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Preface

Culture is a positively loaded word. Throughout society people belonging to
the same group find great pleasure in sharing cultural values. Much valuable
work is done through cooperation between people belonging to the same cul-
ture. But there is also a negative side of this: Between different groups there
may be cultural clashes and lack of understanding. War and terrorism are
the well known extreme consequences of such cultural clashes, but less severe
negative results of cultural differences exist both within each single society
and between societies.

There is usually very little reason to aiming at eliminating cultural differ-
ences. But in some cases it might serve a positive purpose to try to develop
a language which may give people from different cultures a better chance of
understanding each other and learning from each other. A main thesis behind
this book is that also in science, an area supposed by many to be extremely
objective, there exist cultural differences.

Many workers in applied statistics, theoretical statistics or theoretical
physics are apparently not aware of the cultural aspect of their way of thinking
at all. But it is there, in the historical development of each science, partic-
ularly in the conceptual framework developed, but also in current collective
attitudes, as materialized in formal and informal requirements for conference
and seminar contributions, in common views on what are the interesting topics
for research, in standards set by journals, or more generally, in the focus used
thoughout for scientific discussion. Most of the values that result from this
are probably sensible from a scientific point of view, but one cannot exclude
some effect of an element of a relatively arbitrary tradition, common to each
culture. Specifically, quantum physics has its Hilbert space formalism not only
as a theoretical basis, but also as a conceptual framework for informal dis-
cussion. Could one imagine that this had been different if history had chosen
a different course? In this book I will indicate an alternative basis, equiva-
lent mathematically, at least for many important cases, but conceptually very
different.
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A similar basic rôle is played in theoretical statistics by the set of models
based upon parametric classes of probability distributions. Can this frame-
work be extended in a natural way such that this extended basis contain
interesting new applications? In this book we extend the ordinary statistical
paradigm in two directions: Symmetry and focusing. While symmetry ex-
pressed by transformation groups has been discussed in the statistical litter-
ature before, focusing as a part of the model selection procedure has received
very little attention. Both aspects seem to be needed in order to provide the
link towards quantum mechanics.

As it turns out, applied statistics may sometimes have a broader basis
than theoretical statistics without going so deep in any way. Parts of this
latter basis will be inspirations for our starting point below.

Note that even in pure mathematics there are strong elements which must
be called historical or cultural, in the choice of mathematical concepts to
develop and in the focus for research.

This book is written under the hypothesis that there exists a common
mathematical scientific language which can be used in making inference on
empirical data and in making predictions. And a main point of departure is
that this also should include - at least part of - quantum theory. One way one
could try to motivate this, is through the so-called epistemological interpreta-
tion of quantum mechanics, which has become popular among some physicists
recently. According to this interpretation, quantum mechanics should be in-
terpreted through the way nature is observed, not through the way nature is.
In this book I go a major step further: To a large extent I will give an epis-
temological derivation of quantum theory, and formulate the whole theory
in an epistemological language. This will to some extent imply close points
of contact between quantum theory, statistical theory and everyday informal
methods of prediction.

Of course there are real differences between statistics and quantum physics
due to different domains of applications, but parts of the differences may also
have a historical origin. In fact, strong indications of such a connection exists
already within the physical community, as manifested in the interest among
many quantum physicists for a Bayesian interpretation of the probabilities
implied by the quantum formalism. My ambition is to draw this relation from
quantum theory to statistics further than just the interpretation of the theory.

So in order to explore this link, I have started with statistics and extended
its conceptual framework in several directions; incorporating complementar-
ity, choice of focus in the selection of experimental question, and also inference
under symmetry. From this, the main part of the link is developed mathemati-
cally in Chapter 5 and largely completed in Chapter 6. In Chapter 7 I consider
several aspects of what statisticians can learn from this connection, while in
Chapter 8 I extend the link to discussing a third culture: that of partial least
squares analysis, a multivariate technique which started in chemometry, but
which now has a large range of application. Finally, in Chapter 9 I discuss
various aspects of human decision processes related to the results from my
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interpretation of quantum mechanics. Among statisticians, the area of par-
tial least squares analysis has been accused of not being related to a proper
model. On the other hand, the statisticians’ ordinary tools have their limita-
tions when it comes to treating the large number of increasingly important
applications with many variables and scarce data. I will address both these
aspects, and indicate how this can be met in an extended statistical language.
In this way I end up quite close to what is the main purpose of the whole
investigation: Unity and relevance to applications.

My background for writing this book goes many years back in time. In 1969
I began to study physics, inspired by Einstein’s beautiful theory of relativity,
a theory which starts with assumptions that are straightforward and easy to
understand: The invariance of physical laws and the constancy of the velocity
of light. By 1971, then under a scholarship at the Niels Bohr Institute in
Copenhagen, I had dug fairly deep into the other side of modern physics:
quantum theory and its generalizations. By the end of that year, however, the
feeling of frustration from the purely formalistic nature of nearly all physical
theories had grown so strong in me that I decided to quit this area. Later,
I started to study statistics, and again I got a scholarship and then went to
Berkeley, California, at that time the world center for theoretical statistics.
However, for various reasons, some related to the frustration mentioned above,
I largely quit theory for a long time, and during this time I enjoyed the close
contact with empiriral research at the Norwegian Agricultural University. In
1996 I decided to go back to more extensive theoretical research again and
entered a professor position at the University of Oslo. The last few years I
have then spent learning more statistical theory, group theory and quantum
theory until I felt that the time was ripe to write this book.

The book is an attempt to describe a possible first unification between
the foundation of statistics, the foundation of quantum theory and the theo-
retical foundation for prediction methods proposed and used in chemometry.
I don’t claim that this unified theory is final and perfect; there are various
problems that are explicitly stated and left open, and there may certainly
be problems that I have overlooked. However, I sincerely hope that the book
may indicate a direction of research that some people will find fruitful, and
that this research will go on towards finding a final unification between these
methological disciplines.

To put it bluntly, it may seem absurd that it should depend upon an arbi-
trary circumstance, say whether you have taken your first course in statistics
or in quantum mechanics, how you use probabilities to predict future events
in empirical sciences. Still this simple description has some element of truth in
it. I also know that other scientists have worried about similar issues. Having
said this, however, I have great respect for both statistical theory and quan-
tum theory as human endeavours which each have had tremendous impact on
their respective domains.

At the same time as the book is an attempt to find a unified background
behind various araes, it is also an attempt to indicate a new basis for quanti-
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tative scentific methods which certainly may be developed further. Of course,
regarding statistical theory, there exists a relatively well established textbook
basis, but I indicate that this basis may need to be extended in some direc-
tions to cover certain simple empirical examples and to cover some well-defined
methods of modern statistical data analysis. Among other things, I propose
that one should aim at a closer link between the experimental design phase
and the analysis phase, and I introduce the notion of a conceptually defined
variable - or c-variable, which includes parameters of different, potential ex-
periments. A very essential point is that this c-variable is purely conceptual
in the sense it may constitute a vector so large that all components can not
be assumed to take values simultaneously.

Concerning quantum mechanics, various theoretical foundations have been
proposed during the years, but all - quantum logic is a typical example - have
been based on fairly abstract mathematics. I will claim that the basis proposed
in this book is conceptually simpler.

This is perhaps the place to explain briefly my view on the rôle of math-
ematics. I regard mathemetics as very important in the development of any
scientific theory, in particular in clarifying concepts and in finding the pre-
cise relationship between various propositions. However, I feel that the very
foundation of a theory should preferably be formulated in simpler, everyday
terms, and the aestetic standard for such a foundation should not necessarily
be drawn from pure, abstract mathematics. An example of a theory for which
such a basis can be found, is again Einstein’s special theory of relativity.

To put my view simply, mathematics is invaluable in proving statements
of the type A implies B, but in a natural scientific setting, the arguments
for the premise A should often be of a different type. Unfortunately, both in
mathematical statistics and in mathematical physics there is a long tradition
for choosing the premise solely from formal arguments satisfying the aestetic
taste of pure mathematicians and theoreticians.

In this book on the contrary, the first chapter contains relatively little
mathematics, at least in the beginning, but more mathematics is used later in
the book. In the beginning of the first chapter, the concept of complementarity
is discussed in qualitative terms, and this leads among other things to the
concept of c-variable space or state space. As discussed there, it is possible that
a more precise state variable concept later may be defined using mathematical
logic. However, for the purpose of this book, the important aspect is the
intuitive content of the state concept, and this will in fact be true true whether
or not a more formal definition will be found later.

Chapter 2 has two purposes. First, I want it to be possible to read the book
also for physicists and mathematicians without a statistical background, so I
sketch the basic concepts of standard statistical theory and give some exam-
ples. Secondly, I indicate through examples and method discussions that an
extension of concepts in the line of what has been discussed in the introduction
and in the first chapter can be useful also in standard statistics.
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In Chapter 3 I use concepts from group theory to extend standard statis-
tical theory, a line of research which also has been carried out by others. This
chapter is fairly mathematical, but I have tried to simplify the mathematical
reasoning where possible. One difficulty is that the mathematics here is unfa-
miliar, at least to most statisticians, perhaps also to physicists, although the-
oretical physicist are used to apply group theory in other connections. While
the chapter may be felt by some to be too theoretical, it is important for my
discussion, for it provides the theoretical foundation both for the derivation of
quantum theory in Chapters 4 and 5, and for the relation between statistical
and chemometrical concepts in Chapter 8.

Chapter 4 discusses a logical connection between an extended statistical
theory and basic quantum theory, and this connection is proved in Chapter 5.
Basically, in both sciences we study questions that can be posed to nature, and
the empirical answers to those questions. I show that the states of quantum
mechanics are in one-to-one correspondence with such question/answer pairs,
and that the Hilbert space formulation of quantum mechanics may be derived
from this under certain conditions. Again, this part is fairly mathematical.

Furthermore, the probabilities of quantum mechanics can then be derived
from a well known basic formula of Born. The proof of this is also sketched
in the book. The assumptions behind all this are formulated explicitly, the
main ones being: 1) There is a symmetry group attached to the problem. 2)
The context of every possible experiment is limited in such a way that not
all possible parameters may be considered to have an definite value. Several
simple examples of such a situation are given in Chapter 1. To go further, many
similar examples from psychology and social sciences can be devised, and some
are briefly sketched in Chapter 9. Central to such examples are: Concepts
used by human beings may fail to have an objective meaning independent
of the person who uses the concept. This may be discussed under a quantum
mechanical framework as recently made clear by Dideric Aerts and coworkers.
One thesis of the present book is that a similar discussion of conceptualisation
may be needed in the natural sciences also, at least if one wants a relatively
simple way of modelling.

Then in Chapter 6 I discuss from my point of view various well known
topics and problems in quantum theory. These include entanglement, Bell’s
inequality, Planck’s constant, the Schrödinger equation, various paradoxes, the
history approach and the approach assuming many worlds or many minds.

In Chapter 7 I look at consequences for statistics of the unified view de-
veloped so far, The concept of focusing is discussed extensively. Then the link
to variable reduction in linear models is drawn. Focusing is also related to
problems in experimental design. Finally a simple hypothesis testing problem
under symmetry is related directly to quantum mechanics, and the relation-
ship between Heisenberg’s inequality and the Cramer-Rao inequality is briefly
discussed.

In this Chapter 8 I illustrate that the extensions proposed for statistical
theory, in particular model reduction under symmetry, can be useful in under-
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standing methods developed by other scientific cultures, here the partial least
squares method in chemometry. In this way 3 different cultures are sought
unified under the same paradigm; this can be extended further as indicated
in Chapter 9.

In this way I end up with an extended statistical science, partly as a result
of what I have learnt through the link towards quantum theory. I leave to
others to discuss further if the science of quantum mechanics also has learned
something through such a link. But my own conviction is that the ultimate
version of both sciences should be more than what can be deduced from a
small number of mathematical axioms; the requirement of a unity of scientific
methods should be much more important as a fundamental demand than it
is today.

In the final Chapter 9 I try to apply the main way of thinking here on the
process of learning from data to various everyday learning processes. From
this I think that I am able to say something on the forming of cultures and on
other processes treated in psychology and in the social sciences. The aim is a
conceptual framework which encompasses all empirical methods of obtaining
information from real world data.

I will first thank those teachers at the University of Bergen, at the Niels
Bohr Institute, Copenhagen and at the University of California, Berkeley who
thought me basic statistics and basic quantum theory decades ago. In more
modern times I have been updated in mathematical statistics by my colleagues
at the University of Oslo. I am grateful for brief comments and encourage-
ments in connection to the present project by James Berger, David Cox, Brad
Efron, Chris Isham, Eric Lehmann and Peter McCullagh. Above all I want
to thank Richard Gill for numerous interesting discussions, but I have also
discussed quantum mechanics and the related mathematics with Luigi Ac-
cardi, Erik Alfsen, Erik Bedos, Ola Bratteli, Peter Jupp, Carsten Lütken and
Erling Störmer. I am grateful to Trond Reitan for reading parts of the book
and for providing additional examples in Chapter 2. Anonymous referees to
two papers are also acknowledged. Finally, I am grateful to Trygve Almøy,
Harald Martens and Tormod Næs for discussion of problems and methods in
chemometry.

I want to thank ISI for permission to use the paper [112] as a basis for
Chapter 3 in the book.

My major source of updating in the foundational problems in quantum
theory have been three inspiring conferences in Växjö, Sweden arranged by
Andrei Khrennikov.

Then last, but not least: My deepest and most valuable support during
these years has been from my wife Anne, who all this time has done her best
to try to keep me down to earth.

Oslo, 2007 Inge S. Helland



Contents

1 THE BASIC ELEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction: Complementarity and Its Implications. . . . . . . . . . 1
1.2 Conceptually Defined Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Inaccessible c-variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 On Decisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Contexts for Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Experiments and Selected Parameters. . . . . . . . . . . . . . . . . . . . . . 12
1.7 Hidden Variables and c-variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Causality, Counterfactuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Probability Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.10 Probability Models for Experiments. . . . . . . . . . . . . . . . . . . . . . . . 21
1.11 Elements of Group Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 STATISTICAL THEORY AND PRACTICE. . . . . . . . . . . . . . . 29
2.1 Historical Development of Statistics as a Science. . . . . . . . . . . . . 29
2.2 The Starting Point of Statistical Theory. . . . . . . . . . . . . . . . . . . . 31
2.3 Estimation Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Confidence Intervals, Testing and Measures of Significance. . . . 39
2.5 Simple Situations Where Statistics is Useful. . . . . . . . . . . . . . . . . 43
2.6 Bayes’ Formula and Bayesian Inference. . . . . . . . . . . . . . . . . . . . . 47
2.7 Regression and Analysis of Variance. . . . . . . . . . . . . . . . . . . . . . . . 52
2.8 Model Checking in Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.9 Factorial Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.10 Contrasts in ANOVA Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.11 Reduction of Data in Experiments: Sufficiency. . . . . . . . . . . . . . . 59
2.12 Fisher Information and the Cramer-Rao Inequality. . . . . . . . . . . 61
2.13 The Conditionality Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.14 A Few Design of Experiment Issues. . . . . . . . . . . . . . . . . . . . . . . . 68
2.15 Model Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.16 Perfect experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



XIV Contents

3 STATISTICAL INFERENCE UNDER SYMMETRY. . . . . . 73
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Group Actions and Statistical Models. . . . . . . . . . . . . . . . . . . . . . 78
3.3 Invariant Measures on the Parameter Space. . . . . . . . . . . . . . . . . 82
3.4 Subparameters, Inference and Orbits. . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Estimation under Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5.1 The Main Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.2 Consequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Credibility Sets and Confidence Sets. . . . . . . . . . . . . . . . . . . . . . . . 95
3.7 Examples. Orbits and Model Reduction. . . . . . . . . . . . . . . . . . . . . 97
3.8 Model Reduction for Subparameter Estimation and Prediction. 99

3.8.1 Estimation of Subparameters. . . . . . . . . . . . . . . . . . . . . . . . 99
3.8.2 Multiple Regression under Rotation Invariance. . . . . . . . 100
3.8.3 Towards Partial Least Sqaures Regression. . . . . . . . . . . . . 102

3.9 Estimation of the Maximally Invariant Parameter: REML. . . . . 104
3.9.1 On Orbit Indices and on REML. . . . . . . . . . . . . . . . . . . . . 104
3.9.2 The Model and the Group. . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.9.3 Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.10 Design of Experiments Situations. . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.11 Group Actions Defined on a c-Variable Space. . . . . . . . . . . . . . . . 109
3.12 Some Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 THE TRANSITION FROM STATISTICS TO
QUANTUM THEORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.1 Theoretical Statistics and Applied Statistics. . . . . . . . . . . . . . . . . 113
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THE BASIC ELEMENTS.

1.1 Introduction: Complementarity and Its Implications.

Later in this book I will wind up with a rather extensive discussion of the
basic principles of quantum mechanics. I want to argue that these principles,
usually presented in a very formal way, can be linked in part to considerations
related to common sense and in part to a relatively intuitive extension of
ordinary statistical theory. One main point is: Every observation of nature,
every interpretation of nature and every prediction of natural phenomena is
done by some human being, and thus it is not unreasonable to expect that
it should be possible to find some language for interpretation of nature - also
for the basic physical nature - which has a relation to the everyday ordinary
language used by humans. My aim is to show that such a basic formulation
can be constructed. I will indeed show that essential parts of the ordinary
laws of quantum mechanics may be derived from such a basis. The purpose
of this programme is partly to work towards a unity of science, a unity where
it may be a possibility for the various disciplines to learn from each other,
partly to give an opportunity for a new discussion of the strange paradoxes
connected to the ordinary quantum formalism, and more generally, to propose
a conceptually simpler basis for the theory.

In fact, certain elements of quantum theory have already found its way into
everyday language. I am then first thinking of the concept of complementarity,
which is very central in every discussion of quantum theory. In the fascinating
time at the first part of the previous century when ordinary quantum me-
chanics evolved from intuitive ideas towards more definite formulations, the
precise meaning of this concept in the atomic setting was first developed by
Niels Bohr. Already in these early days, Bohr gave lectures about the concept
of complementarity to sociologists, to biologists, to people from medicine and
to people from other natural sciences, emphasizing its precise meaning in the
microworld, but also implicating that it could be useful in these other settings.
At that time these implications were difficult to concretize in a concise way,
but they were nevertheless of importance. Later, many physicists have been
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sceptical against a link towards the use of the word complementary outside
quantum theory. The argument has been that the use of words should be pre-
cise, and often this has been taken to imply that every conceivable statement
should be given a precise mathematical formulation, and that only such a
formulation is acceptable. Later in this book I will argue for the view that
intuitive ideas often should be the fundamental ones, and that the formal
statements in some sense should be derivable from these. The task of deriving
these connections will require precise mathematics, however.

Let us take a brief look at the concept of complementarity in the setting
that it first arouse. In quantum physics the position and velocity of a given
particle may be regarded as complementary. A first formulation can be: For
any given particle it is impossible to measure both position and velocity with
infinite precision. A more precise way to formulate the (non-relativistic) quan-
tummechanical statement is given by Heisenberg’s inequality, which can be
stated as follows:

Theorem 1.1.1. For a particle in some state let one have the choice
between measuring a position component or a velocity component, both in the
same direction. Let ∆x be the standard deviation of position measurement and
let ∆v be the standard deviation of the velocity measurement. Then however
the state should be and in whatever way the experiment is carried out, one
must always have

∆x ·∆v ≥ h̄/2m, (1.1)

where h̄ is Planck’s constant (= 1.055 · 10−34 Js) and m is the mass of the
particle.

In formal quantum mechanics, Heisenberg’s inequality is a result of the
non-commutity of the position and the momentum-operator. A close analogy
in theoretical statistics is given by the Cramér-Rao inequality. I will come back
to this in Chapter 7 and will indicate that it can be more than an analogy.

A qualitative verbal consequence of Heisenberg’s inequality may be: It
is impossible to measure both position and velocity with infinite precision,
but the limitation posed for a joint precise measurement will be lower if the
mass is increased. I will claim that such qualitative statements in fact can be
very useful, and I will also take the step of generalizing by analogy to other
situations. In the position/ velocity case and in many other physical cases the
qualitative statement of the case indicated above can be made more precise
by formulating inequalities of the type given by (1.1).

The mathematical quantum mechanical literature of the last 80 years has
also worked for precision, but then in a different direction: In the current
formulation all observable quantities are associated with operators on a given
abstract space, and general inequalities of the type (1.1) are constructed using
the commutators of these operators. This mathematical theory is very gen-
eral, and it is the starting point of much theoretical physics and much pure
mathematics. I will aim at linking my own approach to this formal world in
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later chapters, but my emphasis in this book will at least to some extent be
completely different: I regard physics as an empirical science, and I feel that
one should try to base physics as a science on intuitive ideas, ideas that can be
linked to other empirical sciences. In particular, the process of measurements
in physics should have a relationship to the way measurements are made in
other sciences.

One can even argue, in the spirit of the above discussion, that simplicity in
terms of an intuitive understanding of physics together with the rest of science
on the one hand and precision and generality in terms of formal mathematics
on the other hand in part may be regarded as complementary intentions.
To draw the analogy with (1.1) even further, one can say that the aim of
the present book is to contribute to increasing the ‘mass’ of this particular
complementarity relation. At least, my intention is to initiate a development
in such a direction, with the hope that this will inspire other scientists to work
along the same lines.

Measurements in science are nearly always uncertain, and they are nearly
always made to estimate some theoretical quantity. Good estimators in statis-
tics are usually found using some optimization criterion: Least squares, max-
imum likelihood, highest information and so on. This is discussed in many
statistics textbook, always in a situation where one single experiment is
treated, and always where a single experiment is defined in the common sta-
tistical sense: All measured quantities are defined as random variables on a
single probability space.

In practice any scientist in a given complicated enough situation will have
the choice between several experiments or variants of the same experiment.
Even in the case of a single measurement series, ‘complementary’ consid-
erations may be of importance, say between buying an accurate expensive
measurement apparatus or investigating many units.

Similarly, when one of several potential experiments are being considered
using limited resources, this may result in a situation where different esti-
mators result from optimizing complementary criteria in different, mutually
excluding experiments.

Thus the concept of complementary values may seem to be important when
resources are limited. And in some sense or another, resources are nearly al-
ways limited. Thus the concept of complementary values, admittedly imprecise
at this stage, seems to generalize to a large number of situations.

Let us now make another quantum leap concerning these rather informal
application of the concept of complementarity. We claim that the basic mode
of understanding found within the world’s different scientific communities to
some extent are complementary. The communication between chemometri-
cians, statisticians, physicists and mathematicians, say, as it is today, could
have been much better. Different historical developments have resulted in dif-
ferent traditions and in different scientific languages in the various disciplines.
The result has been scientific communities with partly complementary modes
of thinking.
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Increasing the relevant ‘mass’ here must of course necessarily again be
a very long term project. In my opinion, the most fruitful approach to this
end seems to be to try to take as points of departure simple concepts that
everybody can relate to, while in the same time trying to make the concepts
precise within a modelling framework.

Aiming towards such a goal will require quite a lot of care in the formu-
lation used. At least at this stage one may at some times err in the direction
of using too simple formulations rather than too involved and precise formu-
lations. For some readers this may mean that I at certain places may tend to
trivialize concepts and results that they see - quite rightly - as the result of
a sophisticated scientific development. On the other hand, other readers may
find that my arguments at places are too mathematical. For both these kinds
of readers I sincerely apologize.

Finally, it must be said that any book of course is written by an author
or by authors with specific backgrounds. This particular book is written by a
statistician, but one that also have tried to keep his eyes open also to other
scientific traditions. Regardless of personal background, however, it is my
conviction that the statistical language can be made suitable for finding a
basis for a large number of sciences regarding the way inference is made from
data. This conviction is a result of the simple empirical fact that statistical
methods have proven to be useful in many of these sciences, and then a naive
deduction that this must imply that the process of relating observations to
the state of nature must contain some common basic elements across sciences.

Most empirical sciences, for instance biology and medicine, use to a large
extent rather simple statistical methods. Hence most of my examples, at least
initially, will relate to situations where such methods are used. This should
not preclude, however, that this discussion also should have implications to
situations where more sophisticated statistical methods are needed. However,
these latter situations are often so dominated by complicated mathematics,
modelling problems, data organization and/ or computational issues that the
methodological themes discussed here may tend to be overlooked. This is also
a good reason to stick to simple examples.

Before turning to a review of statistics, however, I will go through some
basic concepts needed in the sequel. The first task will be to choose a frame-
work for the language used, a choice that must be made before defining the
necessary words.

1.2 Conceptually Defined Variables.

To describe elements of nature in the way we really think they are, we need
a language. This language will be different for different subject matters and
for different investigations, but very often the discussion ends up by focusing
on certain conceptually defined variables, variables which in some way or
other are to be confronted with empirical observations. In many statistical
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Fig. 1.1. c-variable.

investigations these conceptually defined variables will be parameters of some
model. These are usually written as greek letters ξ, θ, µ, σ,. . . . There is of
course nothing sacred about the greek letters, but this convention is very
useful when one wants to distinguish between the state variables of a system
- written by greek letters -, and observations - given by some latin letters y,
z,. . . .

The same distinction will be aimed at throughout this book, but the scope
will be extended. I find it appropriate to introduce a new general term: concep-
tual variable or c-variable, which is an extension of the statistical parameter
term. In a statistical hypothesis testing setting one can define a parametric
variable which is 1 when the hypothesis should be rejected and 0 otherwise,
and name this a c-variable. As extensions of this one can introduce c-variables
in multiple testing situations, for different choices of sets of orthogonal con-
trast in analysis of variance, for different choices of conditioning and so on.
All this will be further discussed later.

In quantum physics it will turn out to be useful to use the term c-variable
for conceptual values of position, velocity and spin component, and for the
cartesian product of such variables. At several places in the book the c-
variables - greek letters - will be associated with conceptual quantities, as
opposed to concrete, observed quantities. This way of putting the distinction
is in fact very useful in many empirical investigations.

Definition 1.2.1. A c-variable is some conceptual quantity connected to
a system or a population. The purpose of an empirical investigation is often
to arrive at some statement concerning certain c-variables or on some parts
of a given c-variable.
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In many statistical textbooks the parameters are always connected to some
infinite population. Concerning c-variables I will not make a such connection in
this book, and this point is essential. As a typical example, let the real weight
of some object be µ, and let us make independent measurements y1, y2, . . . , yn

of it. Then one often estimates the weight µ by µ̂=ȳ=n−1
∑
yi. It is of course

important in this connection to distinguish between real weight and estimated
weight. Of course one can talk about an infinite population of measurements
here, but from a physical point of view, the main issue is that we consider a
finite object.

There are many variations around this theme. For instance, assume that
in some population, the expected (”real average”) weight loss of a person is
µ1 under diet 1 and µ2 under diet 2. Select m persons that are given diet 1,
and n persons that are given diet 2, and let their measured weight losses after
being exposed to the diets be y11, . . . , y1m, respectively y21, . . . , y2n. Then, on
the basis of ȳ1· − ȳ2·, where ȳi· = n−1

∑
j yij , and some probability model for

the observations, a common task is to say something about the sign and size
of µ1 − µ2.

An example more in the spirit of the previous example is when you have
two related objects with real weights µ1 and µ2, respectively, and make re-
peated independent measurements on each object. It is important to realize
that we in this book also connect c-variables to finite objects.

In physics we sometimes do not have repeated measurements. Also in
that case we must distinguish between the c-variable θ and the corresponding
observation y = θ̂. I will later come back to the point that this distinction
seems to be nearly absent in conventional quantum theory.

In principle, every observation requires some measurement apparatus. In
some cases this measurement apparatus is perfect for practical purposes, so
we can disregard measurement error. Then θ and y = θ̂ are numerically equal.
But even in such an instance of perfect measurement, it may in some cases
be important to distinguish between c-variable and observation, a point I will
come back to in Chapter 2 and then later in connection to the choices of
experiments in quantum mechanics. But one conceptual clarification related
to this fact may be discussed already now.

1.3 Inaccessible c-variables.

The model description above demands in principle that every c-variable should
be estimable from the available data. For models involving only one or a few
units, this is typically not realistic at all. Here are some examples. Some
standard statistical concepts are used here in a nonstandard setting; for a
definition of these concepts, see sections 1.8 and 1.9 below.

Example 1.3.1. We want to measure some quantity with an apparatus
which is so fragile that it is destroyed after a single measurement. We may
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model the measured values to have an expectation µ and a standard devia-
tion σ, perhaps even a normal distribution with these parameters. A single
measurement gives an estimate of µ. The standard deviation may be thought
to be possible to estimate by dismantling the apparatus, again destroying it.
In a certain sense we might say that in this example, the parameters µ and σ
are complementary: Only one of these can be estimated.

Nevertheless, call the twodimensional c-variable (µ, σ) for φ. As an abstract
vector, this can in a sense be meaningfully defined, but this vector can never
be given a value, in the sense that there is no empirical mechanism through
which we can approach the process of finding a value for the vector. Such
cases in fact exist in many different connections, and an observation like the
one above will turn out to be very important for us later.

Example 1.3.2. Assume that two questions are to be asked to an individual,
and that we know the answer will depend on the order in which the questions
are posed. Let (θ1, θ2) be the expected answer when the questions are posed
in one order, and (θ3, θ4) when the questions are posed in the opposite order.

Then the c-variable φ = (θ1, θ2, θ3, θ4) cannot be estimated directly from
one individual, that is, it cannot be given a value.

Example 1.3.3. Consider the location and scale parameters µ, σ in a case
where only measurement on a single unit is possible. Say, let µ be the expected
measurement of some position, and let σ be the standard deviation of that
measurement. This is somewhat similar to Example 1.3.1 above, that is, if we
really insist that the firm context is such that only one measurement on the
unit is possible, then it is impossible to give a value to the vector (µ, σ).

Example 1.3.4. A given patient at a given time has (expected) recovery
time θ1 if treatment 1 is used and θ2 if treatment 2 is used. The term expected
here (and in the examples above) must be interpreted in some loose sense, not
necessarily with respect to a welldefined probability model. Rather, we can
imagine θ1 to be the recovery time that an extremely experienced medical
doctor will expect given everything that is known about treatment 1 and
given everything relevant that is known about the patient. Similarly for θ2.

Like all parameters, θ1 and θ2 can be estimated from experiments, but it
is impossible to estimate both parameters on the same patient at the same
time. Nevertheless, consider the c-variable φ = (θ1, θ2). In this case we can
imagine φ to have a value if this is assessed by an extremely experienced and
reliable medical doctor. But in a context where we doubt the judgement of
that doctor and want empirical evidence, φ can never be given a value.

In all the examples above the situation can be amended through investi-
gating several individuals, but this assumes that the parameters are identical
for the different individuals, a simplification in many cases. Note that the or-
dinary statistical paradigm in the simplest case assumes an infinite population
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of units with the same parameters. This will not be assumed in the present
book.

Many more realistic, moderately complicated, examples exist, for instance,
consider a behaviourial parameters of a rat taken together with parameters
of the brain structure which can only be measured if the rat is killed. Even
more complicated examples can be imagined in public debates where different
discussants take incompatible concepts as points of departures, or in novels
where items are eluciated from several different angles.

Definition 1.3.1. When considering these cases where φ cannot be es-
timated from any experiment on the given units, we may call Φ = {φ} an
inaccessible c-variable space rather than a parameter space, and φ is called
an inaccessible c-variable. Any function of φ that canot be estimated from
experiment, will be called inaccessible.

Accessible c-variables may be of one of two kinds:
1. They may be estimable parameters in some statistical model; or
2. They may correspond to a limiting case where measurement uncertainty

may be disregarded. In this latter case the c-variable takes values in some given
set, either continuous or discrete.

I will insist that modelling through inaccessible c-variables can be enlight-
ening, in the cases mentioned above as in other cases. In particular this may be
useful if one models cases where one has the choice between several measure-
ments, as one usually will have in quantum mechanics. As will be discussed
below, by choosing a particular experiment in a given setting, what one can
hope for, is only to be able to estimate a specific (accessible) part of the
inaccessible c-variable.

The concept of complementarity is well known in quantum physics, and
the concept of complementary c-variables is central to the way I intend to in-
troduce quantum theory. Here is an example already mentioned from physics:
In a model of a particle we can imagine that it has a theoretical, definite
position θ1 = ξ and a theoretical momentum θ2 = π, but there is an absolute
limit to how accurate these parameters can be determined jointly. Similarly,
we can let λ1 and λ2 be spin components of a particle in two different selected
directions.

Thus, in this paper I will allow c-variables like the vectors φ = (µ, σ) or
φ = (θ1, θ2) or φ = (λ1, λ2) in the examples above that are not identifiable
in any model and consequently can not be estimated in any model. The way
to make inference possible anyway, is to use model reduction, i.e., focus on
a subvariables (parameters) and a corresponding choice of experiment. This
choice of subvariables will be very important in the discussion which follows.

All this will be done together with a relevant choice of symmetry group on
the inaccessible c-variable space. These are the main points in what I claim is
a way to understand quantum theory from a statistical point of view. Some
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additional technical assumptions will be formulated later. Of particular im-
portance will be an assumed symmetry relationship between the experiments
corresponding to incompatible /complementary (reduced) c-variables as a ba-
sis for quantum theory. But this I will come back to in Chapters 4 and 5.

1.4 On Decisions.

Decision theory is central to the theory of statistical inference, and is discussed
in many textbooks. A natural point of departure here is the book on Bayesian
theory by Bernardo and Smith [26]. Here a decision problem is defined as
consisting of 3 elements:

- a set of available actions, one of which is to be selected;
- for each action, a set of uncertain events, describing the uncertain out-

comes of taking a given action;
- for each such event, a certain consequence.
In this book we will need a more complicated structure for our decisions,

a structure which is not too far away from everyday experience: Before we are
ready to choose an action, we must focus upon a limited set of possibilities.
In fact, this can be looked upon as a two-step procedure, where each step has
some of the above structure, namely, the choice of focus is looked upon as a
decision problem of its own merits.

Specifically, consider a situation where we have an inaccessible c-variable
φ = (λa; a ∈ A) containing parameters λa, each corresponding to a certain
experiment, where a runs through an index set A.

General procedure. The decision process will in general run through the
following steps:

1. Choose a focus a, that is, a parameter λa and the corresponding exper-
iment;

2. Perform the selected experiment and obtain data xa;
3. Within the selected experiment, and based on the data obtained, one can

make certain inference decisions, say estimation of a set of parameters. This
will lead to uncertain events in the range space of the estimator, and each
decision implies consequences which can be anticipated, and possibly be taken
into account when the decision shall be made.

There are many variants of this general procedure. In some cases, the
estimation under 3) involve all parameters of a statistical model, and λa is
a fixed dimension parameter which is estimated independently. We will meet
such a case in Chapter 8. In other cases, the choice of the parameter λa

is subjective, but is estimated later. In each case, however, a sequence of
decisions is involved. It is important that this sequence does not bias the final
inference step. A necessary condition for this is the following:
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Unbiasedness condition. The decision taken at some given step should
not utilize any information about the c-variable or on the experimental units
which are used in decisions taken in later steps.

Example 1.4.1. In any given classical experiment, that is, a class of prob-
ability distributions of some observations indexed by some parameter, it has
been recommended by Fisher to condition upon any ancillary statistic. An an-
cillary statistic is a function of the observation whose distribution do not de-
pend upon the parameter. This conditioning upon an ancillary may be looked
upon as a two-step procedure, where the first step is to choose the value of
the ancillary statistics. In other cases we also have the choice between several
possible ancillaries. By its very nature, the value of an ancillary statistic con-
tains no information about the parametric function that one wants to make
inference upon. According to the unbiasedness condition, any criterion for
choosing between ancillaries (e.g., Cox [47]) must have a similar property.

Example 1.4.2. A c-variable φ is a vector: φ = (λ1, λ2, ..., λA). For each a
there is a maximal experiment with parameter λa. Choosing independently
some a will of course lead to honouring of the unbiasedness condition.

Example 1.4.3. As a part of a larger medical experiment, A individuals
have been on a certain diet for some time, and by taking samples at the
end of that period some response like the change in blood cholesterol level
is measured. For the individual a (a = 1, 2, ..., A), the measured response is
xa, which we suppose is N(µa, σ2) with a known measurement variance σ2.
Measurements on different individuals are independent.

Assume that we are interested in estimating the mean expected value

µ =
1
A

(µ1 + µ2 + ...+ µA).

Then we can imagine two different scenarios:
1. We select randomly some M < A individuals, and are just given the

numbers x1, x2, ..., xM , but do not know anything more about the individuals
associated with these numbers. Then we might well imagine that there is
a decision procedure behind the choice of these numbers, but this decision
procedure do not rely on any information of relevance to the estimation of µ.
The unbiased estimate is simply

µ̂ =
1
M

(x1 + x2 + ...+ xM ).

2. Again we select M individuals, but now we know which individuals that
are selected. Then it is impossible to find an unbiased estimate of µ from the
available data. The simplest case is when M = 1. Then we know that some
individual, say with expectation µ1 has been selected. By the conditionality
principle, which will be further discussed in Chapter 2, every inference should
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be conditional upon this choice. Thus in this case we just have data x1, and
can only make inference on the simple parameter µ1. Nothing can be known
about the avarage parameter µ, and a similar conclusion is true when M > 1.

A perhaps surprising conclusion from this example is that there exist cases
where one can make better statistical inference when one knows less.

Further examples of relevance to the unbiasedness condition are given
by randomization in design of experiment situations, also by the selection
of contrasts in an analysis of variance. These examples will be discussed in
Chapter 7.

1.5 Contexts for Experiments.

Any experiment is done in a context, that is, for some given experimental
units, some preconditioning done on these units, some assumptions explicitly
made and preferably verified before the experiment or justified by external
arguments, and finally some environment chosen for the whole experiment.
The results found in earlier experiments may also contribute to the context.

A part of the context may even be the routine built up by the experi-
mentalists, or their prejudices towards the expected result. To compensate for
the latter, in medical experiments one is recommended to have a double-blind
setup, i.e., one where neither the patient not the experimentalist knows which
treatment is used on the patient. For practical reasons it is not always possible
to achieve this ideal, however.

Thus, according to the setting, one may be able to use parameters which
are independent of the context, or is forced to let at least some of them
depend upon the context. This latter situation will in most cases leads to
a less informative solution. One may in given cases be able to model this
dependence, however.

I will come back to the concept of context on some occations later. A part
of the context may consist of assuming that certain statistical parameters
have some fixed values. More generally, the context may have implications for
the statistical model chosen or for the way that one chooses to perform an
experiment.

Considerations of this kind are relevant to physical experiments, too. The
concept of context is discussed at length in Khrennikov [130, 131], where this
concept is connected to a mathematical formalism. No such formalism will be
used at the outset in this book, but I will later come back to formalisms on
the basis of the conceptual discussion started here.

As already indicated in the introduction; see the discussion around Theo-
rem 1.1.1, certain pairs of experiments may be incompatible:

Definition 1.5.1. Two experiments are called incompatible if only one of
these experiment can be performed in a given context.
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Niels Bohr used the concept of complementarity in a sense closely related
to this. Many physicists have followed Bohr’s use of the word complementarity
even though it is somewhat problematic: The same word is used in a differ-
ent meaning in psychology and in colour theory. Some theoretical physicists,
among them L. Accardi, argue that the word complementarity should only be
used for potential experiments that are maximally incompatible in a precisely
defined sense: For two discrete parameters, in a state defined by one of them,
the posterior distribution of the other should be uniform over its values. By
taking limits, a similar notion can be defined for continuous parameters, even
parameters like expected position or momentum, taking values on the whole
line.

One rôle of the context in this paper will be to limit the set of random
variables (statistics) that can be connected to each of several incompatible
experiments. Specifically, for each experiment a, see below, the Hilbert space
formed by functions of the complete sufficient statistic for the parameter of
this experiment is assumed to be non-trivial, and tying these Hilbert spaces
together by a symmetry assumption, is the contextual approach to a common
Hilbert space. These considerations will give one link towards quantum theory,
discussed in detail in Chapter 5 below.

1.6 Experiments and Selected Parameters.

Every experiment begins with a question, that is, a precise formulation of the
issue that we intend to investigate during the experiment.

Assume that the system under investigation can be described by a c-
variable φ. The experiment Ea, or simply the experiment a, may then be
directed towards a specific parameter θa = θa(φ). The experimental question
from this can simply be: What can we say from observations about the value
of θa? It is important to be aware of that, depending upon the situation,
the parameter θa may be multi-dimensional, so that several scalar parame-
ters may be under investigation in the same experiment. In the simple first
examples below we let θa be one-dimensional, however.

Look first at Example 1.3.1 concerning the fragile apparatus: What can
we say from a chosen observation about the expectation µ? Or, what can we
say about the standard deviation σ?

As another example (cf. Example 1.3.4), given one patient, what can one
say about the expected recovery time θ1 when treatment 1 is used? Or about
the expected recovery time θ2 when treatment 2 is used?

In a practical situation, one is often interested in a population of potential
patients, and then the situation is much easier from a statistical point of
view. A randomized experiment can be set up, see below, so than n1 selected
patients can be allocated to treatment 1 with expected recovery time µ1 and
n2 patients to treatment 2 with expected recovery time µ2, and inference can
be made on µ1, on µ2 and finally on τ = µ1 − µ2, which may be of interest.
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The full parameter of the experiment may be θ = (µ1, µ2), or it may contain
more parameters.

The quantum-mechanical situation is usually concerned with a single unit
or a few units, so our modelling must be geared towards that. But also in this
case we assume a c-variable φ and then corresponding to the experiment Ea

a selected parameter θa which again can be a scalar or a vector, i.e., in the
latter case consist of several subparameters. A simple example is: θ1=position
and θ2=momentum.

It should be clear from the examples of this chapter that it is seldom
natural to assume that every function of the c-variable can be taken as a
selected parameter θa connected to a concrete experiment. In fact, in most
cases only a very few such functions can act as a selected parameter in this
way.

Once the experiment/ selected parameter is chosen, the experiment can
be performed and give observations y. These observations can at the outset
be of different form, but they can always be thought about as positions of
pointers of some apparata, i.e., having some Euclidean coordinates.

After the experiment is performed, statistical inference can be used to say
something about the value of the parameters of the experiment. We will come
back to this issue later, but it is important to be aware of it at this stage:
Before the experiment we know nothing about the parameter; afterwards we
can have quite detailed knowledge. In our setting we feel that this can be
related to the following citation by Bohr (cited from [168]): ‘It is wrong to
think that the task of physics is to find out how nature is. Physics concerns
what we can say about nature.’

1.7 Hidden Variables and c-variables.

During the history of quantum mechanics socalled hidden variable theories
have been introduced at various stages. Different authors have proposed theo-
ries where the usual formalism of quantum theory is supplemented in different
ways by variables that are hidden in such a way that their values can not be
revealed through experiments, or can only be revealed through certain specific
experiments. Such hidden variables are crucial for the interpretation of quan-
tum mechanics given by Bohm [29], for instance. The hidden variable theories
have been rejected by many physicists since von Neumann [157] showed that
they under certain circumstances lead to contradictions, but have become
more popular again after Bell [22] pointed out that the assumptions made by
von Neumann were not always reasonable.

Our c-variables φ are related to the hidden variables introduced by vari-
ous physicists, but they may also be said to be different. The main common
property relates to the fact that certain functions of the c-variables, the sta-
tistical parameters, are unknown before the relevant experiment is performed,
and can be given a fairly accurate value afterwards. Later we will introduce
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perfect experiments, where every measurement error can be ignored, so that
the value of the relevant parameter then is exactly known.

A main difference between c-variables and hidden variables relates to the
fact that a c-variable, in the way we define it, does not necessarily have a
value at all. To begin with, as discussed in Section 1.3, these c-variables may
be viewed as defined by some formulation in ordinary language, but they can
not always be given some specific value. A function of the c-variable may or
may not have the same property.

A c-variable θ is defined through some verbal formulation, perhaps con-
nected to some specific context. If this context is changed or if it not realized,
the definition of θ may cease to have a meaning.

Example 1.7.1. Define the c-variable θ as the expected drying time for the
paint used when I repaint my house. This θ may not have a value if I choose
definitively not to repaint my house at all.

In general, if θ is some c-variable, connected as parameter to an experi-
ment, it may or may not have a value if it turns out to be impossible to perform
that experiment. It may have a value if this can be connected to other con-
siderations. But what is important is that a c-variable is only guaranteed to
have a value if it can be connected to an experiment which is actually possible
to perform.

As an extreme example of a verbal formulation which turns out not to
make sense, consider the following:

Example 1.7.2. Let θ be the truth value of the sentence: ‘What I say now
is a lie’.

Then θ will never have a defined value. If the sentence is true, it is a lie,
and if it is a lie, it is true. What I want to illustrate by this is: Sentences can be
formulated by ordinary language, seemingly precise - in fact such sentences can
be formulated in the language of formal logic also -, which can never be given a
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meaningful interpretation. Paradoxes of this kind have deep implications, and
they have had a central place in formal logic since they were introduced there
by Russel, Grelling and others. In our setting they can be chosen to represent
the ultimate sense in which formally welldefined sentences can be taken not
to have an operational meaning. These considerations can in our opinion also
be taken to have some implications to the assertion that c-variables do not
necessarily have values, since such c-variables always are defined by statements
using ordinary language.

As a possible way to carry the theory developed in this book futher, one
could conjecture that it should be possible to define the concept of c-variable
in a mathematical precise way using formal logic, a definition which would
include the possibility that the parameter does not necessarily have a value,
and would take into account the influence of the context on the state. Such a
definition would then play the same rôle as Kolmogorov’s precise mathemat-
ical definition of a random variable (see Section 1.8 below), and would place
the development of both statistical theory and quantum theory indicated here
on a firm mathematical foundation. For our purpose here, however, the in-
tuitive content of the concept of c-variable is more important than a formal
definition (in fact, the same is true for the concept of random variable), so we
leave this task to future research.

In quantum theory the discussion above can in our opinion be linked to the
Kochen-Specker theorem; for a precise statement of this see for instance [125].
The theorem rests upon technical concepts like observable, state function and
Hilbert space, which we will define in Chapter 5, but which at this stage can
be found in any book on quantum mechanics. Briefly, a system is defined by
a Hilbert space H, a state v is a vector of that space, and an observable A
is an operator on H. The observable A is supposed to be connected to some
physical variable, but it is not quite clear what this means in the general case
when v is not an eigenvector of A.

As an attempt to make this clearer, one can tentatively introduce a value
function Vv(A) which is interpreted as the value of the physical quantity A
when the system is in the state given by v. The Kochen-Specker theorem,
which has a long technical proof, then says that no such value function (de-
manded to have certain reasonable properties; see again [125] for details) exists
if the dimension of the Hilbert space is larger than 2.

Here is one last macroscopic example of a c-variable which does not have
a value: Suppose that we have captured a chameleon, and define θ to be the
colour of that chameleon. Then θ is only welldefined when we at the same
time specify the base on which the chameleon stays. As is well known, a
chameleon changes colour according to the place on which it sits. On a leaf
it is green, on a branch of the tree it turns brown. This metaphor has been
used extensively by Accardi [1, 2, 3] in his discussion of the interpretation of
quantum mechanics.

Our starting point is in agreement with this methaphor. But our foun-
dation is different; most importantly, it is derived from common sense and a
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Fig. 1.3. Chameleon.

relatively wide range of examples, not from the formalism of ordinary quan-
tum theory. One purpose of this book is to argue that the natural logic goes
from simple concepts to more formal concepts, not in the opposite direction.

1.8 Causality, Counterfactuals.

Look again at the example where θ is the expected drying time of the paint
used if I repaint my house. If I definitely decide not to repaint the house, then
this θ is what is usually called a counterfactual quantity. In general, a coun-
terfactual quantity is connected to a situation B derived from an implication
from situation A to situation B together with a definite knowledge that A
does not happen. As the example shows, such quantities may or may not have
welldefined values, dependent upon the circumstances. Specifically, if I in the
example already have decided always to use a particular brand of paint with
a known expected drying time, then θ will have a meaningful value, otherwise
it will probably not have a value.

In Section 1.3 I introduced the concept of an inaccessible c-variable, and
gave several examples of it. The formal definition of such a c-variable φ was
given in Definition 1.3.1, and it was also tied to the concept of complemen-
tarity. Then in Section 1.5 I discussed the context of an experiment, and
indicated that the inaccessibility of a given c-variable may be due to the lim-
itation caused by the context to the choice of experiment.

In my view this choice of experiment can also be related to the literature
on causal inference, in particular to the concept of counterfactuals, which has
a central place there. A counterfactual question is a question of the form:
’What would the result have been if ...?’. A counterfactual variable, in the
way this concept is used in the literature, is a hypothetical variable giving the
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result of performing an experiment under some specific condition a, when this
condition a is known not to hold. A typical example is when several treatments
can be allocated to some given experimental unit at some fixed time, and then
in reality only one of these treatments can be chosen.

The use of such a concept goes back to Neyman [159], and has in the last
decades been discussed by among others Rubin [173], Robins [171, 172], Pearl
[165] and Gill and Robins [94]. On the other hand Dawid [51] is sceptical to
an extensive use of counterfactuals. The discussion of the latter paper shows
some of the positions taken by several prominent scientists on this issue.

In our setting, we choose and perform one experiment a, and then any
other experiment b imagined at the same time must be regarded as a counter-
factual experiment. However, instead of introducing counterfactual variables,
I use conceptually defined variable or c-variable λa for the corresponding con-
cept. C-variables are hypothetical entities that usually cannot be observed
directly. Nevertheless they may be useful in our mental modelling of phenom-
ena and in our discussion of them. In the last decades, such mental models
in causal inference have been developed to great sophistication, among other
things by using various graphical tools (Lauritzen [138]; Pearl [165]). In the
present book we will limit mental models to scalar and vector parameters,
some counterfactual, leading to our c-variables, but this model concept can in
principle be generalized.

When it is decided to perform one particular experiment a ∈ A, the λa

becomes the parameter of this specific experiment, an experiment which then
also may include a technical or experimental error. In any case the experiment
will give an estimate λ̂a. If the technical error can be neglected, we have a
perfect experiment, implying λ̂a = λa.

We are here at a crucial point for understanding the whole theory of this
and the next chapter, namely the transition from the unobserved c-variable to
the observed variable. Let us again look at a single patient at some given time
which can be given two different treatments. Define λa as the expected survival
time of this patient under treatment a. Then make a choice of treatment,
say a = 1. Ultimately, we then observe a survival time t1 for this patient.
There is no technical error involved here, so we might say that we then have
λ1 = λ̂1 = t1. And this is in fact true. Per definition, λ1 is connected to the
single patient, the definite treatment time and a definite choice of treatment.
So even though λ1 is defined at the outset as an unknown c-variable, its
definition is such that, once the experiment is carried out, the c-variable must
by definition take the value t1.

This simple, but crucial phenomenon, which is related to how a concept
can be defined in a given situation, is in my view of quantum mechanics closely
connected to what physicists call ‘the collapse of the wave packet’ when an
observation is undertaken.
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1.9 Probability Theory.

It is one of the strange facts of history that a definite axiomatic treatment of
ordinary probability theory (Kolmogorov [132]) did not appear until in 1933,
the year after von Neumann [157] had axiomized quantum theory, a rather ex-
otic looking theory in comparison. By now, probability theory is of widespread
use, not only as a foundation of statistical theory, but in a multitude of other
fields, including both foundational aspects and applied aspects of quantum
mechanics. Some theoreticians argue that other axiomations, like that of von
Mise or of Savage should be used in the foundation of quantum theory, but
that will not be found necessary in this book. In fact, when it comes to it,
the derivations from these various axiom systems are closely related. Kol-
mogorov’s basic axioms for probability theory are given in Appendix A.1.1,
where also the concept of σ-algebra is defined.

