple model of researcher types

The key tradeoff that the model aims to capture is the three-way
tradeoff between impact, success probability, and speed. The model I
provide is deliberately simple, as the aim is to capture the phenomenon
I am interested in with as few assumptions as possible.

As the old business adage says: you can have it good, fast, or cheap;
pick two. In the present context, this means you can have it impactful,
fast, or with high chance of success, and (within certain limits) you get
to choose two of these, with the third one being determined as a result
of the tradeoff. In setting up the model, I assume that success prob-
ability and impact are chosen by the scientist, and speed is determined
as a function of these choices. (This is a harmless assumption: a simple
translation exercise yields the same model with success probability and
speed as the independent variables, or impact and speed.)

Let p denote the scientist's success probability. More precisely, this is
the scientist's subjective probability that the project yields a publishable
result of any impact at all. Being a probability, this variable is con-
strained to the unit interval: p [0,1]. The risk of failure is the com-
plement p1 of the success probability. Note that what matters to the
scientist's choice of what to work on is her own estimate of the like-
lihood of success, hence this is a credence rather than a chance. It seems
reasonable to suppose that a competent scientist's credence of success
cannot be too far off from her (objective) chance of success, but nothing
in my model turns on this.

Let c denote the scientist's impact. This is the scientist's estimate of
the impact of her project assuming it succeeds. As discussed in the
previous section, in the model I equate impact and credit. I remain
agnostic about how impact/credit should be measured, but one rela-
tively simple way to make this more precise would be as the expected
number of citations to the publication(s) resulting from the project, as is
commonly done when a quantitative measure is needed (Cole & Cole,
1967, 1973; Sinatra et al., 2016). I assume estimated impact to be
nonnegative (otherwise why start the project?), i.e., c [0, ). I do not
explicitly impose a maximum on the impact a scientist might aim for,
although, as I will show, the assumptions below entail that such a
maximum exists.

Finally, let λ denote the scientist's speed. The scientist has to esti-
mate how long her project will take with a probability distribution.
Empirical data on publication patterns in scientific careers suggests that
the length of projects approximates an exponential distribution (Huber,
1998a, b, 2001; Huber & Wagner-Döbler, 2001a, b). So I assume the
scientist believes the duration of the project to be exponentially dis-
tributed, with the speed parameter λ denoting her “work rate”. That is,
λ gives the average number of projects she would complete per unit of
time if she works on projects at rate λ continuously. A more straight-
forward interpretation attaches to its inverse: 1/ is the expected
completion time of the project. As with the other two variables, I focus

on the scientist's own subjective estimate of the speed.
The tradeoff is modeled by assuming that speed is determined as a

function of success probability and impact: for any p and c, p c( , )
denotes the maximum speed the scientist thinks she can achieve given
her choices of success probability and impact. Call this function the
tradeoff function. I make the following assumptions on this function.

Assumption 1. The tradeoff function has the following properties:
1.a. The tradeoff function is decreasing in both of its arguments, i.e.,

if <p p then <p c p c( , ) ( , ) for any c, and if <c c then
<p c p c( , ) ( , ) for any p.

1.b. No perfect work: =plim ( , 0) 0p 1 .
1.c. The tradeoff function is concave: for any t [0,1] and for any

p p c c, , ,

+ + +t p c t p c tp t p tc t c( , ) (1 ) ( , ) ( (1 ) , (1 ) ).

Assumption 1.a formalizes the fact that the tradeoff function is
meant to capture a tradeoff: if one of the three variables goes up, one or
both of the others must go down. This need not always happen in
practice, but recall that the variables reflect the scientist's expectations
before starting the project. The assumption only fails if there is a way
that the scientist can know about in advance for her to increase one of
these variables without a corresponding decrease. This seems like it
would be a rare case.

Assumption 1.b captures the idea that there is no certainty in sci-
ence. There is never a guarantee of success, hence impact and speed
must go to zero as the success probability goes to one.

Assumption 1.c indicates that there are decreasing marginal returns
from decreasing a variable or a combination of two variables, or in-
creasing marginal costs for increasing a variable. A scientist aiming to
increase her success probability requires ever more time to do so (or
must restrict her ambitions of impact). A scientist who wants to publish
more quickly finds that her gains are smaller if she already had rela-
tively modest goals for impact and success probability (if only because
writing a paper itself takes time, and this will take up a relatively larger
share of the time if the scientist spends less time on developing the
scientific content). And a scientist going for greater impact faces ever
greater increases in the risk of failure or the required time.

