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Abstract

In this paper a class of so called mathematically acceptable (shortly MA) languages
is introduced. First-order formal languages containing natural numbers and numerals
belong to that class. MA languages which are contained in a given fully interpreted
MA language augmented by a monadic predicate are constructed. A mathematical
theory of truth (shortly MTT) is formulated for some of these languages. MTT makes
them fully interpreted MA languages which posses their own truth predicates, yielding
consequences to philosophy of mathematics. MTT is shown to conform well with the
eight norms presented for theories of truth in the paper ‘What Theories of Truth Should
be Like (but Cannot be)’, by Hannes Leitgeb. MTT is also free from infinite regress,
providing a proper framework to study the regress problem.
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1 Introduction

In this paper a theory of truth is formulated for languages which are formal enough for
mathematical reasoning. The regress problem is studied within the framework of that theory.
By Chomsky’s definition (cf. [2]) a “language is a set (finite or infinite) of sentences of finite
length, and constructed out of finite sets of symbols”. Allowing countable sets of sentences
and symbols we call such a language L mathematically acceptable (shortly MA), if the syntax
and the lexicon of L are those of first-order predicate logic (cf., e.g., [17, Definitions II.5.1 and
II.5.2]), added by natural numbers and their names; numerals, and if L is closed with respect
to logical connectives and quantifiers. L is called fully interpreted, if every sentence of L is
interpreted either as true or as false, and if standard truth tables are valid. Any countable
first-order formal language, equipped with a consistent theory interpreted by a countable
model, and containing natural numbers and numerals, is a fully interpreted MA language. A
classical example is the language of arithmetic with its standard model and interpretation.
Basic ingredients in our approach are: 1. A fully interpreted MA language L (base language).
2. A monadic predicate T having the set of numerals as its domain (truth predicate).
3. The MA language L obtained as a closure with respect to logical connectives of the set
formed by sentences of L, elements of the range of T and quantifications ∀xT (x) and ∃xT (x).
4. The set D of Gödel numbers of sentences of L in its fixed Gödel numbering.

The paper is organized as follows. In Section 2 we construct to each subset U of D new
subsets G(U) and F (U) of D, and denote by LU the language of those sentences which have
Gödel numbers in G(U) ∪ F (U). The construction implies that LU is an MA language. U is
called consistent if for no sentence A of L the Gödel numbers of both A and ¬A are in U .

In Section 3 we define a mathematical theory of truth (shortly MTT) for languages LU , where
U is consistent and is a fixed point of G, i.e., U = G(U). A sentence A of LU is interpreted
as true if its Gödel number #A is in G(U), and as false if #A is in F (U). This makes LU

a fully interpreted MA language. Thus LU has the same formal and semantical properties
as assumed for L. We call T a truth predicate for LU , and show that T -biconditionality:
A↔ T (dAe), where dAe is the numeral of the Gödel number of A, is true for all sentences A
of LU . The truth in L and the truth in LU are connected so that each sentence A of L, either
(a) A is true in the interpretation of L, iff A is true in LU , iff T (dAe) is true in LU , or
(b) ¬A is true in the interpretation of L, iff ¬A is true in LU , iff ¬T (dAe) is true in LU .

In Section 4 we study consequences of the presented theory to mathematical philosophy.
MTT is immune to ‘Tarski’s Commandment’ (cf. [19]), to Tarski’s Undefinability Theorem
(cf. [25]), to ‘Tarskian hierarchies’ (cf. [8]), and to ‘Liar paradox’ (cf. [12]). MTT is also
shown to conform well with the norms presented in [18] for theories of truth.
Section 5 is devoted to the study of the regress problem within the framework of MTT. In the
study we question the following conclusion stated in [23]: “it is logically impossible for there
to be an infinite parade of justifications”. Notwithstanding this conclusion we present an
example of an infinite parade (regress) of justifications that satisfies the conditions imposed
on them in [22]. Example is inconsistent with the above quoted conclusion that is used in
[22, 23] as a basic argument to refute Principles of Sufficient Reasons.

Main tools used in proofs are Zermelo-Fraenkel (ZF) set theory and classical logic.
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2 Construction of languages

Let basic ingredients L, T , L and D be as in the Introduction. We shall construct a family of
sublanguages for the language L. As for the used terminology, cf. e.g., [17]. Given a subset
U of D, define subsets G(U) and F (U) of D by following rules (iff abbreviates if and only if):

(r1) If A is a sentence of L, then the Gödel number #A of A is in G(U) iff A is true in the
interpretation of L, and in F (U) iff A is false in the interpretation of L.