A further important concept is that of a conditional probability. In fact,
since all probabilities are computed in a context as defined in Section 1.5
above and therefore are calculated under some assumption, it can be argued
that all probabilities used in practice are conditioned in some way. The formal
definition runs as follows:

Definition 1.9.1 Assume that A,B ∈ F and P (B) > 0. Then the condi-
tional probability of A, given B, is defined by:

P (A|B) =
P (A ∩B)
P (B)

. (1.2)

Often this equation is refound in a rule for calculating probabilities:

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A). (1.3)

This way to seemingly confuse a definition and a calculating rule may seem
logically unsatisfactory, and it can only be justified through the fact that the
definition (1.2) can be supported intuitively by Venn diagram considerations
or by a range of examples of the type:

Example 1.9.1. Sample a person from a population where 50% are women,
30% are employed in a firm B and 20% are both women and employed in the
firm B. Then, given the information that this person is employed in firm B,
the probability that he/she is a woman will be 2/3. The example may be even
more motivating if actual numbers are inserted for the percentages.

Two events A and B are called independent if P (B|A) = P (B), or equiv-
alently P (A ∩B) = P (A)P (B). More generally:

Definition 1.9.2. The events A1, A2, . . . , An are called independent if
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P (Ak1 ∩Ak2 ∩ . . . ∩Akr ) = P (Ak1)P (Ak2) . . . P (Akr ), (1.4)

for all subsets of events.

It is clear from the axioms above and in the Appendix that the σ-algebra
F in principle can be chosen in many different ways. In practical applications
this is not a big issue, and we will not focus at all on this problem in the present
book. The reason is that the probability space Ω in many applications also is
a topological space - often a subspace of some Euclidean space - , and then it
is natural to choose F as the Borel σ-algebra, that is, the smallest σ-algebra
containing all open sets. Or even simpler: If Ω is finite or countable, we can
take F to consist of all subsets.

From these rather innocent looking axioms a rather rich theory results.
Several good books exist in probability; one can still recommend the classical
ones by Feller [77, 78], for instance. Also, the theory of probability is the basis
for statistical theory, and then also indirectly for all applications of this. The
axiom system is rich enough to initiate an extensive asymptotic theory, which
is of importance for several aspects of mathematical statistics. Since we in
this book will mostly concentrate on statistical theory for a few experimental
units, these aspects will be of no importance to us, however.

A final important concept is that of a random variable. Formally,

Definition 1.9.3. A random variable y = y(·) is a function from the
probability space Ω to the real line which is measurable, i.e., such that the
inverse image y−1(B) of every Borelset B on the real line belongs to F .

The important aspect of this definition is that it enables us to calculate a
probability distribution for every random variable and joint distributions for
several random variables. Intuitively, we can think of a random variable as
an observable quantity connected to some experiment which has a probability
distribution, and this will be the important aspect to us.

Definition 1.9.4. The probability distribution of a random variable y can
always be specified through the distribution function F , which is a function of
a real variable u given by

F (u) = Fy(u) = P (y(·) ≤ s) = P (y−1((−∞, u])). (1.5)

Definition 1.9.5. a) If F is absolutely continuous with respect to Lebesgue
measure du, it has a density f(u) = F ′(u), and we say that y is a continuous
random variable, or that it has a continuous distribution.

b) If F is constant except for a finite or countable number of jumps, we
say that y has a discrete distribution, which then is specified by the frequency
function p(u), given by the successive sizes of these jumps.
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In theory, any distribution function F which is non-decreasing in the inter-
val between 0 and 1 defines a probability measure. But in practice nearly all
applications of probability are limited to either discrete or continuous distri-
butions. The distribution of y is most often visualized using f = fy or p = py.
One always has ∫

f(u)du = 1 or
∑

p(u) = 1. (1.6)

Definition 1.9.6. a) The expectation or expected value of the random
variable y is given by

µy = E(y) =
∫
ufy(u)du or

∑
upy(u), (1.7)

which graphically can be thought about as the center of gravity of the distribu-
tion.

b) The standard deviation σ = σy is defined through the variance

σ2
y = V ar(y) =

∫
(u− µy)2fy(u)du or

∑
(u− µy)2py(u). (1.8)

Both standard deviation and variance are used as measures of the spread
of the distribution. The advantage with the standard deviation is that it has
the same unit as the random variable itself.

Example 1.9.2. Three important examples of continuous distributions are
first the normal distribution

fy(u) =
1√
2πσ

exp(− (u− µ)2

2σ2
), (1.9)

the exponential distribution

fy(u) = θ · exp(−θu), u ≥ 0, (1.10)

and the uniform distribution

fy(u) =
1

β − α
, α ≤ u ≤ β. (1.11)

The normal distribution (two parameters µ and σ) is widely used in models
involving measurements, the exponential distribution (one parameter θ) in
life time models for objects as different as bacteria and radioactive particles,
while the uniform distribution is used in computer simulations.

Example 1.9.3. Two important examples of discrete distributions are first
the binomial distribution
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py(u) =
(
n
u

)
θu(1− θ)n−u, u = 0, 1, 2, . . . , n, (1.12)

and then the Poisson distribution

py(u) =
1
u!
θue−θ, u = 0, 1, 2, . . . . (1.13)

Both these distributions are used in biological modelling, for instance.

Note that all these classes of distributions depend upon one or several
(here one or two) parameters. We will come back to this fact in the next
section.

A sequence of random variables (y1, y2, . . .) or a family of random variables
(yt; t ≥ 0) indexed by a continuous parameter t is called a stochastic process.
Many statistical applications are based upon a finite collection (y1, y2, . . . , yn)
of random variables. Their joint distribution is then specified by the multi-
variate distribution function

Fy1,y2,...,yn(u1, u2, . . . , un) = P (y1 ≤ u1, y2 ≤ u2, . . . , yn ≤ un). (1.14)

The corresponding multivariate density function, respectively frequency func-
tion can be defined from this in a relatively straightforward way.

If y = (y1, y2, . . . , yn) is connected to an experiment, it is convenient to
introduce a probability measure Q corresponding to the multivariate distri-
bution function on the n-dimensional observation space/ sample space. Then

Q(A) = P (y−1(A)) = P ({ω : y(ω) ∈ A}) = P (y ∈ A) (1.15)

for all measurable subsets A of Rn. The specification of Q is equivalent to the
specification of a multivariate distribution function F , which again is equiva-
lent to the specification of a multivariate density or a multivariate frequency
function; the latter will later in both cases be denoted by q.

A final important concept is that of the conditional distribution of the ran-
dom variable y given another random variable x. From the joint and marginal
distributions, the conditional density function or frequency function is defined
by the following formulae, direct generalizations of (1.2):

fy|x(v|u) =
fx,y(u, v)
fx(u)

, py|x(v|u) =
px,y(u, v)
px(u)

. (1.16)

From this the conditional expectations and variances are defined in a straight-
forward way.

1.10 Probability Models for Experiments.

Suppose now that one particular experiment E = Ea on some system has
been chosen, and that this experiment implies that a particular parameter
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θa = θ is focused upon. This may be a scalar or a vector. We will assume that
this parameter has a value, a statement which has a meaning which may be
connected to this particular experiment.

This is in fact the standard situation for many statistical experiments.
The word ‘parameter’ is traditional in statistics, and can best be understood
when we look at the standard parametrized classes of distributions (1.9) -
(1.13). However, we want to stress that in practical applications, parameter θ
should usually be chosen first by carefully investigating the concrete situation,
and then in most cases the probability model should be chosen afterwards.
A parameter is a special case of a conceptually defined variable or c-variable.
In fact, perhaps the latter is a better term in our setting, especially since the
word parameter has different connotations, say, to many physicists. However,
it is difficult to alter a firmly established practice, so in agreement with the
introduction we keep the word ‘parameter’.

Imagine now the concrete experiment. It will be performed by a set of
observations collected in the (usually) multidimensional variable y. This may
depend upon the state of the system under consideration, and it may also
depend upon upon the chosen measurement apparata. In addition, some ran-
dom noise is unavoidable in most practical experiments. All this is collected
in the model of the experiment, which specifies a probability distribution for
y:

Qθ(·) = P θ(y ∈ ·). (1.17)

The fact that this probability measure depends upon the state of the system
through the parameter θ is crucial for all statistical inference. A large number
of books have been written on statistical inference, and a summary will be
written in Chapter 2 below.

Following up the assumption that θ has a value for the experiment, we will
assume in this context that the parameter is identifiable under the experiment:

Definition 1.10.1. The parameter θ is identifiable under the experiment
corresponding to the model Qθ if

θ1 6= θ2 implies Qθ1 6= Qθ2 . (1.18)

This weak requirement is a prerequisite for all statistical inference. In fact,
if θ is non-identifiable in all conceivable experiments, this comes very close to
saying that it does not have a value.

The choice of the statistical model is a very important part of the infer-
ence process. A model is nearly always approximate, but approximate models
can work surprisingly well. This is the reason why it is often sensible to use
standard classes of distributions of the kind mentioned in Section 1.9 or their
multivariate analogues to formulate models of experiments.
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Example 1.10.1. Let us discuss a simple example. In the population of
potential voters in some democratic country there is some unknown number
of voters who have decided to vote for some specific political party A. We
make an opinion poll by selecting n voters randomly (in principle; in practice
this is not easy) from the population. Let y be the random observation: The
number of selected voters who say that they have decided for A.

We must make a number of assumptions of the type that the voters who
say that they have decided to vote for A actually have made this decision.
We must also assume that the total number N in the population and the
unknown number NA of potential A-voters are large compared to n. The
unknown parameter or state variable is θ = NA/N . Under such assumptions
we have the following situation:

1. There are n simple trials (selected voters) who each can take one of two
values, A or not A.

2. There is a constant probability θ for A in each trial.
3. The trials are independent.
It is an easy exercise to show (see Appendix A.1.2) that these conditions

leads to the fact that y gets a binomial distribution with parameters n and θ.
Thus the measure Qθ given by the binomial frequency function (1.12) is our
statistical model in this example.

The paradigm sketched above has been developed far by theoretical statis-
ticians, and has been repeated by many textbooks: The concept of experiment
is seemingly identical that of a class of probability measures Qθ indexed by
some parameter θ. That this cannot be the case, was recently argued for by
McCullagh [151], who showed by examples that some such ‘models’ were re-
ally absurd. A simple example is when one formula is chosen for the case
when the number of observations is even, another formula when the number
of observations is odd.

McCullagh also developed a criterion, using category theory, to ensure that
a ‘model’ is not absurd. In Chapter 3 we will come briefly back to this theme
for the simpler case of submodels when a symmetry group is adjoined to the
basic model.

A second application of probability theory to statistics and to natural
sciences, in fact an application which later will be very important for us, is
the following: In many cases it is possible to assume a probability distribution
over the parameter or state variable itself. As a first item, we can often assume
such a distribution prior to any experiment. Such a prior can be induced from
previous knowledge, and can then be rather sharp, or it can be connected to
ignorance about the parameter, and is then very diffuse.

In concrete applications the noninformative prior can be made up in several
ways, but in this book - see Chapter 3 - I will introduce such a prior from the
invariant measure of a symmetry group attached to the problem at hand.

The existence of a prior for the parameter for an experiment implies that
we can use a kind of inference which conceptually is very simple, but which in
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concrete cases can be difficult to implement due to heavy computations. This
is the socalled Bayesian inference, which is developed from Bayes’ formula,
in principle an extension of the conditional formula (1.2). The details of this
will be explained in Chapter 2. Bayesian inference plays an increasing rôle in
modern statistics, and several researchers concerned with the interpretation
of quantum mechanics now also advocate viewpoints inspired by Bayesianism.

In classical physics probability distributions over c-variables is very impor-
tant, in fact this lies behind the whole field of statistical mechanics. Later in
this book we will also use such distributions in our development of quantum
mechanics.

1.11 Elements of Group Theory.

The concept of group is very important in all areas where symmetry consid-
erations occur. In the setting of this book, every group will be a group of
transformations, either of the parameter space or the space of observations.
We will be interested in properties which transform in a reasonable way under
such transformations: If an experiment leads to a conclusion about a param-
eter λ, then one might also be able to say something about the transformed
parameter λg.

In mathematical terms, a group is defined as a collection G of elements g
and an operation from G×G to G which satisfies:

Axiom 1.11.1. 1. The associative law: (g1g2)g3 = g1(g2g3) for all
g1, g2, g3 ∈ G.

2. A unit, or identity element: There exists a unique element e in G such
that eg = ge = g for all g ∈ G.

3. Inverse: For every element g ∈ G there is a unique element g−1 for which
gg−1 = g−1g = e.

A group is called commutative (or abelian) if g1g2 = g2g1 for every g1, g2 ∈
G.

For our purposes these abstract axioms may have a somewhat limited in-
terest except for the fact that they have certain mathematical consequences
and describe mathematical objects which arise naturally in very many con-
texts. Most of our groups will be transformation groups constructed in the
following way: Take as point of departure a set Θ, for instance a parameter
space, then define a transformation on this space g by the property that for
every point θ ∈ Θ there is a unique new element θg ∈ Θ. In many practical
applications, such a g will correspond in some way or other to a symmetry of
the set Θ.

Nevertheless, at some instances it will be useful to take as a basic object an
abstract groupG, that is, a set of elements together with its multiplication law.
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A transformation group on some set Θ which has elements and composition
law inherited from G will then be called a set of group actions, in agreement
with the use of words in pure mathematics. Throughout this book we will
use the convention of placing the group element to the right of the object on
which it acts. This convention will turn out to be useful later when defining
invariant measures.

Any set of transformations which is closed under composition will satisfy
the associative law. A unit is given by the identity transformation, and an
inverse is given by the opposite transformation, assumed to exist: If θg = θ′,
then θ′g−1 = θ. Hence such a class of transformations will always constitute
a group, and satisfy the axioms above.

Here are some examples of transformation groups:

Example 1.11.1. Assume a location parameter µ and a scale parameter σ,
so that θ = (µ, σ).

a) A location group is given by a collection G of transformation group
elements ga defined by (µ, σ)ga = (µ + a, σ), or equivalently µg = µ + a,
σg = σ.

b) A scale group is given by the transformations gb such that (µ, σ)gb =
(bµ, bσ), where b > 0.

c) A location and scale group is given by (µ, σ)ga,b = (a + bµ, bσ) with
b > 0.

Example 1.11.2. If Θ is the space of n-dimensional real-valued vectors,
then the affine group is defined by θg = Aθ+ b, where g corresponds to some
(A, b), where b is an n-vector and A is a non-singular n×n matrix. Similarly,
the linear group is given by θg = Aθ, and the rotation group or orthogonal
group by θg = Cθ, where the C’s are orthogonal matrices (C ′C = I, the
identity, and det(C) = +1).

In a similar way, if Θ is the space of complex-valued n-dimensional vectors,
then the unitary group is given by θg = Uθ with G corresponding to the space
of unitary matrices (U†U = I, where U† is defined by transposing and complex
conjugation).

All these transformation groups generalize to the infinite-dimensional case,
where A, C and U are suitably defined operators.

Example 1.11.3. If Θ is a finite set of, say d, parameter values, we can let G
consist of all permutations of the elements θ. This is called the permutation
group of order d. In general, a finite group is one with a finite number of
elements. Finite groups have been extensively studied and classified by pure
mathematicians. One can show that every finite group is a subgroup of a
suitable permutation group.

The concept of subgroup will be important also for us. As the name sug-
gests:
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Definition 1.11.1. A subgroup H of a group G is a subset of elements
of G which itself constitutes a group. It is necessary that H is closed under
composition, contains the unit e and contains the inverse of every element of
H. The associative law is automatically inherited from G.

So far we have looked upon transformation groups as transforming a pa-
rameter space. Later, see Section 3.2, it will also be useful to have a trans-
formation group on the space of observations, and we will show that these
two groups of transformations can be closely related. But first we will have a
look on the transformation group defined on the inaccessible c-variable space,
which also later will be important for us.

Example 1.11.4. Look at Example 1.3.3. Even if only one parameter from
the c-variable φ = (µ, σ) can be estimated, both the location group, the
scale group and the location and scale group (see Example 1.11.1 above) are
meaningful when defined in a straightforward way on this c-varable.

Example 1.11.5. Consider Example 1.3.4, where φ = (θ1, θ2) are the ex-
pected recovery times under two different treatments for one and the same
patient. Let the time scale group be defined by (θ1, θ2)g = (bθ1, bθ2). Then
this group is defined and meaningful even though the vector parameter φ will
not necessarily take a value.

Later, in our approach to quantum mechanics in Chapter 5, we will let
the group actions at the outset be defined on the c-variable space Φ, and it is
then important to observe from examples that these group actions can have a
meaning even though the elements φ themselves do not take a value. Roughly,
the reason is that φ can be defined through a description in some language,
and relative to this description one can often easily imagine meaningful group
actions.

One final important concept related to transformation groups is that of
an orbit.

Definition 1.11.2. Let again the group act on a parameter space Θ, and
fix θ0 ∈ Θ. The orbit containing θ0 is then defined as the set of all parameters
which can be written on the form θ0g. In words, we follow the transformations
starting from a fixed point. Any point on the orbit can be taken as starting
point.

When going from a group to a subgroup, the orbits split up. Thus a large
transformation group on a fixed space may have a small number of orbits.

Definition 1.11.3 If there is only one orbit, we say that the transforma-
tion group is transitive. Then every element can be reached from every other
element of the space by a group transformation.
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Further properties of group transformations will be discussed in Chapter
3, and some more technical aspects are given in Appendix A.2.





2

STATISTICAL THEORY AND PRACTICE.

2.1 Historical Development of Statistics as a Science.

At all times people have used observations to make inferences about the state
of nature. Of the pioneers pointing the way towards modern statistics and data
analysis we will mention Jakob Bernoulli (1654-1705), Abraham de Moivre
(1667-1754), Thomas Bayes (1702-1761), Leonhard Euler (1707-1783), Pierre
S. Laplace (1749-1827), Carl F. Gauss (1777-1855), Lembert A.J. Quetelet
(1796-1874) and Francis Galton (1822-1911); more details about these and
other poineers can be found in [136].

In 1895, Karl Pearson (1857-1936) recognized the need for more theoret-
ical distributions than the normal one, and obtained his system of density
functions as the solution of a certain differential equation. At the same time
several new achievements were made: Collection and reduction of much em-
pirical data; definition of the joint normal distribution and the correspond-
ing coefficient of correlation; chisquare tests for goodness of fit; analysis of
contingency tables and so on. About at the same time, mathematicians like
Jules Henri Poincaré (1854-1912) were making contributions in the direction
of adding rigor to the mathematical treatment of data.

All Pearsonian methods were only applicable to large samples. William S.
Gosset (1876-1937) developed the socalled Student’s t-test, which also is valid
for small samples, a test which is very much used in practice today. Gosset co-
operated closely with the famous statistician and geneticist Ronald A. Fisher
(1890-1962), of many considered to be the father of modern statistics.

Fisher wrote a series of important articles on the general theory of esti-
mation and inference in the 1920’s; see [80]. Later, he developed the theory of
analysis of variance and of the design of experiments [81, 82]. Fisher’s contri-
butions to statistics were diverse and fundamental. He developed the theory
of maximum likelihood estimation, and introduced the important concept of
sufficiency and ancillarity. Fisher was primarily concerned with the small sam-
ple of observations available from scientific experiments, and was careful to
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draw a sharp distinction between sample statistics (estimates) and population
values (parameters to be estimated).

A mathematically clear and concise theory of statistical testing and con-
fidence intervals was developed in the 1930’s by Jerzy Neyman (1894-1981)
and Egon S. Pearson (1895-1980). Early significance tests had been about
the difference between binomial variables and between means, and they had
been extended to the multivariate case by K. Pearson with the chisquare test
and by Fisher with the analysis of variance test. Neyman and E.S. Pearson
saw that such tests, to be effective, must consider the alternative hypothesis
against which the null hypohesis was tested. They set out the two kinds of
error in such testing, and thus arrived at their fundamental lemma for finding
the optimal test in simple situations; they introduced the likelihood ratio test
and the notion of power.

Modern statistics is characterized by several parallel developments: The
field is being increasingly mathematized, and the gap between applied statis-
tics and theoretical statistics has to some extent been widened. Yet statistical
methods are being applied to an increasing number of areas, and many new
branches of specializations and applications are being developed. The rôle of
models in statistical and scientific work has become generally recognized, but
it has also been pointed out that the model to some extent may be aestetic and
arbitrary, even in situations where it in principle is based on experience and
knowledge of the field of application. Bayesian methods (see Section 2.5 be-
low) are being increasingly used, and multivariate methods are being more and
more employed. Finally, the development of computers have made statistical
methodology which were impossible to carry out decades ago, now quite fea-
sible and common to use (bootstrap calculation, Markov Chain Monte Carlo
calculations in Bayesian statistics, modern multivariate methods).

Still, there are many scientific areas where statistical methods are not used
at all, and other areas where statistical methodology has to be supplemented
by other ways of thinking. In psychology there is currently an active debate
between the use of quantitative (statistical) and qualitative methods (see for
instance [162] and references there). Though the use of statistics is recog-
nizably useful in many applications, it is sometimes felt that more insight
is being provided by case studies involving only a few individuals, but where
each of these are thoroughly investigated. An interesting empirical study from
medicine, where quantitative and qualitative methods are integrated is re-
ported by Clarke [42]: Here, in a study of the effect of stroke, multiple re-
gression on data from a large sample is used in the quantitative part, while,
as a complementary part, focused interviews on 8 selected persons are used
to shed light on the underlying reasons why and how factors operate to af-
fect well-being following a stroke. Some traditional empirical researchers in
psychology seem to use quantitative methods exclusively, while O’Neill [162]
argues for an exclusive use of qualitative methods, at least in some cases. The
present book, while mostly concentrating on other sciences than psychology,
argues in general for a synthesis of methodologies; see also Chapter 9.
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In a similar way as in psychology, verbal discussions through suitable con-
cept definitions and with case studies to illustrate these concepts are very
often found useful in sociological and political sciences, partly as an alter-
native to doing statistical investigations. The sociological reseach philosophy
called positivism goes back to Auguste Comte (1798-1857) and has a quite
rich content. In the last decades, however, it has been taken as synonymous
with an attitude where methods from natural sciences, in particular statis-
tical methods, are the only ones permissible, and has as such been severely
critizised by many social scientists.

One obvious reason for this state of affair is that both psychology and
social sciences by their nature are very complex compared to most natural
sciences. A unit in psychology, most often a human being, can certainly of-
ten, at least from a certain point of view, be characterized by some state
concept, either momentarily or more permanently. However, such a state is
very frequently much more complex than what can be determined by by some
scalar or multivariate parameter, which standard statistical theory requires.
In fact, complementary aspects are sometimes required in order to give a
full description of phenomena. It is interesting that both psychologists and
social scientists often use fixed schematic terms in characterizing humans.
When a psychologist for instance characterize a client as being neurotic or
schizophrenic, this definitively implies a model reduction relative to a more
accurate state description of the client in most cases. I will argue later that
model reductions may be useful, but a prerequisite is that they are consistent
with relevant observable data.

2.2 The Starting Point of Statistical Theory.

The statistical theory which follows in this chapter can be found in many
different books, some of it in quite elementary books. On the intermediate level
one can mention Freund [87] and Rice [170]. More advanced books are Berger
[24], Bickel and Doksum [27] and Lehmann and Casella [141]. I have chosen
in this chapter to go through from scratch all the necessary arguments from
basic statistical theory, even those elementary aspects that are well known
to statisticians. The purpose of this is twofold: First, and most important, I
want to give the physicists and mathematicians among the readers the extra
background needed to follow the arguments later in this book. But also I find
it useful to go through again the basic statistical theory again in the light of
the discussion in Chapter 1. Comments to this end are mostly given in some
of the examples, but also for instance in some of the discussion of the present
Section. I find it important that this rethinking is carried out, not necessarily
on a deep mathematical level, but at least to some degree at the level on which
empirical scientists think. I think that even statisticians will be interested in
the discussions given later in the chapter, but the earlier sections should also
be looked at briefly.
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As indicated in Section 1.9, the starting point for standard statistical infer-
ence is the statistical model Qθ(·) = P θ(y ∈ ·), the probability model for the
observations as a function of the state of nature, the population parameter.
Or more completely:

Definition 2.2.1. The standard statistical model is defined by a sample
space S ⊂ Rn, the σ-algebra S of Borel-subsets of S, and a family {Qθ(·); θ ∈
Θ} of probability measures on (S,S), indexed by some parameter space Θ.

The parameter θ can be one-dimensional or multidimensional, but most
statistical methods require that the number n of units investigated shall be
larger than the dimension p of θ. Later we will indicate how this requirement
sometimes can be modified by using model reduction under symmetry.

An example of a statistical model was given in Example 1.9.1: The binomial
distribution used to analyse an opinion poll. Typically, such a poll is more
complicated: Even a single question requires more than two alternatives in
the answer.

Example 2.2.1. Assume that n potential voters are picked out randomly,
and that they are given to choose between k − 1 political parties and the
k’th alternative: ‘don’t know’. Let ζj be the probability that a single voter
shall vote for party Aj ; j = 1, 2, . . . , k − 1, and define ζk = 1 −

∑k−1
j=1 ζj ,

the probability of answering Ak, i.e., ‘don’t know’. Assume that the voters
are independent, and let yj be the number of voters in the sample who says
that their vote will be Aj (j = 1, 2, . . . , k). By a straightforward extension
of the argument leading to the binomial distribution, the joint distribution of
y1, . . . , yk will be multinomial dependent upon the parameter θ = (ζ1, . . . , ζk).
This means that the joint frequency function is:

P θ(y1 = s1, y2 = s2, . . . , yk = sk) =
n!

s1!s2! . . . sk!
ζs1
1 ζs2

2 , . . . , ζsk

k , (2.1)

where it is assumed that s1 + s2 + . . .+ sk = n.
A natural estimate of ζj is yj/n.

Also, of course, in most polls more than one question is being posed.

Example 2.2.2. Let the situation be as in Example 2.2.1, but with r ques-
tions in the poll. In question number i (i = 1, 2, . . . , r), let there be ki alter-
native answers. Let ζij be the probability of answering Aij (j = 1, 2, . . . , ki)
on question i, and assume that yij of the voters actually answer Aij on this
question. (Note that then

∑ki

j=1 yij = n for each i.)
Then as before, under independence assumptions, each vector (yi1, yi2, . . . , yiki)

is multinomial with parameter ηi = (ζi1, ζi2, . . . , ζiki), and the natural esti-
mate of ζij is yij/n. I will not here try to model explicitly the joint distribution
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of the yij for different i, but just mention that it can be found by generalizing
the argument leading to the multinomial distribution for a single question.

But note that this is a situation with many parameters:

θ = (η1, . . . , ηr) = (ζ11, . . . , ζ1k1 , . . . , ζr1, . . . , ζrkr ). (2.2)

In fact the number of parameters here may even exceed n if you have a big
questionaire. The reason why it is possible to live with that in such a situation,
is that one usually only analyses one question at a time, or just a few questions
jointly in such questionaires.

It is also important to go beyond the parameter concept to that of an
inaccessible c-variable and to related concepts. The following example gives a
small beginning to that.

Example 2.2.3. Assume that in May 2007 there is carried out an opinion
poll among American voters concerning the question: ’Should the national car
industry be encouraged by the state to produce less polluting cars?’; whith
the answer alternatives ’yes’, ’no’ or ’don’t know’. Then among the respon-
dents, some supply extra comments like ‘I will decide right after gaining more
experience on my own low-polluting car’; ‘I have just seen Al Gore’s documen-
tary, and this made me change my opinion’; ‘I will wait for further agreement
among scientists on global warming’; ‘It may seem to be an idea, but I don’t
know enough about the economical consequences’.

At the outset, this was designed as a simple poll with a two-dimensional
parameter θ = (ζ1, ζ2, ζ3) (since ζ3 = 1 − ζ1 − ζ2). The extra information is
vague, unsystematic and may not have been intended for by the researcher
behind the poll. In fact, the interpretation of these comments may depend on
whether the voters were asked to give comments or if the comments were an
extra initiative shown by a few of the voters. In any case the comments may
give some information, but in the latter case this may be regarded as some
unexpected extra information in addition to θ. If it should be attempted to be
systematized at all, this should be in terms of extra parameters θ2, θ3, . . ., and
then φ = (θ, θ2, θ3, . . .), in a related way as an inaccessible c-variable (Section
1.3) does not have a value in the original experiment.

I will give more examples of this kind in the following Sections, some of
which will be much closer to the situation in quantum mechanics. But before
that, I need to develop some more statistical theory.

Definition 2.2.1. An experiment is any planned endeavour in order to
get information about an object by means of observations. The object can be a
population of units or a physical, biological or sociological system. The infor-
mation that is sought is in terms of a number of questions, and the theoretical
answers of those questions are characterizing the parameters of the experi-
ment. In a standard statistical experiment these parameters will be assumed
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to have values, but in general a parameter - or more generally a c-variable -
may or may not have a value relative to the given experiment.

The vector of all parameters connected to an experiment E will be called
the full parameter θ of that experiment. Several complementary experiments
about the same object may be performed, and the c-variable φ = (θ1, θ2, . . .),
where θa is the full parameter of experiment Ea, will as a rule not have a value
relative to one given experiment.

A c-variable which do not have a value relative to any conceivable experi-
ment, will be called inaccessible.

Several examples of inaccessible c-variables were given in Section 1.3. In
Example 2.2.3, the complementary information is strictly speaking not from
a new experiment, but it is at least information given outside the original,
planned experiment. One feature of this example is that the parameter which
is really of interest to predict, is the outcome at the point of time when
Congress later is to discuss the issue, not the opinion status in May 2007.
From the original experiment one can only make such predictions under the
simplified assumption that the division of opinion will be constant during
this period. The complementary comments may serve to modify this simple
assumption, or to design a new poll, where comments of this kind are requested
in a systematic way.

In the next example, there may be a similar problem. The example is first
of all given here, however, to illustrate a very common setting for a standard
statistical experiment, namely that of an independent, identically distributed
series of observations, and the question of when these assumptions can be
transferred to another setting.

Example 2.2.4. From some hospital in Norway, a human population with
a certain disease is identified, and a random sample of n such patients are
picked out. Each of these is given a specific treatment which is under investi-
gation. Assume for simplicity that all patients recover, and the recovery times
are given by y1, y2, . . . , yn. Since the patients are independent, these can be
assumed to be independent random variables. The parameters of interest are
the mean recovery time µ, and as a measure of the variation of the recovery
time the standard deviation σ.

As a model for the observations we then propose: y1, y2, . . . , yn are indepen-
dently distributed, each having a normal distribution (1.9) with expectation
µ and standard deviation σ.

This is a simplification in most cases, but it will often be a useful simpli-
fication. From this model we will develop simple statistical procedures in the
next two sessions. We will estimate the parameters, say something about the
uncertainty of the estimates, formulate confidence intervals and test hypothe-
ses.

Assume now, however, that a group of patients with the same disease is
found in England. The problem is then: Can the results from the investigation
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above be used for the corresponding population? Such decisions have to be
done every day in medicine. In mathematical terms the question is: An inves-
tigation is carried out for a certain population with parameters θ = (µ, σ). In
a related population the parameters are θ′ = (µ′, σ′). Can one assume that
θ = θ′? In many cases it seems reasonable to assume this as an approxima-
tion if the difference between the populations is unrelated to the disease in
question and to variables which can be related to the disease, but it must be
decided by arguments in each specific case.

2.3 Estimation Theory.

In this and the following sections we will assume a standard statistical exper-
iment with a parameter θ which has a value. There is a vector of observations
y, and a model for these observations given by Qθ(·) = P θ(y ∈ ·). The (multi-
variate) probability density or frequency function corresponding to this model
is given by qθ(u).

The first step of a statistical analysis may be to find an estimate θ̂ of the
parameter θ or an estimate µ̂ of some component of θ. Such estimates were
already provided in Example 2.2.1 above. Correspondingly, in Example 1.9.1,
a poll with one question and two answer alternatives, the estimator will be
θ̂ = y/n. An estimate will in general be a function of the observations. If these
are regarded as random variables, we talk about the corresponding estimator
θ̂ or µ̂.

Definition 2.3.1. An estimator θ̂ is called unbiased if E(θ̂) = θ.

Of course it is a nice property for an estimator to be unbiased, but often it
is enough to require approximate unbiasedness. This may be made precise in
many ways, but often it is implemented as asymptotic unbiasedness, meaning
that if the experiment is thought to be repeated many independent times,
the hypothetical mean of the corresponding estimates will be about equal to
the unknown parameter θ. In general, the bias of an estimator is defined as
E(θ̂)− θ.

Another property of interest is the spread of these hypothetical repeated
measurement, which is found from the model of a single experiment by V ar(θ̂).
This variance is useful, but unfortunately, in most cases it depends upon the
unknown parameter.

A measure which takes into account both the bias and the variance, is
given by the mean square error:

ME(θ̂) = (E(θ̂)− θ)2 + V ar(θ̂) = E(θ̂ − θ)2, (2.3)

where the last identity is shown by a simple expansion.
In the examples mentioned above, it was obvious what the estimator should

be, but it is not always so in practical applications. There has been developed
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several systematic methods for finding good proposals for estimators. In prin-
ciple these should always be evaluated from the model by using the criteria
just mentioned, but this is not always done in practice.

(1). The method of moments.
Suppose that the observations y1, y2, . . . , yn are independent and iden-

tically distributed with a p-dimensional parameter θ = (µ1, . . . , µp). Let
τj = τj(θ) = Eθ(yj

1), j = 1, . . . , p. Then these are estimated by

τ̂j =
1
n

n∑
i=1

yj
i . (2.4)

The τj ’s can be found from the model as functions of θ, and in the case where
a unique solution can be found, a natural proposals for θ̂ = (µ̂1, . . . , µ̂p) is
given by solving the equations

τ̂j = τj(θ̂), j = 1, 2, . . . , p. (2.5)

Example 2.3.1. As in Example 2.2.4 let the common distribution be normal
(µ, σ), i.e., with density

fy1(u) =
1√
2πσ

exp(− (u− µ)2

2σ2
).

This distribution has 2 parameters, and a simple integration gives

E(y1) = µ, E(y2
1) = µ2 + σ2.

Thus the method of moments equations are:

µ̂ = ȳ =
1
n

n∑
i=1

yi, µ̂2 + σ̂2 =
1
n

n∑
i=1

y2
i , (2.6)

giving:

Definition 2.3.1.

µ̂ = ȳ, σ̂2 =
1
n

n∑
i=1

(yi − ȳ)2.

The estimator ȳ for µ is much used and has several optimality properties.
But usually, σ̂2 is replaced by the unbiased variance estimator
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Definition 2.3.2.

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2. (2.7)

Example 2.3.2. In applications of the uniform distribution (1.11) the pa-
rameters α and β are most often determined from the setting. However, in
this example we assume a situation where they are to be estimated from
independent data y1, . . . , yn. A straightforward calculation gives

τ1 = E(y1) =
1
2
(α+ β), τ2 = E(y2

1) =
1
3
(α2 + αβ + β2).

Solution of this together with (2.4) gives a second degree equation for α̂ and
β̂.

(2). The least squares method.
The method of least squares will be very important when we come to

regression and analysis of variance. At present we just illustrate it by a simple
example:

Example 2.3.3. Let the situation be as in Example 2.3.1, and let us im-
plement the requirement that the estimator of µ shall be as close as possible
to the center of the observed yi’s by saying that it shall minimize the least
squares criterion

LS(µ) =
∑

(yi − µ)2. (2.8)

A simple exercise shows that this gives µ̂ = ȳ again.

(3). Maximum likelihood.
This method, which was proposed by Fisher, can be shown to have very

good properties under reasonable assumptions for large samples, and has dom-
inated much of statistical theory and practice for decades. It is in fact con-
ceptually very simple, and gives good results in a number of applications, at
least when the number of parameters is not too large.

Look at the model Qθ for the data y and the corresponding density or
frequency function qθ(u). Replace here u by the data y, and consider this as
a function of θ. This gives the likelihood :

L(θ) = qθ(y). (2.9)

From a certain point of view, this function indicates how well a given pa-
rameter explains the data obtained: A large L(θ) means a high value of the
probability density at the point where the actual data were found, which again
can be taken as an indication that the density for this particular value of the
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parameter gives a good explanation of the data. Hence the maximum like-
lihood method consists simply of maximizing the function L to find a good
estimation proposal θ̂. (Since L also depends upon y, this θ̂ will depend upon
the observations y.)

In practice, it is often easier to maximize the log likelihood

l(θ) = lnL(θ), (2.10)

a quantity which later will turn out also to have some useful theoretical sig-
nificance.

Example 2.3.4. Assume again an independent, identically normally dis-
tributed series of observations y1, . . . , yn, so that

L(µ, σ) =
n∏

i=1

1
σ
√

2π
exp(−1

2
(
yi − µ

σ
)2). (2.11)

From this

l(µ, σ) = −nlnσ − n

2
ln2π − 1

2σ2

n∑
i=1

(yi − µ)2. (2.12)

A straightforward optimalization from this shows that

µ̂ = ȳ, σ̂2 =
1
n

n∑
i=1

(yi − ȳ)2, (2.13)

the same as the method of moments gives in this case.

Example 2.3.5. In Example 1.9.1 we have one parameter θ and

L(θ) =
(
n
y

)
θy(1− θ)n−y, (2.14)

hence
l(θ) = const.+ yln(θ) + (n− y)ln(1− θ). (2.15)

Optimalization again gives θ̂ = y/n, the natural estimator. The argument can
be generalized to the multinomial distribution.

Example 2.3.6 Consider again as in Example 2.3.2 the estimation of α and
β in the uniform distribution (1.11). The likelihood here is (β − α)−n when
alla yi’s are between α and β, otherwise 0. Maximizing the likelihood directly
here gives

α̂ = min(yi), β̂ = max(yi),

that is, something completely different from the moment estimators. The max-
imum likelihood stimators will obviously be biased, giving a slightly too small
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range β̂ − α̂. If they are multiplied by constants to make them unbiased, the
resulting estimators will be quite good.

Under regularity conditions there is a nice asymptotic theory of maximum
likelihood estimation relating it to several optimality properties; see [141], but
very few general properties are known for the method for small samples. Thus
for such samples the estimator must be investigated separately in each single
case.

2.4 Confidence Intervals, Testing and Measures of
Significance.

Once an estimator is found, let us assume that it is unbiased or nearly un-
biased, its uncertainty is given by its variance V ar(θ̂). As already remarked,
this variance is usually dependent upon the unknown parameter, but in many
cases the variance can also be estimated from the available data, and then we
have a concrete uncertainty measure given by ˆV ar(θ̂) or its square root. The

estimated standard deviation
√

ˆV ar(θ̂) is often called the standard error of

θ̂.

Example 2.4.1. Look again at the case with n independent normally dis-
tributed observation. A transformation exercise, see Appendix A.1.3, then
shows that ȳ is normally distributed with parameters µ and σ2/n, and that ȳ
is independent of s2. In particular then, the first of these informations give

V ar(µ̂) = V ar(ȳ) =
σ2

n
. (2.16)

Furthermore, we know that in this case σ2 is unbiasedly estimated by s2,
so a measure of uncertainty connected to µ̂ is given by s2/n, or its square
root s/

√
n. This result can be shown also to be valid for other distributions

than the normal one (if one in general define µ as the expectation of the
distribution), and the result has great practical implications.

Beginning with J. Neyman and E.G. Pearson, statisticians have made re-
sults of this kind much more precise. Assume first a one-dimensional parameter
θ with some estimator θ̂. Assume in addition that it is possible to find a pivot,
that is, a function

C(θ, θ̂) (2.17)

whose distribution is independent of θ. Then, for a given probability γ, say
0.95, we can find constants c1 and c2 such that

P (c1 ≤ C(θ, θ̂) ≤ c2) = γ.
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If for each θ̂, C(θ, θ̂) is continuous and monotonic in θ, this can be inverted
to give

P (d1(θ̂) ≤ θ ≤ d2(θ̂)) = γ. (2.18)

This is then a very practical and important result: There is an interval
[d1(θ̂), d2(θ̂)], depending only upon the observations, so that, before the ex-
periment is done, that is, essentially as a function of the estimation method
used, there is a fixed probability γ that this interval shall contain the unknown
parameter θ.

Example 2.4.2. Consider again the normal measurement series y1, . . . , yn,
and assume now that the variance σ2 is known, or can be assumed known
from some given information. (This will then be a part of the context for the
experiment.) Recall from Example 2.4.1 that ȳ for such a measurement series
also is normal. The normal distribution turns out to transform the way one
expects under translations and scale changes, so the pivot

ȳ − µ

σ

√
n (2.19)

has a standard normal distribution, a normal distribution with µ = 0 and σ =
1. The corresponding distribution function has been evaluated numerically. It
is a well-known fact that P (−1.96 ≤ u ≤ 1.96) = 0.95 for a standard normal
u, so

P (−1.96 ≤ ȳ − µ

σ

√
n ≤ 1.96) = 0.95

giving
P (ȳ − 1.96

σ√
n
≤ µ ≤ ȳ + 1.96

σ√
n

) = 0.95.

From this, we conclude that a 95% confidence interval for µ is given by

[ȳ − 1.96
σ√
n
, ȳ + 1.96

σ√
n

]. (2.20)

As a concrete numerical example, consider the following measurement se-
ries of ten observations: 850, 960, 880, 890, 890, 740, 940, 880, 810, 840. These
are the first 10 in a longer series from Michelson’s determinations of the veloc-
ity of light from 1879 as reported by Stigler [187] and Rice [170]. The measure-
ments are in km/s, and the fixed number 299 000 has been subtracted. From
these numbers we find ȳ = 868 and s =

√
s2 = 59.8 (cp. Definition 2.3.2). We

will illustrate how to make use of the last number in the next Section. In the
present case it turns out to be an underestimate of the variation; for the full
series of 100 observations between June 5, 1879 and July 2, 1879 as reported
in [170] we find s = 78.6, indicating that the real σ is about 80. Assuming
now σ = 80 and returning to the 10 masurements above, we find that the 95%
confidence interval for the expected measurement value is
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[868− 1.96
80√
10
, 868 + 1.96

80√
10

] = [818.4, 917.6].

From these values we conclude that Michelson’s 10 measurements indicate
a value of the speed of light betwen 299 818.4 km/s and 299 917.4 km/s.
From modern measurements we know that the real value is 299 792.5 km/s,
so Michelson was not far off. Nevertheless, can we conclude that Michelson’s
method was slightly biased?

(For completeness we should say that the full series of 100 measurements
reported in [170] gives ȳ = 852.4 and a 95% confidence interval from 836.7
to 868.1 for the expected value. Compared to the modern value µ = 792.5, it
seems quite clear that Michelson was biased. )

The discussion in this example can then also be used to illustrate the
second statistical method first discussed fully by J. Neyman and E.G. Pearson
in the 1930’s, namely that of hypothesis testing. We assume again first a series
of measurements y with a model Qθ depending upon a scalar parameter θ.
Assume that there is a fixed value θ0 of this parameter which is of particular
interest, like the modern µ-value for the velocity of light in the example above.
Typically, we are interested in using the data to decide between two hypotheses
given as follows:

Definition 2.4.1. The null hypothesis is given by H0 : θ = θ0 and the
alternative hypothesis by H1 : θ 6= θ0.

Usually, as in the Michelson example, the null hypothesis is the statement
that we want to keep if the data do not clearly indicate something else, here
that the measurement method used by Michelson was not biased.

To construct a test, we first find a test variable, a function of the data
t(y) which tends to be moderate under H0 and large under H1. There are
systematic methods of finding good test variables, but we will only stick to
examples here.

Definition 2.4.2. The test procedure is: We reject H0 and claim H1 if the
data give t(y) > t0, where t0 is a predetermined rejection constant.

This rejection constant is determined from the basic requirement

P (t(y) > t0|H0) = α, (2.21)

where α is some predetermined small constant; traditional values are 0.05,
0.01 and 0.001. The constant α is called the level of the test.

A small level indicates that we are very strongly predetermined to stick to
H0. If the null hypothesis is rejected at the 0.001 level, this is a very strong
indication that the alternative hypothesis indeed is true.

For completeness and for later reference we include a few more concepts
related to testing.
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Definition 2.4.3. The power of a test is the probability of rejecting H0 as
a function of the parameter θ.

In a very simple case, the test of a simple hypothesis against another
simple hypothesis, the optimal solution is well known, as given by the Neyman-
Pearson lemma ([139]).

Lemma 2.4.1. Let the standard statistical model be given by a density
qθ(y), and assume that we want to test H0 : θ = θ0 against the alternative
θ = θ1. Then the test at a fixed level with the highest power is given by rejecting
H0 when qθ1(y)/qθ0(y) > const., where the rejection constant is found from
the level requirement.

The usefulness of Neyman-Pearson’s lemma is that it can be used to sug-
gest good tests in other simple situations.

Example 2.4.3. Return to the 10 Michelson measurements from Example
2.4.2. We want to test the null hypothesis H0: Michelson’s method was not
biased against H1: The method was biased. In mathematical terms this means:
H0 : µ = µ0 against H1 : µ 6= µ0, where µ is the expectation of Michelson’s
measurements and µ0 = 792.5.

As a test variable it is reasonable to choose t(y) = |ȳ−µ0|. As demanded,
this is a quantity which tends to be small under H0 and large under H1. The
distribution of t(y) under H0 is found from the fact that ȳ is normal (µ0, σ

2/n)
under H0 with σ still assumed to have a known value of 80. If the test level is
0.05, the rejection constant is found from the fact that

Pµ0(|ȳ − µ0| > t0) = 2Pµ0(
ȳ − µ0

σ

√
n >

t0
σ

√
n) = 0.05

requires t0
√
n/σ = 1.96 or t0 = 1.96σ/

√
n = 49.6. Thus, H0 is rejected if

|ȳ−µ0| > 49.6. In the present case |ȳ−µ0| = |868− 792.5| = 75.5; thus H0 is
rejected at the 5% level, and we conclude relative to this level that Michelson’s
measurements were biased.

It can be seen from the above algebra that the null hypothesis is rejected
at the 5% level if and only if a 95% confidence interval do not cover the fixed
constant µ0. Thus the conclusion here could have been seen already from
Example 2.4.2. Such a connection between confidence interval and hypothesis
testing is quite general. Nevertheless, the theory of testing of hypotheses is
very useful, and testing is in fact much used in practice. First, testing can be
generalized to the one-sided case and to multivariate cases. Next, testing can
be performed on many different levels using the same test variable.

In the present case, if the testing is done on the 1% level, the rejection
constant will be 65.2, and at the 0.1% level it will be 83.5. Thus the null
hypothesis is rejected at the 5% and 1% level, but not at the 0.1% level. If
we want to be very safe when we conclude that the method is biased, we can
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not conclude that from these 10 data values. Using all the 100 data values,
the null hypothesis is rejected on any reasonable level, however.

In applied work, testing is often done through the calculation of P-values.
The P-value for a test is found as follows: Determine first the value of the test
statistics actually found in the experiment, in the example above 75.5. Then
find from the null distribution the probability that t(y) shall be larger than
that, which is called the P-value of the test and is reported as a probability or
a percentage. In the example, P=0.26%. Since P is less than 1%, for instance,
the null hypothesis is rejected at the 1% level as before.

Definition 2.4.4. As an alternative to rejecting H0 at a fixed level, report
the P -value P = P (t(y) > ty0 |H0), where y0 is the fixed, observed data.

In the way hypothesis testing is described, it is tacitly understood that
the parameter really has a value. This may be close to the truth if there is a
well-defined population underlying the collected observations. However, some
care must be exercised. In the case where the null hypothesis is not rejected,
it is far from correct in general to conclude that θ = θ0. For one thing, further
data may still give rejection of H0. Furthermore, the model chosen is most
often an approximation, and θ may not even make sense outside the model.

Nevertheless, putting one or several parameters equal to their null values
after a non-rejecting test is often done in practice for instance in connection to
multiple regression models; see later. In these cases, the new, simplified model
is a deliberate choice, and is part of the context for the further investigations,
not necessarily as an objective “truth” to be reported.

Here is a remark of relevance to the situation of elementary quantum
mechamics, though: In this setting a parameter or state variable λ takes a
number of discrete values, say, λ1, . . . , λk, ordered according to size. If one
particular value first is used as a null hypothesis in a test, it is also possible
to perform tests where each neighbouring value is used as a null hypothesis.
Then, if the middle value is not rejected, and the neighbouring values are
rejected, it is indeed possible to report the middle one as the truth as resulting
from the experiment. Alternatively, if a 99.9% confidence interval only covers
one of the parameter values, we can be reasonably sure that this is the correct
one.

2.5 Simple Situations Where Statistics is Useful.

Estimation, confidence interval estimation and testing of hypotheses is very
often done in connection to one or several measurement series y1, .., yn of in-
dependent identical observations. Often, these observations are assumed to be
normally distributed, a simplification, but very often a useful simplification.
I will come back to this under model reduction later. (See Example 3.1.5.) At
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this point it must only be repeated that every model is a simplification. In
most practical situations it is probably not even correct to say that there exists
a unique, true model, so by an extention of an earlier concept we might say
that the variable ‘model’ does not have a value. Nevertheless, the concept of
a model is a very useful one, and there are several good reasons for choosing a
normal model when it is not invalidated by the data themselves. It is simple; it
depends upon just the right two parameters µ and σ; it transforms in the right
way under translations and scale changes; it may be argued for by the central
limit theorem [78] in some cases; there exist a multitude of good statistical
methods for analysing normal observations; and finally, these methods are in
most cases reasonably robust against deviations from the normality assump-
tion, at least in the case where this distribution is independently invesigated
by plots or in other ways.

In the previous section, we treated the case where the variance σ2 of the ob-
servations was known. To treat the more general case, we need three auxiliary
sets of distributions. Throughout, we will let u, u1, u2, . . . , un be independent,
and each have a standard normal distribution, i.e., be normal with µ = 0 and
σ = 1.

Definition 2.5.1. The chisquare distribution. Let

z = u2
1 + . . .+ u2

ν . (2.22)

Then per definition z has a chisquare distribution with ν degrees of freedom.

Definition 2.5.2. The t-distribution. Let

t =
u√
z

√
ν, (2.23)

where z has a chisquare distribution as in Definition 1 with ν degrees of free-
dom. Then per definition t has a (Student’s) t-distribution with ν degrees of
freedom.

Definition 2.5.3. The F-distribution. Let

F =
z1ν2
z2ν1

, (2.24)

where z1 and z2 are independent and chisquare distributed, z1 with ν1 degrees
of freedom and z2 with ν2 degrees of freedom. Then per definition F has a
(Fisher’s) F-distribution with ν1 and ν2 degrees of freedom.

Tables related to these distributions are given in nearly all statistical text-
books, also in elementary books, and the densities of the distributions are
found in more advanced books.
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Example 2.5.1. In a single measurement series y1, . . . , yn where the mea-
surements are independently normal (µ, σ), it follows from the result of Ap-
pendix A.1.3 and from Definition 2.5.2 that

ȳ − µ

s

√
n (2.25)

has a t-distribution with n−1 degrees of freedom. From this, a 95% confidence
interval for the parameter µ is given by

[ȳ − t0
s√
n
, ȳ + t0

s√
n

], (2.26)

where t0 is found from tables of the t-distribution with n−1 degrees of freedom
such that P (|t| > t0) = 0.05. A test on the 5% level of H0 : µ = µ0 against
H1 : µ 6= µ0 is given by rejecting H0 if

|ȳ − µ0|
s

√
n > t0. (2.27)

Example 2.5.2. Comparing two measurement series is something that is
often done in simple experiments, both in biology and in medicine. Assume
that two diets for slimming purpose are to be compared. From a certain target
population, n1 persons are picked out randomly and given diet 1 during a
certain interval. Their weight losses during this period are y11, y12, . . . , y1n1 .
Similarly, from the same population, n2 persons are given diet 2, resulting in
the weight losses y21, y22, . . . , y2n2 .