Note that these assumptions do not specify the exact rate at which
the three variables trade off. In particular, there is no assumption of
symmetry. Thus, it is consistent with my assumptions that aiming for
high impact comes at a cost of low chance of success and low speed,
whereas perhaps high chance of success and high speed can be achieved
simultaneously (given a specification of what counts as “high” for each
variable). The substance of it being a three-way tradeoff is in the fact
that a small increase in impact (say) can usually be “paid for” either
with a decrease in success probability, a decrease in speed, or a com-
bination of both.

These assumptions have a number of consequences. One is that the
tradeoff function is continuous, i.e., there are no sudden jumps (this
follows from concavity; see Lemma 1 in Appendix A). This seems right
to me for most cases, as the tradeoff function reflects the scientist's
expectations about average speed, not the actual time taken on any
particular project. Even so, I grant that there may be exceptions to this;
my aim is to capture typical cases, not necessarily all.

Another consequence pertains to the set of choices for p and c for
which the tradeoff function is nonnegative. This may be viewed as the
set of feasible choices. Assumption 1 entails that there is a function μ
which may be called the maximum impact function: for any choice of p,
µ p( ) gives the highest possible impact that can be achieved at success
probability p and nonnegative speed (see Appendix A for a proof).

Proposition 1. (Maximum Impact). Let p [0,1]. Assumption 1 entails
that there exists a function µ: [0,1] [0, ) such that p c( , ) 0 if and
only if c µ p( ). The function μ is decreasing and concave.
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Note that the maximum impact function inherits the key properties
of the tradeoff function. This reflects the more general fact that, if a
particular level of speed is fixed, the two-way tradeoff between impact
and success probability inherits (through Assumption 1) the structural
properties of the three-way tradeoff.

Consider a scientist who aims to maximize expected credit, and is
perfectly rational in going about this goal. This is not to claim that any
such scientist exists: real scientists have other goals beside credit, and
are not perfectly rational. But the choices a rational expected credit-
maximizing scientist makes are the choices that real scientists have a
credit incentive to make.

The scientist's expected credit per unit of time while she is working
on this project is a function of her choices of success probability p and
impact c. She completes projects like this one at a rate of λ per unit of
time, the project succeeds with probability p, and the scientist's ex-
pected credit if the project does succeed is c. Hence the expected credit
function C is given by

=C p c c p p c( , ) ( , ).

Note that this expected credit function does not depend on whether
there are any other scientists in the community and what they are
doing. It turns out to be a consequence of using exponential distribu-
tions to model the time it takes to complete projects that the average
completion rate of projects is independent of the activity of competing
scientists. This is mathematically convenient here as it reduces the
model to one that can be analyzed using decision theory rather than
requiring game theory. It is not obvious that anything significant is lost
by making use of this convenience, given the evidence that project
completion times are indeed exponentially distributed (Huber, 1998a,
b, 2001; Huber & Wagner-Döbler, 2001a, b).

So what happens when the scientist aims to maximize the expected
credit function?

Theorem 1. (Unique Maximum). If Assumption 1 is satisfied, there exists
a unique point p c( , )* * that maximizes the function C:

=C p c C p c( , ) max ( , ).
p c

* *
[0,1], [0, )

Moreover, < <p0 1* and < <c µ p0 ( )* * .

The key insight offered by Theorem 1 (proved in Appendix A) is that
there is a unique credit-maximizing choice. In other words, Theorem 1
rules out the possibility that a scientist could switch from being a safety-
seeker to an impact-seeker or vice versa, while remaining at a global
maximum of C. For a credit-maximizing scientist, there is just one ra-
tional tradeoff between impact and safety, not a range of admissible
values between which an independent preference for being an impact-
seeker or a safety-seeker might act as a tie-breaker. This consequence of
the model may be seen as surprising in light of the psychological terms
in which previous authors have discussed these types (this is most

explicit in Thoma, 2015, for example on p. 470: “some scientists do
choose to be explorers, apparently for good reasons”).

This does not rule out the existence of different researcher types. But
it suggests that these types are the result of differences in the shape of
the tradeoff function of different scientists. According to Theorem 1, the
location of the optimum given a particular tradeoff function determines
the researcher type any scientist with that tradeoff function has a credit
incentive to be.