(r2) If A is a sentence of L, then #T (dAe) is in G(U) iff #A is in U , and in F (U) iff the
Gödel number #[¬A] of the negation ¬A of A is in U .

Sentences determined by rules (r1) and (r2), i.e., all sentences A of L and those sentences
T (dAe) of L for which #A or #[¬A] is in U , are called basic sentences.
Next rules deal with logical connectives. Let A and B be sentences of L.

(r3) Negation rule: #[¬A] is in G(U) iff #A is in F (U), and in F (U) iff #A is in G(U).

(r4) Disjunction rule: #[A ∨ B] is in G(U) iff #A or #B is in G(U), and in F (U) iff #A
and #B are in F (U).

(r5) Conjunction rule: #[A ∧B] is in G(U) iff #[¬A ∨ ¬B] is in F (U) iff (by (r3) and (r4))
both #A and #B are in G(U). Similarly, #[A ∧ B] is in F (U) iff #[¬A ∨ ¬B] is in
G(U) iff #A or #B is in F (U).

(r6) Implication rule: #[A → B] is in G(U) iff #[¬A ∨ B] is in G(U) iff (by (r3) and (r4))
#A is in F (U) or #B is in G(U). #[A → B] is in F (U) iff #[¬A ∨ B] is in F (U) iff
#A is in G(U) and #B is in F (U).

(r7) Biconditionality rule: #[A ↔ B] is in G(U) iff #A and #B are both in G(U) or both
in F (U), and in F (U) iff #A is in G(U) and #B is in F (U) or #A is in F (U) and #B
is in G(U).

If A(x) is a formula in L, then quantifications ∃xA(x) and ∀xA(x) are sentences of L. Hence
rule (r1) is applicable for them. So it suffices to set rules for ∃xT (x) and ∀xT (x). Assume
that the set X of numerals of Gödel numbers of sentences of L is the intended domain of
discourse of T . We set the following rules:

(r8) #[∃xT (x)] is in G(U) iff #T (n) is in G(U) for some n ∈ X, and #[∃xT (x)] is in F (U)
iff #T (n) is in F (U) for every n ∈ X.

(r9) #[∀xT (x)] is in G(U) iff #T (n) is in G(U) for every n ∈ X, and #[∀xT (x)] is in F (U)
iff #T (n) is in F (U) at least for one n ∈ X.

Rules (r1)–(r9) and induction on the complexity of formulas determine uniquely subsets G(U)
and F (U) of D whenever U is a subset of D. Denote by LU the language formed by those
sentences A of L for which #A is in G(U) or in F (U). LU contains by rule (r1) all sentences
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of the base language L, and is by construction closed with respect to logical connectives and
quantifiers. In particular, LU is an MA language.
We say that a subset U of D is consistent iff both #A and #[¬A] are not in U for any sentence
A of L. For instance, the empty set ∅ is consistent.
The following two lemmas have counterparts in [10].

Lemma 2.1. Let U be a consistent subset of D. Then G(U) ∩ F (U) = ∅.

Proof. Let A be a sentence of L. Because L is fully interpreted, then either A is true or false
in the interpretation of L. Thus, by rule (r1), #A is either in G(U) or in F (U).
If A is a sentence of L, then by rule (r2), #T (dAe) is in G(U) iff #A is in U , and in F (U) iff
#[¬A] is in U . Thus #T (dAe) cannot be both in G(U) and in F (U) because U is consistent.
Make an induction hypothesis:

(h0) A and B are such sentences of L that neither #A nor #B is in G(U) ∩ F (U).