Assuming that the variances in the two populations is the same, the best
pooled variance estimate can be shown to be

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
; s2i =

1
ni − 1

ni∑
j=1

(yij − ȳi·)2, (2.28)

which is such that (n1 + n2 − 2)s2/σ2 has a chisquare distribution with n1 +
n2− 2 degrees of freedom. This then, similarly as in Example 2.5.1, leads to a
t-distribution connected to the difference in means ȳ1·− ȳ2·, or more precisely

to t = (ȳ1· − µ1 − ȳ2· + µ2)/s
√
n−1

1 + n−1
2 , where µ1 and µ2 are the two

expected weight losses. From this we find in a straightforward way, similarly
as in Example 2.5.1, a t-test for testing H0 : µ1 = µ2 against H1 : µ1 6= µ2.
The number of degrees of freedom is n1 + n2 − 2.

Even though this is done as a two-sided test, it is obvious that, if the null
hypothesis is rejected, it is not only of interest to state this conclusion, but
also which of the two diets that is claimed to give the highest expected weight
loss.
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Example 2.5.3. In Norway and also internationally there has indeed been
a general debate concerning what kind of diet which is best for people that
decide to slim, a low fat one based on total energy content or a low carbo-
hydrate diet based on the so-called glycemic index. Investigations have been
done to illucidate this question, and more investigations are being planned.

To simplify, consider the following two experimental schemes, where in
both cases two samples are compared as in Example 2.5.2: 1) Each person
is given a detailed diet list for each day during the experiment, where these
diets are composed by experts in agreement with the two philosophies. 2) Each
person is given a list of ‘good’ or ‘bad’ products according to the selected one
of the two philosophies, and is required to do his shopping in agreement with
this.

The point is then that the different experimental schemes really measures
different properties, the last one also taking into account some of the psy-
chological elements associated with slimming. If only one type experiment is
carried out, it may be difficult to evaluate the complementary property as-
sociated with the other experiment. In order to decide which experiment to
do, one should consider which propeties that are most important for practical
advice.

We now turn to somewhat different classes of experiments, also often car-
ried out in practice, namely those which are associated with the binomial and
the multinomial distributions. We will only give a very brief survey.

Consider first the situation in Example 1.9.1, the binomal poll with one
question and two possible answers. The probability θ of voting A is estimated
by θ̂ = y/n, where y is the number among the n persons in the poll which
answer A. From the results of Appendix A.1.2 we find E(θ̂) = θ and V ar(θ̂) =
θ(1 − θ)/n. Using a normal approximation, which can be argued for by the
central limit theorem ([78]), we find the following 95% confidence interval:

[θ̂ − 1.96

√
θ̂(1− θ̂)

n
, θ̂ + 1.96

√
θ̂(1− θ̂)

n
]. (2.29)

A 5% test of H0 : θ = θ0 against H1 : θ 6= θ0 (where θ0 may be a previous
election result), is given by rejecting H0 if

|θ̂ − θ0|√
θ0(1−θ0)

n

> 1.96. (2.30)

.
This latter inequality may also be written

z =
(y − nθ0)2

nθ0
+

((n− y)− n(1− θ0))2

n(1− θ0)
> 1.962. (2.31)

This seemingly cumbersome way of writing a test variable in fact is a first
indication of a great number of possible generalizations: In a multinomial
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situation or in a set of multinomial situations a given null hypothesis is tested
by first calculating the expected number ηi under the null hypothesis in each
cell, then the test variable

z =
∑

i

(yi − ηi)2

ηi
, (2.32)

where yi is the observation in cell i. Finally the null hypothesis is rejected
if z > z0 with z0 calculated from the chisquare distribution with s(q − 1)
degrees of freedom, s being the number of multinomials and q the number of
cells per multinomial. Note that sq is the total number of cells. The test can
also be modified by replacing the expected numbers ηi by some ηi(ζ̂), where ζ̂
is a (often multidimensional) parameter estimated under the null hypothesis
(by maximum likelihood or minimum chisquare). The number of degrees of
freedom must be replaced by s(q − 1)− k, where k is the dimension of ζ. All
these tests are approximate, more precisely asymptotically valid.

Example 2.5.4. Assume that a researcher is interested in if there is a differ-
ence in attitudes towards a certain problem between Norway and England. A
question with r response alternatives A1, . . . , Ar is formulated to investigate
this, and the question is posed to n1 randomly selected persons in Norway
and to n2 randomly selected persons in England. The number of persons an-
swering Ai is yi1 in Norway and yi2 in England. The null hypothesis is that
there is a common probability θi to answer Ai in England and Norway, and
the estimate of this under the null hypothesis is θ̂i = (yi1 + yi2)/(n1 + n2).
Thus the expected number in cell i in Norway is ηi(θ̂) = n1θ̂i, which is to be
compared to yi1. Similarly, in England n2θ̂i is to be compared to yi2. There
are r − 1 independent parameters θi to estimate, and the number of degrees
of freedom for the chisquare test is 2(r − 1)− (r − 1) = r − 1.

The situation here can be generalized to several questions, and also to
comparing more than two countries.

All examples of statistical procedures in this section have been for exper-
iments where many units are investigated, and this is the typical situation in
applied statistics. When we later come to quantum physics, we will be con-
cerned with one or only a few units. In fact, this may be one reason why
the conceptual similarity between statistics and quantum theory has not been
focused on before. I will show nevertheless that a connection exists, but in or-
der to see that, we have to carefully look at the different facets of the concept
of parameter or state variable. In fact, as we saw in the Michelson example,
repeated measurements are used also in physics.

2.6 Bayes’ Formula and Bayesian Inference.

Up to now the parameter / state variable has been a fixed, but unknown
value. In this Section we shall introduce a different philosophy, where the
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parameter is assumed to have a distribution, and we will make active use
of it. The parameter distribution may be subjectively or objectively based,
but in any case this distribution will change when we make an observation.
An observation will bring us more information about the parameter, and in
general this will narrow its distribution. We talk about a prior distribution
before the experiment and a posterior distribution after the experiment.

To study this, we first develop the simplest case of Bayes’ formula, which is
essentially just a refinement of the definition (1.2) of a conditional probability.

Theorem 2.6.1. Let B be some fixed event, and let A1, A2, . . . , Ak be a
partition of the probability space, i.e., disjoint event such that A1 ∪A2 ∪ . . .∪
Ak = Ω. Then

P (Ai|B) =
P (Ai ∩B)
P (B)

=
P (Ai)P (B|Ai)∑
j P (Aj)P (B|Aj)

. (2.33)

Here P (Ai) can be considered as a prior probability, while P (Ai|B) is the
posterior probability after the observation B is done. The statistical model is
given by P (B|Ai). So this is an exact formula for updating from the prior to
the posterior depending only upon the model for observations.

Similarly, in the case of continuous observations y depending upon con-
tinuous parameters θ through a model with density qθ(y) and with a prior
ν(θ)dθ, Bayes’ formula reads

ν(θ|y) =
ν(θ)qθ(y)∫

θ′
ν(θ′)qθ′(y)

. (2.34)

Here ν(θ|y) is the posterior density of θ.
This in principle gives a completely new theory of statistical inference

compared to what has been discussed above: In (2.34) we have obtained a
direct probability distribution of the unknown parameter depending upon
the experimental data. However, there are two obstacles to these Bayesian
methods in practice: First you have to provide a reasonable prior distribution.
Next, finding the posterior involves quite heavy integration in most cases,
integration that usually will have to be carried out in some numerical way.
In recent years, Markov Chain Monte Carlo methods [89] have made these
integration problems feasible, and this has lead to an upswing in the use of
bayesian methodology.

As a fist item, we define the concept of credibility interval.

Definition 2.6.1. For a scalar parameter θ a credibility interval is an
interval [c1(y), c2(y)] such that, say

P (c1(y) ≤ θ ≤ c2(y)) =
∫ c2(y)

c1(y)

ν(θ|y)dθ = 0.95. (2.35)
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The form of the Bayesian credibilty interval is like that of the confidence
interval, but the interpretation is completely different: For fixed data, the
probability that the parameter is in the interval is equal to the credibility
coefficient, here 0.95. Surprisingly, however, it will turn out later that in some
natural cases the confidence interval and the credibility interval with the same
coefficient will in fact be numerically equal.

A related question is how to estimate a parameter θ. We then need to
specify a loss function.

Definition 2.6.2. A loss function L is a function of two variables such
that L(θ̂, θ) gives the loss you experience when the real value is θ and you
estimate it by θ̂: If the distance is large, you suffer a large loss. and nearly no
loss if the distance is small.

From this you calculate the risk function or expected loss:

Definition 2.6.3. The risk function is given by

R(θ) = EθL(θ̂, θ) =
∫

y

L(θ̂(y), θ)qθ(y)dy. (2.36)

The risk function depends upon the unknown parameter θ, and it is much
used in traditional (frequentist; cp. Section 2.2–2.5 above) inference theory,
too.

In Bayesian theory, in principle at least, everything is easier: We have the
possibility of integrating out the unknown parameter by using the prior. This
gives the Bayes risk :

Definition 2.6.4. The Bayes risk is given by

r = EνR(θ) =
∫

θ

R(θ)ν(θ)dθ. (2.37)

This can be calculated for several proposals for estimator, so that we can
choose the one which gives the smallest r.

For scalar θ, a very common choice of loss function is the quadratic loss

L(θ̂, θ) = (θ̂ − θ)2, (2.38)

which gives a risk function equal to the mean square error (2.3)

R(θ) = ME = (E(θ̂)− θ)2 + V ar(θ̂) = Eθ(θ̂ − θ)2.
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A mathematical exercise ([24], p. 161) shows:

Lemma 2.6.1. For quadratic loss the Bayes risk is minimized by taking
the posterior mean as an estimator:

θ̂ = θ̂(y) = E(θ|y) =
∫

θ

θν(θ|y)dθ. (2.39)

Note that this indeed is an estimator, since it only depends upon the
observations y.

Example 2.6.1. ([24]) Assume one observation y which is normal (θ, σ),
where θ is unknown but σ is known. Let the prior for θ have a normal (µ, τ)
density ν(θ), where both µ and τ are known. Then

ν(θ)qθ(y) = (2πστ)−1exp{−1
2
[
(θ − µ)2

τ2
+

(y − θ)2

σ2
]}.

By using ρ = τ−2 + σ−2 this can be transformed by completing squares to

(2πστ)−1exp{−1
2
ρ[θ − 1

ρ
(
µ

τ2
+

y

σ2
)]2}exp{− (µ− y)2

2(σ2 + τ2)
},

and the integral of this over θ is

(2πρ)−1/2(στ)−1exp{− (µ− y)2

2(σ2 + τ2)
}.

From the last two equations we read out that the Bayes estimate is

θ̂ = E(θ|y) =
1
ρ
(
µ

τ2
+

y

σ2
) =

σ2

σ2 + τ2
µ+

τ2

σ2 + τ2
y. (2.40)

This last expression has a very simple interpretation: The estimator is a
weighted mean between the prior value µ and the data value y. When the
prior variance τ2 is large compared to the data variance σ2, the largest weight
is on the data and vice versa. More specifically, the posterior is a normal
density with expectation E(θ|y) as above, and with variance ρ−1.

Consider now the case of a series y = y1, . . . , yn of independent normal
(θ, σ) measurements. Then ȳ is normal (θ, σ/

√
n), and using just this obser-

vation (cp. sufficiency; see Section 2.11 below), everything is reduced to the
situation of the previous paragraph. Thus

θ̂ = E(θ|y) =
σ2

σ2 + nτ2
µ+

nτ2

σ2 + nτ2
ȳ. (2.41)

The interpretation is as before with the addition that a large value of n implies
that one has a large weight on the data value ȳ.
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As this example shows, the calculation involved in Bayesian inference can
be quite cumbersome even in the simplest cases.

Example 2.6.2. Look again at the uniform distribution (1.11), and as in
Example 2.3.2 and Example 2.3.6 wee seek estimators for the parameters α
and β. To find the Bayesian estimators (2.39), we first choose a uniform joint
prior for the parameters, and then from this find the aposteriori distribution
by Bayes formula. The joint aposteriori density for α ≤ min(yi), β ≥ max(yi)
is

ν(α, β|y) =
(β − α)−n∫ min(yi)

α=−∞
∫∞

β=max(yi)
(β − α)−ndαdβ

=
(n− 1)(n− 2)(max(yi)−min(yi))n−2

(β − α)n
.

Integrating out β gives

ν(α|y) =
(n− 2)(max(yi)−min(yi))n−2

(max(yi)− α)n−1

for α ≤ min(yi), and from this

α̂ =
∫
αν(α|y)dα = min(yi)−

max(yi)−min(yi)
n− 3

.

By symmetry

β̂ = max(yi) +
max(yi)−min(yi)

n− 3
.

These estimators are quite close to the maximum likelihood estimators, and
seem to have good properties.

The Bayesian analysis and Bayesian estimation will in Chapter 3 be as-
sociated with a transformation group on the parameter space. The most nat-
ural transformation group here seems to consists of scale transformations in
δ = β−α combined with translations in µ = (α+β)/2, which implies a differ-
ent prior than the one that was used above. For the Bayes estimator obtained
from the latter prior, see Example 3.5.1.

In the statistical community there has been a discussion between the clas-
sical statisticians and the Bayesian for decades. The distance between the two
schools have diminished in the last years, however. A mathematical reason
for this ([140]) is a basic result of Wald to the effect that every reasonable
classical decision procedure is a Bayes solution or a limit of Bayes solutions.
Another reason is that many statisticians tend to be pragmatic and use the
method that they judge to be best on each given problem. If you have a rea-
sonable prior, is able to carry out the integrations and think that the problem
at hand is worth the effort, you use a Bayesian method, otherwise the classical
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methodology in most cases offers plenty of possibilities. Note that the choice
of a statistical procedure is not like the solution of a mathematical problem,
even though some students seem to believe that, and indeed sometimes are
given an education which encourages them to believe that. In practice there
is usually not one single best procedure, but the analysis can be carried out in
several reasonable ways. This of course does not prevent us in believing that
there is an objective world behind our analysis of uncertain data.

2.7 Regression and Analysis of Variance.

Regression analysis and analysis of variance belong to the most used methods
in statistical practice. They are tied together by the class of linear models, a
class which in our setting also will be used below to illustrate the diversity in
applied science concerning the parameter concept. Usually these models are
analysed in a frequentist way, so we will concentrate on this, but there exist
also Bayesian variants.

Example 2.7.1. In Example 2.5.2 we indicated how to test two diets for
slimming purpose against each other. Assume now that we want to compare
k different diets. Select randomly nj persons for diet j (j = 1, . . . , k) and
let the observed weight losses be {yjr; j = 1, . . . , k; r = 1, . . . , nj}. This is
called a one way analysis of variance situation, and the natural model is
that the observations yjr are independent and normally distributed (µj , σ).
Equivalently, we may write

yjr = µj + ejr, ; j = 1, . . . , k; r = 1, . . . , nj , (2.42)

where the error terms ejr are independent and normal (0, σ). The full param-
eter is θ = (µ1, . . . , µk, σ).

Example 2.7.2. There can be given many examples of data pairs {(xi, yi)}
where it is natural to try a simple linear fit. Such examples can be found
in almost any textbook. Most often, the xi’s can be taken as values of some
explanatory, fixed variable, and the yi’s as some random response. The model
usually posed for such data is

yi = β0 + β1xi + ei; i = 1, . . . , n, (2.43)

where again the error terms ei are independent and normal (0, σ). The full
parameter is θ = (β0, β1, σ).

Example 2.7.3. A full IQ test can be fairly complicated. Imagine that we
want to predict IQ from a series of p simple tests, perhaps each of them
consisting of just a single test question. This is investigated further for n
randomly selected persons, for which one on person i measures the IQ score
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yi and the score xij on the simple test number j (j = 1, . . . , p)). Here we
want to study the effect of x upon y, so it is natural to condition upon the
x-variables. This means that one also here takes the xij ’s as fixed. The model
most often used in such situations is

yi = β0 + β1xi1 + . . .+ βpxip + ei; i = 1, . . . , n, (2.44)

where once more the error terms ei are independent and normal (0, σ). The
full parameter is θ = (β0, β1, . . . , βp, σ).

It is obvious that model (2.43) is a special case of model (2.44). But also
model (2.42) can be taken as a special case of this model if the yjr’s are
stacked, so that (jr) is equivalent to a new index i, and the x-variables are
indicators of the diet chosen, specifically xij = 1 if person i has taken the diet
j, otherwise xij = 0. Then take βj = µj ; j = 1, . . . , k and β0 = 0.

The model (2.44) is called the general linear model, and it has these 3
applications and a lot of other applications. On vector form the model equation
is written

y = Xβ + e, (2.45)

with obvious definitions of the n-vectors y and e, the n×(p+1)-matrix X and
the (p+1)-vector β. It is convenient to write E(y) for the vector of expectations
E(yi) and V (y) for the covariance matrix of y, i.e., the matrix with variances
on the diagonal and covariances Cov(yi, yj) = E(yi − E(yi))(yj − E(yj)) on
the off-diagonal entrices. With the model assumptions above, we have simply

V (y) = V (e) = σ2I, (2.46)

where I is the identity matrix.
The regression vector estimates are developed in Appendix A.1.4. They

are found by least squares, in this case the same as the maximum likelihood
method, i.e. by minimizing ‖ y −Xβ ‖2. The solution is

β̂ = (X ′X)−1X ′y, (2.47)

which gives
E(β̂) = β, V (β̂) = (X ′X)−1σ2. (2.48)

The last equation is interesting. If X ′X is singular, which occurs if X has
rank less than p + 1, then then the covarance matrix is infinite, and there is
at least one linear combination of the β’s which does not have a value in the
experiment. If X ′X is nearly singular, then the estimates are instable. In such
cases a model reduction is often called for.

An unbiased estimate of σ2 is

s2 =
‖ y −Xβ̂ ‖2

n− p− 1
. (2.49)
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From this, a standard error se(β̂j) is found for each regression parameter
estimator by by replacing σ by s in the last part of (2.48). This gives single
parameter confidence intervals β̂j ± t0se(β̂j), where t0 is found from the t-
table with n−p−1 degrees of freedom. Similarly, single parameter t-tests are
found.

A test for the joint null hypothesis β1 = β2 = . . . = βp = 0 can be
constructed in the following way: Calculate first the total sum of squares
SST = (n − 1)s2y =

∑
(yi − ȳ)2, then the regression sum of squares from

SSR = SST − SSE, where SSE = (n − p − 1)s2 =‖ y − Xβ̂ ‖2, and then
finally the test variable

F =
SSR

ps2
. (2.50)

Then the null hypothisis is rejected if F > f0, a one-sided test, where f0 is
found from the F-distribution of Definition 2.5.3 with p and n− p− 1 degrees
of freedom. This test is often done as a first step in the investigation of a
regression model. If the null hypothesis is not rejected here, there is usually
little reason to continue the investigation.

By using a similar procedure, one can test hypotheses of the form βq+1 =
. . . = βp = 0 and even more general hypotheses.

All this is standard theory which can be found in many textbooks, for in-
stance Weisberg [195], where many applications are found. The results above
are proved in an analogous way to those of Section 2.5 by using matrix cal-
culations and as indicated in Appendix A.1.4.

All the procedures above assume that the model used is true, an issue
which is looked at in the next Section.

Example 2.7.4. Consider again the situation of Example 2.7.3, but now
with the following modification: Either in order to avoid problems with esti-
mation or because the capacity of each subject is limited, we feel forced to
drop some of the simple tests from the investigation. Specifically, it is deter-
mined that only q of the p tests shall be included in the experiments, but the
choice of q tests among the p is left open.

This leaves one with the choice between
(
p
q

)
experiments. Experiment a

corresponds to a certain selection of indices j1, . . . , jq, and the full parameter
for this experiment is θa = (β0, βj1 , . . . , βjq , σ).

This simple example has in fact many features in common with the setting
that we shall assume later for quantum mechanics. The different parameters
θa are complementary. The parameter θa must be be assumed relative to
experiment a to take some value which can be estimated accurately in a perfect
experiment, say with a large number of subjects n. But relative to another
experiment b, the full parameter θa can not be assumed to take a value.
However, some components may have values in the two different experiments;
these may or may not be equal (there may be interactions between the tests).
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There is a c-variable φ = (β0, β1, . . . , βp, σ) so that every θa is a function
of φ. This φ will not take a value in the setting above, but nevertheless,
symmetry properties may be defined relative to φ. In later chapters we will
meet several cases like this, where an estimable parameter is a function of a
total, inaccessible c-variable.

Given strong enough symmetry properties, one might hope to be able
to predict probabilistically θb from θa. In fact, in Chapter 5 I will describe
quantummechanical methods for similar predictions from one experiment to
another under symmetry assumptions.

It must be emphasized, however, that I do do not intend to say that
the simple example above mimics exactly the properties of quantum objects.
Our intentions with such discussions around certain examples in this and the
previous chapter is to illustrate how flexible the parameter/ c-variable concept
must be in classical statistics, and then come back in Chapter 4, 5 and 6 and
argue that quantum mechanics can be derived and discussed under the same
umbrella. Further such discussions of classical statistics related to the linear
model will be given in the following sections.

2.8 Model Checking in Regression.

In the previous Section we took the linear model (2.44)-(2.45) as a point of
departure. In fact, in the last decades there has been developed many tools
to check such models. If it is decided that the model is wrong in some way,
either data must be further investigated and perhaps deleted, or the model
must be changed, possibly by adding new parameters.

According to a definition sometimes employed in standard statistics, the
data together with the original model is regarded as an ‘experiment’ with some
(full) parameter θ. If this view is followed, additional parameters found from
model checks must be regarded as complementary parameters. In contrast to
the situation in Example 2.7.4, they can be estimated by using the same data,
however.

Specifically, for a linear model, most model checks are made by looking at
residuals. The original model is used for estimation, and the n-dimensional
residual vector is given as

ê = y −Xβ̂. (2.51)

The residuals êi are plotted against time, against potential new x-variables,
against the original variables xij for each fixed j or against the predicted
values ŷi = (Xβ̂)i. Here are some very common situations:

(a) êi plotted against ŷi shows some outliers. These must be removed or
modelled by a new parameter θa.

(b) êi plotted against xij shows that the spread of the residuals is not con-
stant, but increases as xij increases. A transformation of y might be possible
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in this case, but otherwise a new model with σ2 is taken as a function of xij

through some parameter θb might be the solution.

(c) êi plotted against xij shows some curvature. In a new model a second
degree term with a coefficient θc is added.

(d) êi plotted against a new variable xi0 shows that there is a positive or
negative slope. A new model with a term θdxi0 might be called for.

2.9 Factorial Models.

The one way model illustrated in Example 2.7.1 is only the simplest of a large
class of analysis of variance models. Each of these can be written as linear
models with a design matrix X composed of 0’s and 1’s.

Example 2.9.1. Assume that one wants to study weight reduction not only
across diets, but also across age groups (and perhaps also across sexes). Then
one has to perform a factorial experiment: Persons have to be sampled for
each combination of diet and age group (and perhaps also sex).

Assume now in general a factorial experiment with two factors. Let there
be k levels of the first factor (say diet) and m levels if the second factor (say
age group) Let yjlr; j = 1, . . . , k; l = 1, . . . ,m; r = 1, . . . , njl be the responses
(say weight decrease) for the persons at each combination of factorial levels.
In the usual model these are assumed to be independent and normal with
constant variance σ2 and expectation

E(yjlr) = µjl = µ+ αj + βl + γjl. (2.52)

The last parametrisation is very useful in the interpretation of results: αj is
the main effect of diet number j, say, βl is the main effect of age group l, while
γjl is the socalled interaction. In a model without interaction there is simple
additivity between the two factors, but not when interaction is present.

Let us first look at the balanced case where njl is constant. In an optimal
design this should indeed be the case. Then it is common to use the constraints∑

j

αj = α· = 0; β· = 0; γ·· = 0. (2.53)

In fact, these are automatic if one defines

µ = µ̄·· = µ··/km; αj = µ̄j·−µ; βl = µ̄·l−µ; γjl = µjl−µ̄j·−µ̄·l+µ. (2.54)

In this case all parameters are uniquely defined, and can easily be esti-
mated. Confidence intervals and tests can be developed from ordinary linear
models theory.
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If the estimated interaction is small, it can often be argued that one should
use the simpler model obtained by putting γjl ≡ 0. Such model reductions
are common in applied statistics, and will be further discussed later. But
note already now that not all model reductions are meaningful. A model with
αj = 0 and γjk 6= 0 is very awkward. Such problems were taken up broadly
by Nelder [155], and we will return to them in Chapter 3.

Turn now to the unbalanced case. Typically, an investigation may be de-
signed to be balanced, but there may be missing observations. For this case it
is argued by Searle [176] that one should not use any constraints. The model
should be taken as in (2.52), but the individual parameter, say, αj should
not be taken to have a value. As described in detail in [176], the estima-
tian could be carried out by using an arbitrary generalized inverse instead
of (X ′X)−1, but this is then non-unique. However, certain linear combina-
tions of the parameters are estimable and have unique estimates. These turn
out to be all parameters which are linear combinations of the E(yjlr), for
instance E(ȳjl·) = µ+αj + βl + γjl or E(ȳ1··)−E(ȳ2··) = α1−α2 + γ̄1·− γ̄2·.
Similarly, certain hypotheses are testable, and are the hypotheses of interest.
The analysis of unbalanced model becomes quite cumbersome this way, but
the analysis makes sense also for instance in the case of missing data. The
computer package SAS analyses unbalanced data essentially in this way.

For our purpose it is useful to observe that statistical models can make
sense also for models with parameters which do not take a value relative to
the experiment put up. If this is the only experiment for which the relevant
parameter can be estimated, this comes close to our general notion of not
taking a value, compare also the related property of identifiability in Definition
1.9.1.

2.10 Contrasts in ANOVA Models.

We now return for simplicity to the one way analysis of variance case, say
illustrated by the diet example 2.7.1. A first step is an overall test for the
difference between the diets, but often we want more information. Typically
diets will have some structure relative to each other, say the first two could
be lowfat diets and the last 3 are low carbohydrate diets, and such structure
is made use of in the statistical analysis.

For a one way analysis model with k treatments (diets) we parametrize
the model as

E(yjr) = µj = µ+ αj . (2.55)

The αj ’s can be constrained or unconstrained; it does not matter in this case.
The first step is to test α1 = . . . = αk = 0. It is a special case of the

test given in connection to (2.50), and it has k − 1 degrees of freedom in the
numerator. This correponds to a possibility of investigating k−1 comparisons
among the treatments.
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Example 2.10.1. Consider the diet example. Assume that k=4 diets are
included in the investigation: FC, fC, Fc and fc, where f is low fat, F is high
fat, C is high carbohydrate and c is low carbohydrate. Assume also that one
primarily is interested in finding out about the effect of carbohydrate on the
response. Then one first puts up the contrast

τ1 =
1
2
(µFC + µfC)− 1

2
(µFc + µfc),

which compares the two levels of carbohydrate. In addition one can be inter-
ested in comparing the effect of fat within each of the carbohydrate levels.
This gives two new contrasts

τ2 = µFc − µfc

and
τ3 = µFC − µfC .

Note that these contrasts are orthogonal: The product-sum of the coefficients
for each pair is zero. In the balanced case this implies that the corresponding
estimators are uncorrelated, which in a normal model means that they are
independent.

In all this gives k − 1 = 3 comparisons, and this is the maximal number
one can have with k = 4 treatments. The dimension of the parameter space is
4, put one dimension (called degree of freedom) is used to estimate the overall
mean µ.

Definition 2.10.1. In general, a contrast is a linear combination

τ =
∑

j

cjµj =
∑

j

cjαj (2.56)

such that
∑

j cj = 0. Two contrasts with coefficients {cj} and {dj} are called
orthogonal if

∑
j cjdj = 0. As in the example, this implies in the balanced case

independent estimators
∑

j cj ȳj· .

For a given contrast τ one can find a confidence interval from the estimator,
and there is a t-test for the hypothesis Hτ : τ = 0. Since the estimators
are independent for orthogonal contrasts, the tests her can be considered to
concern orthogonal, unrelated questions.

Any contrast and any orthogonal set of contrasts can be extended to a
maximal set of k − 1 orthogonal contrasts. Together with the total mean
µ = µ̄· this set of contrasts is in one-to-one correspondence with (µ1, . . . , µk).
Thus the hypothesis that all contrasts are zero can be tested with the clearance
test mentioned above. The set of orthogonal contrasts can be chosen in many
complementary ways.
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Example 2.10.2. Return to Example 2.10.1, but assume instead that one
primarily is interested interested in effect of the fat levels. Then it is natural
to look at the orthogonal contrasts

τ ′1 =
1
2
(µFC + µFc)−

1
2
(µfC + µfc),

τ ′2 = µFC − µFc,

τ ′3 = µfC − µfc.

Such sets of investigations must be said to be complementary even though
the same experimental data are used and the sets of contrasts are functions of
each other. Complementarity of sets of contrasts in a stronger sense can occur
in connection to socalled incomplete block design [149], where the number of
treatments is larger than the size of the homogeneous blocks into which the
experimental units are sorted in order to enhance efficiency, but this is beyond
the scope of this book.

2.11 Reduction of Data in Experiments: Sufficiency.

We now turn again to the case of one standard statistical experiment with
some given model. We can learn something, however, from the examples dis-
cussed above: In the normal measurement series case we do not need all the
observations to do a statistical analysis, it is enough to know t = (ȳ, s2). In
the linear model it can be shown that every analysis can be carried out if we
know the estimated regression coefficients and s2.

In general, then, consider a standard statistical experiment case with a
model Qθ.

Definition 2.11.1. Let the complete data be y, and let us define a a
statistic as any function t(y) of the data. Such a statistic is called sufficient
if the conditional distribution of y given t does not depend upon θ.

This means in effect that all information about the parameter θ is con-
tained in t.

Lemma 2.11.1. If y has a probability density qθ(x) and t has a probability
density gθ(u), then t = t(y) is sufficent if and only if qθ(x) = k(x)gθ(t(x)) for
some function k(x).

A sufficient statistic is minimal if it is a function of any other sufficient.
For example, the full data y is trivially always sufficient, but this is not of
much interest. A good reduction t(y), like in the normal measurement series



60 2 STATISTICAL THEORY AND PRACTICE.

case, see Example 2.3.1, is much more interesting, especially if it is minimal.
There exist cases where a minimal sufficient statistic does not exist, but we
have the following result:

Lemma 2.11.2. Let the density of y be exponential:

qθ(x) = k(x)p(θ)exp(c(θ)t(x)). (2.57)

If the components of c(θ) are linearly independent over Θ, the space of pa-
rameter values θ, then t(y) is minimal sufficient.

The form (2.57) may appear special, but it contains many important par-
ticular cases, for instance the multivariate normal distribution. It is a straight-
forward exercise to prove from this criterion that t = (ȳ, s2) is sufficient in a
normal measurement series, in fact, it is minimal sufficient.

So, how can one state in some precise way that it is useful to reduce data
to a (minimal) sufficient statistic? One way is as follows: Let θ̂ = θ̂(y) be
any estimator of θ. Then consider θ̂0 = E(θ̂|t). This is independent of θ, so it
is an estimator. It is unbiased if θ̂ is so. Now the well-known Rao-Blackwell
theorem (see for instance [141]) says:

Theorem 2.11.1. If one has a convex loss function, then the risk function
(cp. section 2.6 above) for θ̂0 is always smaller or equal that for θ̂. Thus the
estimator θ̂0 depending upon the minimal sufficient statistic is always the best
one.

Definition 2.11.2. A sufficient statistic is called complete if

Eθ(h(t)) = 0 for all θ implies P θ(h(t) = 0) = 1 for all θ. (2.58)

A complete sufficient statistic is minimal sufficient (a proof of this is given
in [142]), but a minimal sufficient statistic need not be complete.

There is a criterion for complete statistics related to exponential models,
too:

Lemma 2.11.3. If the model (2.57) holds and c(Θ) = {c(θ); θ ∈ Θ}
contains an open set, then t(y) is a complete sufficient statistic.

All these results, and more results, examples and references can be found
in textbooks like [141] or in the encyclopedia article [12].
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2.12 Fisher Information and the Cramer-Rao Inequality.

Consider again a standard statistical experiment. We have earlier defined the
likelihood function L(θ) = qθ(y) and the log likelihood l(θ) = lnL(θ). The
maximum likelihood estimation method aims at maximizing L or l.

Definition 2.12.1. Define the score function s(θ) by

s(θ) =
∂

∂θ
l(θ), (2.59)

The score function is needed, say, when using Newton’s method to find
the maximum likelihood numerically. Like l(θ), the score function s(θ) is a
random variable for each fixed θ, and in Appendix A.1.5 it is shown that
Eθ(s(θ)) = 0.

Definition 2.12.2. We define the Fisher information by

I(θ) = V arθ(s(θ)). (2.60)

In Appendix A.1.5, the Cramér-Rao inequality is proven:

Theorem 2.12.1. For every unbiased estimator θ̂ we have

V arθ(θ̂) ≥ 1
I(θ)

. (2.61)

Under regularity conditions one can show [141] that the maximum likeli-
hood estimator for a series of n measurements is asymptotically optimal in
the sense that V arθ(θ̂) ≈ 1

I(θ) ≈
1

I(θ) |θ=θ̂ for large n.
The Cramer-Rao inequality, which is useful in several areas of theoretical

statistics can alternatively be written

V arθ(θ̂)V arθ(s(θ)) ≥ 1, (2.62)

and it thus has some structural similarity with the Heisenberg inequality (The-
orem 1.1.1) for position and velocity. Williams [197] attributes this to the fact
that the Cauchy-Schwarz inequality has been used in the proof both places.

A deeper connection is pointed out by a referee: One natural connection
is by using commutativity. The operators D and E given by Df = ∂f/∂θ
and Ef = θf have a commutator DE − ED equal to the identity I, com-
pared to the commutator h̄I between the momentum and position operator
in the Heisenberg case. I will come back to a more concrete discussion of this
connection in Chapter 7.
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2.13 The Conditionality Principle.

I have above given several examples of a standard statistical experiment, i.e., an
experiment given by a parameter space Θ, a sample space of observations and
a model Qθ which is a probability distribution of the observations depending
upon the parameter θ. It must be noted, however, that it was illustrated in
several examples above that one sometimes in practical experiments may have
to go beyond this simple frame.

This Section concerns sets of hypothetical experiments; thus it is related
to the discussion of counterfactuals in Section 1.6.

Example 2.13.1. (Cox [46])
Consider two potential laboratory experiments for the same unknown pa-

rameter θ such that E1 is planned to be carried out in New York while E2 is
planned to be carried out in San Francisco. The owner of the material that
shall be sent to these laboratories chooses to toss an unbiased coin in order to
decide the laboratory. So E1 will be chosen with probability 1/2 and E2 will
be chosen with probability 1/2.

Now consider the whole experiment E including the coin toss. If E1 and
E2 are standard statistical experiments, then E is also a standard statistical
experiment. The fundamental question is then: Does E in any sense contain
more information about the parameter θ than the chosen experiment E i?

No, says common sense, and also Cox [46]: Once the chosen experiment
has been carried out, it is completely irrelevant that it was chosen by some
coin toss mechanism.

This example has been turned out into a general principle.

The conditionality principle. Let E i (i = 1, . . . , k) be k experiments,
and let yi (i = 1, . . . , k) be the outcomes of these experiments. Let πi

(i = 1, . . . , k) be k fixed probabilities with π1 + . . . + πk = 1, and define a
new experiment E as follows: Choose E i (i = 1, . . . , k) with probability πi

(i = 1, . . . , k) and observe the outcome (i, yi). Then the experimental evidence
obtained by E is equal to that of the chosen experiment:

Ev{E , (i, yi)} = Ev{E i, yi}. (2.63)

The central concept ‘experimental evidence’ is left undefined; it could be
anything related to the unknown parameter θ.

This principle is closely related to a normative conditionality principle: All
inference should be made conditionally, given a ancillary statistic (a statistic
whose distribution is independent of the parameters, like the result of the
coin toss above.) This claim goes back to R.A. Fisher’s writing, and was
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LAB .

Fig. 2.1. Laboratory with three assistants.

discussed and related to concrete examples in [46]. In the formulation of the
conditionality principle, the variable i plays the rôle of the ancillary statistic.

In fact, it is a problem that cases with several ancillaries exist such that
the joint statistic is not an ancillary; this is a problem that we will come back
to at the end of the section.

The question we will address first is if there are other limitations to the
seemingly obvious conditionality principle. The following example is a bor-
dering case.

Example 2.13.2.
Consider a laboratory where chemical samples of a certain type are anal-

ysed routinely. There are three laboratory assistants having the same training,
using similar equipment etc.. For each sample that arrives for analyis the ad-
ministrator of the laboratory selects randomly two of the three assistants;
these two make independent analyses and their average result is reported.
From the point of view of the momentary user of the laboratory, 3 differ-
ent experiments can be identified: E12, E13 and E23, according to which pair
among the laboratory assistants 1, 2 and 3 that is selected for the job. The mo-
mentary user may perhaps want to condition upon the selected experiment to
assess the accuracy of the analysis that has been done, particular if he knows
something about the particular laboratory assistants. If such knowledge is
missing, however, it is not possible to achieve anything by conditioning. From
the point of view of the laboratory, the random selection of assistants is a
part of their routine, and the natural thing to do is to report routinely an
unconditional standard deviation connected to their result.
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Note that this example in reality trancends the frame of one single stan-
dard statistical experiment. In the unconditional report from the laboratory a
different model must be imagined to have been used than the detailed model
with specific information about each pair of laboratory assistants.

A similar discussion can be made in a sensory analysis if there is a staff
of N trained assessors and a panel of n out of these are selected randomly
to taste a particular product. Factors that may be of importance in favour
of reporting an unconditional error are: The sensory analysis firm with the
N assessors may constitute a unit; the testings are performed routinely; the
random selection of assessors may be a part of the procedure; the number n
is not too small.

The following simplified example from Helland [104] may throw some light
upon this general discussion:

Example 2.13.3.
As a small part of a larger medical experiment, two individuals (1 and

2) have been on a certain diet for some time, and by taking samples at the
beginning and at the end of that period some response like the change in blood
cholesterol levels is measured. For the individual i (i = 1, 2), the measured
response is yi, which we suppose is normal (µi, σ

2) with a known measurement
variance σ2. Measurements on different individuals are independent.

Because these two individuals have been given the same treatmet (diet)
in the larger experiment, the parameter of interest is not µ1 or µ2, but their
mean: τ = 1

2 (µ1 + µ2).
The experiments E1 and E2 are defined defined simply as measuring y1 and

y2, respectively. It is crucial to make precise what we mean by experimental
evidence here, namely to give some information about τ , the average expected
value.

It is clear that neither E1 nor E2 can give any such information. Now let E
be the the experiment constructed by selecting E1 with probability 1/2 or E2

with probability 1/2. I claim that this experiment contains some nontrivial
information in the sense just described. Namely: We choose here randomly 1
out of 2. What if we instead had chosen n out of N? Then this would have
been a simple sampling experiment. It is difficult to claim that n = 1;N = 2
is different in principle.

In a discussion of this example, Aitkin [10] pointed out that it is not a
couterexample to the conditionality principle: In this principle, it is assumed
that i in the experiment E i is known, while in the sampling experiment i is
unknown. In the example, if it is known that i = 1, for instance, it is known
that the parameter in question is µ1, so the example gives no information
about τ .

Nevertheless, the example is of interest. It points at the difference between
knowing i and not knowing i, and similarly in a larger sampling experiment.
In this case, we can make more inference when we have less knowledge!
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Consider first this variant. None of the individuals is known to the exper-
imentalist; they are just identified as numbers 1, 2 on a sheet of paper, and
the experiments are done accordingly. Let experiment E1 correspond to the
number 1 on the paper and experiment E2 to the number 2. Select then one of
the numbers randomly, and call the resulting experiment E . Then information
about the mean can obviously be obtained from this randomized experiment.
However, in this case one can say that such information also can be found
by selecting the numbers 1 or 2 in any nonrandom way because the choice
of individual is, at least in a certain sense, random in this case also. If one
agrees with this, the conditionality principle is valid in this case also, but for
a different reason than in the original experiment: Here all 3 experiments give
information about τ .

Assume next that this last variant of the experiments is done by an ex-
perimentalist A, but that there is another scientist B who possesses detailed
information about the two individuals. Then one can argue that the inference
done is valid for A, but not so for B. One can even argue that the validity of
A’s inference can be destroyed if B tells him what he knows. Similar discus-
sion can again be done for the larger sampling case of selecting n out of N
experiments. It also holds if the inference possessed by B is only partial, say
that he knows that the selected persons have a higher avarage initial weight
than the others. This may be a knowledge that he has obtained through a
third scientist C who knows the complete identity of the persons behind the
numbers and also their weights. In that case it might be that the inference may
be adjusted in some way by taking the information given by B into account.

The problem bears some relation to problems one has in randomized field
experiment when the randomization itself turns out to give a peculiar result.
In such cases there are no simple answers to the question of when experimental
results still can be considered to be valid. If the deviation in the randomization
is relatively small, one can still rely upon the basic symmetry intrinsic in the
randomization procedure.

In a similar way, even in cases where there is some knowledge present
about the single experiments, as in Example 2.13.2, one can rely on the basic
symmetry between experiments and choose to use unconditional inference. In
this limited sense, we will not consider the conditionality principle to have
absolute validity, at least in a practical sense, even though we hold it to be
valid in simple situations.

In the light of this conclusion, we choose not to go into a detailed dis-
cussion of other principles like the likelihood principle, on which there is a
large statistical literature; see [25, 28, 74] for a derivation of the likelihood
principle from the conditionality principle. However we formulate it explicitly
for completeness.

The likelihood principle. [25] All information about the parameter θ
obtainable from an experiment is contained in the likelihood function for θ
given the observations y. Two likelihood functions for θ (from the same or
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different experiments) contain the same information about θ if and only if
they are proportional to one another.

By some, the likelihood principle is said to imply that Bayesian inference is
the only valid one. In fact even a Bayesian inference where the prior depends
on the experiment chosen, see [25] p. 21, is also doubtful according to this
principle. It is the position of the present author that neither of these general
principles, which may have rather strange consequences, can be said to have a
complete general validity, at least from a practical point of view in an inference
situation. Thus, in this connection I choose to be a little ‘unprincipled’; see
leCam [25]. It is an essential point that this whole discussion is carried out
within the framework of the standard statistical experiment, a framework that
one in my opinion sometimes have to transcend in applied statistics.

Finally I comment on the question of nonununiqueness of an ancillary,
i.e., a statistic whose distribution is independent of the parameter. From a
normative version of the conditionality principle, this leads to several possible
ways to condition. There are many examples to illustrate this. Here are two
simple ones.

Example 2.13.4. Let θ be a scalar parameter between -1 and +1. Consider
a multinomial distribution on four cells with respective probabilities (1−θ)/6,
(1+θ)/6, (2−θ)/6 and (2+θ)/6, adding to 1. Let the corresponding observed
numbers in a sample of size n be y1, y2, y3 and y4. Then each of the statistics

a1 = y1 + y2 a2 = y1 + y4 (2.64)

is ancillary for θ, but they are not jointly ancillary. And conditioning upon
a1, respectively a2 leads to distinct inference.

Example 2.13.5. In a certain city the sex-ratio is 1 : 1, and it is known
that exactly 1/3 of the population have their own mobile telephone. The ratio
between male and female mobile telephone owners is an unknown quantity
(1 + θ)/(1 − θ), where −1 < θ < 1. One is interested in estimating θ by
sampling randomly n persons from a register of the city population. It is
assumed that the population is much larger than the sample size n.

Let the number of men in the sample be u1, and let u2 persons in the
sample be owners of mobile telephones. Finally, let y be the number of male
mobile telephone owners in the sample. The information (u1, u2, y) is enough
to reconstruct the whole 2×2 table of frequencies. The entries in this table will
have a multinomial distribution as in (2.1) with probabilities found from the
information in the previous paragraph. Here both u1 (being binomial (n, 1/2))
and u2 (which is binomial (n, 1/3)) are ancillary, but they are not jointly so.
The joint probability distribution of these two variables given by the frequency
function ∑

y

C(y)(
1 + θ

6
)y(

2− θ

6
)u1−y(

1− θ

6
)u2−y(

2 + θ

6
)n−u1−u2+y,
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where C(y) is the multinomial coefficient

C(y) =
n!

y!(u1 − y)!(u2 − y)!(n− u1 − u2 − y)!

will namely always depend upon the unknown parameter θ.
The experiment can be conditioned in two different ways. First we con-

dition upon the number u1 of men. This variable can in principle have any
integer value from 0 to n, but once it is determined, it is fixed, and the
response variable y is binomial (u1, (1 + θ)/3), which gives an approximate
inference for θ. More accurately, this fact together with the fact that the num-
ber u2 − y of female mobile telephone ownwers has an independent binomial
(n− u1, (1− θ)/3) distribution implies that the likelihood is proportional to

(1 + θ)y(2− θ)u1−y(1− θ)u2−y(2 + θ)n−u1−u2+y, (2.65)

which can be used to draw inference on θ, in particular to find the maximum
likelihood estimator. Note that in this equation u1 is fixed, while u2 is a
random variable. In particular, the Fisher information about the parameter θ
is

u1

(1 + θ)(2− θ)
+

n− u1

(1− θ)(2 + θ)
. (2.66)

Alternatively, one can condition upon the number u2 of mobile tele-
phone owners. Then the response y, the number of men among these tele-
phone owners, will be binomial (u2, (1+θ)/2), and independently the number
u1 − y of men among the non-ownwers of mobile telephone will be binomial
(n − u2, (2 − θ)/4). This will again give a likelihood proportional to (2.65),
but with a completely different interpretation: Now u2 is fixed, but u1 is a
random variable. The maximum likelihood estimate of θ will be the same as
before, but the Fisher information for θ will be

u2

1− θ2
+
n− u2

4− θ2
. (2.67)

Finally, the unconditional experiment implies that (y, u1 − y, u2 − y, n −
u1 − u2 − y) has a joint multinomial distribution. Again the likelihood will
be proportional to (2.65), but now both u1 and u2 are random. Again of
course the maximum likelihood estimator will be the same, but the Fisher
information will be different, namely

(2− θ2)n
(1− θ2)(4− θ2)

. (2.68)

Asymptotically, using u1 ≈ n/2 and u2 ≈ n/3 the three expressions (2.66),
(2.67) and (2.68) are approximately equal as they should, but for finite u1 and
u2 there is a striking difference.
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There have been many attempts to find general rules for the choice of
ancillary to condition upon in such cases, see for instance Cox [47]. My own
view, in agreement with what I have expressed elsewhere in this book, is that
we just have to live with the fact that the world can be seen from different
perspectives, and that this sometimes may lead to different conclusions.

2.14 A Few Design of Experiment Issues.

As has been said before, a statistical investigation begins with a question, or
often, one and more questions. Unfortunately, many statistical textbooks and
introductory courses give the impression that inference is just tied to a class of
probability measures, and the whole issue of experimental design is relegated
to later courses, if at all. Fortunately, there exist good, rather simple, books
in experimental design like Montgomery [149] and Box, Hunter and Hunter
[34]. A treatise of very many aspects of experimental design, including both
practical issues and mathematical issues, will be given in the forthcoming book
by Bailey [15]. This is not the place for a systematic discussion of the topic of
design, but I want to stress as a general point that any empirical investigation
starts with a design phase, and that any full discussion of empirical data
should take into account the phase where questions were posed in the first
place.

The question that is posed in an experiment can typically be related to
treatments that can be applied to a set of units. The units can be human
beings, animals, plants, plots in a field or runs in an industrial process.

Historically, the first modern discussion of experimental design was given
by R.A. Fisher; see [82]. Fisher stressed 3 basic principles.

1) Replication
This means that every treatment should be repeated on several units. First,

this is a prerequisite for inference in many cases. Secondly, it is a precautionary
measure if something should go wrong.

2) Randomization.
This is the cornerstone underlying the use of statistical methods in prac-

tice. Randomization means that both the allocation of the experimental ma-
terial and the order in which the individual runs or trials of the experiment
are to be performed, are randomly determined. This may serve to validate the
statistical model, and is important for the validity of statistical tests.

3) Blocking.
Blocking is a technique used to increase the precision of an experiment. A

block is a portion of the experimental material that should be more homoge-
neous than the entire set of material. In an ordinary block experiment, every
treatment is applied once to every unit in each block.
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I will give a brief sketch of the coupling between the experimental design
phase and the statistical analysis phase from our point of view. Many details
are left out.

Consider a set Z of potential experimental units for some experiment; this
set can be finite or infinite, one may even consider an uncountable number of
units. For each given z ∈ Z, let yz be some potential response variable, and
let µz be the expectation of yz for the case where no treatment is introduced.

One may also have a set T of potential treatments which can be applied
to each unit. Let µtz be the expectation of yz, given z, when treatment t is
applied to z, and define θtz = µtz − µz. Assume for simplicity that the yz’s
are independent with variance σ2. Let ηz denote other parameters connected
to the unit z.

In this situation it is natural to call φ = ({µz, ηz; z ∈ Z}, {θtz; t ∈ T, z ∈
Z}, σ2) a c-variable for the system and Φ = {φ} the c-variable space. This
terminology is consistent with what I have used elsewhere, and it is also con-
sistent with the terminology I will use in my approach to quantum mechanics
later. Note that φ is not estimable in any conceivable experiment; nevertheless,
it is a useful conceptual quantity.

Now in the experiment itself one selects some finite subset Z0 from Z. I
will assume that this is done in such a way that θt = E(θtz|t, z), expectation
over this selection mechanism, is independent of the selected z. Then we will
have for the given selected unit z ∈ Z0 that

E(yz|t, z) = µz + θt. (2.69)

This is one way to express the well known unit/treatment additivity, which
is considered by Bailey [13, 14] and others as a prerequisite for having a
consistent approach to the design of experiment. The parameter of interest
then will typically be θ = {θt; t ∈ T}, which in principle is some function of
φ, in practice a very complicated function, but this does not matter.

I will come back to this description of experiments, and in particular to
the randomization of such an experiment in Chapter 3 and Chapter 7.

2.15 Model Reduction.

Consider now a standard statistical experiment for which we first contemplate
a full parameter θ and a perhaps a model Qθ relative to this parameter. As
a matter of principle, a parameter is defined through some linguistic expres-
sion, and sometimes it may be desirable or even necessary to use a simpler
language and hence a simplified parameter λ = λ(θ). In certain cases the orig-
inal parameter θ may not be estimable in any possible experiment, and then
the only way to get some information at all, will be to limit oneself to such
a parameter λ. In this case, the part of θ not contained in λ can be said not
to have a value at all. We thus take the position that if nothing can be said
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about a parameter from any experiment or in any other way, we might as well
say that this parameter does not have a value.

We will later meet an extreme example of this kind of behaviour in the
electron spin system. For such cases the original contemplated model Qθ does
not make sense; it is only possible to speak about a reduced statistical model
Qλ.

A less extreme case is when it pays in order to improve prediction perfor-
mance to reduce the statistical model in such a way.

Example 2.15.1. Consider the elementary linear regression model yi =
β0 +βxi +ei, where the error terms ei are independent and identically normal
(0, σ2), and where we for simplicity assume that the values x1, . . . , xn of the
explanatory variable satisfy

∑
xi = 0. Then the mean squared prediction

error at the fixed point x0 under the nonrandom explanatory variable model
can be shown (see Appendix A.1.6) to be

PE =
σ2

n
+ x2

0

σ2∑
x2

i

+ σ2. (2.70)

.
The present model has a small number of parameters, but even here model

reduction can be considered. The strength of the example is that an explicit
solution is easy to find. A natural reduced model here will be one with slope
0, leading to the prediction error implied by using the reduced model when
data are generated by the full model (Appendix A.1.6 again):

PER =
σ2

n
+ β2x2

0 + σ2. (2.71)

Comparison with (2.70) shows that in terms of prediction error, model reduc-
tion pays (for all non-zero x0) if and only if

β2 <
σ2∑
x2

i

. (2.72)

This condition can also be written as |t| < 1, where t is the ‘theoretical
t-value’ β/std(β̂) with std(β̂) = σ/

√∑
x2

i . In this form it can be shown
that the condition also can be generalized to the question of deleting a single
variable from a multiple regression model, a fact that also has been referred
to in applied statistics books like Snedecor and Cochran [182].