There is some reason to believe that the tradeoff function is more or
less fixed over the course of a career. For example, Huber (1998a, b,
2001) and Huber and Wagner-Döbler (2001a, b) argue based on em-
pirical evidence that the productivity of scientists (i.e., λ) is, on
average, constant over the course of a career. And Sinatra et al. (2016)
argue that high-impact papers are distributed randomly within each
scientist's career, suggesting that expected impact (i.e., c) is constant
across a career.

This suggests an interpretation of the tradeoff function as a rela-
tively stable predisposition to trade off speed, success probability, and
impact in a particular way. Any given scientist's researcher type will
then similarly be relatively stable, as determined by her predisposition,
while different researcher types result from differences in predisposi-
tions across scientists. The following Example illustrates this.

Example. Consider two scientists. In the estimation of scientist 1, the
tradeoff between speed, success probability, and impact is given for her
by the function 1, where

=p c p p pc c c( , ) 1 3
4

1
4

1
2

1
4

3
4

,1
4 2 2

for all p0 1 and c 0 (see Fig. 1). Note that this function satisfies
Assumption 1. Then the credit-maximizing choice for scientist 1 is
p 0.52 and c 0.38.

In contrast, scientist 2's estimate of the tradeoff is given by tradeoff
function

=p c p pc c c p( , ) 1 1
4

1
2

1
4

3
4

3
4

,2
2 2 4

for all p0 1 and c 0 (see Fig. 1). This function also satisfies
Assumption 1. But the credit-maximizing choice for scientist 2 is
p 0.38 and c 0.52.

Scientist 1's tradeoff function shows a predisposition that favors the
success probability compared to scientist 2's, which shows a predis-
position that favors impact. This is because 1 is closer to linear in
c—having only a small quadratic component—while it is a fourth-de-
gree polynomial in p ( 2 is simply its mirror image). So if the scientists
are responsive to credit incentives, scientist 1 will behave more like a
safety-seeker, doing relatively safe, low-impact research. Scientist 2 on
the other hand will behave more like an impact-seeker, doing more
risky, high-impact research.

If C correctly captures the shape of the credit function, and

Fig. 1. Graphs of 1 (on the left) and 2 (on the right).
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Assumption 1 is justified, then Theorem 1 guarantees that differences in
the shape of the tradeoff function (what I am now calling different
predispositions) are the only way different researcher types can arise as
a result of credit incentives.

It is tempting to think of a scientist with a predisposition that favors
safety-seeking as risk-averse, and a scientist with a predisposition that
favors impact-seeking as risk-loving, since the latter will more likely
engage in high-risk high-reward research. But this is somewhat mis-
leading. At least on a conventional understanding of the terminology,
risk aversion is thought of as a preference. A preference to avoid risk
can be expressed by using a concave utility function (setting aside
complications introduced by the Allais and Ellsberg paradoxes, al-
though these types of risk aversion are also most readily understood as
preferences).

In contrast, the predispositions discussed here should be thought of
as beliefs. The tradeoff function captures a scientist's belief about how
speed, success probability, and impact trade off for her. So a predis-
position that favors safety-seeking reflects a scientist's belief that her
knowledge and skills will generate more impact over time if she focuses
on a larger number of low impact projects than if she focuses on a
smaller number of high impact projects.

I have said nothing about whether the distribution of predisposi-
tions in a scientific community is likely to incentivize a good or a bad
distribution of impact-seekers and safety-seekers. As far as I can see,
there is no connection between how predispositions will be distributed
and what makes for a good distribution of researcher types, so any
positive effects here would be purely coincidental. Moreover, according
to Theorem 1, credit incentives cannot be used to improve the dis-
tribution of types. Rather, the distribution of types that is favored by
credit incentives—and hence the distribution the community will tend
to insofar as scientists are responsive to credit incentives—is as likely to
be beneficial as harmful.

4. Possibilities and limitations

As mentioned, I take the tradeoff between speed, success prob-
ability, and impact as it is captured in the tradeoff function to be a
feature of an individual scientist. I find the term predisposition con-
venient as a shorthand, but the implications of this terminology should
not be taken too strongly. As mentioned above, the idea is to capture
something that is specific to an individual scientist and unlikely to
change (much) over time.