As shown above, (h0) holds if A and B are basic sentences.
If #[¬A] is in G(U) ∩ F (U), then #A is in F (U) ∩ G(U). Hence, if (h0) holds, then #[¬A]
is not in G(U) ∩ F (U).
If #[A ∨ B] is in G(U) ∩ F (U), then #A or #B is in G(U), and both #A and #B are in
F (U) by (r4), so that #A or #B is in G(U) ∩ F (U). Hence, if (h0) holds, then #[A ∨ B] is
not in G(U) ∩ F (U).
#[A ∧ B] cannot be in G(U) ∩ F (U), for otherwise both #A and #B are in G(U), and at
least one of #A and #B is in F (U), contradicting with (h0).
If #[¬A] is in G(U) ∩ F (U), then #A is in F (U) ∩G(U), and (h0) is not valid. Thus, under
the hypothesis (h0) neither #[¬A] nor #B is in G(U)∩F (U). This result and the above result
for disjunction imply that #[¬A ∨ B], or equivalently, #[A → B], is not in G(U) ∩ F (U).
Similarly, #[A↔ B] is not in G(U)∩F (U), for otherwise, #A or #B would be in G(U)∩F (U)
by rule (r7), contradicting with (h0).
It remains to show that #[∃xT (x)] and #[∀xT (x)] are not in G(U) ∩ F (U).
If U is empty, then T (n) is by rule (r2) neither in G(U) nor in F (U) for any n ∈ X. Thus
#[∃xT (x)] is by rule (r8) neither in G(U) nor in F (U), and hence not in G(U) ∩ F (U).
If U is nonempty, then #A is in U for some A in L. Since U is consistent, then #[¬A] is not
in U , whence #T (dAe) is by rule (r2) not in F (U). Thus #[∃xT (x)] is by rule (r8) not in
F (U), and hence not in G(U) ∩ F (U).
Because U is consistent, it is a proper subset of D. Thus there is n ∈ D such that n 6∈ U .
But n = #A for some sentence A of L, whence #T (n) = #T (dAe) is not in G(U) by rule
(r2). Consequently, #[∀xT (x)] is by rule (r9) not in G(U), and hence not in G(U) ∩ F (U).
The above results and induction on the complexity of formulas imply that #A is not in
G(U) ∩ F (U) for any sentence A of L.

Lemma 2.2. If U is a consistent subset of D, then both G(U) and F (U) are consistent.

Proof. If G(U) is not consistent, then there is such a sentence A of L, that #A and #[¬A]
are in G(U). Because #[¬A] is in G(U), then #A is also in F (U) by rule (r3), and hence in
G(U)∩F (U). But then, by Lemma 2.1, U is not consistent. Consequently, if U is consistent,
then G(U) is consistent. The proof that F (U) is consistent if U is, is similar.
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3 A mathematical theory of truth

Recall that D denotes the set of Gödel numbers of sentences of the language L. Given a
subset U of D, let G(U) and F (U) be the subsets of D constructed in Section 2. In the next
definition we formulate our mathematical theory of truth (shortly MTT).

Definition 3.1. Assume that U is a consistent subset of D, and that U = G(U). Denote by
LU the language containing those sentences A of L for which #A is in G(U) or in F (U). A
sentence A of LU is interpreted as true iff #A is in G(U), and as false iff #A is in F (U). T
is called a truth predicate for LU .

The existence of consistent fixed points of G, i.e., those consistent subsets U of D satisfying
U = G(U), including the smallest one, can be proved, by applying ZF set theory, as in [11,
Section 4], when ‘true in M ’ is replaced by ‘true in the interpretation of L’.

In view of Definition 3.1, ‘#A is in G(U)’ can be replaced by ‘A is true’ and ‘#A is in F (U)’
by ‘A is false’ in (r3)–(r9). Thus standard truth tables of classical two-valued logic hold for
logical connectives of sentences of LU . This makes LU a fully interpreted MA language that
posses those formal and semantical properties which are assumed for the base language L.
The following result justifies to call T as a truth predicate of LU .

Lemma 3.1. If U is a consistent subset of D, and if U = G(U), then T -biconditionality:
A↔ T (dAe) is true for every sentence A of LU .

Proof. Assume that U ⊂ D is consistent, and that U = G(U). Let A be a sentence of LU .
Applying rules (r2) and (r3), and the assumption U = G(U), we obtain
– #A is in G(U) iff #A is in U iff #T (dAe) is in G(U);
– #A is in F (U) iff #[¬A] is in G(U) iff #[¬A] is in U iff #T (dAe) is in F (U).
Consequently, #A and #T (dAe) are both either in G(U) or in F (U). Thus #[A ↔ T (dAe)]
is by rule (r7) in G(U), so that A ↔ T (dAe) is true by Definition 3.1. This holds for every
sentence A of LU .