In Chapter 3 we shall come back to this and then mainly concentrate on
the random x regression, where the assumption on the error terms is that
εi, given all the x-variables are independent and identically normal (0, σ2),
and we typically may assume that x1, . . . , xn are independent and identically
normal (0, σ2

x). Thus the assumption
∑
xi = 0 is replaced by E(xi) = 0.

Then the new prediction error is found by taking the expectation over the
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x-variables in (2.70) and (2.71), leading to the following criterion for model
reduction:

β2(n− 2) <
σ2

σ2
x

. (2.73)

This illustrates explicitly the statement made earlier that model reduction
may be beneficial when the number of data points is small or moderate. Unfor-
tunately, the criterion depends upon unknown parameters - a general problem
in this area.

A very general large sample discussion of model reduction using likelihood
theory can be found in Hjort [117, 118]. A number of specific examples of
model reduction can also be found in that paper and in references given there.
In Chapter 8 we will go through a large example of model reduction of the
type illustrated by Example 2.15.1. A prerequisite for doing model reduction
of this kind is that there is an appreciable model error σ2 in the situation, or
that the estimation in the original model is unstable. In the case of the linear
model y = Xβ + e this is equivalent to near collinearity (det(X ′X) ≈ 0). In
fact, these two criteria is consistent with what one can read from the simple
inequality (2.72).

Thus we have sketched two situations where model reduction is called for:
1) Parts of the parameter do not have a value relative to the experiment; 2)
We want to improve prediction error. In fact, these two situations are related.
We can see this in the case of the linear model, where the first situation
corresponds to exact collinearity (det(X ′X) = 0) and and the second one to
near collinearity.

2.16 Perfect experiments.

From a physicist’s point of view, the bulk of both this chapter and the next
chapter is about measurement apparata. Both in physics and in other sciences,
the following is true: For a given state of nature one can choose to use each of
many different potential apparata to observe or measure the state. The state
variable θ must be the same irrespective of which measurement apparatus
one uses, but the measurement model Qθ will of course depend upon the
apparatus.

In some instances in physics, and also in other sciences, one can disregard
measurement error. In this situation one has a perfect measurement, and the
measurement model will then give Qθ as a delta-measure. For a continuous
state variable θ this must be regarded as an approximation, but, as discussed
at the end of Section 2.4, if θ or its associated reduced parameter λ takes a dis-
crete set of values λ1, λ2, . . ., then it is realistic to assume that a measurement
apparatus can be almost completely perfect.

But even in the case of a perfect measurement something can be learned
from the discussion in this chapter. A state is not in general just characterized
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by a simple number. The parameter θ (or λ) is the answer of a given, specific
question to nature. And as such:

1) θ may be part of a c-variable φ to which symmetry arguments apply.
2) θ may depend upon the context for the measurement/ experiment.
3) Even though we have stated (Section 2.13) that the conditionality prin-

ciple in our view should not always have complete general validity, the princi-
ple could be relevant and valid for the situation at hand, and then statements
about the parameter should be limited to the experiment actually performed.

4) A suitable model reduction may be called for, even though this at first
does not seem to be particular relevant for a situation where we are able to
get perfect information about the parameter. However, for presentation of a
complicated result it may still be desirable.



3

STATISTICAL INFERENCE UNDER
SYMMETRY.

3.1 Introduction.

1 The main issue in this chapter is to explore the consequences of adjoining a
symmetry group to a statistical model. This will be the platform for much of
the discussion in later chapters. At the outset, the group will be introduced as
a transformation group on the parameter space or on the space of observations.
A transformation group on the parameter space will be particularly important.
Statistical inference, as we have introduced it in the previous two chapters,
has to do with deducing statements on a parameter or on a set of parameters.
So, if we arrive at a certain conclusion concerning one parameter, symmetry
may also lead to a similar conclusion about a transformed parameter.

This whole issue may also be related to the foundation of probability: One
can roughly imagine three possible such foundations: One based upon limits
of empirical frequencies as the number of observations tends to infinity, one
based upon subjective judgement, and one based upon symmetries like in
die tossing or in card games. Then one can imagine in a similar way three
possible bases for statistical inference: The large sample basis, the Bayesian
basis and the group theory basis. The latter is not always applicable, but when
it is, it may be quite powerful. Later, in Section 3.6, I will discuss a tentative
relationship between the three approaches.

One topic of importance will be the idea of model reduction under sym-
metry. I will argue that every sensible model reduction should be to an orbit
or to a set of orbits of the group acting upon the parameter space. This will
1 This chapter is fairly mathematical. Those who feel uncomfortable with this math-

ematics, can in the first reading look comparatively quickly through the results,
although some of these are essential to understand in order to appreciate the
main development and the connections to parts of the rest of the book. As a very
minimum, the introduction together with the summary of each Section should
be read. Needless to say, those wanting to understand the theory, should read all
details.
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turn out to have important consequences, both when we in later chapters
discuss quantum mechanical modelling and when we discuss models of use in
chemometrics.

Group actions in the statistical model setting is introduced in Section
3.2. The necessary concepts are then developed in the sections 3.3 and 3.4.
Much of the remaining chapter is related to estimation, but there is also much
related discussion, as on model reduction in the sections 3.7 and 3.8, and a
demonstration in Section 3.6 that the introduction of an appropriate group
structure may diminish the distance between Bayesian inference and classical
inference. Part of Section 3.8 is a preparation for Chapter 8, and Section 3.9
introduces an important estimation method in mixed model analysis, while
at the same time illustrates the technique of estimating the orbit index in the
parameter space from the orbit index in the space of observations.

As recently pointed out by Breiman [36], the theoretical statistical lit-
erature is to a large extent dominated by aspects of probability-based data
models. That paper initiated an interesting discussion, but whatever attitude
one should have here, it is highly relevant to ask whether also other structural
elements can be of importance for statistical methodology, elements which in
terms of their practical implications perhaps so far have not been sufficiently
focused upon in the literature. In this chapter we will mainly study symmetry
aspects by letting a group G act upon the parameter space Θ and the sample
space S. This is of course not a new concept, but the tendency in the statis-
tical literature has been to start with a model, and let the group be induced
by this model. Here we want to argue for the group as an independent entity
in addition to the model. The introduction of such a group will be shown to
have several consequences for the analysis of data.

Throughout most of this chapter, I will use a standard statistical model
as introduced in Chapter 2, but I will augment this model by introducing a
group G acting upon the sample space and correspondingly on the parameter
space. In Section 3.7 I will go beyond the standard model when looking at
model reduction, and in Section 3.11 I go beyond the standard model and
look at an extended parameter space, a c-variable space, which may include
parameters of several potential experiments.

The first issue then is the choice of the group G. We often talk about a
symmetry group, but in fact rather weak symmetry requirements are needed:
I will demand that the sample space S is closed under the actions of the group
and that the parameter space Θ is closed, too. These actions are written:

y 7→ yg; g ∈ G, respectively θ 7→ θg; g ∈ G.

(The use of the same symbol for the transformations on both spaces will be
discussed later. For reasons that will be clear in Section 3.3, I will throughout
the book place the group symbol to the right of the object it acts upon.)

Then we essentially only need the property that for any group element
g ∈ G we should have that {yg, θg}may be considered to be an equally natural
basis for inference as the original data and parameters {y, θ}. Roughly, also,
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the symmetries expressed by the group should have some substantial basis in
the concrete problem described. The introduction of a group in this way has
for instance earlier been proposed by Fraser [84, 85].

These requirements may lead to several possible choices for G in concrete
cases. Berger [24], among others, consider this as an disanvantage, and pro-
poses to consistently use the least group which is transitive on the parameter
space. (The concept of a least group may be made precise by considering sub-
groups.) We will later encounter sensible groups that are not transitive on the
parameter space, however. My own general position is that we sometimes just
must live with the fact that we have a choice between several useful groups,
as we may have the choice between several good models or between sensible
loss functions.

A very simple transformation group may be the change of units for the
observations y: yg = by, for instance changing from meter to centimeter.
Another simple transformation group may be described as changes of origin:
yg = a+ y. Other transformation groups will be introduced shortly.

Turn first to the Bayesian approach. An important problem here is to
specify a prior distribution for the case where a priori has no information
about the parameter of the statistical model. The literature varies somewhat
with respect to what should be meant by a non-informative prior (see the
comprehensive review by Kass and Wasserman [129]). When this term is used
in situations with symmetry (in the simplest case location and/or scale sym-
metry), I claim that the non-informative prior may be taken to be the right
invariant measure on the transformation group, a measure that can be defined
in a natural way for most well-behaved groups. Definitions and arguments will
be given in Section 3.3.

I will argue from several points of view that when one has prior symmetry
information given by some fixed group, then this information should be made
explicit by also using other quantities connected to the group, not only the
invariant measure. This proposal is in conflict with the Bayesian view that all
prior information should be expressible as a measure.

Finally, I will discuss the concept of model reduction, and relate it to the
orbits of the group as acting upon the parameter space. This requires that we
first discuss the concept of orbits.

3.1.1 Orbits.

Recall from Definition 1.10.2 that an orbit in the parameter space Θ is defined
as any set of the form {θ0g}, where θ0 is some fixed point in Θ. The whole
parameter space is always divided into a disjoint set of orbits. If the space
consists of only one single orbit, we say that the group action is transitive. In
a similar way we define orbits of the group acting on the sample space.

The concept of orbit will be so central in the discussions of this book that
we already now give some simple examples:
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Fig. 3.1. Orbits on the earth.

Example 3.1.1. Let Θ be a finite dimensional vector space, and let G be
the group of rotations in this space: θg = Pgθ for orthogonal matrices Pg.
Then the orbits of G are the spheres with center 0, i.e., the sets of vectors
with fixed norm. The one point set {0} is one particular orbit.

Example 3.1.2. Let the parameter space Θ be a sphere like the surface of
the earth, and let the group elements be given by rotations around some fixed
axis. Then the orbits will be latitude circles relative to this axis.

Example 3.1.3. Let Θ be an p-dimensional vector space, and let the group
G be defined by θg = θ+ag for arbitrary p-vectors ag. Then the group will be
transitive, that is, there is one orbit, the whole space. A much more restricted
case is the following: Let θg = θ + bga for arbitrary scalars bg and a fixed
p-vector a. In this case the orbits are all lines parallel to a.

Example 3.1.4. Let X be the space of n× p matrices X, where n > p. Let
G be defined by rotations in both the column space and the row space here:
Xg = PgXQ

′
g, where Pg and Qg are orthogonal matrices. The orbits of this

group are most easily found by using the singular value decomposition: Each
X can be uniquely written as X = P0Λ

1
2Q′

0, where Λ = (Λ′0, 0
′)′, and Λ0 is a

diagonal matrix with the ordered eigenvalues of X ′X on the diagonal. Again
P0 and Q0 are orthogonal. This implies that Xg = PgP0Λ

1
2 (QgQ0)′, and

hence the orbits of G in X are characterized by the ordered set of eigenvalues
of X ′X.

Example 3.1.5. Let Θ be a large parameter space for some scalar observa-
tion, with the only prerequisite that the parameter space contains a location
parameter µ and a scale parameter σ in such a way that it is closed under
the scale and location transformations given by (µ, σ)g = (ag + bgµ, bgσ), and
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that the class of distributions indexed by θ shall contain the normal distri-
butions. This then corresponds to some large family of distributions of our
observations.

I will argue more in detail in Section 3.7 that any model reduction should
be to an orbit or to a set of orbits of the underlying group as acting upon the
parameter space. One obvious general argument should be clear already now:
Also after model reduction, it is natural to demand that the parameter space is
invariant under the group. Of course not all such reductions are sensible, they
must be checked by independent, complementary means, and in particular
they must be checked against observations, but these are the only candidates
that we will consider.

Here is then one obvious candidate for model reduction in the case of Ex-
ample 3.1.5: Look at the subclass of Θ giving the normal distributions with
some unspecified expectation µ and some unspcified standard deviation σ.
This subclass is closed under the scale and location transformaton, and is
easily seen to constitute an orbit for this group in Θ. This can be considered
to be an argument for the normal approximation. Of course there are other
location and scale families of distributions, and these will also constitute or-
bits under the group given here. But then there are other arguments for the
normal approximation in the literature, and taken together they seem quite
convincing. The particular argument given here, seems to be new.

Example 3.1.6. The same argument applies to just the location group given
by (µ, σ)g = (µ + ag, σ), where the set of normal distributions constitute a
set of orbits, one for each σ, and for the scale group (µ, σ)g = (bgµ, bgσ),
where the set of normal distributions again constitute a set of orbits, one for
each value of µ/σ. The same type of argument can also be generalized to the
multivariate case, then as an argument for a model reduction to a multivariate
normal distribution with an expectation vector µ and a covariance matrix Σ.
In fact, this is an important case; very much multivariate methodology has
been developed for the multinormal case, and the fact that this methodology
can be justified strictly after a proper model reduction, serves to give it an
extended validity. A similar argument will be used in Chapter 8.

In Examples 3.1.1, 3.1.2 and 3.1.3 and in all similar examples of groups
acting on some parameter space the orbits are characterized by a certain
parameter in the space, the orbit index τ . Technically, we must assume the
group to be proper, a term which is defined in Appendix A.2.1. Then the
orbits are closed sets in the topology of Θ, and the orbit index can be defined
as follows.

Definition 3.1.1. An orbit index is any subparameter τ such that the
orbits are given by a fixed value of τ .

In Example 3.1.1 the orbit index is given by the radius of the sphere. In
Example 3.1.2 the orbit index is simply the latitude. In the last part of Exam-
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ple 3.1.3 the orbit index may be taken to be an arbitrary vector perpendicular
to the fixed vector a.

The orbit index can alternatively be characterized as a maximal invariant :
τ is invariant under the actions of the group, and the maximal parameter with
this property.

For simplicity we repeat Definition 1.11.3 in this language.

Definition 3.1.2. A transitive group has only one orbit, and therefore
only a single, constant value for the orbit index.

In general there is an optimal (best equivariant; Bayes using right invariant
prior) estimator on each orbit. This is our main argument for always confining
model reduction to be to one or several orbits of the group. For details, see
Sections 3.5, 3.7 and 3.8 below.

One can also consider orbits in the sample space. The orbit index here is
often given by a variable a; see the next Section.

3.2 Group Actions and Statistical Models.

Summary: In this Section I introduce group actions on the parameter space
and on the sample space of a statistical model. This is illustrated by several
examples. The concept of of stabilizor is defined. It is proved that the distribu-
tion of the orbit index in the sample space only depends upon the orbit index
in the parameter space.

I will take as a point of departure the standard statistical situation. Hence,
let a statistical model be defined as a class of measures Qθ(dy) on a sample
space S, where the parameter θ lies in the parameter space Θ. Now introduce
a symmetry group G into this setting.

Let us start with the sample space S. A transformation group G is assumed
to act on this space by y 7→ yg; g ∈ G. Again recall the convention of placing
the group symbol g after the element to be transformed. Like other authors
in this field, e.g., Dawid, Stone and Zidek [52], I will not focus much on
topological and measurability questions, but some issues and references are
mentioned in Appendix A.2.1.

With a model as above, this also automatically induces a class of trans-
formations g on the parameter space. We can namely define θg by

Definition 3.2.1.
Qθg(A) = Qθ(Ag−1). (3.1)

In order that (3.1) shall determine uniquely the transformations θ 7→ θg,
we must require that the parameter of the model should be identifiable; see
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Definition 1.9.1. I will always assume this. One must also assume that the
class of measures defined by the righthand side of (3.1) define elements of
the original parametric model, in short that the parameter space Θ is closed
under actions g.

Since we in Section 2.2 defined the model in terms of a class of underlying
probability measures as Qθ(A) = P θ(y ∈ A), the definition (3.1) implies that

Qθg(A) = Qθ(Ag−1) = P θ(y ∈ Ag−1) = P θ(yg ∈ A).

I will explore consequences for statistical inference later, but already from this
we can say that estimators ought to have some invariance properties.

Equation (3.1) also implies what mathematicians call a homomorphism
between the two group actions: If g1 and g2 act on the sample space and one
then introduces similar actions on the parameter space by (3.1), the product
g1g2 is mapped by (3.1) in a consistent way. Or to be more precise, if we start
by using a different notation for the two group actons, these two group actions
behave in exactly the same way, so one might as well use the same notation.
That is:

Lemma 3.2.1. Given a transformation group G acting upon the sample
space S, introduce the actions g on the parameter space Θ by for each g ∈ G
and each θ defining a measure Qθg by Qθg(A) = Qθ(Ag−1). Then g1g2 =
g1g2. This forms the homomorphism property. As a consequence, the unity e
transforms as it should, and g−1 = g−1.

Proof:

Qθg1g2(A) = Qθg1(Ag−1
2 ) = Qθ(Ag−1

2 g−1
1 ) = Qθ(A(g1g2)−1).

The rest follows since the elements {g} with the product defined form a trans-
formation group on Θ.

On the background of these results, I choose in this book to use the same
symbols g,G for transformations on both spaces. Some authors like Berger
[24] choose to use different symbols, but my terminology is simpler, and it
is consistent with the one pure mathematicians use when discussing group
actions.

A pure mathematician will think of G as an abstract set of elements with
a multiplication table. As statisticians we are more interested in G as a trans-
formation group: It introduces an action θ 7→ θg on the parameter space, and
similarly on the sample space by y 7→ yg . For these transformation groups
the usual group properties are fairly obvious:

Lemma 3.2.2. For a transformation group the following is automatic:
An associative multiplication g1g2 is defined between all group elements by
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considering two transformations after each other, and there is a unit e ∈ G
and an inverse g−1.

In principle the statistical model implies comparatively few restrictions on
the choice of group: As discussed in Section 3.1 the essential mathematical
requirement is only that the full spaces S and Θ should remain invariant under
the transformations, and that (yg, θg) is a starting point as natural as (y, θ).
Later we will require that the loss function shall be invariant under the group
and that the right invariant measure of the group on Θ should be a natural
non-informative prior to use.

Nevertheless the choice of a transformation group may often be related to
the selected statistical model. Several authors, incuding Dawid [50] have used
group theory and group representation theory to characterize factorial models
and their associated hypothesis structure. Some other examples follow.

Example 3.2.1. Here is an example where the same model class in a very
natural way can be endowed with very different transformation groups accord-
ing to the situation: Many statistics textbooks make a point of the fact that
both regression and analysis of variance problems can be handled by similar
linear models of the form y = Xβ + e. Nevertheless, most applied researchers
feel strongly that there are essential differences between the two situations.
From our point of view the difference is clear: In the regression situation it
is natural to use the linear group β 7→ Aβ + a or some subgroup; in the case
where all y-variables are measured in different units, it may be relevant to go
to the subgroup defined by βj 7→ kjβj ; j = 1, ..., p for the regression compo-
nents; when the units are orthogonal, we will later make use of the subgroup
obtained by restricting the matrix A to be orthogonal. On the other hand,
in the analysis of variance situation the natural group is some permutation
group, the choice of group depending upon the randomization used. (We will
say more about this in Section 3.10 below.)

Example 3.2.2. Simple groups in any data situation with some scalar data
y are the translation group defined by yg = y + ag, the scale group yg = bgy,
where bg 6= 0, and the translation- and scale-group given by yg = bgy + ag.
One may also imagine extensions where ag and/or bg are given different values
for data from different sources. Another common group is the rotation group
in multivariate analysis.

Example 3.2.3. Note that the concrete actual appearance of the group
actions on the sample space and on the parameter space may be different.
Here is an example: Let the multivariate data (X, y) have rows which are
independent and identically distributed with x-covariance matrix Σxx, con-
ditional y-variance σ2 = V ar(yi|xi) and (x, y)-regression vector β. Let G
be defined by rotations in the x-space: (X, y) 7→ (XCg, y) for orthogonal
matrices Cg. Then the induced transformations in the parameter space are
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(Σxx, β, σ) 7→ (C ′gΣxxCg, C
′
gβ, σ), apparently something different from the

sample space group action.

Above I started with actions on the sample space. In other cases it is more
natural to define the group actions directly on the parameter space. Even
then any model must have the property that there also can be defined group
actions on the sample space, and this in such a way that (3.1) holds. In general
this does not lead to a unique action upon the sample space, but it is shown
in Proposition 3.11.2 below that if we regard the sample space as the space of
a complete sufficient statistic, then the sample space group action is indeed
uniquely determined from the group action on the parameter space.

Look again at the group of transformations acting on the sample space.
For a given point y0 ∈ S, let the orbit generated by this point be {y : y =
y0g for some g}. These orbits constitute equivalence classes in S; so we can
(under weak assumptions; see Appendix A.2.1) index the classes by some
random variable a: Different values of a corresponds to different orbits of the
group G in the sample space S. Alternatively, the random variable a can be
regarded as a maximal invariant in the sample space: It is invariant under the
actions of G, and any other invariant stochasic variable can be written as a
function of a.

Definition 3.2.1. If for every pair of points y1 and y2 there is not more
than one group element g which transforms y1 into y2, we say that the group
is free. This means that the group transforming a given element into itself is
trivial; in general this group is called the stabilizor. Stabilizors Sy for different
elements y may be transformed in a simple way into each other in the transitive
case: Sy2 = g−1Sy1g if y2 = y1g.

If the group is both transitive and free, then one can pick one arbitrary
basis point y0 and write every element y in a unique way as y = y0g. Thus
in this case there is a one-to-one correspondence between the group and the
sample space.

We have already defined orbits and maximally invariant for the group
acting upon the parameter space, and we may also, in a similar way, introduce
the concepts of free group and stabilizor for the actions on that space. Hence
on the parameter space also we can have either of four basically different
situations: Free or not free/ transitive or not transitive transformation group.
Since a statistical model usually implies a simplification of the data structure,
one might say roughly that the parameter space Θ typically is ‘smaller’ than
the sample space S. Hence, it is more common for the action of a group to be
transitive on the parameter space than on the sample space.

As already mentioned, under very weak assumptions, formulated in the
Appendix, the orbits of a group can be given an index a in such a way that
different orbits have different values of that index and conversely. Using (3.1)
it is straightforward to prove the following:
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Lemma 3.2.3. The distribution of the orbit index a in the sample space
depends only upon the parameter τ , the orbit index in the parameter space.
In particular, if the parameter group is transitive, then the orbit index a is
ancillary, i.e., has a distribution which is independent of any model parameter.

Proof.
It follows from the definition that a(yg) = a(y), since a is invariant under

the group G. Therefore

P θg(a(y) ∈ A) = P θ(a(yg) ∈ A) = P θ(a(y) ∈ A).

Thus this probability is invariant under the transformation θ 7→ θg, and must
be constant on orbits in the parameter space.

3.3 Invariant Measures on the Parameter Space.

Summary: In this Section I first introduce the right Haar measure and the left
Haar measure on the group itself. From this, the concept of relative invariant
measure on the parameter space is defined, with special cases the right invari-
ant measure and the left invariant measure. A list of arguments is given in
order to argue that the right invariant measure quite generally should be cho-
sen as the solution when an informative prior is needed in Bayesian analysis.
The construction of the right invariant prior is described in more detail.

An important issue is that the choice of a symmetry group in a statistical
setting also implies a natural choice of a non-informative prior distribution. In
certain cases it is obvious what this invariant prior will be. For example, for
the translation group given by θ 7→ θ+ a for a scalar parameter θ we get in a
natural way ν(dθ) = dθ, while the rotation group for a p-dimensional vector θ
has the natural rotation measure: Uniform distribution on the p-dimensional
unit sphere.

First we look at measures on the group itself. It is well known (Nachbin
[153]) that every locally compact group G possesses a socalled right invariant
Haar measure νG on this group, that is, a measure with the property that
νG(Dg) = νG(D) when g ∈ G and D is a set in the space of group elements,
where we define Dg = {hg : h ∈ D}.

The right Haar masure is unique except for a multiplicative constant; see
[153] or [116], ch. IV. When G is compact, νG can be taken to be a probability
measure.

There is also a dual left invariant Haar measure µG, i.e., a measure satisfy-
ing µG(gD) = µG(D), where gD = {gh : h ∈ D}. This left invariant measure
is equal to νG (except possibly for a multiplicative constant) for compact
groups, if the group is finite or countable or if the group is commutative. In
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general the connection between the two measures is µG(dg) ∝ ∆G(g)νG(dg)
for the socalled modulus or modular function ∆G, whose properties are dis-
cussed in Appendix A.2.2.

Now turn to measures on the parameter space. If G is a group of trans-
formations acting on this space, then our first recommendation concerning a
non-informative prior ν on Θ is that it should be relatively invariant, that is,
satisfy

ν(Γg) = δ(g)ν(Γ ) (3.2)

for some multiplier (multiplicative function) δ, where Γ is an arbitrary set in
the parameter space, and Γg = {θg : θ ∈ Γ}.

Definition 3.3.1. If the multiplier δ is identically equal to 1, so that
ν(Γg) = ν(Γ ), we say that the relatively invariant measure is a right invariant
prior on Θ.

The relatively invariant measure is only uniquely defined on orbits in the
parameter space, so it is only unique on the whole space when the group
action on Θ is transitive.

Existence of a relatively invariant measure ν can be shown to follow quite
generally. In fact the existence of a right invariant measure on the parameter
space follows under weak assumptions from the existence of the right Haar
measure on the group itself. In certain cases one may also define a left invariant
measure on the parameter space; see Appendix A.2.2.

For the following list of reasons, we will in this book recommend the right
invariant measure as a prior in all cases where a group action is defined on
the parameter space and a non-informative priors needed. Note that this non-
informative prior is only uniquely defined when the group action on the param-
eter space is transitive. Otherwise it must be accompanied by some measure
on the orbit index τ .

1. It is reasonable that the posterior measure at least should stay propor-
tional if corresponding transformations are made of the sample space and
the parameter space; we may let the constant of proportionality depend
upon the group element. Simple arguments show that this - together with
the invariance requirement on the model - implies that the prior must be
relatively invariant.

2. A relatively invariant measure on a group G acting on Θ may induce a
relatively invariant measure on Θ. This can always be done in the right
invariant case, otherwise it will only be possible if the stability group is
trivial (or if the modular function is identically 1) (cf. Theorem A1).

3. Recent results by Eaton and Sudderth [67, 68, 69, 70, 71] show that under
very general conditions all other invariant inferences than those based
upon right invariant priors are strongly inconsistent in a well-defined sense.

4. Under invariant quadratic loss, the optimal equivariant estimator is the
Bayes estimator with a right invariant prior (Corollary 3.5.5).



84 3 STATISTICAL INFERENCE UNDER SYMMETRY.

5. In the transitive case, confidence intervals equal credibility intervals cor-
responding to right invariant prior (Section 3.6).

6. It is shown in [70] that the use of right invariant measure yields the same
invariant predictive distribution as certain other methods under specific
assumptions.

7. With a fixed group, and when inference is restricted to permissible pa-
rameters (see the next Section), the marginalization paradoxes of Dawid
et al. [52] are avoided (see Helland [109]) when the right invariant prior is
used.

8. Posterior distributions of invariant joint functions of parameters and data
will under certain conditions have the ‘correct’ sampling distribution (see
references in [49]). For example, for independent identically normal (µ, σ2)
data under the translation- and scale- group, when the right invariant prior
(density ∝ σ−1) is used, the posterior distribution of the t-statistics will
be a Student’s distribution with n−1 degrees of freedom, but not so under
the left invariant prior.

9. When normalized priors converge to a right invariant measure, then the
posteriors also converge as they should under weak assumptions [188].

10. This choice of prior leads to a close link to Fraser’s structural inference
[52].

11. There are links to other non-informative priors (Kass and Wasserman
[129]),

As a balance against all these arguments, it should also be mentioned that
there exist cases, admittedly rather extreme (non-amenable groups; see [32])
where a right invariant prior may lead to an uniformly inadmissible estimator
[68].

I will consider this as overweighted by the long list of arguments for the
right invariant prior.

The Bayes estimators that are obtained using a right invariant measure as
prior, will also have several other good properties, and could equally well have
been arrived at by using these properties. When the loss function is quadratic
and invariant under the group and the group action is transitive on the pa-
rameter space (see Subsection 3.1.1), the estimators will be best equivariant
(see Section 3.4) under the group in question, and they will typically be min-
imax, that is, they minimize the maximum over θ of reasonable risk functions
R(θ). (Recall from equation (2.36) that the risk function is the expectation of
loss function under the model.)

The connection between νG on G and ν on Θ is relatively simple: If for
some fixed parameter value θ0 the function β is defined by β(g) = θ0g, then
ν(E) = νG(β−1(E)), where νG is the right Haar measure on the group. This
connection between ν and νG can also be written

νG(dg) = ν(d(θ0g)). (3.3)
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The measure νG can often be calculated using a suitable Jacobi-determinant.
When Θ is non-compact, which usually is the case, ν will be an improper
prior.

I have already sketched the right invariant measure for some simple groups.
Some other relatively simple cases are: For the scale group on a scale parameter
σ 7→ bgσ the invariant measure is ν(dσ) = dσ/σ, while for the combined
translation- and scale-group (µ, σ) 7→ (bgµ+ag, bgσ) it is ν(dµ, dσ) = dµdσ/σ
(see, for instance Berger [24]).

In other cases the construction of ν is not so simple. The following gen-
eral rule [24] is useful: Assume that the transformation group G on the p-
dimensional parameter space Θ can be considered as a subset of Rp with
positive Lebesgue measure. If Jg(h) is the Jacobi-determinant for the trans-
formation of G given by h 7→ hg, and if e is the unit element of the group G,
then νG(dg) will be a measure with density

f(g) =
1

Jg(e)
.

3.4 Subparameters, Inference and Orbits.

Summary: In this Section the concept of a permissible subparameter is defined:
A subparameter such that the group actions can be transfered to it from the
action upon the original parameter. First it is shown, among other things by
considering a Bayesian reduction principle, that this is a fruitful concept. Next,
several special cases are described. It is proved that every subparameter may
be made permissible by going to a subgroup. Also the concept of an equivariant
estimator is defined, and several uses of group symmetry in statistical inference
are sketched.

Quite often in a statistical analysis, a subparameter, that is, some function
of θ, is needed.

Definition 3.4.1. Inference should preferably be limited to parametric
functions that are permissible sub-parameters under the group G, that is,
the parametric function η(·) should be such that η(θ1) = η(θ2) implies
η(θ1g) = η(θ2g) for all g ∈ G.

This requirement then allows G to act as a transformation group on the
range of η(·), since there is a unique way of defining ηg by

(ηg)(θ) = η(θg). (3.4)

This is an essential property: Group transformations are transferred in a nat-
ural way from the original parameter to a subparameter. The relationship
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between McCullagh’s general category theory based requirement on statisti-
cal models and that of permissibility of subparameters is discussed on p.1241
of [151].

But the assumption of permissibility also turns out to have other desirable
implications. First, this assumption implies under transitivity that credibil-
ity sets and confidence sets are equal with the same associated probability/
confidence level; see Theorem 3.6.1 below.

The assumption of permissibility, together with the use of a right invari-
ant prior, also turns out to be enough to essentially eliminate the marginal-
ization paradoxes of Dawid et al. [52], and also some similar inconsistencies;
cp. Helland [108, 109]. These paradoxes were criticized by Jayes in a series
of arguments which later appeared in the book [126]. The critique has been
countered in [53]. Here I will not go into the details of this discussion, only
demonstrate a point where the concept of permissability can be used to give
a cruial, constructive argument.

The main problem in [52] is a violation of the plausible:

Reduction principle.
Assume that a general method of inference, applied to data (y, z), leads

to an answer that in fact depends on z alone. Then the same answer should
appear if the same method is applied to z alone.

A Bayesian implementation of this principle runs as follows: Assume first
that the probability density p(y, z|η, ζ) depends on the parameter θ = (η, ζ)
in such a way that the marginal density p(z|ζ) only depends upon ζ. Then
the following implication should hold:

Bayesian reduction principle.
If (a) the marginal posterior density π(ζ|y, z) depends on the data (y, z)

only through z,
then (b) this π(ζ|z) should be propotional to a(ζ)p(z|ζ) for some function

a(ζ), so that it is proportional to a posterior found only from the z data.

For a proper prior π(η, ζ) this can be shown to hold with a(ζ) being the
appropriate marginal prior density π(ζ). Dawid, Stone and Zidek [52] gave
several examples where the implication above is violated by improper priors
of the kind that we sometimes expect to have in objective Bayes inference.

For our purpose, the interesting case is when there is a transformation
group G defined on the parameter space. Under the assumption that ζ is
maximal invariant under G and making some regularity conditions, it is first
shown in [52] that it necessarily follows that p(z|η, ζ) only depends upon ζ,
next (a) is shown to hold always, and finally (b) holds if and only if the prior
is of the form νG(dη)dζ, where νG is the right invariant measure, and the
measure dζ is arbitrary. Thus for this situation with such a prior not only
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does the Bayesian reduction principle hold; we also have that the premises of
the principle are automatically satisfied.

The strong assumption made above was that ζ is maximal invariant. In
a second class of examples, it is shown in [52] that this assumption cannot
be violated arbitrarily. In [109] the following result was shown, indicating
that it is essentially enough to make the much weaker assumption that ζ is a
permissible subparameter.

Thorem 3.4.1
Assume that ζ is permissible, and let K be the subgroup of G given by K =

{g : ζ(θg) = ζ(θ) for all θ}, Then ζ is maximal invariant under K. Assume
also that z is maximal invariant under the corresponding group acting on the
sample space. Then using the right invariant prior under G on the sample
space Θ, we have that any data (y, z) leads to a posterior of ζ proportional to
the one obtained from only data z.

Since the marginalization paradox is not mentioned later in this book, I
will not go further into the arguments, but continue with the discussion on
permissibility, a concept which will be crucial at some points later.

In fact, on all this background it is of interest to characterize the permis-
sible subparameters.

Proposition 3.4.1 The subparameter η is permissible iff the level sets of
the function η = η(θ) are transformed onto other level sets by elements of the
group G. Some cases of interest are:

a) The full parameter θ is always permissible.
b) Any invariant function (η(θg) = η(θ) for all g, θ) is permissible. For

such functions, the action of G on η is trivial.
c) If η is permissible with range E and if γ is a one-to-one map from E

onto a space F , then ζ given by ζ(θ) = γ(η(θ)) is permissible.
d) If η1(θ), . . . , ηk(θ) are k permissible functions, then the vector parameter

ψ(θ) = (η1(θ), . . . , ηk(θ)) is permissible, and vice versa.
e) Under the location group (µ 7→ µ + a, σ 7→ σ) in a location and scale

family θ = (µ, σ), a one-dimensional parameter η = η(µ, σ) is permissible iff
it is either a 1-1 function of σ or if it is of the form η = ψ(µ+φ(σ)), where ψ
is a 1-1 function and φ is an arbitrary function. In particular, the parameters
µ, σ and µ+ kσ are permissible.

f) Under the location and scale group (µ 7→ bµ+ a, σ 7→ bσ) in a location
and scale family θ = (µ, σ), a one-dimensional parameter η = η(µ, σ) is per-
missible iff it is of the form η = ζ(k1µ + k2σ) for some 1-1 function ζ. In
particular, the parameters µ, σ and µ+ kσ are permissible.

g) Assume that y is multivariate normal with expectation vector Kβ for
some fixed matrix K and with a covariance matrix Σ depending upon a set
of parameters. Consider the translation group G given by y 7→ y + Kc, so
that the corresponding parametric group is given by β 7→ β + c,Σ 7→ Σ. Then
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every set of linear combinations of the form η = Cβ, where C is some fixed
matrix, will be permissible. Since any function of the parameters in Σ will
be invariant, it will also be permissible. This is the group associated with the
restricted maximum likelihood estimator; see Section 3.9.

h) Assume that some parameter η is permissible under some group G. Let
E be a set in the range of η. Then the indicator parameter χE(η), which is 1
iff η ∈ E, otherwise 0. is permissible iff E is equal to some union of orbits of
the group G as action on η.

The simplest case of point h) is when the parameter η is invariant. Then
the condition holds for any (masurable) E. Otherwise it will be difficult to
meet the condition in general. This explains to a certain extent why group
theoretical aspects of hypothesis testing is mainly of interest for invariant
parameters, while the corresponding estimation theory is of interest for the
larger class of permissible parameters.

If some given subparameter should not be permissible, one can always
solve this in principle by going to a subgroup. In fact, one can easily show
that there is a maximal subgroup of G with respect to which the subparameter
is permissible. If this is a genuine subgroup, it cannot be transitive on Θ.

Lemma 3.4.1 Given a subparameter η there is always a maximal subgroup
G0 of G such that η is permissible with respect to G0.

Proof.
Let G0 be the set of all g ∈ G such that for all θ1, θ2 ∈ Θ we have that

η(θ1) = η(θ2) if and only if η(θ1g) = η(θ2g). Then G0 contains the identity.
Furthermore, using the definition with θ1, θ2 replaced by θ1g1, θ2g1, it follows
that g1g2 ∈ G0 when g1 ∈ G0 and g2 ∈ G0. Using the definition with θ1, θ2
replaced by θ1g

−1, θ2g
−1, it is clear that it contains inverses. Hence G0 is a

group. It follows from the construction that it is maximal.

A standard concept in the statistical literature involving group invariance
is the concept of equivariant estimator (see [141]), a concept which can be
closely linked to that of a permissible parameter. Roughly speaking an esti-
mator is equivariant if it transforms under the group in the same way as the
parameter to be estimated; more precisely:

Definition 3.4.2 Let η(·) be a permissible parameter as defined above, so
that a group of transformations G is defined on η by (ηg)(θ) = η(θg). An
estimator η̂ is then called equivariant if η̂(yg) = (η̂g)(y) for all g, y.

For more information on equivariant estimators, see [33, 199].
The best equivariant estimator, which will be discussed in some detail

below, will in general depend upon the group used (see examples given in
[141] and in [24]). Thus again the choice of group is crucial. In fact, for a
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group which is transitive on the parameter space, and for a quadratic loss
function, the assumptions above imply that the formal Bayes estimator under
right invariant prior is also the best equivariant estimator. (See Corollary 3.5.5
below.)

Another use of a specified group in at least some statistical inference prob-
lems (see also [85]) is: One will usually condition the statistical analysis upon
the orbits in the sample space S; at least if the orbit index has a distribu-
tion which is independent of the parameter (which it will when the parameter
group is transitive). Hence a different choice of group may often mean differ-
ent conditioning. It is a well known problem in statistics that the ancillary
(see Section 2.13) to condition upon may be non-unique. Specification of a
group leads to a unique orbit index in the case where the parameter group is
transitive.

The situation with a transitive transformation group on the parameter
space is a very common one, since, because one purpose of a statistical model
is to condense information, the parameter space usually is ‘less’ than the
sample space. A typical example is the case where the distribution of a set
of observations y1, ..., yn depend upon a location parameter µ and a scale
parameter σ. Then it is natural to look at the translation- and scale-group
yi 7→ a + byi with the corresponding parameter group given by µ 7→ a + bµ,
σ 7→ bσ. It is easy to see that the last transformation group is transitive, while
the group in the sample space has orbits indexed by the so called configuration,
for instance given by

a = {yi+1 − yi

y2 − y1
; i = 2, ..., n− 1}.

It is often claimed that all inference should be conditional, given such
ancillary variables (this is related to the conditionality principle; see Section
2.13 again), and in particular that the uncertainty shall be given as conditional
given a. If the observations are normally distributed, it follows from a well
known theorem by Basu [141] that the mean y and the standard deviation
s are independent of a, so it doesn’t matter for the inference about (µ, σ)
whether or not we condition with respect to a.

Here is one more statistical use of a given group, complementary to the
one given above: The orbit index (a) in the sample space will be a maximal
invariant under the group. Furthermore, the distribution of a only depends
upon the maximal invariant (τ) in the parameter space. Useful inference on τ
can therefore be performed using the marginal distribution of a, for instance
computing maximum likelihood estimates from this distribution, not from
the full sample distribution. The well known restricted maximum likelihood
method for estimating variance components in mixed models can - as pointed
out by McCullagh [150] - be seen in this perspective; see also Section 3.9
below.
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3.5 Estimation under Symmetry.

Summary: From a theoretical point of view this is a central Section. Recall that
in statistical inference the risk function is the expectation of the chosen loss
function. A group G is assumed to act on the parameter space. First, in Theo-
rem 3.5.2 a general identity is proved on a generalization of the risk function.
Then, in Subsection 3.5.2 various consequences are found for the risk func-
tion itself; in particular, in Corollary 3.5.4 conditions are given to ensure that
the risk function is an overall constant. Finally, in Corollary 3.5.5 invariant
quadratic loss is assumed, and under this condition and a condition on tran-
sitivity it is proved that the best equivariant estimator (Pitman estimator) is
equal to the Bayesian estimator under right invariant prior.

It is well known that under quite general conditions [24, 141] risk functions
are constant functions of the parameters for loss functions which are invariant
under some given group; in particular this holds for natural loss functions
involving equivariant estimators. This is the starting point for several strong
results in the literature. I have been interested in finding (i) results in this
direction that are constructive in the sense that explicit expressions can be
given for the best equivariant estimators and (ii) the most general result of this
kind. Partial results have among others been given in [84, 186, 122, 31, 24, 128],
but both our aims seem first to be achieved by the results by Eaton [66] and
Eaton and Sudderth [71]; similar results to these will be given below.

3.5.1 The Main Result.

As before, let the sample space be S, the parameter space Θ and the model
a family of probability measures {Qθ} on S. In addition we need an action
space - to be thought here of as the space of values of a class of estimators.
Again we will disregard measurability questions.

The group G of transformations is acting upon S, and also induces a
group of transformations on Θ by (3.1). In this section we also assume that
the measures Qθ are dominated by, that is, has a density with respect to, a
fixed measure λ on S, which we will assume is right invariant. It is shown in
Eaton [66], p. 75 that the right invariant choice here is the only one which
implies that the measure behaves with respect to orbits as it should.

We then also assume that the densities

qθ(y) =
dQθ

dλ
(y)

satisfy
qθg(yg) = qθ(y) (3.5)

for all y, θ, g. From this property it is an easy exercise, using the fact that λ
is right invariant to show that (3.1) holds, as desired.
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Let us focus upon a subparameter η = η(θ). Let the loss function L(η̂, θ)
denote the loss we experience when we estimate the parameter by η̂, given
that the full parameter is θ, so that in particular the real value of η is η(θ).
Usually, the loss function is positive and is convex as a function of η̂, with a
minimum for η̂ = η(θ).

Definition 3.5.1 The loss function is said to be invariant under G if
L(η̂g, θg) = L(η̂, θ) for all g ∈ G.

This is a very desirable property when G is associated with the statistical
model.

Recall from Definition 2.6.3 that the risk function, a function of the pa-
rameter, is the expected loss under the model: R(θ) = Eθ(L(η̂(y), θ)).

In this and in the next section we will assume that the loss function is
invariant under the group G. As a technical requirement we will also assume
that the group action G is proper (for a definition see Appendix A.2.1; when
we in the following talk about a proper group G, we will mean that the group
actions both on S and on Θ are proper.).

Recall that λ was the right invariant measure on S with respect to which
the densities of Qθ were evaluated. Now fix a point y ∈ S. Then the measure
on G introduced by νG(dg) = λ(d(yg)) is right invariant. This corresponding
left invariant measure µG(dg) = ∆G(g)νG(dg) is used in the following basic
result.

Theorem 3.5.2. Let η̂(·) be an equivariant estimator. We make the as-
sumptions above on G, L and on the model. Then for a fixed y on some orbit
Oy in S we have∫

Oy

L(η̂(z), θ)Qθ(dz) =
∫

G

L(η̂(y), θg)qθg(y)µG(dg) (3.6)

Proof.

∫
Oy
L(η̂(z), θ)qθ(z)λ(dz)

=
∫

G
L(η̂(yg), θ)qθ(yg)λ(d(yg))

=
∫

G
L(η̂(y), θg−1)qθg−1

(y)νG(dg)

=
∫

G
L(η̂(y), θh)qθh(y)νG(dh−1)

=
∫

G
L(η̂(y), θh)qθh(y)∆G(h)νG(dh),

where we have used (3.5) and in the last line (A.22).
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3.5.2 Consequences.

First look at the simple situation where G is transitive both on the sample
space and on the parameter space. Then the left-hand side of equation (3.6)
gives the risk function, and the right-hand side is constant in θ, since one for
fixed h gets the following when replacing θ by θh there:∫

G

L(η̂(y), θhg)qθhg(y)µG(dg) =
∫

G

L(η̂(y), θg)qθg(y)µG(h−1dg)

=
∫

G

L(η̂(y), θg)qθg(y)µG(dg). (3.7)

But one can say more than this. In general the left-hand side of (3.6)
depends only on the orbit in S; hence both sides can be regarded as a function
of the orbit index a in S. In particular, the right-hand side is independent of
the choice of y = ya on the orbit given by a. Summing over orbits, the left-
hand side of (3.6) becomes the risk, so:

Corollary 3.5.3. Assume that the group G is proper and that the loss
function L is invariant under G. Then there are positive constants ca for each
orbit Oa in the sample space such that the risk function is

R(θ) =
∑

a

ca

∫
G

L(η̂(ya), θg)qθg(ya)µG(dg) (3.8)

for one fixed left invariant measure µG, where each ya is an arbitrarily chosen
point on the orbit Oa. If there is a continuum of orbits, the sum is replaced
by an integral.

Proof.
Sum both sides of (3.6). On the right-hand side of that equation, the left

invariant measure µG depends on the orbit in S. But since all right invariant
measures on G are proportional, the result follows.

Corollary 3.5.4. Assume that the group G is proper and that the loss
function L is invariant under G. Then the risk fuction is constant on orbits
in Θ. In particular, if the group action on Θ is transitive, then R = R(θ) is
an overall constant.

Proof.
Use (3.8) and the argument in (3.7).

One strong point of the equation (3.6) is that the right-hand side can
be used to find the best equivariant estimator explicitly, as demonstrated
in several of the references mentioned above. In [122] the last integral was
interpreted as an expectation with respect to a ‘fiducial’ distribution, but also
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under certain conditions as an integral with respect to a posterior distribution.
If L is a quadratic loss function, it is easy to see from (3.6) that the best
equivariant estimator (Pitman estimator) can be interpreted formally as the
Bayes estimator under an invariant (right invariant) prior.

Corollary 3.5.5. Let L(η̂(y), θ) = B(y)‖η̂(y) − η(θ)‖2, and assume that
this loss function is invariant under G, a proper group. Let the group trans-
formation on the parameter space be transitive with right invariant measure
ν. Then the best equivariant estimator for η is given by

η̂(y) =
∫
η(θ)

qθ(y)
q(y)

ν(dθ), (3.9)

with q(y) =
∫
qθ(y)ν(dθ).

Proof.
First fix y ∈ S. Then this y will belong to some orbit Oa. Using the fact

that the right-hand side of (3.6) is independent of the choice of y in Oa, we
expand this right-hand side to form a perfect square, and find

B(y) ‖ η̂(y)−
∫

G
η(θg)qθg(y)µG(dg)∫
G
qθg(y)µG(dg)

‖2
∫

G

qθg(y)µG(dg) + const(y). (3.10)

This gives an optimal choice for η̂(y) for y in each orbit in S, a choice which
has the same form for all orbits of the sample space. But then this choice
also must be optimal with respect to the sum over orbits of the left-hand side
of (3.6), i.e., with respect to the risk function. For the case where the group
action is transitive on the parameter space Θ, the optimal choice of η̂(y) will
be as in (3.9).

Note that the measure ν on the parameter space defined by η(θ)ν(dθ) =
η(θg)µG(dg) will be a right invariant measure:

η(θh)ν(dθh) = η(θhg)µG(dg) = η(θk)µG(h−1dk) = η(θ)ν(dθ).

Note that the density integrated over in (3.9) is just the posterior density
ν(θ|y) of equation (2.34) in Chapter 2. Hence the best equivariant estimator
under quadratic loss when the group is transitive on the parameter space
is just the Bayes estimator obtained by using the right invariant measure
as a prior. This estimator is often called the Pitman estimator. I will use
Corollary 3.5.5 in an essential way in Section 3.8 below (see also Chapter 8)
when discussing improved prediction from multivariate data under rotation.
Several similar examples can be imagined. Here I start with a completely
different example.
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Example 3.5.1. In the examples 2.3.2, 2.3.6 and 2.6.2 we gave different
methods for estimating the parameters α and β in the model with uniform
distribution for each of the n independent observations y1, . . . , yn, i.e., such
that each yi has a constant density 1/(β − α) in the interval α < yi < β.
In this example we give another Bayes estimator corresponding to a natural
symmetry group associated with the model.

Look upon δ = β−α as a scale parameter and µ = (α+β)/2 as a location
parameter. The right invariant measure corresponding to the location- and
scale group is δ−1dδdµ. Let m = mini(yi) and M = maxi(yi). Then we must
have the necessary and sufficient inequalities δ > M−m, furthermore µ+δ/2 >
M and µ−δ/2 < m, which implies M−δ/2 < µ < m+δ/2. The joint posterior
density in the range given by these inequalities is:

ν(δ, µ|y) =
δ−n∫∞

δ=M−m

∫ m+ 1
2 δ

µ=M− 1
2 δ
δ−n−1dδdµ

=
n(n− 1)(M −m)n−1

δn
.

By integrating this, we find that the marginal posterior for δ is

ν(δ|y) =
n(n− 1)(M −m)n−1(δ − (M −m))

δn
,

and the Bayes estimator, the expectation under this density, is:

δ̂ =
n

n− 2
(M −m).

The marginal posterior density for µ is symmetrical around (m + M)/2, so
µ̂ = (m+M)/2. This gives

α̂ = µ̂− 1
2
δ̂ = min

i
(yi)−

1
n− 2

(max
i

(yi)−min
i

(yi)), (3.11)

β̂ = µ̂+
1
2
δ̂ = max

i
(yi) +

1
n− 2

(max
i

(yi)−min
i

(yi)), (3.12)

thus only slightly different results from what we fund in Example 2.6.2. But
note that the estimators (3.11, 3.12) have an optimality property also for finite
n: They are derived from the best equivariant estimators (under quadratic
loss) under the location- and scale- group.

For completeness it should be mentioned that the unbiased estimators of
this type are slightly different again, namely

α̂ = min
i

(yi)−
1

n− 1
(max

i
(yi)−min

i
(yi)),

β̂ = max
i

(yi) +
1

n− 1
(max

i
(yi)−min

i
(yi)).

(The distribution of M is found from P (M ≤ z) =
∏

i P (yi ≤ z). It is easiest
to start with the case α = 0, β = 1.)
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It is very interesting to note that, when G is not transitive on Θ, (3.10)
implies an estimator corresponding to each orbit there. Minimizing the ex-
pression (3.10) leads to a unique estimator corresponding to each orbit in the
parameter space:

η̂τ (y) =

∫
G
η(θg)qθg(y)µG(dg)∫
G
qθg(y)µG(dg)

(3.13)

Theorem 3.5.6. For each orbit τ in the parameter space, the estima-
tor (3.13) is equivariant and minimizes the risk R(θ) corresponding to the
quadratic loss function in Corollary 3.5.5 for θ belonging to the orbit τ .

The proof of Theorem 3.5.6 is deferred to Appendix A.2.4.
Theorem 3.5.6 will later become our main argument for the model reduc-

tion policy of only allowing model reductions to an orbit or to a set of orbits
on the parameter space. Further reductions can never lead to an improvement
of the data analysis: We already have an optimal estimator on orbits; see
sections 3.7 and 3.8 below.