Theorem 1 tells against a “passive” approach to using the credit
economy to get a good distribution of researcher types. Where previous
work has argued that the credit economy operates like an invisible
hand, using individual self-interest to motivate socially beneficial de-
cisions (Heesen, 2017; Hull, 1988, 1997; Leonard, 2002; Strevens,
2003), I have argued here that this mechanism should not be expected
to have particularly beneficial effects in the context of the distribution
of researcher types. This is because there is no reason to expect the
distribution of predispositions in a scientific community to match the
optimal (or a particularly good) distribution of impact-seeking versus
safety-seeking.

This does not rule out a more “active” approach. The way scientific
results are rewarded is to some extent under our control. More speci-
fically, it is under the control of “gatekeepers” such as journal editors
and the agencies and governments that award grants and prizes.
Scientists’ credit incentives change if the amount of credit that is given
for different scientific contributions changes.

So far I have assumed that scientists expect the reward for successful
scientific work to be directly proportional to its scientific importance:
both are represented by the variable c. Scientific importance (i.e., im-
pact) influences the tradeoff with speed and success probability and
thus features in the tradeoff function, whereas the reward features in
the credit function. That rewards are proportional to importance might
be a feature of the credit economy as currently implemented (see Cole &

Cole, 1967; Merton, 1957; Strevens, 2003), but if it is, it is not a ne-
cessary feature. Proportionality could be abandoned.

Suppose a social planner (with perfect control over how rewards are
distributed) observes that not enough scientists are working to re-
volutionize the field with high-risk high-reward research, i.e., there is a
relative shortage of impact-seekers. Such a planner could start giving
extra rewards for high-impact work, perhaps by introducing new prizes
for this kind of work. As a result, the expected credit per unit of time for
individual scientists looks different. For example, the result might be
that credit per unit of time is described by a new function C given by

=C p c c p p c( , ) ( , ),2

i.e., the scientist now expects rewards to be proportional to the square
of the scientific importance of the work, meaning that highly important
work now gets rewarded more (relative to the original credit function
C). In general, this will shift the optimal tradeoff for her so she becomes
more impact-seeking. To illustrate this: the C -maximizing choice for
scientist 1 in the Example above has >c 0.53 0.38 and the C -max-
imizing choice for scientist 2 has >c 0.64 0.52.

This shows that, despite the result from the previous section, credit
incentives can be used to manipulate the tradeoff scientists make be-
tween impact and safety. But then what, if anything, is the significance
of the result from the previous section?

First, even allowing for the kinds of manipulations just suggested
(which assume a kind of fine-grained control over rewards that may not
exist in practice), credit incentives will not affect the relative distribu-
tion of impact-seekers and safety-seekers. Rewarding high-impact work
more (or less), will generally affect all scientists in the same way. In the
example above, all scientists become more impact-seeking, at least
qualitatively speaking.

At the same time, the quantitative effects may be different. In the
example, c increases by 0.15 for scientist 1 and 0.12 for scientist 2.
Interestingly, it is the relatively more safety-seeking scientist 1 who
makes a greater change in the direction of impact-seeking. So at least in
this example, encouraging more impact-seeking also brings the scien-
tists' choices of c closer together (here again there is a kind of de-
creasing marginal returns). While I suspect this particular point does
not generalize, it illustrates that quite a detailed understanding of sci-
entists’ predispositions may be needed on the part of a social planner to
achieve the desired effect from these manipulations.

More specifically, if two scientists have the same predisposition,
changing the rewards as suggested above will have the same qualitative
and quantitative effect on both. So if the optimal distribution of re-
searcher types requires changing the diversity in the scientific commu-
nity (as Weisberg and Muldoon 2009 seem to suggest; but see Alexander
et al., 2015; Thoma, 2015, and Pöyhönen, 2017 for critical discussion)
it will not be possible to achieve this. For example, suppose all scientists
in a given community have one of two tradeoff functions (say 1 and 2
from the Example). If the overall productivity of the community is
optimized when there are three researcher types (e.g., impact-seekers,
speed-seekers, and success-seekers) then credit incentives cannot pro-
duce the optimal distribution. Or to stay a bit closer to Weisberg and
Muldoon's discussion, if the optimal distribution calls for 60% impact-
seekers and 40% safety-seekers, but the community contains 30% im-
pact-seekers (scientists with tradeoff function 2) and 70% safety-see-
kers (tradeoff function 1), the optimal distribution cannot be reached
through the approach proposed here.