Our main result on the connection between the valuations determined by the interpretation
of L and that of LU defined in Definition 3.1 reads as follows:

Theorem 3.1. Let U be a consistent fixed point of G. If A is a sentence of L, then either
(a) A is true in the interpretation of L, iff A is true, iff T (dAe) is true, or
(b) A is false in the interpretation of L, iff A is false, iff T (dAe) is false.

Proof. Assume that A is a sentence of L. Because L is completely interpreted, then A is
either true or false in the interpretation of L.
– A is true in the interpretation of L iff #A is in G(U), by rule (r1), iff #A is in U , because
U = G(U), iff #T (dAe) is in G(U) by rule (r2), iff T (dAe) is true, by Definition 3.1.
– A is false in the interpretation of L iff ¬A is true in the interpretation of L iff #[¬A] is in
G(U), by rule (r1), iff #[¬A] is in U , because U = G(U), iff #dT (A)e is in F (U), by rule
(r2), iff T (dAe) is false, by Definition 3.1.
Consequently, a sentence A of L is true in the interpretation of L iff T (dAe) is true, and false
in the interpretation of L iff T (dAe) is false. These results and the result of Lemma 3.1 imply
the conclusions (a) and (b).
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4 Consequences to philosophy of mathematics

Let S = (L,Σ) be a mathematical system, where L is a first-order formal language, and
Σ is a set of axioms. Assume that Σ is consistent, and is either an extension of Robinson
arithmetic Q (e.g., Q itself or Peano arithmetic, L being the language of arithmetic), or Q
can be interpreted in Σ (e.g., Σ axiomatizes ZF set theory, and L is the language of set
theory). By Löwenheim-Skolem theorem that theory has a countable model M . Interpret
a sentence A of L as true in L if M |=A, and false in L if M |=¬A, in the sense defined in
[17, II.2.7]. By [17, Lemma II.2.8.22] this interpretation makes L fully interpreted, and L is
an MA language. Tarski’s Undefinability Theorem (cf. [25]) implies that L cannot contain
it’s truth predicate, yielding ‘Tarski’s Commandment’ (cf. [19]). Let L be a formal language
obtained by augmenting L with a monadic predicate T . T cannot be a truth predicate of L,
for otherwise one could construct a Liar sentence, which implies the ‘Liar paradox’ (cf. [12]).
Thus L does not contain its truth predicate, either, yielding ‘Tarskian hierarchies’ (cf. [8]).
Surprisingly, a Liar sentence is accepted in many axiomatic theories of truth (cf., e.g, [5])!

Theory MTT provides an alternative. Given a completely interpreted MA language L, let
LU , where U is a consistent fixed point of G, be an extension of L constructed in Section
2. The interpretation given for LU in Definition 3.1 makes it fully interpreted. Moreover,
LU contains by Definition 3.1 a truth predicate T defined within LU itself. It follows from
Lemma 3.1 that there is no Liar sentence in LU . As an MA language LU is closed with respect
to logical connectives and quantifiers, and hence formal enough for mathematical reasoning.
In particular, the language L of the above system S is extended in SU =(LU ,MTT) to a fully
interpreted MA language LU that contains its truth predicate and is free from paradoxes.

If S = (L,Σ) is as above, L contains by Gödel’s First Incompleteness Theorem a true arith-
metical sentence, say B, that is not provable from the axioms of Σ (cf. [24]). By Theorem
3.1 both B and T (B) are true in the interpretation of LU . This provides some support to
the following opinions on mathematical truth presented in [21, Chapter 4]: “The notion of
mathematical truth goes beyond the whole concept of formalism. There is something absolute
and ‘God-given’ about mathematical truth. Real mathematical truth goes beyond mere man-
made constructions.” Because of consistency assumption for Σ these opinions are questioned
(cf. [24]). But inability of human mind to verify that Σ is consistent rather supports than
questions these opinions. Mathematics rests on the belief that its theories are consistent.