3.6 Credibility Sets and Confidence Sets.

Summary: In this Section I prove the following: If the group is transitive both
on the parameter space and on the sample space, then confidence intervals and
credibility intervals with the same coefficient are numerically equal.

Essentially as in [24] and in other books on Bayesian statistics, define
a 100(1 − α)% credibility set as a set C(y) in the parameter space whose
posterior probability given data y is 1 − α. We will concentrate on the non-
informative right invariant prior ν, so that the posterior is (qθ(y)/q(y)) ·ν(dθ),
where q(y) =

∫
qθ(y)ν(dθ).

Definition 3.6.1. The credibility set is defined by∫
C(y)

qθ(y)
q(y)

ν(dθ) = 1− α. (3.14)

A confidence set C(y) is also a set in the parameter space, depending
upon data y, but the probability interpretation is completely different: Qθ(θ ∈
C(y)) = 1 − α, where the probability is over the distribution of y. The link
between the two concepts, however, is easily found from Theorem 3.5.2, using
L(y, θ) = 1− I(θ ∈ C(y)).

Theorem 3.6.1. Let G be proper and acting transitively both on S and
on Θ. Assume that the collection of sets {C(y)} satisfies the transformation
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law C(yg) = (Cg)(y) for all y and g. Then each C(y) is a credibility set if
and only if it is a confidence set, and the two probabilities associated with the
sets are the same.

In fact, Theorem 3.5.2 gives a stronger statement: The corresponding con-
ditional probabilities, conditioned upon the orbits in S, are equal. We will still
assume that the group acts transitively on the parameter space, and we will
take a right invariant prior on that space.

Corollary 3.6.2. Let η(θ) be a one-dimensional continuous permissible
parametric function, and let η̂1(y) and η̂2(y) be two equivariant estimators
under a group G which is proper and transiteve on the parameter space. Define
C(y) = {θ : η̂1(y) ≤ η(θ) ≤ η̂2(y)}. Then C(y) is a credibility set and a
confidence set with the same associated probability/ confidence level.

Proof.
Since the mapping g defined by η(θg) = (ηg)(θ) is a continuous 1-1 map-

ping from a one-dimensional connected set onto another onedimensional set, it
must preserve or reverse ordering. Without loss of generality, extend the defi-
nition of C(y) to {θ : η̂1(y) ≤ η(θ) ≤ η̂2(y)}∪{θ : η̂2(y) ≤ η(θ) ≤ η̂1(y)}. One
of these components must be empty. So (Cg)(y) = {θ : η̂1(y) ≤ η(θg−1) ≤
η̂2(y)} ∪ {· · ·} = {θ : (η̂1g)(y) ≤ η(θ) ≤ (η̂2g)(y)} ∪ {· · ·} = C(yg). Hence the
result follows from Theorem 3.6.1.

A simple example is the following: Let y1, . . . , yn be independent and iden-
tically distributed normally distributed observations with sample mean ȳ and
sample standard deviation s. Let k be chosen so that the confidence statement
ȳ − ks ≤ µ ≤ ȳ + ks has confidence coefficient 1 − α. Then the interval can
also be given a definite probability interpretation: 1 − α is also equal to the
posterior probability of the interval when the prior is right invariant measure
under the translation- and scale-group. Note that the action of G is transitive
here. Similar examples can be found in a lot of cases where a non-informative
prior is used in Bayesian analysis; see for instance [169].

The results of this section also have immediate consequences for confidence
distributions, an area which has been discussed recently by Schweder and Hjort
[175] as a frequentist alternative to Bayes posteriors. Briefly, if [η ≤ ηβ(y)]
is a one-sided confidence set for the parameter η with confidence coefficient
β, and this is calculated for all β, the functional relation F (ηβ(y)) = β is
equivalent to some F (η0) = β0(y), which can be looked upon formally as
giving a ‘distribution’ of η for fixed data, the confidence distribution of the
parameter. A question of interest is when this is equal to a Bayesian posterior
for some prior. The following immediate consequence of Corollary 3.6.2 gives
a partial answer:
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Corollary 3.6.3. Assume that the statistical model is invariant under a
group G, and that η is a one-dimensional continuous permissible parametric
function of the model parameter θ. Assume that the group G is transitive on
the parameter space. Then for fixed orbit index (ancillary) a under G the
confidence distribution for η will be equal to the posterior distribution under
right invariant prior.

Using Theorem 3.5.2 it is possible to generalize this result to the multipa-
rameter case.

3.7 Examples. Orbits and Model Reduction.

Summary: The general model reduction philosophy: Model reduction should
always be to a set of orbits of the relevant group acting on the parameter
space, is formulated and illustrated by examples.

I will not attempt any general theory of model reduction here, but the
following remark seems rather obvious from the preceeding discussion: For
each orbit of the group acting upon the parameter space, the Pitman estimator
of Theorem 3.5.6 gives a good solution of any estimation problem within each
orbit. Hence, if the purpose of a model reduction should be to be able to
obtain more precise estimates from the model, there seems to be little reason
to reduce the model further within orbits. In this book I will largely stick to
the following

Model reduction policy. When a group G is associated with a statistical
model, every model reduction should be to an orbit or to a set of orbits of G
as acting upon the parameter space Θ.

Such a model reduction may first be thought of as a direct restriction of
the space Θ, but from our point of view it is better to look upon it, at least
partly, as going from the space Θ to a new space Λ through a specific function
λ(θ).

Definition 3.7.1. Let T be the original set of orbits of Θ. For each orbit τ
in T , pick a fixed point θτ , and let the points of that orbit have a representation
θ = θτgθ. (If the stability group of θτ is trivial, then the choice of {gθ} is
unique; otherwise it must be selected.)

Let T1 be a set of orbits on which we want to reduce the model. Then the
reducing function λ can be defined as follows: First define a function ζ from
T onto T1, and then let λ(θ) = θζ(τ)gθ.

One point of the above construction is that the function λ will be permis-
sible, which can be verified directly. This will also ensure that the reduced
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parameter space is invariant under the group, which we from the beginning
of this Chapter have held up as an essential requirement for any model. Thus
our model reduction policy ensures these basic requirements, which may be
considered an argument for the policy. Further arguments are given by the ex-
amples below. It must be emphasized, though, that not every thinkable model
reduction satisfying this policy is reasonable. Further arguments in the form
of an improved prediction error or in terms of providing a value for parameters
in situations were parameters did not have a value before, must be sought.

Model reduction is thought of in applied statistics as a means to perform
approximate inference. But, as also discussed in Section 2.15, in certain cases
parts of the parameter do not have a value relative to the experiment. Then
the model reduction may lead to an exactly true model. This is the situation
we will meet in our approach to quantum mechanics.

In modern applied statistics, on the other hand, a common attitude seems
to be that all models are approximations (see [37]), and that model reduction
is seen as a bias versus variance issue.

These two situations seem different, but as discussed in Section 2.15 by
pointing at the collinearity issue in multiple regression, they must also be
considered to be related.

Some examples which give additional support to the model reduction pol-
icy above, are:

Example 3.7.1. Look at two independent samples, x1, ..., xm, which are
independently normal (µ1, σ

2
1) and y1, ..., yn, which are independently normal

(µ2, σ
2
2). Use the translation- and scale-group given by µ1 7→ a1 + bµ1, σ1 7→

bσ1, µ2 7→ a2 + bµ2, σ2 7→ bσ2. (A common b must be used in order that
µ1 − µ2 shall be permissible; or more directly: It is meaningless to test an
hypothesis µ1 = µ2 if the two samples are transformed into different units.)

Then the orbits of the group in the parameter space are given by σ1/σ2 =
constant. A very common model reduction is given by σ1 = σ2.

Example 3.7.2. Consider a two way analysis of variance with expectations
µ+αi +βj +γij , and a group generated by all permutations of the index i and
by all permutations of the index j. Then an obvious reduced model is given
by the orbit where the expectation is µ+ αi + βj .

Example 3.7.3. In a multiple regression it is not uncommon that all ex-
planatory variables xj are measured in different units. Then a natural group
in the sample space (permitting inclusion of the x-variables in this space) is
given by separate scale changes xj 7→ kjxj (j = 1, 2, ...). This induces a simi-
lar group on the regression parameters, namely βj 7→ k−1

j βj , and all orbits in
the parameter space are given by putting some of the βj ’s equal to 0. These
reduced models are well-known from many applications of regression analysis,
and criteria like Cp or AIC are are used to discriminate between them.
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Example 3.7.4. Assume that you for some sample of independent, identi-
cally distributed observations start by modelling it using an model depending
upon many parameters. Let the usual translation- and scale-group act on this
large parameter space. Then one orbit is given by the N(µ, σ2) distribution,
a not uncommon model reduction.

Example 3.7.5. Consider the rotation group for a multivariate data set.
This induces the transformations Σ 7→ C ′ΣC for the covariance matrix Σ,
where C is some orthogonal matrix. This is an extremely non-transitive group
with orbits equal to every set of eigenvalues ofΣ, counting multiple eigenvalues
with their multiplicity. It is difficult to imagine a situation where it is of
interest to take a single orbit as a reduced model, but sets of orbits can
make interesting reduced models, say those where the number of different
eigenvalues is some fixed number, or those where the 5 smallest eigenvalues
are equal.

3.8 Model Reduction for Subparameter Estimation and
Prediction.

Summary: The model reduction philosophy of the previous Section is discussed
for the case of a subparameter and illustrated for a particularly important case:
That of rotationally invariance among the regressors in a random x multiple
regression, leading to the chemometrician’s partial least squares regression.
This issue will be taken up again in Chapter 8.

The model reduction policy of Section 3.7 can lead to many different situa-
tions. The extreme situations are: First consider the case where G is transitive
on Θ. Then there is no possibility of a model reduction according to our pol-
icy. Secondly, we have cases with very many orbits, like in Example 3.7.5.
This situation is also undesirable as it stands, for it leaves you with so many
options that at least at first sight there is no possibility of selecting a good
model reduction, say by some cross validation procedure.

3.8.1 Estimation of Subparameters.

Fortunately, in most such cases we are not interested in the full parameter θ,
but in some subparameter η. In this Section we will assume that this parameter
η is permissible. (By Lemma 3.4.1, this can always be achieved by replacing
G by a subgroup, a procedure which admittedly may increase the number of
orbits of the group action on Θ further.)

For a permissible subparameter η, the group G will act on its range by
(ηg)(θ) = η(θg). The number of orbits of G as acting upon the range of η
will typically be smaller than the number of orbits on Θ, often considerably
smaller. Often the action on η may even be transitive. Then results similar to
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(3.9) may also be obtained. We will first consider this equation as formula for
an estimator, where ν is an arbitrary right invariant prior. Recall that a right
invariant prior is unique within orbits, but that an arbitrary measure on the
orbit index must be supplied.

The simplest case is when θ = (η, ζ) actually is linked to η in such a way
that the remaining parameter ζ also is transitive. Then there is a unique right
invariant measure corresponding to this parameter, and the integral over ζ can
be carried out independently on the right-hand side of (3.9). This equation
then gives a unique solution for η̂, which will be the best equivariant estimator.

A more exact discussion can be provided by taking the equation (3.10)
as a point of departure. Minimizing the expression here leads to a unique
estimator corresponding to each orbit in the parameter space, as pointed out
in Theorem 3.5.6:

η̂τ (y) =

∫
G
η(θg)qθg(y)µG(dg)∫
G
qθg(y)µG(dg)

(3.15)

Depending upon the type of orbit, the estimators (3.15) can be essential
to the problem at hand, but they can also be quite trivial: For any orbit τ
which is contained in some set of the form {θ : η(θ) = η0} the estimator η̂τ

will only take the trivial value η0, so estimators corresponding to such orbits
can immediately be discarded.

A similar situation occurs if the numerator and the denominator of (3.15)
can take the same value for several orbits, and the estimator may then be
taken to correspond to the union of these orbits.

Typically, we will have this situation if for some part of the orbit index
τ we have that η(θ) is independent of this part, but it is only contained
in qθ(y). A simple example might be if we want to estimate the norm of the
expectation vector of a multivariate data set under rotational symmetry. Then
one can adjoin the integral over this orbit index part to the denominator and
the numerator of (3.15), but this integral will then cancel if the remaining
integral takes the same value for all orbits corresponding to this part of the
orbit index.

3.8.2 Multiple Regression under Rotation Invariance.

To illustrate some of these ideas, we first turn to the case of regression analysis
with random regressors. This will ultimately lead to the population partial
least squares regression model which was introduced in Helland [102], and also
discussed in other publication. This model was argued there to correspond
to the partial least squares procedure for biased regression, introduced by
chemometricians through a particular algorithm. This correspondence will be
further discussed and developed in Chapter 8.

Let (xi, yi; i = 1, . . . , n) be n independent observations, where the vectors
xi are p-dimensional, are centered and have components with the same units
so that rotation of this vector is a meaningful operation. Let Σ = V (xi),
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σ2 = V ar(yi|xi), and the β be the regression vector of yi on xi, assumed
linear, so that we have a linear model, conditioned upon {xi} of the form

y = Xβ + e, (3.16)

where (X, y) has rows (x′i, yi; i = 1, . . . , n) and e is a vector of independent
errors with expectation 0 and variance σ2. Such a linear conditional model
will hold if the data are multinormal, but also in other cases.

Let C denote rotation matrices, and let the rotation group act upon these
data: (xi, yi) 7→ (Cxi, yi), so that the parameter transformation is given by
(Σ, β, σ) 7→ (CΣC ′, Cβ, σ). In Example 3.7.5 it was pointed out that the
orbits when concentrating on the parameter matrix Σ is given by the ordered
set of eigenvalues of that matrix, where multiple eigenvalues count by their
multiplicity.

In Helland [106] it was shown that orbits of the full parameter in this case
is given as follows.

Theorem 3.8.2. Let the spectral decomposition of Σ be given by

Σ =
q∑

k=1

λkPk, (3.17)

where λ1 > λ2 > . . . > λq and Pk; k = 1, . . . , q are projection matrices upon
spaces Vk of dimension vk. Then the orbits of θ = (Σ, β, σ) are given by
constant values of all of

(1) q;
(2) the relative orientation of the ordered set of spaces Vk;
(3) v1, . . . , vq;
(4) λ1, . . . , λq;
(5) γ1, . . . , γq, where γk =‖ Pkβ ‖ is the absolute value of the projection of
the regression vector upon the vector space corresponding to the eigenvalue
λk of Σ;
(6) σ.

The Theorem is proved in Appendix A.2.3.
Assume now that we in agreement with what is common in regression have

that the parameter of interest is not the full set θ, but only the regression
parameter β. In terms of the orbit indices this can be written

β =
q∑

i=1

γiei, (3.18)

where the unit vectors ei are orthogonal with one vector in each of the spaces
Vk upon which the orthogonal projection operators Pk project, and the γi are
non-negative numbers. In the estimation we can collect together the orbits
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corresponding to different values of λ1, . . . λq, v1, . . . , vq, as these give the same
value of β and the same conditional model density.

But still there are many orbits to choose from: Each set of values of the
vector (γ1, . . . , γq, σ) will correspond to one orbit (collected together as above).
Since the ei’s occur in a symmetric way in (3.18), the ordering of these is
irrelevant. Thus the ordering of the γi’s is arbitrary. This means that we have
a further reduction of the number of orbits in this model: Vectors (γ1, . . . , γq)
whose components are permutations of each other, may be taken as belonging
to the same orbit.

Still this leaves us with too many orbits if we want to select a model
reduction to a set of orbits through a simple criterion like cross validation.

3.8.3 Towards Partial Least Sqaures Regression.

The fact that we have too many orbits to choose from, is an indication that
we have taken a too small group as a point of departure. Now we augment
the rotation group on Θ by adding the transformations g given by

(γ1, . . . , γq)g = (c1γ1, . . . , cqγq), (3.19)

for positive ci, that is, an independent scale transformation of each γi. This
turns out to be exactly what we need to arrive at a sitation where model
selection can be done by simple cross validation, and at the same time what
we need to reproduce the population model of partial least squares [102] by
model reduction.

One could in principle consider also to include a scale transformation of
σ, but this turns out to give a too large group. Specifically, with this group,
the best equivariant estimator turns out to be equal to the prior mean, so the
data are not used at all. Hence we fix σ at some value, later to be estimated
separately.

Theorem 3.8.1.Consider the random regression model formulated above,
and on the parameter space Θ of this model define the group G composed
from the rotations in the x-space together with the independent scale trans-
formations of each γi. Assume that we are interested in the best equivariant
estimator of β as given by (3.15) for each orbit of the group, so that orbits
which give the same value for this formula are joined together.

(a) The orbits of this group are characterized by the single number m, the
number of non-zero parameters γi.

(b) Alternatively, m is given by dimension of the space spanned by the
Krylov sequence Σβ,Σ2β, . . ..

(c) Alternatively again, in the population PLS algorithm of Section 8.2
below, m is the first number which give weights ωm+1 = 0.

(d) Finally, m is the number of scores τk and the number of loadings πk

in the same population PLS algorithm.



3.8 Model Reduction for Subparameter Estimation and Prediction. 103

A major point now is that a single number m can be easily determined by
crossvalidation or by using some test variable.

Proof.
(a) For vectors (γ1, . . . , γq) with non-negative components under indepen-

dent scale transformation of the components, we first remark that any non-
zero value of a component may be transformed to any other non-zero value.
But 0 is only transformed to 0. Hence the orbits are characterized by the
numbers of and the positions of the non-zero components in the vector. In
addition, we remarked at the end of the previous subsection that permutation
of the components may be taken as a part of the group. Therefore, the orbits
of the full group is given just by the number of non-zero components in the
vector.

(b) Since Σ =
∑q

k=1 λkPk, we have that

a∑
i=1

ciΣ
iβ =

q∑
k=1

a∑
i=1

ci(λk)iPkβ,

and this is 0 if and only if
a∑

i=1

ci(λk)i = 0 for all k such that γk 6= 0.

Let m be the number of different such k, and look at this system of equations
for a = m. The determinant coresponding to this set of equations will be a
Vandermonde determinant (also called an alternant), and this determinant is
non-zero since the λk are different. This implies that Σβ,Σ2β, . . . , Σmβ are
linearly independent, and that dependence is introduced by adding Σm+1β
to this set.

For the proof of (c) and (d) we refer to Chapter 8 below, where the concepts
involved will also be further discussed.

The treatment in Chapter 8 will not only give a way to characterize the
value of the number m; it also gives several characterizations of the reduced
parameter space, in effect the orbit corresponding to m. The right invariant
measure on the parameter space corresponding to the group described above,
is also easy to find: Rotation corresponds to a uniform distribution on the unit
sphere of the orthogonal set of vectors (e1, . . . , em). The scale transformations
induce independent measures dγ1/γ1, . . . dγm/γm. Hence it should in principle
be possible to find an estimator β̂ from the formula corresponding to (3.15)
for each orbit, that is, each m. By the theory above this estimator should
be best equivariant, that is, possess an optimality property with respect to
all other reasonable estimators, in particular to the chemometricians’ partial
least squares estimator for each given m, then also over different m chosen by
cross validation.
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3.9 Estimation of the Maximally Invariant Parameter:
REML.

Summary: It has been proved in Lemma 3.2.3 that the orbit index in the sam-
ple space has a distribution which only depends upon the orbit index in the
parameter space. Using maximum likelihood estimation from this point of de-
parture, the REML estimator of variance components in mixed models result.

Maximum likelihood is the default estimation method in most statistical
applications, even though it is well known that it can be motivated properly
only for large data sets, specifically when the number n of data points is large
compared to the number p of parameters in the model. If this condition does
not hold, we have basically two general alternative methods of estimation
[141]. The first alternative is to try to find the best unbiased estimator, most
commonly through conditioning and the Rao-Blackwell theorem. The second
alternative, which is treated throghout this Chapter, is to use group symmetry
and seek the best equivariant estimator.

3.9.1 On Orbit Indices and on REML.

The simplest situation (Section 3.5) is when the underlying group G is transi-
tive on the parameter space. Then the risk is constant, and the best equivariant
estimator can be found as the Bayes estimator under the right invariant prior
with respect to G as prior.

When G is not transitive, a similar uniqueness property holds on the orbits
of the group (Section 3.8). Recall the following facts:

1. The orbit index τ for a non-transitive group in the parameter space is
the same as the maximal invariant under G. (Section 3.1.)

2. A similar statement holds in the sample space. The orbit index a here
has a distribution which only depends upon τ . (Lemma 3.2.1.)

3. The risk function is constant on orbits in the parameter space. (Section
3.5.)

As shown in Theorem 3.5.5 the best equivariant estimator in the transitive
case is the Bayes estimator with right invariant prior. In the non-transitive
case it follows from Theorem 3.5.6 that optimizing the risk for parameters
within each orbit gives a similar estimator.

But after this, the orbit index (maximal invariant) τ must be estimated
in other ways. The most natural solution is to use maximum likelihood, but
instead of using the full data y, restrict oneself to the sample maximal invariant
a(y), which is known to have a distribution which only depends on τ .

In this Section we will illustrate this procedure for a special group defined
on a linear mixed model, and show that to the so-called restricted (or residual)
maximum likelihood (REML) estimator for the dispersion parameters of this
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model, and also show that this gives a different solution than the ordinary
maximum likelihood estimator.

The REML estimator was first proposed (for balanced data) by W.A.
Thompson [189], and then it was independently proposed and applied for
unbalanced data by Patterson and Thompson [164]. After having competed
with some other variance component estimators for several years, it is now a
standard procedure, with a considerable attached literature.

The results below are not original; for instance they were hinted at in
[141], and [150] gives an explicit, more abstract treatment. On the other hand,
none of the references in the encyclopedia article [183] seem to use a group-
theoretical perspective. A completely different motivation for REML is given
in [181], where further references to the question of motivation are given.

3.9.2 The Model and the Group.

Consider now an n-dimesional observation vector y which is assumed to be
multinormal with expectation Xβ, that is,

y ∼ N(Xβ,Σ), (3.20)

where X is a fixed n× p matrix and β is a p-vector of fixed effect parameters,
and where y has a covariance matrix Σ, at least partly unknown. Explicitely,
we assume that Σ depends upon a parameter vector τ , which varies over some
open set, and where otherwise conditions [141] for the existence and unique-
ness of solutions of the likelihood equations corresponding to the distributions
given below, are satisfied.

An important special case of this model is given by the mixed model

y = Xβ +
r∑

k=1

Zkuk, (3.21)

where the matrices Zk have dimensions n × qk and rank qk, and where the
uk’s are independent and multinormally distributed with expectation 0 and
covariance matrix σ2

kI.
The parameters of the model are θ = (β, τ), and in the mixed model case

τ = (σ2
1 , . . . , σ

2
r), where these variances are called variance components.

The expectation part of this general model simply means that E(y) is
assumed to belong to the known vector space V = span(X). A natural sym-
metry group attached to the model is therefore the group G of translations
in this space. As a first observation, if y 7→ yg = y + c for some vector c ∈ V ,
and if the model holds for y, then it also holds for yg. Hence the model is
invariant under the group as acting upon the sample space.

The induced group on the parameter space is given by (β, τ) 7→ (β+ b, τ),
where c = Xb. Note that c runs through V if and only if b runs through all of
Rp. The model is clearly invariant under the transformations of the parameter
space.
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Obviously, the group as acting upon the parameter space is not transitive,
and the orbits are just indexed by τ .

3.9.3 Estimation.

For a fixed orbit, we have that Σ = Σ(τ) is fixed, and the maximum likelihood
estimate is

β̂ = (X ′Σ−1X)−1X ′Σ−1y. (3.22)

Extending the discussion of [141], Section 3.4, we can also show that this
estimator gives the minimum risk equivariant estimator of linear combinations
φ = a′β for convex and even loss functions. This is also called the weighted
least squares estimator; when variances differ it can be argued for as a general
principle to use inverse variances as weights. The only difficulty with β is that
it depends upon the unknown parameter τ , the orbit index.

So we have to estimate τ . The way to do this, relies on a property of groups
given in Lemma 3.2.3: The maximal invariant a in the sample space has a
distribution which depends only upon the orbit index (maximal invariant) τ
in the parameter space. Hence this gives a natural setting for estimation.

Theorem 3.9.1 (a) In the model (3.20) under the group described there
the orbit index in the sample space can be expressed as

a = (I −X(X ′X)−1X ′)y.

(b) Let A be an n× (n− p) matrix of full rank n− p such that A′X = 0.
Then an equivalent orbit index is given by z = A′a = A′y. This variable z will
have a non-singular distribution.

(c) The maximum likelihood estimator of τ found from the distribution of
z is independent of the choice of the matrix A with the stated properties.

Remark.
The maximum likelihood estimator referred to in Theorem 3.9.1 will be the

REML estimator for models of the form (3.20), in particular for mixed linear
models. It is obvious from the setting that this estimator will have many of
the ordinary properties of maximum likelihood estimators. It should also be
quite clear that as a principle of estimation this can be generalized to many
other situations where a natural group can be associated to the statistical
model.

The proof of Theorem 3.9.1 is given in Appendix A.2.3.
In a general estimation procedure, it may be impractical to find an un-

specified matrix A whose columns span the space orthogonal to V = span(X),
so practical computation algorithms use other techniques. One of the early
papers on computation in REML is [45], while a modern survey and many
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references can be found in [183]. The methods are much used by animal breed-
ers, and this community has done an important job in constructing efficient
programs for REML estimation in large data sets.

Example 3.9.1 Here is the simplest possible example: Let y1, . . . , yn be
independently normal (µ, σ2). The REML estimator of σ2 is, according to the
receipt given above, found as follows: Take 1 = (1, . . . , 1)′, and let A be any
n× (n− 1) matrix of full rank satisfying A′1 = 0. Then a simple calculation
gives that the maximum likelihood estimator from z = A′(y − ȳ1) = A′y is
given by

σ̂2 =
1

n− 1
z′(A′A)−1z =

1
n− 1

y′A(A′A)−1A′y.

Here it also can be seen directly that the estimator is independent of the
choice of A, since the resulting projection equals

A(A′A)−1A′ = I − 11′/n.

Inserting this gives the ordinary variance estimator, which is unbiased, or.
more important i an analysis of variance context, has a denominator with the
correct degrees of freedom.

Example 3.9.2 Consider now a possibly unbalanced one-way analysis of
variance situation, i.e., k independent groups, where group j contains nj in-
dependent observations, each normal (µj , σ

2). The REML estimator for σ2

can here be derived from a simple extension of the result of the previous
example, and will be

σ̂2 =
1∑
nj − k

∑
j

∑
i

(yij − ȳj·)2.

The corresponding maximum likelihood estimator is biased, and is found by
deleting the ′ − k′ in the denominator here. The bias can be considerable if k
is large and the number of observations in the groups are small. For instance,
if n1 = . . . = nk = 2, then the denominator in the REML is k, as it should
be, while the maximum likelihood estimator is too small, with a denominator
2k. A similar example from block experiments can be traced back to Neyman
and Scott [160] from 1948.

The REML principle has turned out to be very useful, for instance in
animal breeding, but also in other cases where the linear mixed models are
used. According to [183], in the 1970’s REML was simply one of a number
of methods of estimating dispersion parameters, but now it is becomming the
preferred method. By what we hope to have illustrated here, REML estima-
tion can be regarded as an instance of a general symmetry based estimation
principle which has the potential for several further applications.
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3.10 Design of Experiments Situations.

Summary: A brief general description of a design of experiment situation is
given and fitted to the situation with a group attached to a model. This issue
will be taken up again in Chapter 7.

Recall the following general description of an experiment from Section
2.14:

Consider a set Z of potential experimental units for some experiment; this
set can be finite or infinite, and one may even consider an uncountable number
of units. For each given z ∈ Z, let yz be some potential response variable, and
let µz be the expectation of yz for the case where no treatment is introduced.
One may also have a set T of potential treatments which can be applied to
each unit. Let µtz be the expectation of yz, given z, when treatment t is
applied to z, and define θtz = µtz−µz. Assume for simplicity that the yz’s are
independent with a variance σ2. Let ηz denote other parameters connected to
the unit z.

In this situation it is natural to call φ = ({µz, ηz; z ∈ Z}, {θtz; t ∈ T, z ∈
Z}, σ2) a c-variable for the system and Φ = {φ} the c-variable space. This
terminology is consistent with the one I introduced in Chapter 1 and with
the one I will use in my approach to quantum mechanics in the next two
chapters. Note that φ of course is not estimable in any conceivable experiment;
nevertheless it is a useful conceptual quantity.

Let G be a transformation group defined on Z. This will induce a group
on Φ. In other cases, larger groups on Z may be of interest, but in the case
of designed experiments it is permutation of the experimental units which is
the important issue.

Now for the experiment itself select a finite subset Z0 of Z. We will assume
for simplicity that G is so large that the full permutation group G0 on Z0 is
a subgroup of G.

We will also assume that Z0 is selected from Z by some random mech-
anism with the property that θt = E(θtz|t), expectation over this selection
mechanism, is independent of the selected z. Then we will have for a given
selected unit z ∈ Z0 that

E(yz|t) = µz + θt.

This is one way to express the well known unit/treatment additivity, which is
considered by Bailey [13, 14] and others to be crucial for having a consistent
approach to the design of experiments.

From this point on Bailey [13] introduces an eight-stage experimental de-
sign theory, and this theory is developed further in [14]. We will only mention
very briefly a few main points of this theory, referring to these and related
papers for details. Note that Bailey’s forthcoming book [15] seems to give a
relatively full account of the field of experimental design, including the many
important practical aspects of this area.
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Block structure is an important aspect of experimental design theory and
practice: Similar units are taken together in one block to enhance efficiency.
This topic has many important facets, like Latin squares, split plot blocking,
incomplete blocks and so on. From a group theoretical point of view, the main
point is that the block structure determines the group used for randomization:
For a selected experiment Ea, use for randomisazion the largest subgroup Ga

of G0 which respects the block structure of that experiment: If the units z1
and z2 are in the same block, then z1g and z2g should be in the same block
for all g ∈ Ga. The unit (names) are then randomized according to this group.
This randomization also has connections to the allocation of treatments.

Assuming that Ga is transitive, Bailey [14] proves the following: After
randomization, yz (overusing this symbol slightly) has an expectation which
only depends upon the treatment t(z) given to z, and a covariance matrix C
satisfying

C(z1, z2) = C(z1g, z2g), (3.23)

for z1, z2 ∈ Z0 and g ∈ Ga. Using this, Bailey [14] introduces the strata, which
are the eigenspaces of C, and which also are invariant spaces under the group
G. The important practical point is that these give the lines of the (null)
analysis of variance for the experiment, both in simple and in complicated
cases.

3.11 Group Actions Defined on a c-Variable Space.

Summary: A c-variable has been defined in Chapter 1 as a conceptual quantity
connected to a system or a population. It can be illustrated by the set of pa-
rameters common to several experiments from which only one can be chosen.
Typically a c-variable is inaccessible, that is, can not be estimated from any
experiment. In this Section I let a group act on a c-variable space and look
at subgroups associated with the single experiments. The issue is very relevant
for the general approach to quantum mechanics in Chapter 5.

One advantage of the group approach is that it can be carried further than
to a single experiment. Recall the Examples 1.10.4 and 1.10.5, where it was
shown that it could be meaningfull to define group actions on a c-variable
space, even in cases where it only is possible to perform one single of the
potential experiments.

A similar conclusion could be drawn from the discussion in Section 3.8
above. And this conclusion will become crucial when we come to Chapters 4
and 5.

Let the total parameter space be Φ, and let a group G be acting upon Φ.
For a given a, let Ea be an experiment that can be performed, and let Θa

be the parameter space of that experiment. Then θa = θa(φ) is some given
parameter value of the experiment Ea, and everything that has been said
earlier in this book is relevant to such an experiment.
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In particular, then, to apply the theory of the present chapter, it is of
interest to define groups acting upon each of the parameter spaces Θa. If this
shall be induced from G on Φ, we have seen in Section 3.4 that it is necessary
that the function θa(φ) is permissible. But as pointed out in Lemma 3.4.1,
this is always possible to achieve by taking a suitable subgroup.

Definition 3.11.1 Let Ga be the maximal subgroup of G such that the
function θa(·) from Φ to Θa is permissible.

Next we want to define group actions upon the observations corresponding
to experiment Ea, that is, on the sample space Sa. It is crucial then that (3.1)
holds for each experiment. Note that we now go in the opposite direction than
what we did in Section 3.2, where we started with the group actions on the
sample space and then defined the group actions on the parameter space.

When starting with the group on the parameter space, the solution with
respect to a sample space group is usually not unique. but there is one case
where we get a unique solution. This is the situation where the experiment
posesses complete sufficient statistics; recall definition (2.58).

Proposition 3.11.2 Assume that there is a model Qθa

for experiment Ea,
that these measures are absolutely continuous with respect to each other, and
that there exists a complete sufficient statistics in the sample space Sa for this
experiment. Let Ga act upon the parameter space Θa. Then there exist unique
actions upon the space of complete sufficient statistics such that

Qθag(A) = Qθa

(Ag−1), g ∈ Ga. (3.24)

The proof of Proposition 3.11.2 can be found in Appendix A.2.3.

3.12 Some Concluding Remarks.

It might be appropriate here to cite from Efron [73]: ‘A widely acceptable
objective Bayes theory, which fiducial inference was intended to be, would be
of immense theoretical and practical importance.’

One purpose of this chapter has been to clarify some problems connected
to situations for which a fairly acceptable objective Bayes theory - a theory
of optimal inference under invariance - is available. The price paid for this
coherent theory seems to be twofold: One has to fix a symmetry group for the
problem at hand, and inference should preferably be limited to parameters
that are permissible under this group.

As a conclusion to this chapter, adding a group structure to the model
specification is of interest, and does have consequences. On the other hand,
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the symmetry approach to statistical inference also implies difficulties, most
notably the difficulty of choosing a group in a given case. In general, the
symmetries expressed by the group should have some substantial basis in the
concrete problem described.

In many simple cases the choice of group is rather obvious, but it seems
to be a challenge to find good, general rules for choosing the group in more
complicated cases. Expressing lack of information in symmetry terms might
be one way to proceed. Sometimes several groups lead to the same solutions.

Another question is whether the class of allowable parametric functions
can be extended in any useful general way beyond the permissible ones. As
illustrated in several cases above, however, this class can often be made rich
enough for practical purposes by a suitable choice of group. As a general
point, it must be more important to avoid incoherences than to be able to
make inference on every possible parametric function.

Of course, then, at last: There are situations where it is not natural to
choose a symmetry group at all before doing statistical inference, and there
are other cases where it does not help much to choose a group at all even if
this choice is made in a reasonable way. (Two such examples - related, and
both attributed to C. Stein - can be found in [139] p. 231 and [24], p. 420.) A
final open question is therefore whether any of the ideas in this chapter can be
generalized also to certain specific situations in which it is difficult or useless
to associate such a strong structure as a symmetry group.





4

THE TRANSITION FROM STATISTICS TO
QUANTUM THEORY.

4.1 Theoretical Statistics and Applied Statistics.

There is a large scientific literature within theoretical statistics. Many statis-
tical journals also encourage good empirical papers, but by comparison the
submission of purely applied papers to statistical journals seem to be rela-
tively infrequent, and the publication in statistical journals of such papers
without some methodological emphasis is even more infrequent. Yet, there
is a huge activity related to applied statistics in a large number of fields in
empirical science, either carried out by statisticians or by scientists educated
in statistics.

There may be several explanations of the phenomenon above. To some
extent one might say that there is a cultural gap between theoretical statis-
ticians and applied statisticians. Some claim that the reason for this is that
theoreticians use too much mathematics, and that applied people to a larger
extent rely on intuition as a guideline.

This may be part of the explanation. On the other hand, to use mathemat-
ics as a precise language is undoubtedly very valuable in theoretical research,
and also in the development of statistical methods which are useful for many
applied areas. This has indeed proved to be the case on many occations in the
past.

To some extent one might say that theory and practice represent comple-
mentary values, but this should not prevent us from working towards better
communication between research workers with different emphasis. Impulses
from empirical investigations and problems encountered there may even lead
to a broader mathematical basis for statistical theory.

In Chapter 2 I repeatedly said that statisticians sometimes ought to go
beyond the standard statistical model, that is, a model where an experiment
is thought to be synonymous with a class of probability measures. Fortu-
nately, many theoretical investigations trancend this frame; in modern data
analysis this has been done several times with great success. But introduc-
tory courses at universities are almost exclusively confined to the standard
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statistical model. If one wants to explore the link towards other disciplines, a
departure from the standard model will defiitively be necessary.

Example 4.1.1. A normal confidence interval (Example 2.4.2) is a simple
task to calculate, as are many related procedures in applied statistics (say one-
and two-sample t-tests), and these procedures are used repeatedly in many
different connections. In practice one must answer many difficult questions,
however, in order to have a safe application of these procedures.

Formally, there are assumptions behind the procedures: Normality, inde-
pendence and constant variance. There are methods to test these assumptions
from data, but the results of such tests are always uncertain. Furthermore, the
methods are to a certain extent robust against deviations from the assump-
tions: For instance, the pivot (2.19) will be approximately normally distributed
by the Central Limit Theorem, even if the individual observations are not nor-
mal; even dependence or non-identical distributions may to a certain extent
be tolerated. However, a single large deviation may ruin the argument.

Thus there are difficult questions to answer even in the simplest applica-
tions of statistics. In practice one can not avoid that some of these questions
have to be approached intuitively. The final answer may depend on how large
deviations from the formal assumptions one is willing to tolerate, and this
again may depend upon the error one is willing to make in the test itself.
Thus one ends up with a focused question and answer even in the simplest
statistical test.

Example 4.1.2. In applied statistical investigations it is seldom enough to
do just one experiment. Good experimental design books like Box, Hunter and
Hunter [34] emphasize that we may learn in a stepwise way, often using the
information from one experiment to design the next one. Nevertheless, in each
experiment there are qualitative questions which different experimentalists
answer differently ([34], p. 490)

- Different factors could have been chosen for the study.
- Different ranges for the factors could have been selected.
- Different choices could have been made for blocking factors.
- Different transformations for the factor might have been employed.
- Different responses and their metrics.
- Different models could have been considered.
The fact that each experimenter learn through several experiments, may

serve to neutralize the effect of such subjective choices. In any case, many
statistical investigations are carried out as a sequence of of focused questions.
Several examples may be found in [34].

In my opinion it would be useful if our students could be exposed to the
fact that theory is not pure mathematics; it must have an empirical basis. In an
attempt to create a part of such a basis I incuded a large number of examples
in Chapter 2. And, even though this implies a further mathematization, it was
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also meant as an extension of the basis for statistical theory to introduce the
group aspect in Chapter 3. Here I even proposed to initially define a group
on the c-variable space, a concept which definitely goes beyond the standard
statistical model. This point of departure will be taken up again in Section
4.6.

4.2 The Gödel Theorem Analogy.

One conclusion from our discussion of statistics so far is that the standard
statistical model, while useful, to a certain extent must be considered to be
incomplete from a practical point of view.

Some may feel that I draw an analogy too far in what I am going to say
now, but it I still feel that a good point can be made by mentioning this: In
mathematical logic, a similar conclusion was reached long time ago. A well
known general theorem by Kurt Gödel from 1931 – see [98] – says that every
rich enough theory may be regarded as incomplete in a certain sense.

More precisely, Gödel demonstrated that within any rich enough branch
of mathematics, there would always be some propositions that could not be
proven either true or false using the rules and axioms of that mathematical
branch itself. You will not be able to prove every conceivable statement about
numbers within a system without going outside the system in order to come
up with new rules and axioms. And then by doing so you will only create a
larger system with its own unprovable statements. The implication is that all
logical system of any complexity are, by definition, incomplete; each of them
contains, at any given time, more true statements than it can possibly prove
according to its own defining set of rules.

True, this is a result about pure mathematics, but at least by analogy
our tentative statement is that we can say something similar about systems
involving empirical sciences, too: Any formal set of mathematical axioms will
be incomplete in the sense that problems occur in practice that can not be
discussed properly strictly within the frames of these axioms. If this can be
taken as a general statement, it could have far-reaching implications for the
way theory should be carried out.

In my view, there might be said to be an analogous situation for quantum
theory. There is a welldefined set of axioms for the theory, which we will
formulate shortly, and which most physicists agree upon. Yet, there is still
an intense debate about the foundation of the theory, something that can be
most easily seen by sampling a few of the many monthly papers on the web
system quant-ph at http://xxx.lanl.gov/.

In fact, Albert Einstein was all of his life sceptical towards the whole of
quantum mechanics, and his most pressing argument was that the theory must
be incomplete, see Einstein, Podolsky and Rosen [72]. I will come back to this
issue in Chapter 6.
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What I will do in this book, is in essence to formulate an axiomatic basis
which covers important parts of both statistical theory and quantum theory.
In agreement with the discussion above, one should not expect this basis to be
complete, either, even though it may explain more phenomena than the old
basis. One will always encounter cases where intuition is needed in addition
to formal rules.

4.3 The Traditional Axioms of Quantum Theory.

The ordinary axiomatic basis of quantum mechanics can be formulated in a
quite straightforward mathematical way. Thus on this basis there is no reason
to criticize the established theory. Also, the theory seems to be valid in the
sense that it has been confirmed by numerous experiments.

My criticism will be concentrated on two points: 1) The ordinary axioms
are purely formal. 2) There is nowhere in these axioms a hint about any
connection to statistical theory, the other major probability based theory for
prediction of new observations from some state determined by previous ob-
servations.

Specifically, I will consider the following axioms of quantum theory, taken
from Isham [125]. Then I will indicate a possible new basis more closely related
to the statistical theory discussed in this book, and in Chapter 5 and Chapter
6 I will among other things derive Isham’s rules from this setting.

Quantum rule 1. The predictions of results of measurements made on an
otherwise isolated system are probabilistic in nature. In situations where the
maximum amount of information is available, this probabilistic information
is represented mathematically by a vector in a complex Hilbert space H that
forms the state space of the quantum theory. In so far as it gives the most
precise predictions that are possible, this vector is to be thought of as the
mathematical representation of the physical notion of ‘state’ of the system.

Quantum rule 2. The observables of the system are represented mathe-
matically by self-adjoint operators that act on the Hilbert space H.

Quantum rule 3. If an observable quantity λ̂a is represented by the self-
adjoint operator T a, and the state by the normalized vector v ∈ H, then the
expected result of the measurement is

Ev(λ̂a) = v†T av. (4.1)

Quantum rule 4. In the absence of any external influence (i.e., in a
closed system), the state vt changes smoothly in time t according to the time-
dependent Schrödinger equation
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ih̄
dvt

dt
= Hvt, (4.2)

where H is a special operator known as the Hamiltonian.

One way to formulate the essence of the first three rules, is that the state
of an isolated system is given by a vector v in some Hilbert space, and that
probability statements can be found from calculations using this vector.

Now a vector v can always – in fact in many ways – be regarded as an
eigenvector of some operator T . Assume that one such operator is physically
meaningful and corresponds to some physical quantity λ. Then there will be
an eigenvalue λk corresponding to the eigenvector v of T , and from Rule 3
one can easily show that the state v is characterized by the statement that
any measurement of the quantity λ gives the result λk with certainty. (Later
we will call the measurements of Rule 3 perfect measurements, since they do
not take into account measurement errors.)

Namely, from (4.1), the expectation of the measurement is λk, and the
variance is

v†(T − λk)2v = 0. (4.3)

On the other hand, if a state vector v is characterized by the fact that any
measurement of λ gives a certain value λk, then it follows from (4.3) that v
must be an eigenvector of T with eigenvalue λk.

In general, the physical quantity λ can be composed of several quantities
like the charge and a spin component for one particle, or such quantities for
each particle if several particles are involved. If this list of quantities is large
enough, the vector v will be a unique eigenvector (except for an irrelevant
phase factor) of the correponding compound operator T .

In this way, the state v is characterized by the fact that there is a certain
physical quantity that has a certain value in the state v. (This quantity may
consist of several parts; in this respect it is assumed to be maximal.) In other
words: The state is charaterized by two components: 1) A maximal question
(which can consist of several parts), and 2) The answer to this question, here
given by the eigenvalue (incorperating the values of the physical quantities of
the parts).

In this chapter and the next one, we will show that this characterization
in a large number of cases can be inverted: Start with certain reasonable
assumptions, some of which are motivated from the previous chapters in this
book. Then say that a state of some system is given by 1) A question, 2)
The certain answer of that question. Then I will show that The Hilbert space
above may be constructed, and the question-and-answer combinations stand
in a one-to-one corresponance with the vectors of that Hilbert space. Thus
it seems that it is possible to construct the formal world of quantum theory
from what, at least conceptually, is a relatively non-formal idea.

The assumptions that are needed for this, are given in Sections 4.6 and
4.7 below. The most important ones are the following:
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-There exists a c-variable space for the system in question, and a transitive
transformation group defined on this space.

- For any experiment, the context is so limited that only certain functions
of the c-variable can be given experimental values.

- Different such estimable parametric functions may be connected together
through elements of the group.

These assumptions will be more precisely formulated as axioms in Section
4.7 below and used in detail to develop the theory in Chapter 5.

4.4 The Historical Development of Formal Quantum
Mechanics.

The earliest book on the mathematical foundation of quantum mechanics is
von Neumann [157]; in English translation: von Neumann [158]. This book
has had a great influence; in its time it constituted a very important math-
ematical synthesis of the theory of quantum phenomena. The book can also
be considered to be a forerunner of quantum probability. For physicists, von
Neumanns book was supplemented by the book of Dirac [61], which started
the development leading to modern quantum field theory.

The development of quantum probability as a mathematical discipline,
continuing the more formal development of quantum theory, was started in the
1970s. A first important topic was to develop a noncommutative analogue of
the notion of stochastic processes; see Accardi [4] and references there. Other
topics were noncommutative conditional expectations and quantum filtering
and prediction theory (Belavkin [21] and references there).

Quantum probability was made popular among ordinary probabilists by
Meyer [152]. A related book is Parthasarathy [163], which discusses the quan-
tum stochastic calculus founded by Hudson and Parthasarathy, but also many
other themes related to the mathematics of current quantum theory. An ex-
ample of a symposium proceeding aiming at covering both conventional prob-
ability theory and quantum probability is Accardi and Heyde [5].

There are also links between quantum theory and statistical inference the-
ory. A systematic treatment of quantum hypothesis testing and quantum es-
timation theory was first given by Helstrom [115]. In Holevo [120] several
aspects of quantum inference are discussed in depth; among other things the
book contains a chapter on symmetry groups. A survey paper on quantum
inference is Malley and Hornstein [144].

As an example of a particular statistical topic of interest, consider that
of Fisher information. Since a quantum state ordinarily allows several experi-
ments, this concept can be generalized in a natural way. A quantum informa-
tion measure due to Helstrom can be shown to give the maximal Fisher in-
formation over all possible experiments; for a recent discussion see Barndorff-
Nielsen and Gill [17].
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Fig. 4.1. The large scale model.

One can thus point at several links between ordinary probability and statis-
tics on the one hand and their quantum counterparts on the other hand.
However, a general theory encompassing both sides, based on a reasonably
intuitive foundation, has so far been lacking.

4.5 A Large Scale Model.

In the next Section I will start on formulating my axioms for quantum me-
chanics. As a preparation for this, and partly as a motivation, I will first give
a largescale example, a system where much of these basic axioms can be seen
to be satisfied.

One of the simplest non-commutative groups is the group S3 of permuta-
tions of 3 objects. It has a two-dimensional representation discussed in many
books in group theory and in several books in quantum theory. The quan-
tum theory book by Wolbarst [198] is largely based upon this group as a
pedagogical example.

In this Section I will visualize this group by considering the permutations
of the corners of an equilateral triangle, which can be realized physically by
the change of position of some solid version of this triangle. This will serve to
illustrate the quantum foundation below on a macroscopic example.

The spatial orientation φ of the whole triangle will be looked upon as a
hidden c-variable, and to this end we will imagine the solid triangle placed
within a hollow nontransparent sphere, with the corners on the sphere, in such
a way that it can rotate freely around its center point, placed at the center
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of the sphere. The basic group G is to begin with taken as the group of such
rotations, but later, when we specialize to the corners, we will take G as the
permutation group. Let the solid triangle be painted white on one side and
black on the other side.

Let there be 4 small windows in the sphere, one at the north pole, where
the colour facing up can be observed, and three equidistant windows along
the equator, where the closest corner of the triangle can be observed.

Every observation is made through one and only one of these windows,
and thus we are never able to obtain a complete picture of what is inside.
In this way the triangle as described above must have the status of a mental
image, and the position of the triangle must be regarded as inaccessible.

To make a connection to ordinary statistical inference, the measurements
made in the windows could be uncertain for some reason, and we could model
this in the ordinary statistical way by some model Qλ(dy), depending upon
a (reduced) parameter which can be thought about as the ideal measurement
in one particular window.

Hence there are 4 reduced parameters, corresponding to the 4 different
experiments that can be done in this case, one for each window: λ0 is the
ideal colour as observed from the north pole window: λa, λb and λc are the
three ‘correct’ corners of the triangle as observed from the windows a, b and
c, respectively. The term ‘correct’ will be defind more precisely below. The
parameter λ0 takes the values black and white, and the parameters λi for
i = a, b, c each takes the values A, B and C, say. All these parameters can be
considered to be functions of the triangle’s spatial orientation φ within the
sphere.

Lemma 4.5.1. Both with respect to the group of permutations and with
respect to the group of rotations, λ0 is a permissible function, while λa, λb and
λc each are non-permissible. The largest permutation group with respect to
which λa is permissible, is the group Ga of cyclic permutations of the corners
of the triangle, similarly for λb and λc.

Proof.
Consider the 6 elements of the group S3 of permutations: g1(ABC 7→

ABC), g2(ABC 7→ CAB), g3(ABC 7→ BCA), g4(ABC 7→ ACB), g5(ABC 7→
CBA), g6(ABC 7→ BAC).

Assume λ0(φ1) = λ0(φ2), say black, for two c-variable values φ1 and φ2.
Then by simple inspection, λ0(φ1gi) = λ0(φ2gi) = black for i = 1, 2, 3 and
white for i = 4, 5, 6. Hence λ0 is permissible.

For the other functions it is enough to produce a counterexample. Here is
one for λa: Let φ1 be any hyperparameter value, and by definition let ABC be
the sequence of corners in φ1 corresponding to the windows a, b, c. Put φi =
φ1gi for i = 2, . . . , 6. Then λa(φ1) = λa(φ4) = A, but λa(φ1g5) = λa(φ5) = C
and λa(φ4g5) = λa(φ3) = B. The group elements g4 and g6 have the same
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structure as g5: permutation fixing one corner of the triangle. Therefore a
similar statement holds for these group elements.

To check that λa is permissible under the cyclic group, we can use direct
verification. The details are omitted. A geometric proof is simpler than an
algebraic proof.

One can easily imagine that an ideal measurement at the window a in
principle can give more information than λa about the position of the triangle,
but that this information is hidden. One way to make this precise, is the
following: Let us divide the sphere into 3 sectors corresponding to each of the
windows a, b and c by using the meridians midway between a and b, midway
between a and c and midway between b and c as borders between the sectors.
Let Sa be the sector containing window a. Define θa as 1) the points among
the triangle corners A,B and C that happen to be in the sector Sa; 2) the
coordinates of any two points which happen to belong to the same sector.

From the geometry, it can be seen that Sa can contain 0, 1 or 2 triangle
corners. This can be used to define λa precisely: If Sa contains 1 corner, let
this corner be λa. If Sa contains 2 corners, let the closest one, as calculated
from the coordinates, be λa. If Sa contains 0 corners, then exactly one of its
neighbouring sectors must contain 2 corners. One is then chosen to be λb,
respectively λc; let the other one, the closest one to the window a, be λa.
Since the coordinates of the corners that are in the same sector are contained
in θa, it is seen that λa is a function of θa.

Note that the reduction from φ via θ to the parameter λ is forced upon us
in this situation by the limitation in the possibility to make observations on
the system.