Second, the result of the previous section addresses the special case
where expected credit is proportional to impact. Strevens (2003) argues
that credit should be proportional to impact. This argument, if accepted,
yields a preference for credit function C over C or any alternative.
Relatedly, Strevens (2006) argues that the Matthew effect—famous
scientists receive more credit for the same work than non-famous sci-
entists—is good for science on the assumption that credit is propor-
tional to impact. While I will not consider this argument in detail, it
supports the same preference. Any call to change the credit function
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will need to take all factors into account.
The argument in Strevens (2003, section 2) is based on the fol-

lowing simple model. Suppose scientists need to choose which of a
number of research problems to work on, and assume the following.
First, the projects are independent in the sense that solving any one of
them would be socially valuable regardless of which of the other ones
are solved (Strevens calls this “the additive case”). Second, each project
is characterized by a “success function”, which specifies the chance of
solving the problem given the number of scientists working on it. And
third, the success functions are increasing and concave. Then a reward
structure which gives credit to each scientist proportional to the ex-
pected impact of their contribution will incentivize scientists to dis-
tribute themselves among the problems in a way that maximizes the
expected sum total impact.

The problem of how to distribute scientists over different research
problems (or methodological approaches, or research programs) has
been called the division of cognitive labor since Kitcher (1990). The
question of the type of research carried out by each scientist (impact-
seeking or safety-seeking) is a separate issue, one that I have here re-
ferred to as the distribution of researcher types; Thoma calls this the di-
versity of research strategy. Using this terminology, Strevens (2003) ar-
gues that giving credit proportional to impact optimizes the division of
cognitive labor, and I have argued that there is no reason to expect it to
lead to a particularly good distribution of researcher types. If the work
of Weisberg and Muldoon (2009), Thoma (2015), and others yields a
specific recommendation for a good (or even optimal) distribution of
researcher types, incentivizing this distribution would presumably in-
volve a departure from setting credit proportional to impact (i.e., re-
placing the function C, perhaps with the function C ). But this entails a
departure from the incentive structure that optimizes the cognitive di-
vision of labor according to Strevens.

So there is not quite a disagreement with Strevens here. Strevens
(2003) is only concerned with the division of cognitive labor, and I note
that a concern with the distribution of researcher types may pull in a
different direction. This suggests that there is a tradeoff between in-
centivizing a beneficial division of cognitive labor and a beneficial
distribution of researcher types. However, it is difficult to be precise
about the nature of this tradeoff until we have a better sense of what is
needed to incentivize a beneficial distribution of researcher types.

What is perhaps more interesting is the general question this raises
about whether policy proposals designed to address different aspects of
the social structure of science are compatible. Strevens (2003) argues
that credit should be proportional to impact because he is concerned
with the division of cognitive labor. The argument by Strevens (2006)
that the Matthew effect is benign also depends on credit being pro-
portional to impact. Heesen (2017) argues that credit should be pro-
portional to the difficulty of the completed task out of a concern with
scientists' sharing of intermediate results. The present paper suggests
deviating from credit proportional to impact to get the right level of
impact-seeking. And other issues may impose yet further, possibly in-
compatible constraints. Combining and weighting these constraints is
an important issue for future research.

5. Conclusion

Lakatos (1978) and Feyerabend (1975) famously argued that a di-
versity of methodological approaches (what Kitcher, 1990 called a

division of cognitive labor) is good for scientific progress. One might
reason by analogy that a diversity of researcher types, i.e., of maver-
icks/impact-seekers and followers/safety-seekers, is also good for sci-
entific progress, as hinted by Kuhn (1996) and Hull (1988) and argued
more explicitly by Weisberg and Muldoon (2009) and Thoma (2015).
Since credit rewards can arguably be used to incentivize scientists to
organize themselves into an optimal division of cognitive labor
(Kitcher, 1990; Strevens, 2003), extending the analogy suggests that
credit incentives might be used to improve the distribution of re-
searcher types.

At a high level of abstraction, giving out credit for different types of
scientific contributions would seem to be an adequate means of in-
centivizing both a diversity of methodologies and a diversity of re-
searcher types. This makes Thoma's suggestion to use credit for the
latter, where Kitcher and Strevens had used it for the former, seem
natural. Weisberg and Muldoon (2009) similarly see a close connection
there, as evidenced by their use of “division of cognitive labor” in the
title of a paper about researcher types. It is somewhat surprising then
that as one looks more closely, as I have done here, one finds that the
two types of diversity may conflict.