MTT has properties that conform quite well with the eight norms formulated in [18] for
theories of truth. Truth is expressed by a predicate T . The syntax of the MA language LU

is that of first-order logic with equality added by natural numbers as constants and numerals
as terms. It is closed under logical connectives and quantifiers. A theory of truth is added to
the base language L. If the interpretation of L is determined by a consistent mathematical
theory (Peano arithmetic, ZF set theory, e.t.c.), then MTT proves the theory in question
true, by Theorem 3.1. Truth predicate is not subject to any restrictions within fixed point
languages LU . T -biconditionals are derivable unrestrictedly within fixed point languages LU ,
by the proof of Lemma 3.1. Truth is compositional, by Definition 3.1 and rules (r3)–(r9). The
theory allows for standard interpretations if the interpretation of L is standard. In particular,
the outer logic and the inner logic coincide, and they are classical.
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5 On the Regress Problem

First of ten theses presented in [1, p. 6] is: “The Regress Problem is a real problem for
epistemology.” We are going to study the regress problem in the framework of MTT. We
adjust first our terminology to that used in [22] in the study of the regress problem. Given a
fully interpreted MA language L, let a fully interpreted MA language LU that contains L be
determined by Definition 3.1, U being the smallest fixed point of G. By statements we mean
the sentences of LU , which are valued by Definition 3.1. A statement A is said to entail B, if
it is not possible that A is true and B is false simultaneously. For instance, if A→ B is true,
then A entails B. We say that a statement A justifies a statement B if A confirms the truth
of B. For instance, if A↔ ¬B is true, then A justifies B iff A is false. If A→ B is true, then
A justifies B iff A is true (Modus Ponens). A is called contingent if the truth value of A is
unknown.

Consider an infinite regress
. . . Fi, . . . , F1, F0 (5.1)

of statements Fi, i ≥ 0, where the statement F0 is contingent. We shall impose the following
conditions on statements Fi, i > 0 (cf. [22]):

(i) Fi entails Fi−1;

(ii) F0 ∨ · · · ∨ Fi−1 does not entail Fi;

(iii) F0 ∨ · · · ∨ Fi−1 does not justify Fi.

Regress (5.1) is called justification-saturated if the following condition holds:

(iv) . . . what justifies Fi−1 is Fi, . . . , what justifies F1 is F2, what justifies F0 is F1.

Lemma 5.1. Assume that in regress (5.1) the statement F0 is contingent, and that the state-
ments Fi, i > 0, satisfy conditions (i)–(iii).
(a) If F1 is false, then Fi is false for each i > 0. F0 is justified iff F0 ↔ ¬F1 is true.
(b) If Fn is true for some n > 0, then Fi is true when 0 ≤ i ≤ n.
(c) The regress (5.1) is justification saturated iff Fi is true for all i > 0, in which case F0 is
justified.

Proof. (a) Assume that F1 is false. If Fi would be true for some i > 1, there would be the
smallest such an i. Then Fi−1 would be true by (i). Replacing i by i − 1, and so on, this
reasoning would imply after i− 1 steps that F1 is true; a contradiction. Thus all statements
Fi, i > 0, are false. Because F1 is false, it confirms the truth of F0 iff F0 and ¬F1 have same
truth values iff F0 ↔ ¬F1 is true.
(b) Assume that Fn is true for some n > 0. Since Fi entails Fi−1, i = n, n− 1, . . . , 1, then Fi

is true for every i = n− 1, . . . , 0.
(c) If Fn is false for some n > 0, then Fn+1 is false by property (i), and it does not justify Fn,
so that condition (iv) is not valid. On the other hand, condition (i) ensures that condition
(iv) is valid if Fi is true for all i > 0. In this case F1 justifies F0, i.e., F0 is true.
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Example 5.1. Let L be the first-order language L = {∈} of set theory, and M the minimal
model of ZF set theory constructed in [3]. M is countable and contains the set ω of natural
numbers and their set S(ω) = ω ∪ {ω} (cf. [3, 14]). We assume that numerals are defined
in L, e.g., as in [6]. The interpretation induced by M makes L fully interpreted (cf. Section
4). L is also an MA language. Choose L as the base language of theory MTT. Equip S(ω)
with the natural ordering < of natural numbers plus n < ω for every natural number n. If
Z denotes a nonempty subset of S(ω), it is easy to verify that the infinite regress (5.1) of
statements

Fi : i < β, for every β ∈ Z, i = 0, 1, . . . , (5.2)

satisfy conditions (i)–(iii), and that F0 is contingent. Moreover, condition (iv) is valid by
Lemma 5.1 if and only if Fi is true for all i > 0. This holds if and only if Z = {ω}.