We assume that there is some mechanism to ensure that it is impossible
to look through two equitorial windows at the same time.

4.6 A General Definition; A c-System.

Motivated by the previous Section and by the preceding discussion it is nat-
ural now to describe a fairly general closed system and to formulate certain
properties which such a system ought to have in order to resemble both the
system in the example above and certain simple quantum systems. For sim-
plicity, I will call such a system a conceptually defined system or a c-system.

Definition 4.6.1. A c-system is a closed system for which there exists
a c-variable space Φ whose elements φ ∈ Φ are not estimable relative to any
experiment, that is, they are inaccessible. There is a transformation group G
defined on Φ. The space Φ is locally compact, and the group G is transitive on
Φ. The right invariant measure under G is called ν.
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Furthermore, there exists a set A of potential experiments Ea; a ∈ A on
this system. For each a ∈ A there is a maximal estimable parameter λa.

When λa is discrete, there exists a perfect experiment for λa where mea-
surement noice can be disregarded and where the resulting (pure) states are
given by statements of the form λa = λa

k.

Those not interested in technical mathematics should just regard Φ as
some general space. The requirement that it is locally compact, and hence in
particular a topological space, is just what is needed to obtain an invariant
measure. For simplicity one can for instance think of Φ as a sphere, and ν as
the constant measure on that sphere. But very many possibilities exist.

A perfect experiment means that the estimator of the parameter is exactly
equal to the parameter itself; thus the statistical inference is trivial. This
limiting case will correspond to the simplest case of the quantum-mechanical
formalism, but cases that are more interesting from a statistical point of view
involve a non-trivial measurement apparatus. In the perfect experiment case
the value obtained by the parameter is exactly what is observed.

Notice that a statement of this last form defines a state for the system.
When I later discuss transition probabilities, the defining state will be of
this form. The prerequisite for this is that λa is maximal in a the sense that
the transition can be regarded as a Markov process in these variables. Note
that the state consists of two elements: A question a ∈ A: What is λa? -
together with an answer λa

k. In the triangle-in-a-sphere example of Section
4.5 the question consists of looking through a given equatorial window. In the
quantummechanical case I will also come back to this characterization.

Lemma 4.6.1. The triangle-in-a-sphere system of Section 4.5 is a c-
system.

Proof.
Obvious.

As in this particular system, it is often natural to introduce intermediate
parameters θa = θa(φ) which may not be estimable under the experiment Ea.
Then λa = λa(θa) is estimable.

4.7 Quantum Theory Axioms under Symmetry and
Complementarity.

I am now ready to formulate an alternative set of axioms of quantum theory,
axioms that may be motivated from the statistical discussion above, and will
cover many quantum systems. I will aim at deriving the Quantum rules 1-3 of
Section 4.3 from these axioms in the next Chapter, and in fact, I will derive
more than that.
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In contrast to the traditional set given by Quantum rules 1-3, I consider
most of the axioms below to be relatively natural in the light of common sense
and in the light of basic statistics in the way it has been formulated above. It
is the totality of assumptions which makes the core of quantum theory in the
way I see it.

For the rest of this Section I assume some given c-system. I am not in-
terested in considering the most general quantum theory here; I will limit
everything to systems with symmetry as given by the group G. This will
include particles with arbitrary spin and systems of such particles, and is
enough to illustrate the connection between statistics and quantum theory.
In my view, this connection goes in both directions, as it gives a possibility
for both disciplines to learn from the other. In the following, I will formulate
some axioms that a quantummechanical c-system must satisfy.

In the definition of the c-system, a perfect experiment was mentioned. For
the case when the experiment is not perfect, it is natural to assume Bayesian
estimation in each experiment with a prior induced on each λa by ν on Φ.
This is also equivalent to what is called the best equivariant estimator under
the group Ga defined below, see Chapter 3. The existence of this group is
ensured by Lemma 3.4.1. The uniqueness of the best equivariant estimator is
ensured, since the invariant measure ν on Φ is unique by the transitivity of G
on Φ.

Definition 4.7.1. Let Ga be the maximal subgroup of G with respect to
which λa(φ) is a permissible function of φ.

In the next axiom we assume that the experiments corresponding to dif-
ferent parameters λa can be connected by group transformations.

Axiom 1. For each pair of experiments Ea,Eb; a, b ∈ A there is an element
gab of the basic group G which induces a correspondence between the respective
reduced parameters:

λb = λagab or λb(φ) = λa(φgab). (4.4)

From Axiom 1 we will prove in the next Chapter that ga = gabg
bgba.

What we really need there is the implied relation between unitary group
representations (for details see definition in Chapter 5)

U(ga) = U(gab)U(gb)U−1(gab). (4.5)

Briefly, a group representation is a set of operators U(g) such that U(gh) =
U(g)U(h). In this connection we can take U(g) as the right regular represen-
tation defined on L2(Φ, ν) by:

U(g)f(φ) = f(φg).
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The symmetry assumptions between experiments given in Axiom 1 will
turn out later to be crucial for the development of quantum theory. The main
purpose of the axioms listed so far is to enable us to construct in a natural
way the Hilbert space of quantum mechanics. The states, i.e. the amount of
knowledge of a given system obtain through a perfect experiment by asking
a maximal focused question: What is λa? together with the answer: λa = λa

k,
are represented by unit vectors of that Hilbert space.

More specifically: We will show in Chapter 5 that these axioms leads to
the existence of a Hilbert space Ha for the experiment Ea in such a way
that there are basis vectors fa

k ∈ Ha which can be uniquely coupled to the
statements that a perfect measurement of λa gives the result that λa = λa

k for
suitable constants λa

k. These Hilbert spaces can be realized as subspaces of
L2 = L2(Φ, ν), where ν is the invariant measure under G assumed in Axiom
1. In particular, Ha is given by

Ha = {f ∈ L2 : f(φ) = f̃(λa(φ))}. (4.6)

Using (4.5), we will define a common Hilbert space H such that all the
spaces Ha are unitarily related to H. The following axiom is needed for further
properties if this basic space.

Axiom 2. The group G is the smallest group containing all the subgroups
Ga; a ∈ A.

So far, I have not said anything about the nature of the parameters λa.
For the most part in this book I will confine myself to standard quantum
mechanics where the observables have a discrete spectrum. In our setting this
corresponds to the following assumption:

Axiom 3. Each parameter λa assumes a finite or denumerable set of
values.

Finally, we introduce quantum probabilities. This is done by proving a
celebrated formula of Max Born by taking as a point of departure the following
assumption, essentially a symmetry property of the transition probabilities
from one perfect experiment to another:

P (λb = λi|λa = λk).

Axiom 4. (i) The transition probabilities exist in the sense that the prob-
abilities above do not depend upon anything else.

(ii) The transition probability from λa = λk in the first perfect experiment
to λa = λk in the second perfect experiment is 1.
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Fig. 4.2. Thought model of an electron.

(iii) For all a, b, c we have that µ(φ) = λa(φgbc) is a valid experimental
parameter.

(iv) For all a, b, c, i, k we have

P (λb(φ) = λi|λa(φ) = λk) = P (λb(φgbc) = λi|λa(φgbc) = λk)

In Chapter 5 all these axioms will be repeated and commented upon as
they are used to develop the link to quantum theory.

Proposition 4.7.1. The triangle-in-a-sphere system of Section 4.5 satis-
fies the axioms 1, 3 and 4, but not Axiom 2.

Proof.
The group elements gab of Axiom 1 are formed by rotation of the triangle.

Axiom 3 is obvious. The Markov property of (i) of Axiom 4 has already been
considered and is obvious here; the transition probabilities of (iv) are 1/2 here.
The group Ga consists of the identity plus the interchange of b and c. It is
impossible to form rotations by combining such interchange group elements,
so Axiom 2 does not hold.

4.8 The Electron Spin Example.

The most simple quantum mechanical system, a qubit, is realized as an elec-
tron with its spin. The spin component λ can be measured in any spatial
direction a, and λ always takes one of the values -1 and +1.

In this section, I will give a non-standard, but quite intuitive description
of a particle with spin, a description which we later will show to be equivalent
to the one given by ordinary quantum theory.

Look first at a general classical angular momentum. A c-variable φ corre-
sponding to such an angular momentum may be defined as a vector in three
dimensional space; the direction of the vector giving the spin axis, the norm
gives the spinning speed. A possible associated group G is then the group of
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all rotations of this vector in R3 around the origin, possibly with scale changes
included.

Now let the electron at the outset have such a c-variable φ attached to
it, and let κ = ‖φ‖. It is well known that it is impossible to obtain in any
way such detailed information about the electron spin, but this definition
is consistent with our concept of an inaccessible c-variable. Continuing this
hypothetical description, assume that we set forth in an experiment Ea to
measure part of its angular momentum component θa(φ) = κ cos(α) in some
direction given by a unit vector a, where α is the angle between φ and a. The
measurement can be thought of as being done with a Stern-Gerlach device,
which strictly speaking measures an observable y whose distribution depends
upon (some function of) θa, implying a possibility that the parameter θa - or
some part of it - can be estimated from such a measurement. Given a, and
given the measurement in the direction a, the rest of the c-variable φ will be
unestimable.

With respect to the group G, the function θa(·) is easily seen to be non-
permissible for fixed a, simply because two vectors with the same component
along a in general will have different such components after a rotation. The
maximal possible group Ga with respect to which θa is permissible, is the
group generated by the rotations of the vector φ around the axis a possi-
bly together with a 180o rotation around any axis perpendicular to a, plus a
possible scale change κ 7→ bκ; b > 0.

In analogy to the situation in Section 4.5, assume now that the electron’sc-
variable φ always is hidden, in such a way that for every a, the only part of
κ cos(α) we are able to measure, is the value +1 or -1, giving the sign of
this component. We call this part λa(φ). This is an extreme model reduction
compared to θa, but interestingly enough, the model reduction is to an orbit
of the group Ga.

The measured part found by the Stern-Gerlach apparatus, which may
contain additional measurement noise, also takes the values ±1, and is called
λ̂a. In some instances below, we will disregard such measurement noise, and
assume the ideal condition λ̂a = λa. Such an approximation makes sense, also
from a statistical point of view, for a discrete parameter.

Finally, since the model reduction is to a parameter of fixed norm, we
delete the scale change part from the groups G and Ga. In particular, G is
the group of rotations.

Proposition 4.8.1. The electron spin system is a c-system which satisfies
axioms 1-4.

Proof.
Obvious from the discussion above.

A general discussion on how to construct a c-variable from a series of
mutually exclusive experiments, illustrated by the case of electron spin, is
given in Appendix A3.1.
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QUANTUM MECHANICS FROM A
STATISTICAL BASIS.

5.1 Introduction.

1 Nancy Cartwright [39] has argued that physical laws are about our mod-
els of reality, not about reality itself. This is a radical statement with severe
implications. At the same time she argues (p. 186) that the interpretation
of quantum mechanics should be seen entirely in terms of transition proba-
bilities. The present book is in agreement with both these statements. I will
supplement the first statement, however, by saying a few words about models.
For many reasonably complex phenomena, several models, and several ways
to give a language for model formulation, can be imagined. In some instances
these models, while appearing different, are so closely related that they give
the same predictions about reality. If this is the case, I think many would
agree with me that we should choose the model which has the most intuitive
interpretation, also in cases where there may be given strong historical and
culturally related arguments for other models. It may of course be the case
that the conventional model is more suitable for calculations, but this should
not preclude us from employing more intuitive points of view when arguing
about the model and when trying to understand complex phenomena.

In the present chapter I take as a point of departure such a different,
in my view more intuitive, modelling approach to quantum mechanics, first
formulated as a definition in Section 4.6 supplemented by 4 axioms in Section
4.7. I will show that the ordinary quantum formalism, at least to a large
extent, follows from this. I limit myself to the time-independent case here;
1 This chapter is fairly mathematical. Those who feel uncomfortable with this math-

ematics, can in the first reading look comparatively quickly through the results,
although some of these are essential to understand in order to appreciate the
main development and the connections to parts of the rest of the book. As a very
minimum, the introduction together with the summary of each Section should be
read. Needless to say, those wanting to understand the principles involved, should
read all details.
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the time-dependent case will be taken up in Chapter 6. The essence of the
axioms is of statistical nature in the sense that they are related to parameters
of potential experiments.

To start such a programme, we have to relate it to the usual formulation of
quantum theory. The basic quantum theory formulation is given in different
ways in different books, although all agree about the foundation. For definite-
ness I will in this chapter consider the three rules taken from Isham [125] and
reproduced in Section 4.3 as Quantum rule 1 - Quantum rule 3. In the last
parts of this chapter I will give a derivation of them (and in fact more) under
the assumptions given in Sections 4.6 and 4.7.

These three rules together with the Schrödinger equation (Quantum rule
4) constitute according to [125] the basic assumptions of quantum mechanics.
The axioms which I use to derive these rules are in essence a natural extension
of statistical theory. I will also comment upon issues like superselection rules
and the extension to mixed states, and try to argue that formal equations
like (4.1) can be associated with a very natural interpretation. A basic step in
the derivation of the three rules is to give arguments for (a variant of) Born’s
celebrated formula for transition probabilities in quantum mechanics.

Note that the states of conventional quantum mechanics, in the non-
degerate case, can be interpreted in the following way: Corresponding to the
operator T there is a physical variable λ, and a state, as given by a state vector
vk is connected to a particular value λk of λ. The vector vk is an eigenvector of
T corresponding to the eigenvalue λk. I will assume here that the eigenvalue
is nondegenerate, which corresponds to a variable λ which is maximal: It is
not a non-trivial function of any other measurable variable connected to the
system.

Given the variable λ, the operator T is determined from physical consid-
erations, and given T and the eigenvalue λk, the eigenvector vk is determined.
Thus we can say that the state is determined by two elements: 1) A maximal
question: What is the value of λ? 2) The answer: λ = λk. In this chapter I
show that we can go the other way, and start with a question/ answer pair
like above, and then under certain assumptions, mainly related to symmetry
and to a limited context, we arrive at the Hilbert space formulation with the
above interpretation of the state vectors.

Consider the spin 1/2 particle, say, an electron, and let a be any 3-vector.
Then it makes sense to formulate the question: What is the spin component
in direction a? together with the answer: +1. And it makes sense to say that
these two elements together define a state; in the common quantummechanical
language the state is a vector in the two-dimensional complex vector space,
a vector with eigenvalue +1 for the operator a · σ, where a is the direction
vector above, the ordinary scalar product is used, and where σ is the vector
composed of the three Pauli spin matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.1)
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My aim is to approach this in a less formal way than the state vector
approach, usually called the Hilbert space approach. To carry out such a
programme, I want to use other, more direct, mental models.

The point is that I consider the spin vector in a model using what I earlier
in this book have called the c-variable concept (see sections 1.2, 1.3 and 4.6).
An inaccessible c-variable is something that can be formulated by ordinary
language and is associated by a tentative model of the subatomic reality, but
for which it is far too optimistic to connect a definite value in the sense that
this value can be estimated by an experiment. The spin vector will be thought
of as such an inaccessible c-variable. A general approach towards c-variables
taking mutually exclusive experiments as a point of departure, is given in
Appendix A3.1.

What we can confront with experiments, though, is some given function
of this spin vector, in the spin 1/2 case the sign of the component of the spin
vector in a certain direction. The rest of the spin vector will always remain
unknown to us. One might of course say that then it is nonsense to speak
about the rest of the spin vector, but I would say that it is useful to have
a mental model. Various people may have different mental models, but this
does not matter as long as they agree about the symmetry aspect and about
the observable part of the spin vector.

A relatively concrete realisation of this is given by the triangle-in-a- sphere
which I have described in Section 4.5, for which we are only allowed to look
through one chosen window. Here we may have constructed the triangle with
a given colour, made it from a definite material and so on, but to an observer
in a window, all these parameters may only be imagined mentally. All that
matters for his observations are the corners A, B or C, and all that matters
in order to interprete these observations is a mental model of a triangle with
rotational symmetry attached to it.

Or consider the case of a single patient at a fixed time (Example 1.3.4),
where we might be interested in expected recovery times τ1 and τ2 under two
potential treatments (and in other parameters), so that the vector τ = (τ1, τ2)
does not have an empirical value, but one component can be estimated by an
experiment.

But I repeat: The c-variable may nevertheless be a useful quantity. In the
model context it may help us to just have a mental picture of what we think
is going on, say, in the subatomic world. The spin vector can be red or blue,
can be imagined to be connected to some solid body, or just be an arrow. But
what is the same in all these mental pictures, is every single component that
we are allowed to ask questions about.

One very useful property of the c-variable is that, even when it is inacces-
sible, we can imagine group transformations of it, and that these transforma-
tions then have consequences for the observable components. In the spin case
and in the case with the triangle in the sphere, we can think of rotations. In
the treatments of a patient-example it is meaningful to study scale invariance:
(τ1, τ2) → (bτ1, bτ2).
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So for such a c-variable I cannot ask every question I want, but I ask a
question about a maximally observable component, and the answer is what
I say defines a state. Even though I start with a mental picture involving
unobservables, the state is defined in terms of an observable quantity.

My opinion is that we are close here in the overall goal of finding a link
between statistics and quantum mechanics; the technical details concerning
quantum mechanics are spelled out in Section 5.4 below. But I also mean that
we then must be willing to change focus sometimes in traditional theoretical
statistics. This I will come back to in Chapter 7.

In theoretical statistics there seems to be almost complete separation be-
tween experimental design theory and inference theory. In practical experi-
ments the two are linked closely together. In fact, a formulation of the experi-
mental question should almost always be an important part of the conclusion,
and in any useful investigation in biology and medicin, say, it alway is. Thus
here also, in my opinion the conclusion should, in all good experiments, be
stated as a question plus an answer. Also, all practical experiments are per-
formed in a context. In a quantummechanical setting this means that the
choice of question also is done in some context. This aspect will be discussed
in the last Section of this Chapter.

Statisticians that are close to applications, sometimes think in terms of
mental quantities that are close to my c-variables, for instance Searle in his
book [176] bases his treatment to a large extent on unestimable linear param-
eters, motivated by the fact that this gives a nicer mental picture when you
want to consider several models at the same time.

5.2 The Hilbert Spaces of a Given Experiment.

Summary: The definition of a c-system is used to construct a Hilbert space for
each single of the experiments that can be chosen in some given setting. To
make the discussion here reasonably self-contained, the mathematical concepts
of Hilbert space and L2-space are also defined.

As I continue this chapter, I will repeat the assumptions of Section 4.6 and
Section 4.7 as I need them, and then comment further upon the definition
and the axioms and use them in the mathematical development. Since we
are approaching the formal apparatus of quantum mechanics, this and the
following sections will of necessity be somewhat mathematical. I will try to
stress what I feel is the essence of the mathematics as we go along, however.
Those who want so, can concentrate on the main results.

I start with the definition of a c-system, the general framework for a hy-
pothetical set of experiments, either microscopic or macroscopic.

Definition 4.6.1. A c-system is a closed system for which there exists
a c-variable space Φ whose elements φ ∈ Φ are not estimable relative to any
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experiment, that is, they are inaccessible. There is a transformation group G
defined on Φ. The space Φ is locally compact, and the group G is transitive on
Φ. The right invariant measure under G is called ν.

Furthermore, there exists a set A of potential experiments Ea; a ∈ A on
this system. For each a ∈ A there is a maximal estimable parameter λa.

When λa is discrete, there exists a perfect experiment for λa where mea-
surement noice can be disregarded and where the resulting (pure) states are
given by statements of the form λa = λa

k.

The concept of an inaccessible c-variable should now be well known. We
must imagine that the space Φ is so large that every conceivable estimable
parameter is a function of φ. That the c-variable space is locally compact, is
a weak technical assumption. It is also a weak assumption that there exists
a transformation group G on this space. A simple example where there is a
natural such group is Example 1.3.4 with the expected survival time for two
hypothetical treatments of the same patient. In this example G can be the
time scale group.

The existence of a right invariant measure ν on Φ is proved in Theorem
A.1 in Appendix A.2.2 under weak assumptions.

A main assumption is that G is transitive on Φ. This means that the
transformation group has only one orbit on the space Φ: Starting at any point
φ0 ∈ Φ we can reach every other point in the space by an appropriate group
transformation. This property can be ensured by taking G large enough. It
may not hold if our system consists of completely separated subsystems, but
it does as a rule hold for particle systems under permutational symmetry, and
for entangled systems, which we will discuss later.

The assumption that there exist experiments Ea as stated is a relatively
weak one. It only says that the c-variable φ can be divided into parameters
λa = λa(φ) connected to experiments. Our choice of experiment a is essential;
it corresponds to our choice of focus in our investigation of the system in
question.

The parameter λa is the important one, since it is estimable in the selected
experiment Ea. Later, we will look upon the λa’s as state variables, and make
assumptions to that end. The requirement that λa is maximal, is crucial.
Mathematically it means that there exists no other estimable paramater µa

such that λa is a proper function of it.
One can imagine that λa consists of several components, and the question:

What is the value of λa? will then consist of several partial questions. The
requirement of maximality then means that this list of partial questions is as
long as it can possibly be, given the physical system in question, and given
that the questions are independent.

Recall from Definition 4.7.1 that the subgroup Ga of G was defined as the
maximal subgroup with respect to which λa(·) is a permissible function. From
Lemma 3.4.1 this subgroup always exists.
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Example 5.2.1. In the spin example in Section 4.8 we could also have used
an equivalent alternative definition: Take Ga as the maximal subgroup with
respect to which θa(·) is a permissible function, where θ is the intermediate
parameter defined there. Again this would have led to the following subgroup
of the rotation group: Ga is the group of rotations around a together with a
single rotation around an axis perpendicular to a. Then the reduction θa 7→ λa

is a reduction to an orbit of the group Ga. These orbits are all of the form
λa = ±k for some k ≥ 0; in particular the set λa = ±1 forms an orbit for the
group Ga as acting upon θa.

This example is related to the kind of model reduction that we argued for
in Chapter 3 and will give further examples of in the chapters 7 and 8: Every
sensible model reduction should be to an orbit or to a set of orbits of the
relevant group.

The definitions above are what we need to construct the Hilbert space for a
single experiment. The concept of a Hilbert space has already been mentioned
several times, and it was used in the three quantum rules in Chapter 4. Now
it is time to give the formal definitions.

Definition 5.2.1. A Hilbert space is a vector space which is closed under
the norm ‖ v ‖=

√
(v, v) formed from a scalar product (v1, v2).

This is a standard mathematical definition. A vector space is a space which
for every element v1 and v2 contains all linear combinations α1v1 + α2v2. In
this book, as is common in quantum mechanics, we will consider complex
vector spaces, i.e., the scalars α1 and α2 above may be complex numbers. The
Hilbert space may have a finite or an infinite dimension. To appreciate the
concepts involved in Definition 5.2.1, we need some further definitions:

Definition 5.2.2. A scalar product (v1, v2) in a vector space is a complex
function of the two vectors which satisfies

(α1v1 + α3v3, v2) = α∗1(v1, v2) + α∗3(v3, v2),

(v1, α2v2 + α4v4) = α2(v1, v2) + α4(v1, v4).

(v1, v2)∗ = (v2, v1),

(v, v) ≥ 0,

(u, v) = 0 for all v if and only if u = 0.

Here ∗ denotes complex conjugation. The simplest case of a Hilbert space
is a n−dimensional complex vector space, that is, a space which has a basis
{ei; i = 1, ..., n} such that every vector is a linear combination of these basis
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vectors. Then, if v1 =
∑n

i=1 βiei and v2 =
∑n

i=1 γiei, we can define the scalar
product

(v1, v2) =
n∑

i=1

β∗i γi.

Definition 5.2.3. The vector space is closed in the norm ‖ v ‖ if {vn}
converges to some vector v in the vector space whenever ‖ vm − vn ‖ tends to
0 as m and n tend to infinity. This implies that {vn} converges to v whenever
‖ vn − v ‖ tends to 0.

For our purpose in the sequence it is important to note that a space of
functions can easily be a vector space. We first need to define another standard
mathematical concept:

Definition 5.2.4. L2(Φ, ν) is the Hilbert space of complex functions f on
Φ with scalar product

(f1, f2) =
∫
f∗1 (φ)f2(φ)ν(dφ). (5.2)

It is a straightforward exercise to show that L2(Φ, ν) satisfies the definition
of a Hilbert space. Our construction of a Hilbert space for quantum mechanics
will take this space as a point of departure. We first introduce the Hilbert space
corresponding to a particular experiment.

Definition 5.2.5. Let L = L2(Φ, ν), and let the Hilbert space Ha for
experiment a be the set of functions f in L which can be written in the form
f(φ) = f̃(λa(φ)).

Of all the definitions of this Section, this may be the most important to
remember in the following: For each a, the space Ha is just the space of
functions of the simple form

f(φ) = f̃(λa(φ)).

It is clear that Ha is a linear space: The linear combination of two functions
of λa will be a function of λa. It is also a closed subspace of L: This means that
any converging sequence of functions in Ha will converge towards a function
in Ha. It is a standard result that a closed subspace of a Hilbert space is a
Hilbert space. Hence Ha is a Hilbert space.

In Helland [110] a more cumbersome definition of Ha was made, where the
sample space was taken into account. It was proved there ([110], Proposition
3) that for the case of a perfect experiment this definition coincides with our
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Definition 5.2.5. In our further development of the Hilbert space here, we will
limit ourself to perfect experiments, and come back to real experiments later.

Quantum variables like position and momentum, variables which are not
discrete, require a more elaborate formalism than the ordinary quantum
Hilbert space formalism if we want to be precise. To start with we will there-
fore limit ourselves to discrete parameters λa, and then the existence of a
perfect experiment is clear by the last part of Definition 4.6.1.

The formulation of a state in this part of Definition 4.6.1 corresponds to our
earlier definition of a state as a question plus an answer. One of our immediate
goals is to to show that this can be made equivalent to the quantummechanical
definition of a state as given by a unit vector in the common Hilbert space.

5.3 The Common Hilbert Space.

Summary: The concept of unitary operator is defined, and some basic aspects
of group representation theory are discussed. Under Axiom 1 it is shown that
the Hilbert spaces of the single experiments can be unitarily connected, and
that this can be used to construct a common Hilbert space, a basic postulate
of conventional quantum mechanics. Under Axiom 2 it is shown that this
common Hilbert space is an invariant space for a representation of the basic
group.

Our task in this section is to tie the spaces Ha together. The situation we
have in mind is one where the parameter spaces of the different experiments
have a similar structure. Then it is not unreasonable to assume that they can
be transformed over to each other by some element of the basic group G. This
will not give the most general case of the quantum-mechanical formalism, but
gives a treatment which includes qubits, higher spins, several particles with
spin and the most important cases of entanglement, a phenomenon which is
much discussed in the quantummechanical literature.

What we will do in this Section is to build one common Hilbert space
from the separate Hilbert spaces of the previous Section. This will then be our
starting point towards the formalism of quantum theory, which is built upon
one single abstract Hilbert space. Note that in order to find a valid starting
point for this task, it is enough, as we do, to construct one concrete Hilbert
space. This is because the abstract Hilbert space of quantum mechanics is
separable, a property shared by our Hilbert space constructed below, and there
is a well-known mathematical proposition saying that all separable Hilbert
spaces of the same dimension are unitarily equivalent, that is, there is a unitary
invertible linear transformation between each pair of them. The definitions
follow.

Definition 5.3.1. a) A Hilbert space H is called separable if there is a
countable basis {ei} in H such that each vector v ∈ H can be written in the
form of a convergent sum
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v =
∑

i

βiei.

b) A linear operator U in the Hilbert space H is called unitary if

(Uv1, v2) = (v1, U−1v2)

for all v1, v2 ∈ H.

In the finite-dimensional case a unitary operator will be a unitary complex-
valued matrix. A square matrix U is unitary if we get its inverse by transposing
and then taking its complex conjugate.

A direct verification gives: The product of two unitary operators is unitary.
The inverse of a unitary operator is unitary.

Since we now will go from a set of axioms involving symmetry and groups
to a vector space formulation, it turns out to be useful to represent group
elements as matrices, or more generally, as operators on some vector space.
This leads to the well known mathematical area called group representation
theory. To give an analogy which should not be taken too literally: In a similar
way as characteristic functions are used in probability theory to characterize
probability distributions, representations of group elements as operators on
some vector space may be used to characterize the relevant groups.

Definition 5.3.2. A representation V of a group G on a vector space L
is defined as a homomorphism from G to the space of operators on L, i.e.. a
group of operators which satisfy

V (gh) = V (g)V (h) whenever g, h ∈ G (5.3)

The representation is called unitary if all the operators V (g) are unitary.

With the basic group G defined as in Definition 4.6.1 repeated in Section
5.1, the simplest case is the following

Definition 5.3.3.The right regular representation U of G on L = L2(Φ, ν)
is defined by

U(g)f(φ) = f(φg). (5.4)

It is straightforward to verify that each U(g) is a linear operator, and that
the homomorphism property (5.3) holds:

U(gh)f(φ) = f(φgh) = U(g)f(φh) = U(g)U(h)f(φ).
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Lemma 5.3.1. The right regular representation is a unitary representa-
tion.

Proof.

(U(g)f1, f2) =
∫
f∗1 (φg)f2(φ)ν(dφ) =

∫
f∗1 (φ)f2(φg−1)ν(dφ) = (f1, U(g)−1f2).

Here the invariance property of the measure ν was used. Note that in
all the proofs here, as in the introduction of the right-invariant measure in
Chapter 3, our convention of placing the group element to the right of the
element to be transformed, leads to the simplest formulation.

Going from G to the subgroup Ga, we get a subgroup Ua of U , again a
group of unitary operators, the regular representation of the group Ga.

Proposition 5.3.1. The Hilbert space Ha is an invariant space for the
representation Ua:

Ua(g)f ∈ Ha whenever g ∈ Ga , f ∈ Ha. (5.5)

Again the verification is straightforward: If f ∈ Ha, then f(φ) = f̃(λa(φ)).
Therefore, for g ∈ Ga:

Ua(g)f(φ) = f̃(λa(φg)),

so Ua(g)f ∈ Ha.
Invariant spaces turn out to be important in group representation theory.

A summary of this theory is given in Appendix A.2.4.

After this introduction, it is time to repeat the axioms from Section 4.7.The
following one is crucial:

Axiom 1. For each pair of experiments a, b ∈ A there is an element gab

of the basic group G which induces a correspondence between the respective
parameters:

λb = λagab or λ
b(φ) = λa(φgab). (5.6)

This assumption is fairly strong, and it makes the task of connecting the
spaces really simple. On the other hand, it seems to be satisfied in concrete
cases. The same assumption will be needed in Secton 5.5.

A simple example is the triangle in a sphere case discussed in Section 4.5,
where the group G is either the rotation group or the permutation group. Any
rotation/ permutation which takes window a to window b can be used as gab.
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In the electron spin case Φ was a space of vectors, G was the rotation
group together with changes of scale. Then (5.6) holds if gab is any rotation
transforming a to b.

If (5.6) holds for transformations on some component spaces, it also holds
for the cartesian product of these spaces when the relevant cartesian product
of groups are used.

Another interesting relation is connected to Axiom 1 in the following way:
The relationship (5.6) implies that one must have λbgb = λagagab for some
gb ∈ Gb. Hence it follows that λagabg

b = λagagab, so, since the two group
elements below act upon λa in the same way:

Lemma 5.3.2. It follows from Axiom 1 that ga = gabg
bg−1

ab .

One can give many examples of group transformations where ga =
gabg

bg−1
ab holds in general, giving a homomorphism between the groups Ga

and Gb. This relation
ga = gabg

bgba

is what mathematicians call an inner homomorphism between group elements,
or really an isomorphism. An isomorphism means that essentially the same
group is acting upon both spaces Λa = {λa} and Λb = {λb}, and often in such
cases the same group element symbol is used. We will use different symbols,
however, because the actions are related to different experiments.

Axiom 1 will be crucial in connecting the Hilbert spaces Ha for the different
experiments. First, from the construction of the Hilbert spaces, Ha is a space
of functions of λa(φ), and Hb is a space of functions of λb(φ). Furthermore,
the spaces are constructed in the same way. Specifically, if fa(φ) = f̃(λa(φ))
and f b(φ) = f̃(λb(φ)), then by (5.6) we have

f b(φ) = fa(φgab) = U(gab)fa(φ). (5.7)

Here U is the right regular representation of the group G. This implies

Theorem 5.3.1. a) There is a connection between the spaces Ha and Hb

given by
Hb = U(gab)Ha. (5.8)

b) There is a Hilbert space H, and for each a ∈ A a unitary transformation
Ra such that Ha = RaH.

Proof.
a) Proved above.
b) Obvious from (5.8). The space H can be chosen as any fixed Hc.

Now introduce an axiom which ensures that the set of transformations on
the parameters λa of the perfect experiments Ea generate all the transforma-
tions in the transitive group G on the c-variable space Φ.
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Axiom 2. The group G is the smallest group containing all the subgroups
Ga; a ∈ A.

From this we get:

Theorem 5.3.2. H is an invariant space for some abstract representation
(possibly multivalued) W of the whole group G.

Proof.
It follows from Proposition 5.3.1 that Ha is an invariant space for the

group Ga.
This can now be extended. Observe first that the definition

W (g1g2g3) = Ra(−1)Ua(g1)RaRb(−1)U b(g2)RbRc(−1)U c(g3)Rc (5.9)

gives a representation on H of the set of elements in G that can be written
as a product g1g2g3 with g1 ∈ Ga, g2 ∈ Gb and g3 ∈ Gc.

Continuing in this way, using Axiom 2, implying that the group G is gener-
ated by {Ga; a ∈ A} we are able to construct a representation W of the whole
group G on the space H. In particular, one is able to take H as an invariant
space for a representation of this group. Since different representations of g
as a product may give different solutions, we have to include the possibility
that W may be multivalued.

As an example, the two-dimensional Hilbert space of a particle with spin
is an irreducible invariant space for the rotation group with a two-valued
representation SU(2) - upon the set of unitary 2-dimensional matrices with
determinant +1. Such a representation determines to a large extent H. In
general, the requirement that H should be a representation space for G may
put a constraint on the dimension of H.

The construction above gives a concrete representation of the quantum
mechanical Hilbert space. Since all separable Hilbert spaces of the same di-
mension are unitarily equivalent, other representations - or just an abstract
representation - may be used in practice. This is sufficient to give the Born
formula as proved below, and through this the ordinary quantum formalism.
But the concrete representation facilitates interpretation.

5.4 States and State Variables.

Summary: The basic elements of conventional quantum theory are constructed
from our setting: First the state vectors of the Hilbert space are constructed
and shown each to be in one-to-one correspondence with a focused question
concerning the value of a maximal parameter together with a crisp answer of
this question. Next we construct an operator corresponding to the parameter
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which has the state vector as an eigenvector and the crisp parameter value as
an eigenvalue. It is shown that in general it is not true that all unit vectors
in the Hilbert space can be given such an interpretation: Among other things
superselection rules may exclude certain vectors. Finally I look briefly at the
case of a compound parameter and correspondingly a Hilbert space which is a
direct product of single spaces.

By what has just now been proved, for each a there is a Hilbert space Ha

of functions of λa, and these can be put in unitary correspondence with a
common Hilbert space H. In this Section and the next few we shall make an
assumption which is common in elementary quantum mechanics, but which
is very restrictive from a statistical point of view, namely the assumption of
discreteness:

Axiom 3. Each parameter λa assumes a finite or denumerable set of
values.

This is consistent with Definition 4.6.1 and the existence of a perfect ex-
periment for λa. In the finite case Axiom 3 implies that the group Ga acts
upon λa as a group of permutations.

The following result may be of some interest:

Lemma 5.4.1. These discrete values can be arranged such that each λa
k =

λk is the same for all a (k=1,2,...).

Proof.
By Axiom 1

{φ : λb(φ) = λb
k} = {φ : λa(φgab) = λb

k} = {φ : λa(φ) = λb
k}gba.

The sets in brackets on the lefthand side here are disjoint with union Φ.
But then the sets on the righthand side are disjoint with union Φgab = Φ, and
this implies that {λb

k} gives all possible values of λa.
In the finite case we get that Ga, as acting upon λa, is a group of permuta-

tions, and that the corresponding invariant measure is the counting measure.
In spite of Lemma 5.4.1, since in a statistical model a parameter always

can be changed to any one-to-one function of it. I will keep the notation λa
k

in order to have the most general treatment.

I will now consider my claim that quantum mechanical state can be as-
sociated in a unique way by a focused question together with a crisp answer.
this will be taken as a definition, and then I will show that this definition
makes sense in a quantummechanical setting.

Look first at the spin 1/2 case; there one can get a direct characterization:
Let the question be about the spin in direction a, and let the answer be +1,
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then define as an abbreviation for this state, the 3-vector u = a. If the answer
is -1, let the state be characterized by the 3-vector u = −a. This is consis-
tent, since the latter state also can be result +1 from a chosen measurement
direction −a. Thus from my definition, the state can be characterized by a
3-vector u. For further development, see Proposition 5.6.3 below.

In the general Hilbert space every normalized vector is the eigenvector of
some operator T , and if this operator corresponds to a meaningful physical
variable, then one has a question and answer situation. It turns out to be
some uniqueness here under the stated assumptions. I start by the component
Hilbert space.

Definition 5.4.1. In the space Ha let fa
k (φ) be defined as the trivial func-

tion
fa

k (φ) = 1 when λa(φ) = λa
k, (5.10)

otherwise fa
k (φ) = 0. These functions are orthogonal basis functions for Ha.

The functions fa
k are also eigenfunctions of the operator Sa defined by

Saf(φ) = λa(φ)f(φ). (5.11)

Since λa is a maximal parameter by Definition 4.6.1, the eigenfunctions
above are nondegenerate.

Now we turn to the common Hilbert space H. Recall from Theorem 5.3.2
that H is an invariant space under the representation W of the group G.
It may perhaps be illuminating to mention that in the case of a compact
group G, it is a standard result from group representation theory [19] that
every representation is a subrepresentation of the right regular representation.
Hence in this case, each W (g) acts as the component of U(g) along the W -
invariant space H.

Also recall that U(gac)fa
k belongs to H = Hc; in fact it is one of the

functions fc
j since fa

k (φgac) = I(λa(φgac) = λk) = fc
j (φ) for some j by Lemma

5.4.1.

Definition 5.4.2. In the space H = Hc the functions fa
k correspond to

the vectors va
k defined by

va
k(φ) = W (gca)fa

k (φgac) = W (gca)U(gac)fa
k (φ). (5.12)

By definition va
k is the state vector corresponding to the question: What is the

value of λa? together with the answer: λa = λa
k.

Remark 1. If W is multivalued, one of the branches is selected.

Remark 2. It is convenient here, as in ordinary quantum mechanics, to
give the same interpretation to unit vectors va

k which are the same except for
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a constant phase factor. This can be done by redefining fa
k as any function of

the form f(φ) = exp(iγ)I(λa(φ) = λa
k). The interpretation of any such fa

k is
the same.

Remark 3. For each a the vectors {va
k} form an orthogonal basis for the

space H. In the p-dimensional case, if the measure ν is normalized such that
ν({φ : λa(φ)}) = 1/p, the basis is orthonormal.

Remark 4. In general, the vectors va
k are eigenvectors of the selfadjoint

operator
T a = W (gca)U(gac)SaU(gca)W (gac) (5.13)

with eigenvalues λa
k. Hence we have the result:

Theorem 5.4.1. For each a there is an operator T a on the Hilbert space H
which corresponds to the perfect experiment Ea with the parameter λa. These
operators have eigenvectors va

k with eigenvales λa
k.

Note that by the unitary transformation, the vectors va
k are unit vectors

when the fa
k are. An eigenvector va

k by definition represents the statement
that the parameter λa has been measured with a perfect measurement that
has given the value λa

k. In fact the unit vectors in H correspond in a unique
way to such a question-and-answer pair if there is a correspondence at all:

Theorem 5.4.2. a) Assume that two vectors in H satisfy va
i = vb

j , where
va

i corresponds to λa = λa
i for a perfect experiment Ea and vb

j corresponds to
λb = λb

j for a perfect experiment Eb. Then there is a one-to-one function F

such that λb = F (λa) and λb
j = F (λa

i ).
b) Each va

k corresponds to only one (λa, λa
k) pair except possibly for a

simultaneous one-to-one transformation of the latter.

The proof of Theorem 5.4.2 is given in Appendix A.3.2. IfW is multivalued,
the same proof shows that the answer λa = λa

k is independent of which branch
is selected to define va

k .

Above we started with indicator functions fa
k in Ha as eigenfunctions of Sa

with eigenvalues λa
k. These indicator functions can be transformed in the nat-

ural way by the group elements ga ∈ Ga, the subgroup of transformations of
Λa, and by the corresponding regular unitary representation operators U(ga).

Proposition 5.4.1. If fa
k is an eigenfunction for Sa with eigenvalue λa

k,
then U(ga)fa

k is an eigenfunction for Sa with eigenvalue λa
kg

a.

The proof uses the fact that U(ga)fa
k (φ) = f̃a

k ((λaga)(φ)), so Safa
k = λa

kf
a
k

implies U−1(ga)SaU(ga)fa
k (φ) = λa

kg
afa

k (φ).
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Recall now from Theorem 5.3.1 that Ha = RaH implies Ra = U(gca).

Corollary 5.4.1. Let W (ga) = W (gca)U(gac)U(ga)U(gca)W (gac) be the
operator on the basic Hilbert space H corresponding to U(ga) on Ha. Then
the following holds: If va

k is an eigenvector for T a with eigenvalue λa
k, then

W (ga)va
k is an eigenvector with eigenvalue λa

kg
a.

The proof of Corollary 5.4.1 is given in Appendix A.3.2.

For some cases, like with the electron spin, it can be demonstrated directly
that that the set of unit vectors va

k as k and a vary constitute all the unit
vectors in H, if we include a trivial phase factor. In general it is not true
that all unit vectors of H can be given such an interpretation. Among other
things, one has to take into account what is called superselection rules: For
an absolutely conserved quantity µ, the linear combinations of eigenvectors
corresponding to different eigenvalues of the operator associated to µ are not
possible state vectors. Superselection rules are well known among physicists,
but they are not always stressed in textbooks in quantum mechanics.

It is a general theorem from representation theory [19] that every finitedi-
mensional invariant space can be decomposed into a direct sum of irreducible
invariant spaces. Recall that an invariant space is irreducible if it contains no
further invariant space. Thus we have

Ha = Ha
1 ⊕Ha

2 ⊕ . . . ,

where the Ha
i are irreducible representation spaces under Ua(g).

By doing this in both the experiments Ea and Eb we see that we can
assume that the relation

Ua(ga)U(gab) = U(gab)U b(gb)

holds separately between irreducible spaces on each side. If Ha
1 is a space of

functions of λa(φ), irreducible under Ua, then

U(gab)Ha
1

must be a space of functions of λb(φ), irreducible under U b. This gives unitary
relations between pairs of irreducible spaces, one for each experiment, and the
space Hb has a conformable decomposition Hb

1 ⊕Hb
2 ⊕ . . ..

It follows also that H = H1 ⊕H2 ⊕ . . . conformably, and that there is a
unitary connection Ha

i = Ra
i Hi.

Summarizing the above discussion we have:

Theorem 5.4.3. The basic Hilbert space H can be decomposed as H =
H1 ⊕ H2 ⊕ . . ., where each Hi is an irreducibel invariant space under the
representation {W (g)} of the group G. Each part corresponds to a fixed value
of one or several quantities that are conserved under all experiments.



5.4 States and State Variables. 143

Again the question is if all unit vectors of the spaces Hi are possible
state vectors. This will not be true in general, but will be proved in Section
5.6 to hold in the electron spin case. In the general case it might be that
the Hilbert spaces Hi contain other orthonormal sets of basis functions than
the va

k constructed above. Each such set of basis functions together with a
corresponding set of eigenvalues lead to an operator T . Thus, if this operator
has some physical meaning, then in the same way as above, we can say that
each eigenvector corresponds to some question plus a crisp answer. But in this
case, the question is not of the simple form: What is the value of λa? for any
of the parameters λa considered earlier.

To conclude: In simple terms a state is characterized by the fact that a
(maximal) perfect measurement is performed, and this has lead to some value
of the corresponding maximal parameter. Concretely: A perfect experiment
a ∈ A has led us to consider the Hilbert space Ha, and the result λa = λa

k is
exactly characterized by the indicator function fa

k . Translated to the H-space,
the state given by the information λa = λa

k is then characterized by the vector
va

k .
A word should be inserted on my use of parameters here. Usually in quan-

tum mechanics a state of the spin of an electron is specified by saying that,
say, the spin component in direction a is equal to +1. In my formulation I
say that the parameter λa has been measured to be equal to +1. But I stress
then that the measurement should be in terms of a perfect experiment. And
saying that a component is equal to +1 and saying that the component has
been measured by a perfect experiment to be equal to +1, amounts to nearly
the same thing. And it amounts to exactly the same thing if we adhere to an
epistemological interpretation of quantum mechanics, which I do throughout
this book.

This is consistent with the well known quantum mechanical interpretation
of a state vector. In my treatment, this interpretation of a state as a question-
answer pair is crucial.

The operator T a may be written

T a =
∑

k

λkv
a
kv

a†
k . (5.14)

The expression † is here met for the first time, and will also be encountered
later. Roughly, va†

k is a row vector, the transpose and complex conjugate of
the coloumn vector va

k . This interpretation is precise in the finite-dimensional
case. In general the definition is given by va†

k u = (va
k , u) for all u.

The operators T a are selfadjoint, meaning that T a† = T a in a similar
interpretation. This implies that the operators have real eigenvalues λa

k. They
also satisfy the trivial relation va†

k T ava
k = λa

k.

Using the results of this section to construct the joint state vector for
a system consisting of several partial systems, with symmetries only within
the partial systems, one follows the recipe va1a2a3

k1k2k3
= va1

k1
⊗ va2

k2
⊗ va3

k3
, where
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it is assumed that system k is in state λar = λkr for r = 1, 2, 3. By time
development under interaction, as described by the Schrödinger equation, or
by other means, other, entangled, multicomponent states will occur. This will
be further discussed in Chapter 6.

5.5 The Born Formula.

Summary: The purpose of this Section is to prove Born’s formula from my
assumptions. Born’s formula is the celebrated quantummechanical result say-
ing how, knowing the state vectors, we can compute the transition probability
from one state to another.

We have now obtained a statistical interpretation of the quantum mechan-
ical Hilbert space: Unit vectors in that space can be equivalently characterized
as question-answer pairs, and, furthermore, the Hilbert space is invariant un-
der a suitable representation of the basic group G.

To complete deriving the formalism of quantum mechanics from the statis-
tical parameter approach the most important task left is to arrive at the Born
formula, which gives the probability of transition from one state to another.
The fact that such a formula exists, is amazing, and must be seen as a result
of the symmetry of the situation together with the fact that each parameter
λa is maximal and together with the limitation imposed by the Hilbert space.
Even though I use a different approach, my own result is related to recent
attempts to link the formula to general decision theory: An interesting devel-
opment which goes in this direction was recently initiated by Deutsch [58].
The approach of Deutsch has been criticized by Finkelstein [79], by Barnum
et al. [16] and by Gill [93], who gave a constructive set of arguments using
three reasonable assumptions.

In this Section I will concentrate on the case with one irreducible compo-
nent in the Hilbert space, i.e., I will neglect superselection rules. This is really
no limitation, since transitions between different components are impossible.

What I am going to prove, is a result connecting two different perfect ex-
periments in the same system. Assume that we know from the first perfect
experiment that λa = λa

k. Next assume that we perform another perfect ex-
periment b ∈ A. In both cases, the notion of perfect measurement means that
measurement error can be neglected. More realistic experiments are treated in
Section 5.6 below. In the perfect case it turns out that we can find a formula
for

P (λ̂b = λb
i |λa = λa

k) = P (λb = λb
i |λa = λa

k)

which only depends upon the state vectors va
k and vb

i .
This formula has a large number of important consequences in quantum

mechanics, and, as already said, it can be argued for in different ways. I will
prove it from the following
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Axiom 4. (i) The transition probabilities exist in the sense that the prob-
abilities above do not depend upon anything else.

(ii) The transition probability from λa = λa
k in the first perfect experiment

to λa = λa
k in the second perfect experiment is 1.

(iii) For all a, b, c we have that µ(φ) = λa(φgbc) is a valid experimental
parameter.

(iv) For all a, b, c, i, k we have

P (λb(φ) = λb
i |λa(φ) = λa

k) = P (λb(φgbc) = λb
i |λa(φgbc) = λa

k)

Remarks.
1) Crucial assumptions will also be those implicit in Definition 4.6.1, that

a common sample space can be used in all experiments, and Axiom 1. The
assumption (i) the the transition probability exists may be related to the
assumption that each parameter λa is maximal.

2) We have λb(φgbc) = λc(φ), so three experimental parameters are in-
cluded in Axiom 4.

3) In the proof below I need to transform a single experiment by some
element of G. The use of the transformation g on the complete sufficient
statistics t is then justified by Proposition 3.11.2.

Born’s formula is given by:

Theorem 5.5.1. Under the assumptions above the transition formula is
as follows:

P(λb = λb
i |λa = λa

k) = |va†
k vb

i |2. (5.15)

The proof will depend upon a recent variant (Busch [38]; Caves et al.
[40]) of a well known mathematical result by Gleason [95]. One advantage of
this recent variant is that it also is valid for dimension 2, when the ordinary
Gleason Theorem fails.

The Busch-Gleason’s theorem. Consider any Hilbert space H. Define
the set of effects as the set of operators on this Hilbert space with eigenvalues
in the interval [0, 1]. Assume that there is a generalized probability measure π
on these effects, i.e., a set function satisfying

π(E) ≥ 0 for all E,
π(I) = 1,∑

i π(Ei) = π(E) for effects Ei whose sum is an effect E.
Then π is necessarily of form π(E) = tr(ρE) for some positive, selfadjoint,

trace 1 operator ρ.
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Remark.
As will be further discussed in the next Section, a positive, selfadjoint

operator on H is an operator of the form

ρ =
∑

k

πkvkv
†
k,

where {vk} is an orthonormal basis for H, and all πk ≥ 0. This operator has
trace 1 if

∑
k πk = 1.

The effects involved in the Busch-Gleason theorem turn out to have a
rather straightforward statistical interpretation. Look at an experiment b,
corresponding to a parameter λb which can take the values λb

i . Let the result
of this experiment be given by a discrete complete sufficient statistic t, thus
allowing for an experimental error. Let t have a likelihood

pi(t) = P (t|λb = λb
i ).

The choice of experiment b, the set of possible parameter values {λb
i} and

the result t again constitute a question-and answer set, but now in a more
advanced form. The point is that the answer is uncertain, so that all these
elements together with the likelihood function must be included to specify the
question-and-answer.

Proposition 5.5.1. Exactly this information, the experiment b, the pos-
sible answers and the likelihood for the statistic t can be recovered from the
effect defined by:

E =
∑

i

pi(t)vb
i v

b†
i . (5.16)

On the other hand, for fixed t every effect E can be written in the spectral
form (5.16).

Proof.
This is a spectral decomposition from which the eigenvalues pi(t) and

the eigenvectors vb
i can be recovered. As discussed before, the eigenvectors

correspond to the question-and-answers for the case without measurement
errors, and from the likelihood the minimal sufficient observator t can be
recovered. The last part is obvious.

All this will be further discussed in Section 5.7.

Consider now the situation where a quantum system is known to be in a
state given by va

k , that is, a perfect experiment a has been performed with
result λa = λa

k. Then make a new experiment b, but let this experiment
be non-perfect. We require the probability π(E) that the result of the latter
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experiment shall be t, corresponding to the effect E given by (5.16). For this
situation it is natural to define

π(E) =
∑

i

pi(t)P (λb = λb
i |λa = λa

k). (5.17)

An important point in our development is that under Axiom 4, this π,
when ranging over all the effects E will be a generalized probability. The
crucial result is the following

Proposition 5.5.2. Under Axiom 4, if E1, E2 and E1 + E2 all are effects,
then

π(E1 + E2) = π(E1) + π(E2).