According to Strevens (2003), in order to optimize the division of
cognitive labor credit must be equated to impact. I have argued in
section 3 that the incentive structure thus created entails a particular
distribution of researcher types which is not particularly likely to be a
good one. Improving the incentive structure with respect to the dis-
tribution of researcher types in the manner suggested in section 4 then
requires moving away from the optimum with respect to the division of
cognitive labor.

The point generalizes. Recent work on the social structure of science
has identified a number of choices scientists make that are potentially
influenced by credit incentives. In addition to the division of cognitive
labor and the distribution of researcher types, this includes the issues of
compensating for the positive externalities of scientific research
(Dasgupta & David, 1994; Zollman, 2018), collaboration (Boyer-Kassem
& Imbert, 2015), and sharing intermediate results (Heesen, 2017). In
each case the good news is that credit rewards can be used to in-
centivize good or optimal choices.

The bad news identified here is that the right incentive structure
may be different for each issue. The division of cognitive labor requires
giving credit proportional to impact (per Strevens, 2003); the dis-
tribution of researcher types likely requires deviating from this pro-
portionality (per my Theorem 1); incentivizing the sharing of inter-
mediate results requires giving credit proportional to difficulty (per
Heesen, 2017); and the other issues may have yet further requirements.
It appears that there are real tradeoffs here. A crucial question for fu-
ture research is how to assess these tradeoffs. In other words, what
reward structure is best all-things-considered?
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Appendix A. The tradeoff between impact, success probability, and speed

In this appendix I prove the results from section 3. Recall Assumption 1.

Assumption 1. The tradeoff function has the following properties:
1.a. The tradeoff function is decreasing in both of its arguments, i.e., if <p p then <p c p c( , ) ( , ) for any c, and if <c c then <p c p c( , ) ( , )

for any p.
1.b. No perfect work: =plim ( , 0) 0p 1 .
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1.c. The tradeoff function is concave: for any t [0,1] and for any p p c c, , ,

+ + +t p c t p c tp t p tc t c( , ) (1 ) ( , ) ( (1 ) , (1 ) ).

I first prove that this assumption entails that the tradeoff function is continuous.

Lemma 1. If Assumption 1 is satisfied, λ is continuous (except perhaps when =p 1).

Proof. Because λ is concave, it is continuous at any interior point of its domain, i.e., for all p (0,1) and for all c (0, ). It remains to show that
λ is continuous on the borders, that is at those points p c( , ) with =p 0 or =c 0. I give a proof for the case =c 0 (the other case is similar.)

Fix a value of p. Since λ is decreasing in c, it must be that p c plim ( , ) ( , 0)c 0 . But it follows from the fact that λ is concave that
p c plim ( , ) ( , 0)c 0 . So the two must be equal, and λ is continuous at the point p( , 0).□

As stated in the lemma, continuity may fail when =p 1. But note that, due to concavity and the no perfect work assumption, (1,0) 0. And due
to the assumption that λ is decreasing it also follows for any >c 0 that <c(1, ) 0 and p clim ( , ) 0p 1 .

Since negative speed has no interpretation in the model, and since the function C obviously will not be maximized at points where the tradeoff
function is negative or zero, it makes no difference to the results to work with a “fixed up” function of the tradeoff function that is continuous
everywhere (i.e., including at points with =p 1). But this does significantly simplify the proofs below. So below I assume that λ is continuous
everywhere.

The role of the maximum impact function μ is to identify the set of choices for p and c where the speed is positive.

Proposition 1. (Maximum Impact). Let p [0,1]. Assumption 1 entails that there exists a function µ: [0,1] [0, ) such that p c( , ) 0 if and only if
c µ p( ). The function μ is decreasing and concave.