Comments. Example 5.1 is inconsistent with the conclusion of [23] cited in the Introduction.
In this example the property that regress (5.1) is justification-saturated both implies and is
implied by truth of a ’foundational’ statement Fb : Z = {ω}. Thus it does not support the
form of infinitism presented in [15]: “infinitism holds that there are no ultimate, foundational
reasons”. On the other hand, it supports “impure” infinitism and the form of foundationalism
presented in [1, 26].
Example 5.1 implies that the proofs in [22, 23] to the assertion that “any version of Principle
of Sufficient Reason is false” are based on the questionable premise that infinite regresses of
justifications don’t exist. In fact, this example gives some support to Principles of Sufficient
Reason, as well as to many other arguments whose validity is questioned in [22, 23]. For
instance, in the ‘universe’ S(ω) of Example 5.1,

• {ω} provides a sufficient reason for F0;

• {ω} affords an ultimate and foundational reason that justifies F0;

• {ω} is the final explainer of F0;

• {ω} gives the first cause that makes regress (5.1),(5.2) justification-saturated;

• ω explains the existence of the ’universe’ N of natural numbers (N = ω by [13]);

• ω and {ω} explain the existence of the ‘universe’ S(ω) (S(ω) = ω ∪ {ω} by [13]);

• ω is something beyond natural numbers;

• ω is infinite and greatest in the ‘universe’ S(ω);

• ω is ‘self-justified’ (The Axiom of Infinity).

Belief that ω exists is a matter of faith. In Example 5.1 we have assumed it because the
model M of ZF set theory contains the set ω ∪ {ω}. Notice that this set does not belong to
the standard model of arithmetic. Thus MTT, where the base language L is the language of
arithmetic, is not a sufficient framework for Example 5.1.
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6 Remarks

The main purpose of this paper is to present fully interpreted languages which contain their
own truth predicates, are free from paradoxes, and are formal enough for mathematical rea-
soning.
Another purpose of the presented theory of truth is to establish a proper framework to study
the regress problem. Tarski’s theory of truth (cf. [25]) does not offer it because that theory
itself is not free from infinite regress. According to [20, p.189]: “the most important problem
with a Tarskian truth predicate is its demand for a hierarchy of languages. ... within that
hierarchy of languages, we cannot seem to have any valid method of ending the regression to
introduce the “basic” metalanguage.” Pure infinite regress is even refused in ([4, p.13]).

Kripke’s theory of truth is also a problematic framework because of three-valued inner logic.
As stated in [18, p.283]: “Classical first-order logic is certainly the default choice for any
selection among logical systems. It is presupposed by standard mathematics, by (at least)
huge parts of science, and by much of philosophical reasoning.” Moreover, T -biconditionality
rule does not hold in Kripke’s theory of truth because of paradoxical sentences.
Paradoxes led Zermelo to axiomatize set theory. To avoid paradoxes Tarski “excluded all Liar-
like sentences from being well-formed”, as noticed in [18]. As a contemporary mathematician
I consider as unacceptable that a mathematical theory of truth contains a Liar sentence.
Construction of languages LU limits the set of those sentences of L which contain T in such
a way that MTT makes them free from paradoxes. The smallest of those languages for which
MTT is formulated is LU , where U is the smallest consistent fixed point of G. It relates
to that of the grounded sentences defined in [10, 16]. See also [7], where considerations are
restricted to signed statements.
In spite of limitations the languages LU have the same formal and semantical properties as
the base language L. Being MA languages, L and LU don’t need to posses all the formal
properties of first-order formal languages. In particular, the class of fully interpreted MA
languages extends the class of languages for which theories of truth are usually formulated.

Acknowledgments: The author is indebted to Ph.d. Markus Pantsar for valuable discus-
sions on the subject. The present work is influenced by [10].
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[24] Raatikainen, Panu (2014) Gödel’s Incompleteness Theorems, The Stanford Encyclopedia
of Philosophy (Spring 2014 Edition), Edward N. Zalta (ed.).

[25] Tarski, Alfred (1983) The concept of Truth in Formalized Languages, In A. Tarski, Logic,
Semantics, Metamathematics (trans. J. H. Woodger) Hackett Publishing Company In-
dianapolis.

[26] Turri, John (2009) On the regress argument for infinitism, Synthese 166,1.

10