Proof.
Let E1 = E be given by (5.16), and let

E2 =
∑

j

qj(t)vc
jv

c†
j

for another experiment c with another likelihood qj .
First we remark that the relations π(rE1) = rπ(E1) and π(E1 + E2) =

π(E1) + π(E2) are trivial when E1, E2, rE1 and E1 + E2 are all effects and all
vc

i = vb
i .

We now turn to the general case. The statistic t may then be assumed to
be sufficient and complete with respect to both likelihoods. By Axiom 1 the
parameters of the two experiments are connected by a group transformation.
Then by imitating the argument in the proof of Proposition 3.11.2, a com-
plete sufficient statistic for experiment b can be transformed by an isomorphic
group transformation to a complete sufficient statistic for experiment c; hence
the complete sufficient statistics for the two experiments may be assumed
identical.

Consider the experiment E3 defined by selecting experiment E1 with prob-
ability 1/2 and experiment E2 with probability 1/2. Since the same measure-
ment apparatus was used in both experiments, one can arrange things in such
a way that the person reading t for experiment E3 does not know which of the
experiments E1 or E2 that is chosen. This arrangement is necessary in order to
avoid that the conditionality principle should disturb our argument for this
situation; see Aitkin [10] and the response to these comments. We can regard
E3 as a genuinely new experiment here.

Now use Axiom 1. From this Axiom there exists a group element gbc such
that λc(φ) = λb(φgbc). We can, and will, rotate experiment b in such a way
that all final state vectors coincides with those of experiment c. Then from
Axiom 4, the transition probability to experiment E2 is the same as if a rotated
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initial state was chosen, the state vectors vb
i were chosen, but with a different

likelihood q′i(t) = qi(tgbc).
From this perspective, the experiment E3 can also be related to the same

state vectors, but with a likelihood

ri(t) =
1
2
(pi(t) + q′i(t)). (5.18)

The statistic t will be sufficient relative to this likelihood, but may not be
complete or minimal. However, this is not needed for our argument.

This gives

π(E3) =
1
2
π(E1) +

1
2
π(E2) (5.19)

for experiments transformed to have the same final states.
We can now transform back so that all three experiments have the same

intial state. Since experiment E3 in the rotated form had the same question-
and-answer form as the other two experiment, only with a different likelihood
(5.18), this experiment must also correspond to some effect. Then from (5.19),
Axiom 4 and the fact that the same sample space is used for all three experi-
ments both in the original and in the rotated version, the transition probability
must satisfy

π(E3) = π(
1
2
(E1 + E2)) =

1
2
π(E1) +

1
2
π(E2). (5.20)

If E1 + E2 is an effect, the factor 1/2 can be removed throughout by suitably
redefining the likelihood.

Proposition 5.5.3. For fixed initial state λa = λa
k, the set function defined

by (5.17) from the transition probability will under Axiom 4 be a generalized
probability on the final effects.

Proof.
The additivity property for a finite number of effects follows by induction

from Proposition 5.5.2. The argument of Proposition 5.5.2 can also be used
with a countable set of effects, so the additivity property for generalized effects
follows for these set functions.

It is obvious that π(E) ≥ 0. The limiting effect I corresponds to an ex-
periment and experimental result with likelihood 1 on each single parameter
value, and it is clear that the transition probability to this effect must be 1
from every initial state.

Proof of Theorem 5.5.1.
Fix a and k and hence the state va

k , interpreted as λa = λa
k. Define qa,k(v) =

πa,k(E) to be equal to the transition probability from va
k to the effect E = vv†

for an arbitrary state vector v, assumed to exist in Axiom 4. Generalize to
any E by (5.17). By Proposition 5.5.3 the conditions of the Busch-Gleason
theorem are satisfied.



5.6 The Electron Spin Revisited. 149

By this Theorem, for any v ∈ H, we have πa,k(vv†) = v†ρv for some ρ,
which is positive, self-adjoint and has trace 1. This implies ρ =

∑
j cjuju

†
j for

some orthogonal set of vectors {uj}. Selfadjointness implies that each cj is
realvalued, and positivity demands cj ≥ 0 for each j. The trace 1 condition
implies

∑
j cj = 1.

Inserting this gives πa,k(vv†) =
∑

j cj |v†uj |2. Specialize now to the par-
ticular case given by v = va

k for some k. For this case one must have∑
j cj |v

a†
k uj |2 = 1, and thus∑

j

cj(1− |va†
k uj |2) = 0.

This implies for each j that either cj = 0 or |va†
k uj | = 1. Since the last

condition implies uj = va
k (modulus an irrelevant phase factor), and this is

a condition which only can be true for one j, it follows that cj = 0 for all
other j than the one leading to uj = va

k , and cj = 1 for this particular j.
Summarizing all this, we get ρ = va

kv
a†
k , and Theorem 5.5.1 follows.

The results above are valid and have relevance also outside quantum the-
ory. In Chapter 7 I will sketch a large scale example where, using Born’s
formula, the prior probability of a second experiment is found, given the re-
sult of a first experiment. The main point is that we have an experimental
situation with sufficient symmetry across experiments.

By the same proof, Born’s formula can be generalized to P (E|λa = λa
k) =

va†
k Eva

k for an arbitrary final effect E (cp. also Section 5.6 below). This gives
a transition probability from any state vector va

k ∈ H.
Recall that H was originally defined using perfect experiments. Using

Born’s formula, it can be seen that a large class of experiments take the
same Hilbert space as a point of departure.

5.6 The Electron Spin Revisited.

Summary: The theory of this chapter is illustrated in the simplest possible
setting: The spin state of an electron, equivalently and more generally the
spin state of a spin 1/2 particle, or even more generally, the state of what is
called a qubit, which is a central concept for the recent development of quantum
informatics.

Recall that in Section 4.7 the electron spin was modelled by an inaccessible
three dimensional vector φ, and that the observable parts were just λa =
sign(φ ·a) for given vectors a. For each a this is a quantized parameter taking
the value ±1. The group G acting upon φ was the rotation group together
with possible changes of scale.
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The Hilbert space Ha connected to a perfect measurement in the direction
a is according to Definition 5.2.5 given by all functions of λa. This is a two-
dimensional vector space, since every such function can be written as

I(λa = −1)f(−1) + I(λa = 1)f(1).

Thus a basis for Ha can be taken as (1, 0)T and (0, 1)T , where the first coordi-
nate is the indicator that λa is −1, and the second coordinate is the indicator
that λa is +1.

According to Theorem 5.3.1, a common Hibert space for all these exper-
iments can be taken to be one fixed Hc, and by Theorem 5.3.2 there is a
representation of the whole group G upon this space. It is well known that
the rotation group has a two-valued representation by the group SU(2) of
unitary, two-dimensional matrices with determinant one.

This representation can be given explicitly by the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.21)

For instance, a rotation transforming φ0 = (1, 0, 0)T to φ = (α, β, γ)T in
the plane spanned by these two vectors, can be characterized by the two-
dimensional matrix(

γ α− 1− iβ
α− 1 + iβ −γ

)
= (α− 1)σx + βσy + γσz. (5.22)

By transforming by these unitary matrices, we get the important result:

Proposition 5.6.1.
All unit vectors in the electron spin Hilbert space H are possible state

vectors.

Each of these state vectors gives a crisp answer to a question of the type:
What is the value of λb?, the answer being of the form λb = −1 or λb = +1.

In a more common quantummechanical language this means that the op-
erator T b = b · σ = bxσx + byσy + bzσz for a real-valued vector b = (bx, by, bz)
has eigenvalues ±1, and the eigenvectors have a state vector interpretation
corresponding to a perfect spin measurement in the direction b. Let these two
eigenvectors, which will be orthogonal, be vb

1 and vb
2.

This means that the two one-dimensional projections vb
1v

b†
1 and vb

2v
b†
2 will

be orthogonal. Many textbooks discuss the Bloch sphere representations of
these projections:

vb
1v

b†
1 =

1
2
(I + b · σ), (5.23)

vb
2v

b†
2 =

1
2
(I − b · σ). (5.24)
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The transition probabilities between states defined by spin in different
directions are found from the Born formula, which gives

Proposition 5.6.2

P (λb = +1|λa = +1) =
1
2
(1 + cos(a, b)). (5.25)

Proof.

|va†
1 vb

1|2 = tr(va
1v

a†
1 vb

1v
b†
1 ) = tr(

1
4
(I + a · σ)(I + b · σ))

= tr(
1
4
(I + (a+ b) · σ + a · bI)) =

1
2
(1 + a · b).

The state as a question-and-answer pair can in fact be represented in many
ways. One way is simply by the 3-vector u = λaa. We can recover both the
question and the answer from this vector, since a spin component -1 in the
direction a is equivalent to a spin component +1 in the direction −a.

Finally then, it is obvious that a specification of u is equivalent to a spec-
ification of the Bloch sphere matrix

ρ =
1
2
(I + u · σ),

which again by (5.23) and (5.24) is equivalent to specifying the state vector.
Thus, summarizing:

Proposition 5.6.3.
The spin state can be given in any of four different ways: (1) as a question

a together with an answer λa; (2) by the 3-vector u; (3) by the Bloch sphere
matrix ρ; (4) by the Hilbert space state vector v.

5.7 Statistical Inference in a Quantum Setting.

Summary: In this Section the rules for statistical inference in a quantum me-
chanical setting are derived from the results of this chapter and discussed from
several points of view. The concepts of density matrix and effect are connected
to experiments. Hypothesis testing with a single hypothesis and a single alter-
native is generalized to the electron spin setting. Operator valued measures are
introduced and showed to have a natural interpretation.

I have stated repeatedly that a state vector va
k can be interpreted as a

focused question: What is λa? together with a crisp answer: λa = λa
k. As



152 5 QUANTUM MECHANICS FROM A STATISTICAL BASIS.

k varies, the vectors va
k form an orthonormal basis of the Hilbert space H.

Since the phase of va
k is irrelevant, one might as well say in general that the

question-and-answer pair is equivalent to the one-dimensional projection

ρa
k = va

kv
a†
k , (5.26)

where the last vector may be thought of as va
k , transposed and complex con-

jugated.
Now I want to go one step further: In many cases one can pose a question,

and the answer is uncertain in the sense that we only have a probability
distribution over the possible answers. In the experimental setting that we
are discussing here, we can imagine 3 possible such situations: 1) We have
a prior probability distribution πk over the possible answers; 2) After the
experiment we have a posterior probability distribution πk over the possible
answers; 3) Another experiment b has been performed, and from the result of
this, the probability distribution of the result of our experiment is given by
Born’s formula

πk = P (λa = λa
k|λb = λb

i ) = |vb†
i v

a
k |2.

In all these cases we can, in the manner common in quantum physics, introduce
the uncertain state by the density matrix

Definition 5.7.1. The density matrix is given by

ρ =
∑

k

πkv
a
kv

a†
k . (5.27)

From this formula one can infer the choice of perfect experiment a, the
possible parameter values and the probability of each parameter value. On the
other hand, every positive selfadjoint operator with trace (sum of eigenvalues)
equal to 1 is a possible density matrix. Note that the crisp states defined by
(5.26) are special cases.

The next step is to turn to real, non-perfect experiments. Then, given the
choice of experiment a and the parameter value λa

k, we assume an ordinary
statistical model. Since the parameter is discrete, we limit ourselves here to
the case with discrete data, also. Assume that the probability of ya, given the
experiment a with parameter value λa

k, is p(ya|λa
k).

The definition implied by Proposition 5.5.1 is repeated here for conve-
nience.

Definition 5.7.2. The effects are defined as the operators

E(ya) =
∑

k

p(ya|λa
k)va

kv
a†
k . (5.28)
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For each given data point ya the effect E(ya) is a selfadjoint positive op-
erator. Note that this is the spectral decomposition of the operator E(ya), so,
given this operator, we can recover the eigenvales p(ya|λa

k) and the eigenvec-
tors va

k . Thus we can read from the operators which experiment, that is, ques-
tion and possible answers, is performed, together with the statistical model
for given data, in statistical terms the likelihood. In other words, the opera-
tor E(ya) contains all the information that is necessary for doing statistical
inference.

Let us first specialize this to the case of a parameter taking only two pos-
sible values, like in the electron spin case. We let the two values be +1 and -1.
From a statistical point of view this also corresponds to the Newman-Pearson
case where one can test a single hypothesis against a single alternative. So we
will look upon a hypothesis testing problem in this situation with level α and
power β.

In our connection this means the following: First the experiment a is cho-
sen. Then, before any data are obtained, we make a programme stating how
our decision procedure shall be. This goes as follows:

1) The decision shall be based upon an observator ta, a function of the
observations, which also takes the values +1 or -1,

2) This choice of ta shall be made in such a way that the two error proba-
bilities are fixed: If the correct parameter is λa, then P (ta = −1|λa = +1) = α
and P (ta = +1|λa = −1) = 1− β.

In common statistical language this means that we are testing the hypoth-
esis H0 : λa = +1, and this hypotesis is rejected if ta = −1. Then α is the
level of the test, the probability of wrong rejection, while β is the power of
the test, the probability of rejecting the hypothesis when you should.

Note that this is still a state of the question/ answer type, albeit in a more
advanced form: The question is given by the three-vector a and the two pre-
determined error probabilities α and 1− β. The answer is given by λa = +1,
say, which is the conclusion we claim if we observe ta = +1. So the state must
involve all the quantities b, α, β and the answer ±1.

Say that we have done the experiment and reported the value +1. Then
we again will use a weighing according to the error probabilities, even though
these at the outset refer to different outcomes. Thus the weighted state will
be

E = (1−α)
1
2
(I+b·σ)+(1−β)

1
2
(I−b·σ) =

1
2
((2−α−β)I+(β−α)a·σ). (5.29)

This state corresponds to what Busch [38] and Caves et al [40] call an
effect E = 1

2 (rI + ca ·σ), and these effects played a crucial rôle in our proof of
the Born formula. In terms of the definition of an effect, we have r = 2−α−β
and c = β − α. The hypothesis problem is further discussed in Section 7.6.
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Our state concept may now be summarized as follows: To the state λa(·) =
λk there corresponds the state vector va

k , and these vectors determine the
transition probabilities by Born’s formula. This formula also implies for perfect
experiments:

Theorem 5.7.1. (a) E(λ̂b|λa = λa
k) = va†

k T bva
k , where T b =

∑
λb

jv
b
jv

b†
j .

(b) E(f(λ̂b)|λa = λa
k) = va†

k f(T b)va
k , where f(T b) =

∑
f(λb

j)v
b
jv

b†
j .

Thus, in ordinary quantum mechanical terms, the expectation of every
observable in any state is given by the familiar formula.

Now turn to nonperfect experiments. In ordinary statistics, an experiment
is specified by a probability measure Pθ(dy) depending upon a parameter θ.
Assume now that such a measurement depends upon the parameter λb, while
the current state is given by λa = λa

k. Then as in Theorem 5.7.1 (b):

Theorem 5.7.2. (a) Corresponding to the experiment b ∈ A one can
define an operatorvalued measure M by M(dy) =

∑
j Pλb

j (dy)vb
jv

b†
j . Then,

given the initial state λa = λa
k, the probability distribution of the result of

experiment b is given by P[dy|λa = λa
k] = va†

k M(dy)va
k .

(b) These operators satisfy M[S] = I for the whole sample space S, and
furthermore

∑
M(Ai) = M(A) for any finite or countable sequence of disjoint

elements {A1, A2, . . .} with A = ∪iAi.

Theorem 5.7.2 (b) is easily checked directly.
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A more general state assumption is a Bayesian one corresponding to this
setting. From Theorem 5.7.2 (a) we easily find:

Theorem 5.7.3. Let the current state be given by probabilities π(λa
k) for

different values of λa
k. Then, defining ρ =

∑
π(λa

k)va
kv

a†
k , we get P[dy] =

tr[ρM(dy)].

A density operator ρ of such a kind is often used in quantum mechanics;
the definition above gives a precise interpretation. In fact, these results are the
basis for much of quantum theory, in particular for the quantum statistical
inference in Barndorff-Nielsen et al.[18]; for a formulation, see also Isham [125].

Note that the density matrix va
kv

a†
k is equivalent to the pure state va

k ;
similarly, a density matrix vb

jv
b†
j is equivalent to the statement that a perfect

measurement giving λb = λj just has been performed. By straightforward
application of Born’s formula one gets

Theorem 5.7.4. a) Assume an initial state va
k , and assume that a perfect

measurement of λb has been performed without knowing that value. Then this
state is described by a density matrix

∑
j |v

a†
k vb

j |2vb
jv

b†
j .

b) After measurement λb = λb
j the state vector then changes to vb

j . From
a) this happens with probability |va†

k vb
j |2.

This is related to the celebrated and much discussed projection postulate
of von Neumann.

In general we have assumed for simplicity in this section that the state
vectors are nondegenerate eigenvectors of the corresponding operators, mean-
ing that the parameter λa contains all relevant information about the system.
This can be generalized, however.

Axiom 5. Whenever a measurement has resulted in a value λk for some
parameter λ or in some measurent data related to this, all subsequent mea-
surements will be consistent with these observations.

This is in agreement with the context concept, which will be further dis-
cussed in Section 5.10 below.

5.8 Proof of the Quantum Rules from our Axioms.

Summary: Concluding one of the main goals of this book, I show that the first
3 basic Quantum rules as formulated in [125] follow from the results found
in this Chapter, and hence from our Axioms. The 4. Quantum rule will be
adressed in the next Chapter.

For convenience I repeat the three first quantum rules from Chapter 4 as
they also are given by Isham [125]:
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Quantum rule 1. The predictions of results of measurements made on an
otherwise isolated system are probabilistic in nature. In situations where the
maximum amount of information is available, this probabilistic information
is represented mathematically by a vector in a complex Hilbert space H that
forms the state space of the quantum theory. In so far as it gives the most
precise predictions that are possible, this vector is to be thought of as the
mathematical representation of the physical notion of ‘state’ of the system.

Quantum rule 2. The observables of the system are represented mathe-
matically by self-adjoint operators that act on the Hilbert space H.

Quantum rule 3. If an observable quantity λ̂a is represented by the self-
adjoint operator T a, and the state by the normalized vector v ∈ H, then the
expected result of the measurement is

Ev(λ̂a) = v†T av. (5.30)

The following result is quite simple now, but crucial for the purpose of the
entire book:

Theorem 5.8.1. In the c-system given by Definition 4.6.1, the Quantum
rules 1-3 follow from our Axioms 1-4.

Proof.
The state vector of Quantum rule 1 is defined in the simplest case in

Definition 5.4.1 and in general in Definition 5.4.2. The sense in which we
interprete this vector to correspond to a state of the given system, is connected
to a quastion-and-answer pair: A maximal question of the form: What is the
value of λa? is asked, and a crisp answer: λa = λa

k is given. By Lemma 5.4.2,
the state vector corresponds in a unique way to such a question-and-answer
pair.

Not all unit vectors are possible state vectors. Superselection rules are
discussed at the end of Section 5.4.

The operator characterizing an observable (in our conceptual framework
a parameter) is defined in equation (5.13), and its basic properties are given
in Theorem 5.4.1.

In principle the probability distribution over a parameter (’observable’)
may be of one of three kinds: 1) A prior probability; in our setting usually the
invariant measure corresponding to the basic symmetry group; 2) a posterior
distribution after the observation of data; of 3) a transition probability found
from Born’s formula. In the case where we start with a state vector v, the last
possibility is the actual one, and the expectation result of Quantum rule 3 is
given by Theorem 5.7.1. The cases 1) and 2) concern a single parameter, and
the expectation may then also be written in the same way, but reduces to a
simpler form.
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There are variants of the basic quantum rules in the literature; see for
instance Holevo [121], but apart from a possible adjustment of technicalities,
they can all be deduced in a similar manner from our Axioms.

5.9 The Case of Continuous Parameters.

Summary: An informal discussion of the case of one or two continuous pa-
rameters are given and illustrated on the case of position and momentum for
a single, one-dimensional particle. The example of the two-slit experiment is
discussed from this point of view.

Some of the results of the previous Sections are true immediately also
for parameters varying over a continuous range, for instance the whole line.
It was not until Section 5.4 when the state vectors should be constructed
and given an interpretation, that Axiom 3 on discreteness was needed. To
handle continuous parameters rigorously at this point, we need more advanced
mathematical constructions like rigged Hilbert spaces, von Neumann algebras
or C∗-algebras.

In this Section I will instead give a non-rigorous discussion using slightly
informal limiting operations and pretending that delta-functions and complex
exponentials can be taken as belonging to a Hilbert space of square-integrable
functions.

Start with a discrete parameter ξa taking values on the grid {0,±a,±2a, ...},
and associate with this parameter the translation group Ga with elements gj

given by ka → (k + j)a for k, j = 0,±1,±2, .... By analogy with Definition
5.4.1 the statements ξa = ka can be associated with the rather trivial state
function

fa(ξ) = 1 when ξ = ka, (5.31)

and fa(ξ) = 0 elsewhere, that is, for ξ = ia, i 6= k.
I could let a→ 0 at this point, but that would leave us with a rather trivial

system. Hence I will first add to the system a complementary parameter πb,
also taking values in some grid {0,±b,±2b, ...}, and let φab be the c-variable
(ξa, πb). I assume that φab is inaccessible, but that each of the parameters ξa

and πb are accessible.
Now let a, b → 0 resulting in continuous parameters ξ and π, which can

be interpreted as the position and momentum of a one-dimensional particle.
From results proved in Chapter 6 one can show:

a) There si a non-commutative group G acting upon the c-variable φ =
(ξ, π) so that the subgroup acting upon ξ is given by the translations ξ → ξ+c.

b) In the space H of functions of ξ the state functions of this parameter
are delta functions, and the operator X corresponding to this parameter is a
multiplication by ξ.

c) The generator on the same space of the subgroup acting upon π is given
by the differential operator
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P =
h̄

i

∂

∂ξ
,

where h̄ is a universal constant (Planck’s constant; see Proposition 6.5.3).
This is also the operator corresponding to the parameter π. The state function
corresponding to π = π0 is

v(ξ) = exp(
iπ0ξ

h̄
). (5.32)

d) This is a standing wave with wavelength λ = h̄
π0

, so a state with constant
momentum π0 can be associated with such a wave.

e) It is straightforward to show that

PX −XP =
h̄

i
,

from which it follows easily that the Heisenberg inequality of Theorem 1.1.1
holds for a perfect measurement of position ξ and momentum π = mv. If
measurement error is included in these measurements, assuming for simplicity
unbiased measurements x and p, we have

V ar(x) = V ar(E(x|ξ)) + E(V ar(x|ξ)) ≥ V ar(ξ),

V ar(p) = V ar(E(p|π)) + E(V ar(p|π)) ≥ V ar(π).

So Heisenberg’s inequality also holds for the real measurements.

Example 5.9.1. The two-slit experiment: I will use the results above to give
a somewhat simplified discussion of an example found in many textbooks.

Assume that a single particle is sent towards a screen 1 with two small,
parallell slits. Behind this screen there is another one, screen 2, so that the
position of the particle there is registrered. This experiment is repeated many
times, so that one gets a pattern on screen 2. When both slits are open, we
get a wave pattern.

Now the point is: In whatever way we try to determine which slit the
particle went through, the wave pattern disappears, and we get a smooth
distribution on screen 2.

Let us concentrate on the coordinate ξ of a single particle just outside
screen 1, parallel to the screen and perpendicular to the slits. Let π be the
component of momentum of the particle in the same direction. Apart from
the fact that ξ now has been limited to one of the coordinates ξ1 or ξ2 of the
slits, these quantities could as well have been measured just inside the screen.

If both slits are open, we have no certain information about ξ. The Heisen-
berg inequality will indicate that one cannot exclude the possibility of some
information about π. A definite, certain information about π will amount to
a standing wave, but a more limited information will also result in a wave
pattern in this direction, which is transferred to screen 2.
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Now let us assume that we try to get some information about which slit
the particle goes through. Then we ask the question: What is the value of ξ?
- and we allow ourselves to get a definite answer: ξ1 or ξ2. In that case the
variance of ξ will be zero, and Heisenberg’s inequality forces the variance of
π to be infinite. Hence a wave pattern then is impossible.

One reason why this example has caused so much discussion in the liter-
ature, is that ξ and π are interpreted as some real quantities associated with
a particle which is attempted to be visualized in some classical mechanical
sense. Imagining such quantities as parameters for potential measurements,
i.e., c-variables, is more abstract, but it facilitates interpretation.

5.10 On the Context of a System, and on the
Measurement Process.

Summary: Every state is related to a context: The physical environment, the
result of previous measurements, the concepts understood when posing the
question determining the state and so on. A brief discussion of the context
concept is given. Then I develop in detail an alternative approach to the quan-
tum Hilbert space based upon the sample space available for the measurement.
Finally the measurement process itself is briefly discussed using previous re-
sults.

The first step towards the determination of a state is to focus on a question
to ask about the system under consideration. As I have formulated it, the
question is about the value of some statistical parameter, and it shall be a
maximal such parameter, that is, contain as much information as possible.
In the discussion which follows, it may be enlightening to exchange the word
’parameter’ with ’concept’, as given by a set of words that can be used to
describe the system.

Now it is crucial that the words we use to describe some system, depend
on our previous knowledge, in short, the properties about the system that we
consider to be obvious. In a quantum physics setting, these can be absolutely
conserved quantum numbers such as mass or charge, or they can be infered
from previous measurements. Also of relevance may be intrinsic limitations
on what can be measured in the system, or such limitations imposed by the
environment. It is then assumed that these limitations are absolute, that is,
they cannot be changed by refinements of the measurement procedure.

All these factors constitute what will be called the context of the system.
For the validity of the quantum rules, as we see it here, it is necessary that
our 5 axioms are valid in the relevant context.

One contextual limitation may be caused by the very possibility of mea-
surement. Such a limitation may be due to the measurement apparatus, which
is less interesting in our setting, but it may also be due to intrinsic properties
of the system itself. I will indicate by a series of mathematical results that
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such limitations may give one way leading to the quantum-mechanical Hilbert
space.

Concentrate on a single measurement y with a statistical model Pλ, whose
parameter depends upon a c-variable: λ = λ(φ). Call the sample space S, and
let the model be dominated by some measure P .

We use the ordinary concept of sufficiency, see, e.g., Lehmann and Casella
[141]; the definition is repeated here for convenience:

Definition 5.10.1. A random variable t = t(ω);ω ∈ S connected to a
model Pλ is called sufficient if the conditional distribution of each other vari-
able y, given t, is independent of the parameter λ.

A sufficient statistic t is minimal if all other sufficient statistics are func-
tions of t. It is complete if

Eλ(h(t)) = 0 for all λ implies h(t) ≡ 0. (5.33)

It is well known that a minimal sufficient statistic always exists and is
unique except for invertible transformations, and that every complete suffi-
cient statistic is minimal. If the statistical model has a density belonging to
an exponential class

b(y)d(λ)ec(λ)′t(y),

and if c(Λ) = {c(λ) : λ ∈ Λ} contains some open set, then the statistic t is
complete sufficient.

Recall that a function ξ(λ) is called unbiasedly estimable if Eλ(y) = ξ(λ)
for some y. Given a complete sufficient statistic t, every unbiasedly estimable
function ξ(λ) has one and only one unbiased estimator that is a function
of t. This is the unique unbiased estimator with minimum risk under weak
conditions [141]. Thus complete sufficiency leads to efficient estimation.

Assumption 5.10.1. The experiment can be chosen in such a way that
there is a complete sufficient statistic t under the model Pλ.

In the following I write D for Ga, which was the subgroup corresponding
to the selection of the fixed experiment a. I keep a fixed here. D will be a fixed
group on the common sample space S, but also acts on the selected parameter
space.

Definition 5.10.2. The Hilbert space K is defined as the set of all func-
tions h(t) such that h(t) ∈ L2(S,P) and f(φ) = Eλ(φ)(h(t)) ∈ L2(Φ, ν).

In this definition the function h is assumed to be complexvalued. It is easy
to see that equation (5.33) holds for complex functions if and only if it holds
for realvalued functions.
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A sufficient condition for f ∈ L2(Φ, ν) is that
∫

Eλ(φ)(|h(t)|2)ν(dφ) < ∞.
Since it is defined as a closed subspace of a Hilbert space, the Hilbert space
property of K is seen to hold.

From a statistical point of view it is very satisfactory that the sufficient
statistic determines the Hilbert space for single experiments. The sufficiency
principle, by many considered to be one of the backbones of statistical infer-
ence (e.g. [25]) says that identical conclusions should be drawn from all sets
of observations with the same sufficient statistic. It is also of importance that
this Hilbert space satisfies the invariance properties that are needed in order
that it can serve as a representation space for the symmetry groups connected
to each experiment.

Let then the group D be acting upon the sample space S, on the parameter
space Λ and on the c-variable space Φ. Recall the brief discussion of group
representations in Chapter 3. In particular, recall the definition of the space
Vλ, an invariant space under the regular representation of the group D on
L2(Φ, ν).

Proposition 5.10.1. The space K is an invariant space for the reg-
ular representation of the observational group D on L2(S, P ), i.e., under
U(g)h(t) = h(tg); g ∈ D.

Consider now the operator A from K to Vλ ⊂ L2(Φ, ν) defined by

(Ay)(λ(φ)) =
∫
y(ω)Pλ(φ)(dω) = Eλ(φ)(y), (5.34)

using again the (reduced) model Pλ(dω) corresponding to the experiment a.
In the following it will be important to use K to construct a Hilbert space
related to the parameter space.

Definition 5.10.3. Define the space L by L = AK.

By the definition of a complete sufficient statistic, the operator A will have
a trivial kernel as a mapping from K onto AK. Hence this mapping is one-to-
one. It is also continuous and has a continuous inverse. (See below.) Hence L
is a closed subspace of L2(Φ, ν), and therefore a Hilbert space. Note also that
L is the space in L2(Φ, ν) of unbiasedly estimable functions with estimators
in L2(S,P). It is in general included in the space Vλ of all functions of the
parameter λ.

Proposition 5.10.2. The space L is an invariant subspace of L2(Φ, ν) for
the regular representation of the group D on L2(Φ, ν).

A main result proved in Appendix A.3.2 is now
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Theorem 5.10.1. The spaces K ⊂ L2(S,P) and L ⊂ L2(Φ, ν) are unitar-
ily related. Also, the regular representations of the group D properly defined
on these spaces are unitarily related.

This means that either K or L can be taken as a basic Hilbert space
connectected to the experiment. Since we started by constructing K, this
approach definitely takes the sample space and the possible limitations due
to the measurement as a point of departure.

Now return to the situation where one selects an experiment a among a
class of experiments A. Corresponding to this choice we have a parametric
Hilbert space La and an observational Hilbert space Ka with a unitary rela-
tion between them. One interesting thing is that for a perfect measurement,
that is, one where measurement error can be neglected, we come back to the
basic Hilbert space of Theorem 5.3.1, which was the main component of the
quantum-mechanical Hilbert space as constructed above.

Proposition 5.10.3. For a perfect experiment the space La is just the
space of functions f̃ of λa(·) such that f(φ) = f̃(λa(φ)) ∈ L2(Φ, ν).

In general, the common Hilbert space is constructed as in Section 5.3, and
the discussion of the following sections is valid in this context, also.

Other approches to the context concept and to the measurement process
can be inferred from the quantum mechanical literature. Much of this can be
related to our axioms and results. As already remarked, Axiom 5 in Section
5.7 is closely related to our discussion of context.

The well known measurement formula

P[dy] = tr[ρM(dy)]

is proved in Theorem 5.7.3 using a natural definition of the operator valued
measure M. To say something about about the state after measurement, it is
common in quantum theory to introduce the abstract notion of an instrument ;
see the discussion in Barndorff-Nielsen et al. [18]. A very simple beginning of
this theory is given in Theorem 5.7.4.



6

FURTHER DEVELOPMENT OF QUANTUM
MECHANICS.

6.1 Introduction

From Chapter 5 we now have a mathematical correspondence between the
conventional quantum theory formalism and our own formalism based upon
questions, answers and symmetries. The construction of a Hilbert space for
a single experiment in Section 5.2 was simple, but to glue these together, I
needed the symmetry assumption in Axiom 1. This then resulted in a common
Hilbert space which also was an invariant space for the basic group G. The
unit vectors of this space could be taken as state vectors in the usual way,
and they could be uniquely interpreted as maximal questions plus answers.
Exceptions to this were given by superselection rules. Operators corresponding
to parameters (observators) were constructed in the ordinary way, and had the
ordinary quantummechanical interpretation. Probabilities were found from
the Born formula, which again was proved using symmetry assumptions. For
related derivations, partly from other assumptions are given in the literature;
see references in Section 5.5. One advantage of my proof is nevertheless that it
goes in a natural way via the effects, which have a place in quantummechanical
inference. A starting point for this inference is provided in Section 5.7. The
last sections of Chapter 5 give some further developments, and in this Chapter
I will continue in different directions along the same route.

This development leads to an interpretation of quantum theory which may
have some elements of ontology, but is far from fully ontological at the outset:
We do not have any ambition to infer from a given state in detail how nature
is, nor is such a detailed description possible. The states are connected to
focused questions about nature, hence to our choices, and the answers are
therefore connected to our perception of nature. This leads in principle to
an epistemological interpretation. Nevertheless, if a maximal question can be
answered through a perfect experiment, we have perfect information about
the relevant parameter, hence perfect partial information about some given
system. In the ordinary quantummechanical way, detailed information about
other parameters is then precluded.
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The very fact that we from Chapter 5 have two equivalent formalisms,
the ordinary Hilbert space formalism and the present question-and-answer
formalism, shows that quantum theory can be described in several different
languages. This in itself indicates that an epistemological interpretation is in
place. In addition, as just explained, my own formulation in an obvious way
points in the same direction.

In the present Chapter I will take up various further aspects of quantum
mechanics, in order to complete the theory: Entanglement, Bell’s inequality,
Planck’s constant, the Shrödinger equation, quantum histories, relation to the
many-world interpretation and to some so-called paradoxes. Of course, many
more topics could have been taken up, but I feel that the issues treated here
are sufficient to prove my point. My aim here is essentially to show that the
approach of this book is capable of leading to a consistent, complete theory.
The approach is new, however, and since conventional quantum theory is much
more developed, I will rely upon this theory at various technical points.

6.2 Entanglement.

Assume that we are interested in the combined state of two systems, say
two particles as described by their spin state. As isolated systems the two
systems are assumed to be in some states va

k and ub
j , respectively, the first

one indicating that the question about some parameter λa has been given the
answer λa

k, and the second one characterizing some µb = µb
j . In the simplest

case then the combined state is v = va
k ⊗ ub

j . Since we can consider this
extended physical object as a unit, this state gives answers to both questions:
What is λa? and What is µb?

Now the Hilbert space spanned by these product state vectors contains
all linear combinations of them. As we saw in Chapter 5, at least if we dis-
regard superselection rules and similar phenomena, all unit vectors of the
Hilbert space are possible state vectors, and so in particular in the present
case are the normalized linear combinations of the product states. Any such
linear combination which is not a simple product state, is called an entangled
state. Physically, entangled states can develop from product states through
the Schrödinger equation, which will be discussed later in this Chapter. En-
tangled states may also in principle be interpreted as the answers of some
questions; sometimes they are eigenstates of simple variables like total spins.

Consider now the case where λa and µb are spin parameters of two qubits,
i.e., spin 1/2 particles like the electron, and consider the entangled state where
the total spin is zero. It turns out that such a state exists even though we
do not know a priory that the total spin vector is an accessible parameter.
Indeed we might characterizing this state by saying that the spin component
of the combined particle in any direction is zero, and such spin components
are individually known to be accessible. A more consise argument can be given
within conventional quantum theory.
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Then we have a rather obvious phenomenon which nevertheless has some
strange implications: If λa is measured in a perfect measurement to be +1,
then by necessity, if we make a perfect measurement of µb in the direction
b = a, the answer must be -1. And oppositely, λa = −1 implies µa = +1.

Note that the determination of the total spin as zero, could have been
done in some distant past when the two particles where close together. But
when the measurements above were done, the particles could in principle be
at a large distance from each other. The situations becomes really strange
when one considers that different directions a can be chosen for the spin com-
ponent measurement at the first particle, and that this is a free choice by an
observer associated with this particle. Then we apparently have transference
of information over a distance. This leads to the essence of what is called the
Einstein, Podolsky, Rosen - paradox [72].

Thus observations on entangeled states naively may seem to be in con-
flict with Einstein’s relativity theory, which says that information cannot be
transferred faster than the speed of light. It can be proved in standard quan-
tum theory, however, that although two entangled systems apparently may
send information information across large spatial distances, no useful informa-
tion can be transmitted in this way, so causality cannot be violated through
entangelement. This is the content of the recent no communication theorem
[164].

Entangled states are the building blocks of most of what is done in the vast
and rapidly developing field of quantum informatics, an area which will not be
discussed in this book. One of the themes of quantum informatics is quantum
computers, computers that in theory shall be very efficient, but where much
remains to be done in practice.

6.3 The Bell Inequality Issue.

Consider then the situation of Einstein, Podolsky and Rosen [72] as modified
by Bohm, where two particles previously have been together in a spin 0 (sin-
glet) state, so that they - in our notation - later have opposite spin vectors
modeled by the inaccessible vector c-variables φ and −φ. As just discussed,
this is described as an entangled state, that is, a state for two systems which
is not a direct product of the component state vectors. I will here follow my
own programme, however, and stick to the parametric description.

As pointed out by Bell [23] and others, correlation between distant mea-
surements may in principle be attributed to common history, but this can not
be the full explanation in this case, where Bell’s inequality may be violated.

Assume that spin components λa and µb are measured in the directions
given by the unit vectors a and b on the two particles at distant sites A and
B, where the measured values λ̂a and µ̂b each take values ±1. Let this be
repeated 4 times: Two settings a, a′ at site A are combined with two settings
b, b′ at site B. The CHSH version of Bell’s inequality then reads:



166 6 FURTHER DEVELOPMENT OF QUANTUM MECHANICS.

E(λ̂aµ̂b) ≤ E(λ̂aµ̂b′) + E(λ̂a′ µ̂b) + E(λ̂a′ µ̂b′) + 2. (6.1)

In fact we can easily show the seemingly stronger statement:

λ̂aµ̂b′ + λ̂a′ µ̂b + λ̂a′ µ̂b′ − λ̂aµ̂b = ±2 (6.2)

whenever all estimates take the values ±1:

Lemma 6.3.1 The equality (6.2) holds in the above setting.

Proof.
All the products take values ±1 and λ̂aµ̂b is the same as the product of

the first three similar terms. Listing the possibilities of signs here, then shows
that the left-hand side of (6.2) always equals ±2.

As is well known, the inequality (6.1) can be violated in the quantum
mechanical case, and this is also well documented experimentally. There is a
large literature on Bell’s inequality, and I will not try to summarize it here. The
derivation of (6.2) above seems quite obvious, and the usual statement in the
quantummechanical literature is that (6.1) follows under what is called local
realism. Because of the experimental evidence against (6.1), most physicists
are of the opinion that quantum mechanics does not satisfy local realism.
But there are also some [91, 137] who claim that there may be loopholes
that remain to be closed in the experiments, and that they therefore will not
support the conclusion that (6.1) is definitively shown to be broken.

The following is an important part of my own philosophy: Quantum the-
ory is a statistical theory, and should be interpreted as such. In that sense
the comparison to a classical mechanical world picture, and the term ‘local
realism’ inherited from this comparison is not necessarily of interest. I am
more interested in the comparison of ordinary statistical theory and quantum
theory. My aim is that it in principle should be possible to describe both by
essentially similar ways of modeling and inference. Thus it is crucial for me
to comment on the transition from (6.2) to (6.1) from this point of view.

As pointed out by Gill [92], for any way that the experiment is modeled
by replacing the spin measurements by random variables, there is no doubt
that this transition is valid, and the inequality (6.1) must necessarily hold.
The reason is simple: The expectation operator E is the same everywhere.

Now take a general statistical inference point of view on any situation that
might lead to statements like (6.2) and (6.1). Then one must be prepared to
take into account the fact that there is really 4 different experiments involved
in these (in)equalities. The λ̂’s and µ̂’s are random variables, but they are
also connected to statistical inference in these experiments. What we know at
the outset in the EPR situation is only that some inaccessible c-variable ±φ
(possibly together with other inaccessible parameter-components) is involved
in each experiment. Going from this to the observations, there are really three
steps involved at each node: The components θ(φ) are selected, there is a
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model reduction λ = η(θ), and finally an observation λ̂. Briefly: A model is
picked, and there is an estimation within that model.

6.4 Statistical models in connection to Bell’s inequality.

Turn to general statistical theory: According to the conditionality principle
(see Chapter 2), a principle on which there seems to be a fair amount of
consensus among statisticians, inference in each experiment should always be
conditional upon the experiment actually performed.

A motivating example for this is the following, due to Cox [46]: Let one
have the choice between two measurements related to a parameter θ, one
having probability density f1(y, θ), and the other having probability density
f2(y, θ). Assume that this choice is done by throwing a coin. Then the joint
distribution of the coin result z and the measurement y is given by

c(z)f1(y, θ) + (1− c(z))f2(y, θ),

where c(z) = 1 if model 1 is chosen, otherwise c(z) = 0. Should this joint dis-
tribution be used for inference? No, says Cox and common sense: All inference
should be conditional upon z.

In particular then, the conditionality principle should apply to the distri-
bution of point estimators. Taking this into account, it may be argued that
at least under some circumstances also in the microscopic case, different ex-
pectations should be used in a complicated enough situation corresponding to
(6.1), and then the transition from (6.2) to (6.1) is not necessarily valid.

This is dependent upon one crucial point, as seen from the conditionality
principle as formulated above: When one has the choice between two experi-
ments, the same parameter should be used in both. How can one satisfy this
requirement, say, in the choice between a measurement at a or at a′? As formu-
lated above, the relevant parameters are λa and λa′ for the two experiments
under choice.

Here is one way to give a solution: Focus on the Stern-Gerlach apparatus
which measures the spin. Make a fixed convention on how the measurement
apparatus is moved from one location to the other to calibrate apparata at
different locations. Then define a parameter λ which is -1 at one end of the
apparatus and +1 at the other end. By using λ as a common parameter for
both experiments under choice, the conditionality principle can be applied,
and (6.1) does not follow from (6.2).

The crucial point here is that the violation of the Bell inequality is not by
necessity a phenomenon that makes the quantum world completely different
from the rest of the world as we know it. Regarding the term ‘local realistic’,
ordinarily used in the derivation of Bell’s inequality, a phenomenon is not in
my opinion nonlocal if Bell’s inequality is broken. But if ‘realistic’ means that
a phenomenon always can be described by one single model, this may be a
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too strong requirement. Of relevance here: It has recently been pointed out
[6, 7] that variants of Bell’s inequality may be broken in macroscopic settings.
I will come back to a such example in Chapter 9.

A more explicit argument for the correlation between spin measurements,
using the prior at A connected to model reduction there, may be given as
follows: At the outset the c-variable φ is sent to A and −φ to B. This should
not be taken literally, since φ does not take any value, but must be interpreted
in some indirect way. In any case it should be interpreted to mean that much
common information is shared between the two places. The vector φ is in
principle capable of providing an answer to any question a ∈ A: Is the spin
in direction a equal to +1 or to -1?

Since the c-variable is the same at both places, the transition probability
should really be as for a single particle, taking into account the sign change at
B. But this means that it can be found from Born’s formula. An alternative
informal argument, using explicitly the parametric model, runs as follows:

By choosing a direction a, the observer at A will have a prior on φ given
by a probability 1/2 on λa = +1 and a probability 1/2 on λa = −1, where θa

is the cosinus of the angle between a and φ, and λa the corresponding reduced
parameter taking values ±1. This is equivalent to some (focused) prior on the
vector φ which has probability 1/2 of being a + ε and 1/2 of being −a + ε,
where a is a unit vector, and ε is some random vector perpendicular to a
which is independent of λa and has a uniformly distributed direction. Note
that this reasonable prior on φ is found by just making the decision to do a
measurement in the direction a at A.

Now let one decide to make a measurement in the direction b at the site
B. Let b⊥ be a unit vector in the plane determined by a and b, perpendicular
to b. Then, taking the prior at A as just mentioned, φ will be concentrated
on a+ ε = bcos(u) + b⊥sin(u) + ε and −a+ ε, where u is the angle between a
and b, and where the sign in front of a is equal to λa. Hence the component
of this prior for −φ along b will be −λacos(u) − ε · b, where the first term
takes two opposite values ±cos(u) with equal probability. The expectation of
this prior component will be 0, more specifically, the component will have a
symmetrical distribution around 0.

Conditionally, given λa, this prior component will have an unsymmetrical
distribution, and there is a uniquely distributed parameter µb taking values
±1 such that E(µb|λa) = −λacos(u). So, using parameter reduction to ±1 at
B, this is the distribution obtained from the model assuming a measurement
in direction a at A. There is no action at a distance here; all information is in
principle contained in the c-variable φ.

Turning now to estimation, in general an unbiased estimator in statistical
theory is a random variable whose expectation equals the parameter in ques-
tion. Let now λ̂a and µ̂b be unbiased estimators of λa and µb, respectively, so
that E(λ̂a|λa) = λa and E(µ̂b|µb) = µb. Then
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E(λ̂aµ̂b) = E(E(λ̂aµ̂b|φ)) = E(E(λ̂a|λa)E(E(µ̂b|µb)|λa)))
= E(λa(−λacos(u))) = −cos(u).

(6.3)

The discussion above was partly heuristic, but it leads to the correct an-
swer, and it seems to be a way to interpret the information contained in the
c-variable φ.

It is also important that the above discussion was in terms of a reasonable
parametric model. Parameters are distinctly different from random variables,
in particular from random variables located in time and space. Much of our
daily life imply the use of mental models, and also some form of model sim-
plification. Quantum theory can in some sense be said to have analogies also
to this world, perhaps more than to the world of classical mechanics. This
can also be related to several recent papers by Aerts and his group [7, 8, 9],
where quantum mechanical modeling is used in the analysis of language and
concepts.

The limitation of the way of thinking demonstrated in this section is
twofold: First, the basic group need not be the rotation group in general.
Secondly, it may not be straightforward to generalize the reasoning to the
case with more than two eigenvectors. Hence one can again go back to the
more precise treatment in Chapter 5, where I started to build up the appa-
ratus which is necessary to treat more general cases. Ultimately, this leads
essentially to the ordinary formalism of quantum theory.

6.5 Groups Connected to Position and Momentum.
Planck’s Constant.

I continue to insist upon keeping the distinction between ideal values of vari-
ables, that is, parameters on the one hand, and observed values on the other
hand. In the statistical traditions we will continue to denote the former by
greek letters. Hence let (ξ1, ξ2, ξ3) be the ideal coordinates of a particle at
time τ , and let (π1, π2, π3) be the (ideal) momentum vector and ε the (ideal)
energy. In this section I will not speak explicitly about observations. Never-
theless it is important to be reminded of the premise that these quantities are
theoretical, and that each single of them can only be given a concrete value
through some given observational scheme.

This is a general way of thinking which also seemingly may serve to clarify
some of the paradoxes of quantum theory. As an example, look at the Einstein,
Podolsky, Rosen [72] situation in its original form: Two particles have position
ξi and momentum πi (i = 1, 2). Since the corresponding quantum operators
commute, it is in principle possible to have a state where both ξ1 − ξ2 and
π1 + π2 are accurately determined. That implies that a measurement of ξ1,
respectively π1 at the same time gives us accurate information on ξ2, respec-
tively π2. We have a free choice of which measurement to make at particle 1,
but that does not mean that this choice in any way makes any influence upon
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particle 2. It only influences which information we are able to extract about
this particle.

After this digression I continue with the single particle situation. As is
well known from special relativity, the four-vectors ξ = (ξ1, ξ2, ξ3, ξ0 = cτ)
and π = (π1, π2, π3, π0 = c−1ε) transform according to the extended Lorentz
transformation, the Poincaré transformation, which is the group which fixes
c2dτ2

0 = c2dτ2 −
∑3

i=1 dξ
2
i , respectively c2m2

0 = c−2ε2 −
∑3

i=1 π
2
i . This is a

group of static linear orthogonal transformations of vectors together with the
transformation between coordinate frames having a velocity v with respect
to each other. Specifically, the coordinate vectors transform according to an
inhomogeneous transformation ξ 7→ Aξ+b, while the momentum vector trans-
forms according to the corresponding homogeneous transformation π 7→ Aπ.
The group might be a natural transformation group to link to the eightdi-
mensional parameter φ = (ξ1, ξ2, ξ3, τ, π1, π2, π3, ε), associated with a particle
at some time τ . However, since the static rotations have representations as-
sociated with angular momenta already briefly discussed, we limit ourselves
here to the group G of translations together with the pure Lorentz group.

Consider then the groups Bj given for gb
j ∈ Bj by ξjg

b
j = ξj + b, other

coordinates constant, and the groups Vj given by Lorentz boosts of some size
v in the direction of the coordinate axis of ξj for j = 1, 2, 3 together with the
time translation group B0 given by τgt

0 = τ + t.

Proposition 6.5.1. a) These groups generate G, and they are all abelian.
b) The groups Bj commute among themselves, the groups Vj commute

among themselves.
c) Since lengths perpendicular to the direction of the Lorentz boost are

conserved, Bj commute with Vk when j 6= k.
d) The elements of the group B0 commutes with those of Bj (j ≥ 1), but

not with those of Vj (j = 1, 2, 3).

Disregarding the time translation group for a moment, it is left to consider,
say, the groups B1 and V1 together. As is easily seen from the formula, these
do not commute. The simplest one is B1, which only affects the coordinate
ξ1. Hence ξ1 is trivially permissible with respect to this group.

From the form of the Lorentz transformation

ξ1 7→
ξ1 + vτ√
1− (v

c )2
, τ 7→

τ + v
c2 ξ1√

1− (v
c )2

(6.4)

and correspondingly for (π1, ε), we see that ξ1 and π1 are not permissible when
τ , respectively ε are variable. The linear combinations ξ1−cτ , ξ1+cτ , π1−c−1ε
and π1 + c−1ε are permissible. One could conjecture that these facts could be
useful in a relativistic quantum mechanics, but this will not be pursued here.

Furthermore,
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Proposition 6.5.2. V ξ = {f : f(φ) = q(ξ1(φ)) for some q} is a subspace
of L2(Φ, ν) which is invariant under the group Gb

1. The representations have
the form U1(g)q(ξ1) = q(ξ1g) = q(ξ1 + b).

But

q(ξ1 + b) =
∞∑

k=0

bk

k!
∂k

∂ξk
1

q(ξ1) = exp(b
∂

∂ξ1
)q(ξ1) = exp(

ibP1

h̄
)q(ξ1),

where P1 is the familiar momentum operator

P1 =
h̄

i

∂

∂ξ1

.
Thus the particular group formulated above has a Lie group representation

(see Appendix A.2.4) on an invariant space with a generator equal to the cor-
responding momentum operator of quantum mechanics. The proportionality
constant h̄ can be argued to be the same for all momentum components (and
energy) by the conservation of the 4-vector. By similarly considering systems
of particles one can argue that

Proposition 6.5.3. h̄ is a universal constant.

In particular then,

Proposition 6.5.4. Time translation τ 7→ τ + t has a representation

exp(
iHt

h̄
), (6.5)

where H is the Hamiltonian operator.

All these operators can be connected to representations the group G as
defined above. In A. Bohr and Ulfbeck [30] it is pointed out that the Lorentz
transformation (6.4) is equivalent to

ξ1 7→ ξ1coshrv + cτsinhrv, cτ 7→ ξ1sinhrv + cτcoshrv, (6.6)

where the rapidity rv is defined by tanhrv = v/c. This makes the Lorentz
boost additive in the rapidity, and all relevant operators and their commuta-
tion relations can be derived. In particular, the familiar commutation relation
X1P1 − P1X1 = ih̄I (with X1 being the operator corresponding to position
ξ1) holds under the approximation rv ≈ v/c.