Proof. Let p [0,1]. Since λ is decreasing in p and =plim ( , 0) 0p 1 , >p( , 0) 0 if <p 1 and =(1,0) 0. Now consider the part of the tradeoff
function obtained by holding p fixed and letting c vary. This partial function is maximized when =c 0 (because λ is decreasing in c). Due to
concavity, it must eventually become negative. Since λ is continuous, by the intermediate value theorem there must be a value of c such that

=p c( , ) 0. Define µ p( ) to be the smallest value of c such that =p c( , ) 0. Because λ is decreasing in c, >p c( , ) 0 whenever <c µ p( ) and
<p c( , ) 0 whenever >c µ p( ). This establishes the existence of the function μ. It remains to show that μ is decreasing and concave.

Let <p p and suppose for reductio that µ p µ p( ) ( ). By definition of μ, = =p µ p p µ p( , ( )) ( , ( )) 0. But since λ is decreasing,

>p µ p p µ p p µ p( , ( )) ( , ( )) ( , ( )).

Contradiction. So <µ p µ p( ) ( ), i.e., μ is decreasing.
Let p p t, , [0, 1]. As established above, μ is defined such that

= = + + =p µ p p µ p tp t p µ tp t p( , ( )) ( , ( )) ( (1 ) , ( (1 ) )) 0.

Because λ is concave,

+ + +t p µ p t p µ p tp t p tµ p t µ p( , ( )) (1 ) ( , ( )) ( (1 ) , ( ) (1 ) ( )).

Since the left-hand side of the above vanishes,

+ + + +tp t p µ tp t p tp t p tµ p t µ p( (1 ) , ( (1 ) )) ( (1 ) , ( ) (1 ) ( )).

Since λ is decreasing in its second argument, it follows that

+ +tµ p t µ p µ tp t p( ) (1 ) ( ) ( (1 ) ),

which establishes concavity.□

Theorem 1. (Unique Maximum). If Assumption 1 is satisfied, there exists a unique point p c( , )* * that maximizes the function C:

=C p c C p c( , ) max ( , ).
p c

* *
[0,1], [0, )

Moreover, < <p0 1* and < <c µ p0 ( )* * .

Proof. Recall that the function C is defined for all p [0,1] and c [0, ) by =C p c cp p c( , ) ( , ). Note first that, as a consequence of Proposition
1, C p c( , ) 0 if and only if c µ p( ). Since C is a continuous function (as a consequence of λ being continuous), by the extreme value theorem it
achieves a maximum at least once on the compact set p c p c µ p{( , ): [0,1], [0, ( )]}, i.e., there exists at least one point p c( , )* * such that

=C p c C p c( , ) max ( , ).
p c µ p

* *
[0,1], [0, ( )]

Note further that >C p c( , ) 0 if and only if < <p0 1 and < <c µ p0 ( ). But then certainly it must be the case that >C p c( , ) 0* * . Hence < <p0 1*

and < <c µ p0 ( )* * . Moreover, since <C p c( , ) 0 when >c µ p( ), any point that maximizes C on the restricted domain p c p c µ p{( , ): [0,1], [0, ( )]}
must also be a global maximum of C:

=C p c C p c( , ) max ( , ).
p c

* *
[0,1], [0, )

It remains to show that the maximum is unique. To do this I rely on a theorem of Kantrowitz and Neumann (2005) for products of concave
functions.

Let p c p c( , ) ( , )* * . To show uniqueness of the maximum, it suffices to show that p c( , ) does not maximize C. Since any maximum must satisfy
the condition established above, restrict attention to cases with < <p0 1 and < <c µ p0 ( ).

Let f : [0,1] (0, ) be the function defined by
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= + + = + + + +f t C tp t p tc t c tc t c tp t p tp t p tc t c( ) ( (1 ) , (1 ) ) ( (1 ) )( (1 ) ) ( (1 ) , (1 ) )* * * * * *

for all t [0,1]. Because C is maximized at p c( , )* * , f is maximized at =t 1.
Note that f is the product of three concave and nonnegative functions: λ is a concave function of t as a consequence of Assumption 1, and

+tc t c(1 )* and +tp t p(1 )* are linear functions of t and hence also concave. Moreover, since either c c* or p p* , at least one of the
functions +tc t c(1 )* and +tp t p(1 )* has a unique maximum (e.g., if >c c* , +tc t c(1 )* is maximized at =t 1). Finally, none of the three
functions are identically zero on [0,1] (in fact none of the three functions are zero anywhere). So it follows from Kantrowitz and Neumann (2005,
theorem 4.iii) that f has a unique maximum at =t 1. Hence = < =C p c f f C p c( , ) (0) (1) ( , )* * .□
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