The corresponding commutation relation between the time operator and
the energy operator has also been derived by Tjøstheim [190] in a stochastic
process setting using just classical concepts.
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Starting from these commutation relations, other representations of this
Heisenberg-Weil group are discussed in Perelomov [166]. A classical paper
on the representation of the Lorentz group - going much further than the
discussion of this Section, and also incorporating a thorough discussion of
spin - is Wigner [194].

Note that the groups Gb
1 and Gv

1 are transitive in the case above, so there
is no need for - or possibility of - a model reduction.

Proposition 6.5.5. In the nonrelativistic approximation, ξ1 and π1 are
permissible. The basis vectors of the Hilbert space for position ξ1 and basis
vectors of the Hilbert space for momentum π1 are connected by a unitary
transformation of the form

uπ(π1) =
1√
2πh̄

∫
exp(

iπ1ξ1
h̄

)uξ(ξ1)dξ1.

The parameters ξ1 and π1 can be estimated by making observations. It is
natural to impose the translation/ Lorentz group upon these measurements.
Thus the requirement that the basic Hilbert space also should be a represen-
tation space for the observation group, is obviously satisfied in this case.

6.6 The Schrödinger Equation.

In Section 6.5 I showed that in the case of a single particle, the time translation
τ 7→ τ + t had the group representation

exp(
iHt

h̄
), (6.7)

where H is the Hamiltonian operator. This can be generalized to systems of
several particles using an assumption of additive Hamiltonian, and assuming
that the particles at some point of time were pairwise in contact, or at least so
close with respect to space and velocity that relativistic time scale differences
can be neglected. The operator (6.7) acts on the Hilbert space H. In this
Section I work under the non-relativistic approximation.

Assume further that at time 0 a maximal measurement is done, so that the
system is in some state v0 ∈ H. This means, according to my interpretation,
that some experiment with reduced parameter λa has been done, resulting
in a value λa

1 . The construction of the Hilbert space H was carried out in
the Sections 5.3. Here I will use the more elaborate, but also more context-
oriented construction in Section 5.11; the starting point was then the space
Ka of functions of sufficient observations connected to experiment a. From
this we constructed Ha = AaKa, where Aa was given by
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(Aay)(λa) = Eλa

(y),

but where one also has Ha = CaKa for some unitary operator Ca. Note
that from Theorem 5.3.1 and Theorem 5.11.1, Ha = DaH and Ka = EaH
for unitary operators Da and Ea. Here H is the basic Hilbert space, and
Da = CaEa.

The vector v0 corresponds to some vector w0 in Ka by this unitary trans-
formation, then to u0 = Caw0 ∈ Ha.

Consider now the time translation group element with step t, and assume
that λa transforms under this group element into a new parameter λa(t). By
the regular representation of the time translation group, this leads to a new
operator Ca,t given by

Ca,ty(λa) = Cay(λa(t)) = exp(
iH1t

h̄
)Cay(λa). (6.8)

Here H1 = DaHDa −1 is the Hamilton operator H transformed from the
basic Hilbert space H to the parameter space Ha = DaH for experiment a.

Vectors u(t) in the space Ca,tKa correspond to vectors (Ca,t)−1u(t) in Ka.
In particular, then, during the time span t, we have that w0 in Ka develops
into

wt = (Ca)−1exp(− iH1t

h̄
)Caw0 = exp(− i(C

a)−1H1C
at

h̄
)w0.

Transforming back from Ka to H, the state vector at time t will be

vt = exp(− iHt
h̄

)v0. (6.9)

As is well known, the latter equation is just a formulation of the familiar
Schrödinger equation

Theorem 6.6.1. The time development of the state vector can be found
from

ih̄
∂

∂t
vt = Hvt. (6.10)

6.7 Classical information and information in Quantum
Mechanics.

For the development of classical information theory, the pathbreaking paper by
Shannon [179] has been crucial. The central problem in that paper was coding.
Look upon a message source a who produces a message k with probability pk,
and assume that we wish to represent the set of messages with sequences of
binary digits that are as short as possible. Say that the length is L bits when
you send a message. Let the Shannon information be defined by
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H(a) = −
∑

k

pklog2pk. (6.11)

Then Shannon’s noiseless coding theorem says:

Theorem 6.7.1. a) The expected length E(L) of the message bit sequence
is bounded below by H(a).

b) If we allow ourselves to code entire blocks of independent messages to-
gether, the expected number E(L) of bits per message can be brought arbitrarily
close to H(a).

The concept of Shannon information can also be closely connected to the
concept of entropy in statistical mechanics: The entropy of a macrostate can
be interpreted as the number of bits that would be required to specify the
microstate of a system.

Now turn to quantum mechanics. In the ordinary formulation of quantum
mechanics, and also in my approach to it, a state can be defined as being
equivalent to a density matrix

ρ =
∑

k

pkvkv
†
k. (6.12)

For such a state von Neumann [158] defined his entropy by

Definition 6.7.1. S(ρ) = −trρlog2ρ.

The logarithm can be made precise here by a suitable series expansion.
Of particular importance is the case when the density matrix is given by

uncertain answers to a single question a, i.e., when pk is the probability that
the answer is k. Then the state vectors vk in (6.12) are orthonormal. Note
that since the trace of a density matrix is 1, the probabilities in (6.12) must
always add to 1.

Lemma 6.7.1. When the state vectors vk are orthonormal, von Neu-
mann’s entropy is equal to the Shannon information: S(ρ) = H(a).

Proof.
Assume a series expansion

−(1− p)log2(1− p) =
∑

r

brp
r.

Then

S(ρ) = tr
∑

r

br(I −
∑

k

pkvkv
†
k)r = tr

∑
r

br(
∑

k

(1− pk)vkv
†
k)r
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=
∑

r

br
∑

k

(1− pk)rtr((vkv
†
k)r) = −

∑
k

pklog2pk = H(a).

Schumacher [174] has given a noiseless coding theorem for von Neumann’s
entropy which is valid both for the orthogonal and the non-orthogonal case. In
Peres and Terno [167] quantum information is discussed from several points
of view and also related to relativity theory.

It is interesting that there exist connections between several of the central
information measures that are used in physics and in statistics. First for a
continuous distribution with density p(x) the Shannon information is defined
in a natural way as

−
∫
p(x)log2p(x)dx. (6.13)

This is closely related to the Kullback-Leibler entropy [134], a ’distance’ mea-
sure between two densities p(x) and q(x):

G[p(x), q(x)] = −
∫
p(x)log[p(x)/q(x)]dx. (6.14)

Finally, we have the important concept of Fisher information, defined in
Section 2.12 as

I(θ) = Varθ(s(θ)), (6.15)

where s(θ) is the score function, the partial derivative of the log likelihood
function.

For a simple location model with probability density p(x − θ) the Fisher
information is constant and can be found as

I =
∫
p′(x)2

p(x)
dx. (6.16)

The following result was suggested by Frieden [88]:

Lemma 6.7.2. Under suitable regularity condition the Fisher information
in the location case can be found as a limit of the Kullback-Leibler information
between densities that are close to each other:

I = −limδ→0
2
δ2
G[p(x), p(x+ δ)] (6.17)

Proof
Two times use of l’Hôspital’s rule under the integral sign in the definition

of G. The regularity condition can be formulated in terms of an integral which
is sufficiently large so that the dominated convergence theorem can be used.
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I will come back to the use of Fisher information in Chapter 7. Recall from
Chapter 2 the Cramér-Rao bound: No unbiased estimator of the parameter θ
has variance smaller than I(θ)−1.

In the quantum setting one has the choice between several measurements
a. In this setting Helstrom [114] defined a quantum information I(θ) in 1967
and proved a quantum version of the Cramér-Rao bound: Based on any mea-
surement we have that any unbiased estimator has variance smaller than
I(θ)−1. This result was further developed by Braunstein and Caves [35] and
by Barndorff-Nielsen and Gill [17].

6.8 Some Themes and ‘Paradoxes’ in Quantum
Mechanics.

Here I include a very brief discussion of some familiar themes from quantum
mechanics, many of which are discussed in several textbooks. Recent discus-
sions of several points are given by Selleri [177] and Laloë [135].

Of course, much more can be said on each theme. Some of the statements
below are controversial, and many are certainly too simplified. The brief state-
ments may serve as a starting point of a discussion, however. My main concern
is to point out similarities between (my version of) quantum physics and sta-
tistical modeling. Some of the statements below may be repetitions of earlier
statements.

The status of the state vector.
Let us concentrate on a discrete parameter, typically multidimensional:

Suppose that λa(φ) is maximal in the sense that no parameter can be con-
nected to any experiment in such a way that λa is a function of this parameter.
Then the operator T a corresponding to λa(·) has a non-degenerate spectrum.
Thus each specification (λa(φ) = λa

k) is equivalent to specifying a single vector
va

k . I emphasize that λa is a parameter which is specifically connected to the
experiment (or question) a ∈ A.

Thus in this case the state can be specified in two equivalent ways. For a
non-physicist the specification (λa(φ) = λa

k), that is, specifying all quantum
numbers, is definitively simpler to understand than the Hilbert vector spec-
ification. It is easy to see that every Hilbert space vector is the eigenvector
of some operator. Assuming that this operator can be chosen to correspond
to some λa, it then follows that the state vector can be written as equiva-
lent to some (λa(φ) = λa

k). A more general statement will include continuous
parameters.

This also holds for a state evolving through the Schrödinger equation. But
while it is true that vt at each t is equivalent to some statement (λa(t) =
λa

k(t)), the parameter λa(t) will in case necessarily change with time.
Note also, of course, that in the formulae of Section 5.7 and in related

results, the state vector is needed explicitly.
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Collapse of the wave packet.
If we maintain that the rôle of the wavefunction is to give condensed

information about what is known about one or several parameters of the
system, then it is not strange that the wavefunction changes at the moment
when new such information is obtained. Such a change of state due to change
of information is well known in statistics.

Superselection rules.
When parameters are absolutely conserved, for instance charge or mass,

then also in conventional quantum mechanics no linear combination is allowed
between the vectors specifying the different corresponding states. This may
to some extent serve to emphasize our view that a wave function makes sense
only if it can be made equivalent to some statement λa(φ) = λa

k.

Wigner’s friend etc. This is a classical example where a person (Wigner) ob-
serves the world, and a friend also observes everything, including Wigner. In
some classical interpretation of quantum mechanics it is relevant to ask which
person has the correct wavefunction, Wigner or his friend.

In principle a statistical model can be formulated for a given system either
excluding a certain observer (measuring apparatus) in the model, or including
this observer. There is no contradiction between these two points of view in
principle.

Bohr complemetarity.
A limited experimental basis implies that an experimentalist must choose

between measuring/ specifying the maximal parameter λ1 or the maximal
parameter λ2. It is impossible to specify both. And knowledge of both param-
eters is impossible to have. As has been stated earlier, several macroscopic
examples of the same phenomenon can be found.

Schrödinger’s cat.
This is an imaginary situation where a cat is locked in a cage together

with some radioactive substance with decay probability 1/2 during the span
of time of the experiment, and some poison contained in a bottle which is
broken when a radioactive particle is released. The discussion of this example
concerns the state of the cat when the cage is opened. Is it half dead and half
alive?

The c-variable φ can again be imagined to give a complete description of
the whole system, including the death status of the cat. What can be observed
in practice, is one of several complementary parameters λa, many of which
include information of the death status, but some which don’t. Included among
the latter is the state variable developed by registrating the initial state of
the radioactive source, and then letting some time go. We emphasize that our
interpretation of quantum mechanics is epistemological, not ontological.

Decoherence.
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Fig. 6.1. Schrödinger’s cat.

When a system in a state λa(φ) = λa
k enters into an interaction with an

environment with a large degree of freedom, a state involving a probability
distribution over different λa

k-values will soon emerge.

Quantum mechanics and relativity.
Relativistic quantum mechanics is beyond the scope of the present paper.

However, it is well known that the use of symmetries, in particular represen-
tation theory for groups is much used in relativistic quantum mechanics and
in elementary particle physics. Hence a development of the theory in that
direction appears to be possible, and would certainly be of interest.

It has often been said that it is difficult to reconcile quantum mechanics
with general relativity theory. While this at the moment is mere speculations,
one possible explanation may be that the transformation groups in general
relativity are so large that no representation theory exists. (Say, the groups are
not locally compact.) In that case the formal apparatus of quantum mechanics
has no place. However, in principle it might still be that the present approach
base on models, symmetry, focus parameters and model reduction may prove
to be useful. A much more sophisticated and more complete approach to
the same question is given by Dörings’s and Isham’s topos formulation; see
[62, 63, 65, 64] and Chapter 9.

6.9 Histories.

The question and answer: What is λa?/ λa = λk is represented by the state
vector va

k or by the one-dimensional projector va
kv

a†
k . What should be the

representation be if the answer is of the less specific kind: λa ∈ A? The
natural solution to this is to introduce the more general projector

Ea
A =

∑
λk∈A

va
kv

a†
k .
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Such projectors can also be introduced in connection with continuous param-
eters, when we specify that this parameter should belong to some interval,
say. Let us call a projector of this kind in general an event. The event ’not E’
is of course specified by the projector

E′ = I − E.

Griffiths [97] introduced a history H of events

D → E1 → E2 → ...→ En → F (6.18)

associated with a set of times

tD < t1 < t2 < ... < tn < tF .

The interesting thing is that under certain conditions one can introduce prob-
abilities associated with such histories even in cases where the operators given
by the various events are not commuting: When taken at different times, it
may be meaningful to ask questions associated with noncommuting operators.

To make this precise, we need to introduce the time development of events.
In the same way as the state vectors follow the Schrödinger equation, so do
the events. For some reference time tr let U(t) = exp(−iH(t − tr)/h̄) be the
Schrödinger operator from equation (6.9), and define for an event Ej at the
time tj :

Êj = U(tj)EjU(tj)†.

Then the weight for the history (6.18) is defined as follows:

w(H) = tr(ÊnÊn−1...Ê2Ê1D̂Ê1Ê2...Ên−1ÊnF̂ ). (6.19)

This turns out to be independent of the reference time.
To proceed from this, Griffiths [97] added a consistency condition, namely

that the weights should add in a natural way when an event Ek is split up
in a union of several disjoint events. Under this condition he proved that the
weights act as probabilities: If one conditions upon the initial and final states
D and F , the result acts as a conditional probability of the remaining history.
Griffiths gives many examples of applications.

A stronger, but simpler consistency condition was proposed by Gell-Mann
and Hartle [90]. The history approach is further discussed and related to other
themes in Omnès [161].

6.10 The Many Worlds and Many Minds.

In this section I will consider some rather radical viewpoints on quantum
mechanics and its interpretation. They are in parts opposite to the position
taken in this book: In the many worlds school one has no doubt that the
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state vector has an ontological interpretation. One even assumes that there
exists a state vector for the whole universe, which in principle describes every
possible phenomenon everywhere. Nevertheless I will give the theories some
description here, both because it has many followers among physicists, and
because some of the concepts involved also may be useful for understanding
my approach.

In conventional quantum mechanics, as well as elsewhere in the present
book, there are two different ways in which a state vector may change:

Process 1: (Cp. Theorem 5.7.4) By measurement of a quantity with eigen-
states vb

1, v
b
2, ... a state v will be changed to a state vb

j with probability |v†vb
j |2.

Process 2: Continuous change of v according to the Scrödinger equation.

From a purely ontological point of view, the process 1 is thought to be
disturbing. Everett [75] set out to develop a formalism where this process was
unnecessary. To this end it first became necessary to study the Hilbert space
H for a combination consisting of the system itself together with a measuring
apparatus. This Hilbert space is the tensor product of two parts, one Hilbert
space for the system and one for the apparatus.

As discussed above in connection to the Bell inequality, the simplest vec-
tors in H are tensor products of vectors v for the system and u for the ap-
paratus. But the general state vector for the combined system is a linear
combination of such vectors. If the combined system is in such a state w - in
this book taken as a question together with the answer to that question - it is
impossible to define separate states for the two parts. The following definition
turns out to be useful, however:

Definition 6.10.1. Assume that the combined system is in a state w ∈ H,
let {vi} be an orthonormal set of system states and let u be a given state vector
for the apparatus. Then define

vu
rel = N

∑
i

[(vi ⊗ u)†w]vi (6.20)

as the relative state of the system for given u, where N is a normalizing
constant.

It can be proved that the relative state is independent of the choice of the
orthonormal set {vi}; see Everett [76]. Using the concept of relative states
Everett was indeed able to build up a formalism where the discontinuous
process 1 was avoided, but this was at a price: He had essentially to assume
that each time a choice of measurement was done, the universe was split into
a multitude of parallel universes. In fact the notion of parallel universes was
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Fig. 6.2. Many minds.

not mentioned by Everett; it was introduced later by De Witt [59] and made
popular by Deutsch [57]. Some physicists believe that this gives the ultimate
interpretation of quantum mechanics, but many are sceptical to the idea that
there at each time exists 10100 or more parallel universes, of which only one
is observed. At least this idea is not in the spirit of Occam’s razor!

I will give some discussion of a related and more recent idea, however,
namely that of multiple minds; I will here follow Lockwood [143].

From the mathematics of a qubit - or electron spin - it follows that a state
with spin +1 in the z-direction can be written as

1√
2
vx
+ +

1√
2
vx
−.

If we now perform a measurement of the spin in the x-direction, then according
to conventional quantum mechanics a Process 1 as formulated above takes
place. To avoid this, Lockwood included the state of the observer in the state
vector for the system:

1√
2
vx
+ ⊗ u+ +

1√
2
vx
− ⊗ u−. (6.21)

For simplicity I have omitted the measuring apparatus here, pretending
the the observer can observe the spin component directly. Then u+ is the state
of the mind of the observer corresponding to an observation +1, while u− is
the state of the mind of the observer corresponding to an observation -1. With
respect to u+, the relative state of the electron is vx

+, and with respect to u−,
the relative state of the electron is vx

−.
According to Everett/Lockwood the world consisting of the electron and

the mind of the observer follows two brances here:

vx
+ ⊗ u+
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and
vx
− ⊗ u−

If the observer is caught up in the entangeled state (6.21) and is asked about
his recollections, it will be like remembering seeing spin +1 and remembering
seeing spin -1. The observer is literally in two parallell minds here!

Suppose further that we have two electrons, 1 and 2, in the singlet state
discussed above in connection to Bell’s inequality. Mathematically, this state
can be written

1√
2
vx1
+ ⊗ vx2

− − 1√
2
vx1
− ⊗ vx2

+ .

In fact the direction x can be replaced by any direction here, but I will first
concentrate on spin measurements in the x-direction.

The two electrons can now be far apart, and there is an observer A at
electron 1 and an observer B at electron. According to Lockwood, we must
include the states of mind of these two observers, and arrive at the complete
state

1√
2
(vx1

+ ⊗ uA
+)⊗ (vx2

− ⊗ uB
−)− 1√

2
(vx1
− ⊗ uA

−)⊗ (vx2
+ ⊗ uB

+). (6.22)

This is a non-local state, but it has been arrived at by local interactions: First
the local interaction between the two electrons in some distant past, then the
local measurement interactions between A and electron 1 and between B and
electron 2.

The simplest situation is when both A and B measure spin in the x-
direction. Then they can both can be described as belonging to the same pair
of electron/mind-worlds. As discussed earlier, the value for electron 2 is just
the opposite of the value for electron 1 in this case.

A more complicated situation occurs if they decide to measure in different
directions x and y. Then (6.22) must be rewritten, and it turns out that A
and B find themselves in distinct pairs of electron/mind world of which they
alone have determinantly got the result spin-up or spin-down. The action at a
distance is just the prediction found from Born’s formula. By communicating
their measured results to each other, they create among themselves four such
parallel worlds, tensor products of their separate worlds.

This is the starting point of the many-mind theory as it has developed from
the many-world theory of Everett. In principle, one can define the possible
worlds with respect to tensor products of conscious states of all human beings
which figure somewhere in the universal state vectors. There are many variants
of the resulting theory and several opinions about details; the reader is referred
to [143] and to the discussion there.

For people outside this community, the theory seems to contain many
weird elements. In particular, in the philosophy assumed in this book, the
state vector is just a tool for calculating probabilities, and I see no reason to
avoid the discontinuous Prosess 1. Then a basic premise for the discussion of
this Section drops.
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Nevertheless, this discussion contains some interesting elements. First of
all, the human mind is not simple. In particular, it can hold two or more ideas
at the same time. This is most easily seen during a learning prosess, where
the value taken for a parameter is not yet determined. Such learning processes
will be central to the discussion of statistical inference in the next chapters.

Another concept which should be central to statistical inference, is that
of focusing. Focusing on which parameter to measure was also central to the
foundation of quantum mechanics as it was argued for in the previous chap-
ters of this book. This has paved the way towards at least some elements of
a common foundation, a theme which will be further developed in the last
chapters of the book.





7

DECISIONS IN STATISTICS.

7.1 Focusing in statistics.

During the last 3 chapters I have tried to translate various aspects of formal
Hilbert space based quantum theory into a language based upon questions
and answers concerning statistical parameters, and this was taken together
with symmetry aspects to give a reasonably complete basis. I did not talk too
much of the experiments that could provide answers to these questions; for
the most parts these experiments were assumed to be perfect.

However, in Chapters 1-3 I did discuss statistical experiments, and most of
the discussion there was consistent with the concept that one finds in virtually
all statistical textbooks and theoretical papers: A standard statistical exper-
iment can be taken to be synonymous with a parametric class of probability
measures. Note that this is still the central framework for the mathematical
statistical culture, even though the lack of consistency of at least a naive uni-
versal application of this concept has recently been pointed out by McCullagh
[151], and the whole concept has been attacked in an interesting polemic by
Breiman [36].

One of several questions that I will raise in the last 3 chapters is whether
the framework created from the concept of an experiment as a parametric
class of probability measures is sufficient for all applications of statistics. Is a
variant of Gödel’s incompleteness theorem valid also here? Can one formulate
questions in the statistical language which cannot be answered in the same
language?

From an applied statistical point of view the answer is certainly yes. Any
moderately complicated statistical investigation will raise questions that can-
not be answered using formal statistics. Such questions can sometimes, but not
always, be raised in terms of parameters of some chosen model. Also discus-
sions before an experiment is performed will be conceptual, and the concepts
involved can often be taken as belonging to an extended class of parameters,
not unlike the concepts/parameters - or c-variables - I used in formulating the
questions of quantum mechanics.
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Furthermore, an issue that I will raise in these last chapters is whether
applied statistics/applied macroscopic science can learn something from the
above formulation of quantum theory. Since symmetry in statistics was cov-
ered in depth in Chapter 3, a main issue here will be the focusing of parameters
used in asking scientific questions. Some of the examples given will be of direct
relevance to quantum theory, but - even though the inspiration from chapter 5
is there - for the most part I will discuss various aspects of focusing in general,
also since I feel that this subject is not sufficiently treated in the statistical
literature.

Much of this discussion can take place in relation to relatively simple
models. In fact most of the models used in statistical practice are comparably
simple. On the other hand, applied scientists tend to have a more flexible
attitude to the model concept than most theoretical statisticians. It is not
uncommon that an applied researcher analyses his or her data using two or
more related models hoping to find similar results in all the analyses. The
considerations behind such choices are largely qualitative. In my opinion it
is timely to start a dialogue among mathematical statisticians on the related
qualitative and subject specific reasoning behind model choice and parameter
choices, a reasoning which is in principle very different from doing formal
calculations using some model selection criterion. Although the discussion of
the previous chapters here had a completely different focus, I feel that certain
aspects of such choices of model and such focusing upon model parameters
can also be learned from this discussion.

In agreement with the common situation in applied research, I will submit
to the view that virtually all statistical models are approximations. Then
model reductions may lead to poorer approximations, or in other cases the
degree of approximation will be about the same. When a symmetry group
on the parameter space is present in a natural way, I will assume that every
model reduction is to an orbit or a set of orbits of that group, as discussed
in Chapter 3. But the main issue will be focusing. A related issue is what
attitude one has to the assumptions that lie behind the statistical analysis
performed.

Example 7.1.1. Expressed as pairwise differences, the data y1, y2, ..., yn will
be used in a t-test for the hypothesis µ = E(yi) ≡ 0. As is well known, the
assumptions behind this test are that {yi} are independent and identically
normally distributed, Assume now for simplicity that independence and iden-
tical distribution is reasonally safe assumptions from the context, so that the
only thing we doubt, is the normal distribution. There are a large number of
ways to investigate normality that has been suggested in the literature, formal
tests and graphical plotting methods.

In this context, let the c-variable φ consist of µ together with the variance
σ2 and together with some very general measure of non-normality γ, such
that γ = 0 corresponds to the normal distribution. At the very least, γ should
consist of linear components βi of theoretical moments together with distri-
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bution function values H(x) = F (x)−Φ((x− µ)/σ) for all values of x, where
Φ is the standard normal distribution function. Recall that a c-variable well
might contain redundant information

Let the data be investigated by two scientists A and B. Scientist A choses
to first perform a classical test of non-normality based upon skewness and
kurtosis due to Karl Pearson, and then, if this test does not reject normality,
he does the t-test. The first test he performs then depend upon β3 and β4. In
total he asks questions to the data which depends upon an estimable set of
parameters.

Scientist B has heard the the t-test is particularly sensitive to outliers,
so he investigates the question of outliers by some normal plot before doing
the t-test. He may choose to reject one or more outliers before the t-test.
His first question to the data then depends upon H(x) for large positive and
negative values of x. This can be more precise by looking at the quantiles of
the distribution.

In principle these two scientists can arrive at different conclusions. The
reason is that they ask slightly different questions to the data, questions that
in each case can be formalized using different functions of the c-variable θ.

Cases like this occur daily in applied statistics.

Example 7.1.2
There has been a shift in attitude among applied researchers during the

last decades. Earlier formal hypothesis testing with specified null hypothesis
and given alternative was much used; now the great bulk of hypothesis testing
is done in terms of P-values (Definition 2.4.4.). One advantage with P-values
(and also a danger for people not used to this way of thinking), is that this
approach involves a focusing in the testing procedure. This focusing is implied
by the choice of test variable t(y). Given a specific alternative or a class of
alternatives, this test variable can in theory be chosen in such a way that that
the power of the test is maximized, but in practice this is not always done,
for various reasons.

So choose a set of feasible test variables t(·) ∈ T . For t(·) in this set and for
varying d define the c-variable as the set {f(d, t(·), θ) = P (t(y) > d|H0)}. The
outcome of the test is found by first specifying t = t0 ∈ T and then calculating
f(ty0 , t0(·), θ̂) for data y0 and for some estimate of the extra parameter θ.
Reject the null hypothesis if this number is small. Thus we again have a
situation where a question is asked to the data, and the answer depends from
focusing according to a function of a c-variable. Different choice of focusing
may be said to correspond to complementary questions.

7.2 Linear models.

A large body of statistical applications are based upon linear models of the
form
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y = β0 + β1x1 + ...+ βpxp + e, (7.1)

where each of the variables y, x1, ..., xp, e are n-vectors, corresponding to ob-
servations on n units, where x1, ..., xp are taken as non-random, and where
the error term e is usually assumed to be multinormal with expectation 0 and
covariance matrix proportional to the identity.

A very difficult problem in many applications is to choose which x-variables
to include in the model (7.1). In many cases there is a large number to choose
from at the outset. In other cases one can increase the number even further by
including transformations of the original variables as in polynomial regression.

From my point of view, a natural way to look upon this situation is as fol-
lows: Let first p in (7.1) be very large, so large that all x-variables of potential
interest are included in the ’model’. One cannot in general use the term model
in its usual sense here, since if p is larger than n, there is no way in which
the parameters can be identified from the data. For similar reasons it is not
reasonable in general to call the whole vector φ = (β0, β1, ..., βp) an ordinary
parameter; in the spirit of the rest of this book I will call it a conceptually
defined variable or c-variable.

From this conceptually defined entity there are many ways that one can
construct useful models by selecting vectors λa consisting of components from
φ. The statistical literature has focused upon formal criteria like Akaike’s in-
formation criterium of Mallow’s Cp (; see for instance ([100])), but in concrete
cases there may also be ways in which one can use subject-matter knowledge
to select the model of interest.

Also there is a mathematical statistical viewpoint under which it is unrea-
sonable to say that one model is ’right’ and another model is ’wrong’. Namely,
one way of looking at the whole area, is to initially let all x1, ..., xp be ran-
dom variables, in the simplest case a multinormal set of variables. Then one
conditions upon a selection of these variables. Some such selections may be
sensible because they lead to a reasonably small error, while others may be
completely useless from this point of view, but none are ’wrong’ using this
way of thinking.

From a group-theoretical perspective, one can consider independent scale-
transformations of each x-variable, which then induces the group of indepen-
dent scale-transformations on each βj-parameter.

Proposition 7.2.1. This collection of scale-transformations induces a
unique transformation group on the c-variable φ. Every set of the form
{φ : βk = 0; k = k1, ..., kq} will constitute an invariant set, i.e., a collection of
orbits for this group.

Proof. Straightforward: When βk = 0, it continues to be zero under the
scale group. When βk 6= 0, it is also non-vanishing under any scale transfor-
mation.
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Therefore, every model reduction of the type described above, where a set
of components of φ are put equal to 0, constitutes an orbit or a collection of
orbits of the group. Thus this is in agreement with the general model reduction
strategy put forward in Chapter 3.

Another situation, to be considered in the next Chapter, is when all x-
variables have the same unit, so that more general linear transformations
of these variables, and hence of the β-parameters may be used for model
reduction.

A class of linear models with a wide variety of applications, are the analysis
of variance models, where some of the x-variables can be taken as indicator
variables − the main effects, and some as products of these indicators − the
interactions. Again model reductions may be relevant, and it may not be an
easy task in a concrete situation to find the best model reduction. Some simple
rules are applicable, however, for instance: If a main effect is deleted, then all
interactions containing that main effect should be deleted.

There are many textbooks on linear models; in my setting it is natural to
refer to Searle [176]. In this book overparametrized ’models’ are used as a rule;
in order that it shall be possible to solve several real, maximal linear models
under the same umbrella, solutions are sought using generalized inverses.

7.3 Focusing in decision theory.

Decisions in statistical inference were briefly discussed in Section 1.4. In ordi-
nary inference theory one always imagines a fixed model behind any decision,
and then the typical decision from data will result in an estimated parameter
or the rejection of a hypothesis, say.

Combining this with a model reduction of the type discussed in the pre-
vious Section, leads to a two-step decision procedure of the type discussed
in Section 1.4. There, such a decision procedure was required to be unbiased
in the sense that the decision taken at some given step should not influence
decisions taken at later steps. In the present case, this is true if and only if
the reduced model may be considered to be the true one. Then the decisions
taken about the parameters in this model are decisions about the true param-
eters, and these decisions are not influenced by the way the reduced model
was obtained.

Like all statements about hypothetical models, the statements above must
be qualified somewhat in practice. In the real world, all models are approxi-
mations. Thus it is a simplification to talk about true models and true param-
eters. The parameters of the approximate model are words that can be used
to express scientific statements of the type: The expected yield was estimated
to be 15 kg per square meter; the hypothesis that the probability of recovering
under a given treatment is higher than 0.99, was rejected.

A totally different set of situations for which focusing in decision situations
is relevant, is when one is interested in testing several statistical hypotheses
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within the same model. There is a large literature on multiple testing of rele-
vance to situations like this; see for instance Miller ([148]). I will not discuss
the choice between the different options here, but only point at the fact that
there exist welldefined cases where this literature is not relevant, and where
one should rely upon single tests. These are just the cases where one can de-
fine a meaningful focus corresponding to each single test. Let us first briefly
discuss a situation where multiple testing does have relevance.

Example 7.3.1. In a completely randomized experiment − meaning that
one from nk plots selects randomly n plots for each variety − the yield of k
varieties of wheat are compared. In most situations one will use a one-way
analysis of variance model

yij = µi + eij , (7.2)

where µi is the expected yield of variety i, yij is the observed yield of this
variety on plot j and eij are the error terms, usually assumed independent
N(0, σ2).

The first step in the statistical analysis is to perform an F -test of the
overall hypothesis µ1 = µ2 = ... = µk. Usually this hypothesis is rejected, and
the question is then where the differences lie. This leads to k(k− 1)/2 partial
hypotheses of the form

µi = µi′ .

Testing these as single hypotheses will usually lead to a large number of false
rejections just because of the large number of tests performed. This is usually
compensated for by using some multiple test procedure, the simplest device
being the Bonferroni test: Use the level 2α/k(k−1) instead of α in each single
test.

Example 7.3.2. Consider an experient with k treatments modeled by the
one-way analysis of variance model (7.2), but where the treatments are more
structured than the varieties of the previous example. We assume in particular
that it is meaningful to define an orthogonal set of k contrasts λi =

∑
j cijµj .

Such a linear combination λi is a contrast if
∑

j cij = 0 (; see Section 2.10).
The set above set of contrasts is orthogonal if

∑
j cijci′j = 0 for i′ 6= i.

An example of the first couple of contrasts in an orthogonal set might be
λ1 = µ1−µ2, λ2 = (µ1 +µ2)/2− (µ3 +µ4)/2, λ3 = µ3−µ4. In such cases the
questions: ’Is λi equal to 0?’ imply essentially different focus for different i.

The point is then: In all applications, the hypotheses λi = 0 are tested
separately for different i. There is never any question of involving the mul-
tiple testing philosophy like in Example 7.3.1. The reason is that orthogonal
contrasts always imply essentially different problems, and testing one such
contrast involves a particular choice of focus.

Example 7.3.3. Consider a linear model

y = β0 + β1x1 + ...+ βqxq + e,
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where it is assumed that all parameters can be estimated. Then in all ap-
plications the hypotheses Hj : βj = 0 are tested separately, and there is no
question of including any multiple testing consideration. The reason is again
that these hypotheses imply esentially different problems, and testing one such
hypothesis involves a particular choice of focus.

Let the above two subject area: model selection and focusing on a paramet-
ric hypothesis to test, stand as examples of focusing when making decisions
related to statistical modelling. In both cases one starts with a parameter or
other c-variable φ, and ends up with making a decision which in an essen-
tial way depends on a parameter λ, a function of φ. Thus we end up with a
general situation which is related to the discussion of quantum mechanics in
Chapter 5. Of course this does not mean that the two situations are identical,
only that they both belong to a more general situation related to focusing
of parameters, and thus bear some resemblance. A specific set of assumption
in Chapter 5 was the dependence on certain group theoretic assumptions. A
specific aspect of the situation of the present Section is that decisions also
depend upon data. However, these facts do not set the two areas completely
apart. It was mentioned above that grouptheoretical considerations could be
useful in model reduction, and for instance in Section 5.7 it was illustrated
that the use of data is absolutely relevant to quantummechanical predictions.

Finally, let us return to the one-way analysis of variance situation with
contrasts.

Example 7.3.4. Assume that there are two set of orthogonal contrasts
λa = {λa

i } and λb = {λb
i} given by λa

i =
∑

j cijµj and λb
i =

∑
j dijµj .

Inference on λa and λb will constitute complementary questions. To fit into
the general framework, λa and λb are each maximally estimable functions of
φ = (µ1, ..., µp), albeit one-to-one functions in this case.

7.4 Briefly on schools in statistical inference.

The conditionality principle and the likelihood principle were formulated in
Section 2.13. The conditionality principle roughly states that the experimental
evidence concerning a statistical parameter is the same when one conditions
upon an observation whose distribution does not depend upon the parameter.
The principle was mentioned two times during my discussion of quantum
mechanics: during the derivation of Born’s formula in Section 5.5 and in the
discussion of Bell’s inequality in Section 6.4.

The likelihood principle states that all information about a parameter is
contained in the likelihood function for this parameter, given the observations.
It is shown in ([25]) that the likelihood principle can be formally derived from
the conditionality principle together with a sufficiency principle formulated
there. It is also argued in ([25]) that the likelihood principle in a natural
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way leads to a Bayesian approach to statistics. The Bayesian paradigm for
statistical inference in general was discussed in Section 2.6.

This paradigm for statistical inference is conceptually rather clean and
simple, and it has gained increasing popularity during the last years. It is no
doubt that it can be useful in certain situations, in particular when the goal
is to quantify our belief about the statistical parameter of the model. But in
my view the Bayesian paradigm can not be taken as a principle embracing all
cases where statistics is used in practice. This is an important point, both for
the practical use of statistics as a tool, and for the general view, underlying
much else in this book, that it is difficult to derive all tools that should be of
relevance to empirical science from a small number of formal mathematical
axioms. A number of arguments for this view in the present case, are as follows:

1. As argued for by examples in Section 2.13, the conditionality principle
should not be taken to have universal validity.

2. This is connected to the fact that most models in practice are approxi-
mations.

3. It is also connected to the fact, underlying my view both on quantum
theory and on statistical inference, that scientific questions in most applica-
tions involve focused questions. Such a focused question may involve a func-
tion of the model parameter, but it may also indirectly involve other unknown
quantities, such that all these together constitute a c-variable.

4. The concept of information about a parameter is left undefined both
in the conditionality principle and in the likelihood principle. Even though
this is done deliberately to make the concept general, it is not immediately
suitable for situations where we ask focused question about a partial parame-
ter, at least when this also involves some external unknown information. Note
that the formulation of the model itself often will constitute such unknown
information.

5. The Bayesian way of thinking makes extreme use of the probability con-
cept as the only mathematical tool. Even all prior knowledge is formulated
as a probability distribution. In some cases this will be unnatural. In general
probability theory is important in statistics, but it is often relevant in appli-
cations to consider other tools, like focusing of interest, like linear algebra in
linear models or like symmetry as expressed through group theory.

6. Both testing of hypotheses and confidence intervals (Section 2.4) will
often be suitable tools for answering focused questions. These tools are not
covered under the Bayesian umbrella.

7. As mentioned in the next Section, the analysis of designed experiments
make use of a randomization theory, involving ideas that are not Bayesian.

8. As argued by leCam [25], the argument from the likelihood principle to
a universal Bayesian viewpoint may be a weak one.

9. The Bayesian paradigm is a rather formal mathematical theory derivable
from a few axioms. By the extension of Gödel’s theorem discussed in section
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4.2 one might expect that the whole way of thinking -when applied to the
empirical world - is incomplete in some way.

The conclusion from all this is that I would recommend a Bayesian toolch-
est in some cases when it is natural, in particular when a natural prior distri-
bution can be defined, and a classical statistical toolchest in other cases. In
some cases it might be appropriate to carry out both analyses on the same
data set, as complementary approaches, and hope that the two will lead to
qualitatively similar results. If this is not the case, a closer examination of
the problem, the model and the data might be needed. In general a statistical
analysis is not like solving a mathematical problem, where one every time
finds a unique solution. It can indeed be fruitful to look upon data analysis
using different languages, and then try to find a synthesis.

Note in particular that there does exist general cases where the two forms
of statistical analyses lead to exactly the same result, even though the in-
terpretation is completely different; see Section 3.6. This last case, where a
transitive group is defined on the parameter space, is also a case where a nat-
ural prior can be found as the right invariant measure, and it is furthermore
the case where the best equivariant estimator under quadratic loss is equal to
the Bayes estimator; see Corollary 3.5.5.

7.5 Experimental design

In general, statistical analysis is appropriate in two cases, when one has ob-
servational data, and when the data stems from a designed experiments. The
theory of experimental design has played an important historical rôle in the
development of statistics, and currently it is essential to a lot of applications
within medicine, biology, agriculture and industry. Nevertheless, courses in
experimental design have sometimes been lacking from university curruculae,
or, if such a course has been included, it has played a rather remote rôle com-
pared to the main courses devoted to the development of models based on
probability theory and the statistical analysis developed from these models.

A few aspects of experimental design theory have been sketched in Section
2.14, and a fuller discussion of many topics of interest can be found in Box,
Hunter and Hunter [34]. From my point of view, the following is important:
Empirical investigations in general can be fruitfully carried out by first posing
focused questions and the seeking answers through data. Experimental design
can be looked upon as the science of posing questions in an intelligent way.

Specifically, the discussion in Section 2.14 on a c-variable-based general
approach is important to the philosophy of this book. This is not standard
material in experimental design books, but it can be easily developed further
into posing focused questions in the form of factorial experiments, either full
or fractional [34].
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Example 7.5.1. Consider a 25−1-experiment, that is, an experiment with
5 factors, each of 2 levels, but where one cannot afford a full replicate: Only
24 = 16 runs are made, but this is done in a balanced way such that all
main effects νj can be estimated, and in addition twofactor-interactions, being
aliased with threefactor-interactions. In the notation of Section 2.14, each νj is
the difference between means of the tratment parameter θt, difference between
high and low level for the factor j. This implies that νj is an estimable function
of the c-variable φ which was constructed there.

Since one does not have a full replicate, the further statistical analysis of
the 25−1 experiment is nonstandard. One way to proceed is to do a normal
plot in order to pick active (important) factors, and then perhaps neglect
the others in the subsequent analysis. There are several choices which must
be done in carrying out this, and different scientists A and B may perhaps
be lead to different conclusions, as in Example 7.1.1. By careful construction
the procedure of A, respectively B may be formulated as questions using
parameters which are functions of the c-variable in Section 2.14.

Now turn to the common case of several replications. The statistical anal-
ysis from designed experiments are often done using the randomization dis-
tribution, that is, no statistical model is used, but tests are performed using
as reference the distribution obtained from the randomization of the experi-
ment itself. This is an area of statistics which is very far from the Bayesian
paradigm.

More advanced topics in experimental design, say, discussions of incom-
plete blocks, uses group representation theory, and is thus mathematically not
far from the group approach that I used in Chapter 5 when deriving quan-
tum mechanics. The strata for randomized experiments discussed by Bailey
[15] is a concrete example of a case where such a connection may be seen. Of
course there is no simple direct line from this to quantum mechanics, but in
both areas one finds an extensive use of eigenstuctures of operators. In several
parts of advanced experimental design one will find something similar, for in-
stance in the discussion of generally balanced designs, where a main topic is
the simultaneous diagonalization of operators; see Nelder [156] and references
there.

7.6 Quantum mechanics and testing of hypotheses.

In the approach of this book, the quantum states vb
k are equivalent to a ques-

tion: What is the value of the parameter λb? together with the crisp answer:
λb = λb

k. In the spin 1/2 case this will correspond to a chosen direction b,
and the question is about what the spin component in this direction is. The
answer can be +1, corresponding in ordinary quantum mechanical terms to a
certain eigenvector vb

1, or -1, corresponding to the orthogonal eigenvector vb
2.
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Many textbooks in quantum mechanics discuss the Bloch sphere represen-
tation of this result:

vb
1v

b†
1 = E1(b) =

1
2
(I + b · σ) (7.3)

vb
2v

b†
2 = E2(b) =

1
2
(I − b · σ), (7.4)

also mentioned in Chapter 5 (see equations (5.23) and (5.24).)
In this Section I will look a simple hypothesis testing problem with fixed

level α and fixed power β for a parameter λb taking two values ±1. For sim-
plicity I choose the test statistics t such that it also takes the two values +1
and -1, which always is possible. The level and power requirements then take
the form

P (t = −1|λb = +1) = α,

P (t = +1|λb = −1) = 1− β.

This means that we are testing the hypothesis H0 : λb = +1 against the
alternative λb = −1, and that the hypothesis is rejected when t = −1.

Note that the result of such a test still must be considered as a state of
the question/answer type, albeit in a more advanced form: The question is
given by the three-vector b and the two predetermined error probabilities α
and 1 − β. The answer is given by λb = +1, say, which is the conclusion we
arrive at if we observe t = +1. So any specification of the state must involve
all the quantities b, α, β and the answer ±1.

Such a specification can be done in a natural way if we introduce the
concept of effect introduced in Chapter 5 in connection to the discussion of the
Born formula. Specifically, say that we have done the experiment and reported
the value t = +1. Then we may specify the resulting state by weighting the
respective effects (7.3) and (7.4) according to the relevant probabilities for the
given result. This gives:

E = (1−α)
1
2
(I+b·σ)+(1−β)

1
2
(I−b·σ) =

1
2
((2−α−β)I+(β−α)b·σ). (7.5)

Lemma 7.6.1. From the operaor E above one can determine uniquely
b, α and β. Conversely, these three entities determine E as above for the case
t = +1.

This concept of effect for testing of hypothesis is consistent with the general
definition of effect given in definition 5.7.2. In the present two-dimensional
(spin) situation such an effect can always be written E = 1

2 (rI + cb · σ); thus
we have r = 2− α− β and c = β − α.

In the (r, c)−plane, the effects are limited to the triangle with corners
(0, 0), (2, 0) and (1, 1). But note that b can be replaced by −b depending



196 7 DECISIONS IN STATISTICS.

on the outcome, so the triangle obtained by taking the mirror image around
the line c = 0 is also relevant. The first triangle corresponds exactly to the
limitation imposed by the hypothesis testing interpretation discussed above:

The limitations imposed by the triangle are c ≥ 0, corresponding to β ≥ α,
and c ≤ r ≤ 1− c, corresponding to α ≥ 0 and β ≤ 1. The bottom line c = 0
corresponds to β = α, a case where there is no information in the reported
result. The right boundary corresponds to α = 0, and the left boundary to
β = 1. And at the top of the triangle, where α = 0 and β = 1, both error
probabilities are 0, and we get the pure states on the Bloch sphere.

A simple hypothesis problem can be inverted by exchanging hypothesis
and alternative.

Lemma 7.6.2. Assume also that the reported result is opposite of what
we had above, that is, -1 instead of +1. Then the operator will be:

E2(r, c, b) =
1
2
((2− r)I − cb · σ) = I − E .

So what do we get from all this? Obviously there is a correspondence
between concepts of quantum mechanics and concepts corresponding to a
simple hypothesis testing situation. The result of importance, however, is that
this correspondance implies that one sometimes can use the probability results
from quantum mechanics in a macroscopic situation.

The point here is that one can learn something a priori from one performed
experiment about the potential result of another experiment. I will discuss in
detail one particular example here. The importance of this example lies in
the fact that it possesses so much symmetry that the results of quantum
mechanics, in particular Born’s formula, is of relevance.

Example 7.6.1.
Four drugs A,B,C andD are being compared with respect to the expected

recovery time µ they induce on patients with a certain disease. Since these
expectations are difficult to estimate, one concentrates on getting information
on the difference between each µ and the others, for instance

λA = sign(µA −
1
3
(µB + µC + µD)).

I will not go into detail with the experimental design here, but assume that
there is an efficient design, say, of an incomplete block type, where accurate
information can be obtained about one or a few such λ’s.

Assume that we from some experiment have obtained very accurate infor-
mation that λA = +1, and that this is the only information we have. Then
we want to perform a new experiment in order to test an hypothesis that λB

also is +1. Can we get any prior information about the result of this from the
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A

B

C

D

109o

Fig. 7.1. Tetrahedron with two perpendiculars.

first experimental result? Informally, since µA is subtracted in the expression
for λB , we should expect a probability less than 1/2 that λB = +1.

Our main assumption now is that there is a complete symmetry between
the 4 binary parameters λA, λB , λC and λD. Permutational symmetry can
always be imagined as imbedded in some rotational symmetry. Here we can
consider rotation in 3-space, looking upon a regular tetrahedron in this space.
The perpendiculars from the corners A,B,C and D of that tetrahedron to
the opposite side can then be taken to represent the parameters λA, λB , λC

and λD, respectively. From what is known about regular tetrahedrons, the
angle between two perpendiculars is approximately 109o, with a cosine equal
to -1/3.

Proposition 7.6.1. Assume 1) that the transition probability from λi =
+1 to the conclusion +1 for a simple test of λi′ with level α and power β is
the same for each choice of different i and i′ among A,B,C and D; 2) that
the same result holds for arbitrary sets of 4 drugs A′, B′, C ′ and D′. Then this
transition probability is

1− 1
3
α− 2

3
β. (7.6)

For the special case of an ideal experiment with α = 0, β = 1, the probability
is just 1/3.

Proof. From assumption 1) we have the symmetry needed for the Born
Theorem (Theorem 5.5.1) under the permutation group. By assumption 2)
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we have the same symmetry for every tetrahedron as sketched above, and this
gives symmetry under the whole rotation group. This leads to the same situ-
ation that we have for the spin 1/2 case, and for the ideal case the transition
probability is given in Proposition 5.6.2 with a and b representing the two
directions as given by the perpendiculars in the tetrahedrons. This gives for
an ideal experiment:

P (λb = +1|λa = +1) =
1
2
(1 + cos(a, b)) =

1
2
(1− 1

3
) =

1
3
,

and then by symmetry P (λb = +1|λa = −1) = 2/3.
The general case then follows from (7.5) and from the additivity of gener-

alized probability discussed in Section 5.5 (; see Proposition 5.5.2).

An interesting point is that a natural noninformative Bayesian prior will
give a different answer here for the ideal experiment. In fact, the same answer
will be given by any identical and independent normal prior on µA, µB , µC

and µD. A numerical integration gives the answer 0.43 instead of 1/3 for this
case. The question is if this normal assumption is stronger than the symmetry
assumption made above. This will depend on the circumstances.

7.7 Complementarity in statistics.

Recall Definition 1.5.1, where two experiments are called incompatible if they
cannot be performed at the same time. Many physicists will use the term com-
plementary here, and in this section I will follow this terminology, even though
Accardi has proposed a stronger definition of complementarity, as mentioned
in Chapter 1. I will call this latter property strong complementarity: Two ex-
periments A and B are strongly complementary if any experiment resulting
in a fixed value for the variable of A must result in a uniform distribution of
the variable of B.

I will now try to look at the relevance of these concepts in a statistical
context. The first thing we must discuss is what we should mean by experiment
and by variable in this connection. Recall from Chapter 1 that I have included
the choice of focus in the concept of experiment: Every experiment begins with
a question.

In particular, the choice of a statistical model in case this is empirically
determined, and the estimation of a parameter within that model must be
considered as being related to two different experiments. In regression anal-
ysis one routinely uses complementary tools for these tasks: Least squares
calculations for estimating the parameters of a given model and residual plots
for investigating if the model can be considered to be correct, given the data.
If the model is rejected by the data, the estimates under the model are irrel-
evant; in this sense the two experiments must be said to be incompatible.
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When testing parameters, the focus is more specific, as shown in Examples
7.3.2 and 7.3.3. For a single test one can consider a c-variable which is 1 when
the hypothesis should be rejected, otherwise 0, or eventually some distance
from the hypothesis, perhaps in one specific direction. Two such tests must
usually be considered incompatible in the sense that the result of one test
anwers a completely different question than the other test. In most cases, also,
the two tests will not be independent, so that the result of a simultaneous test
can not be predicted from the results of the two single tests.

A special rôle in the connection between statistics and quantum mechanics
is played by

Theorem 7.7.1, The Cramér-Rao theorem. Let x be a statistics with
density f(x, θ), having continuous first-order and second-order partial deriva-
tives at all but a finite set of points. Suppose that the set of x’s for which
f(x, θ) 6= 0 does not depend on θ. Let θ̂ = h(x) be any unbiased estimator for
θ. Then

Var(θ̂) ≥ I−1, (7.7)

where I is the Fisher information

I = Var(s(x, θ))

with
s(x, θ) =

∂

∂θ
lnf(x, θ).

The interesting point now is that (7.7) has a form very similar to Heisen-
berg’s inequality (Theorem 1.1.1), where x and v are position and velocity of
a particle, two complementary variables.

In the present situation θ̂ and s(x, θ) play the rôle as two complemen-
tary variables, and these may be connected to two incompatible, essentially
different questions. Of course θ̂ is connected to the estimation of θ at some
point. The score s(x, θ) may be connected to a one-sided test of the hypothesis
θ = θ0. Specifically, the score test, based on the score statistics

z =
s(x, θ0)√
I(θ0)

is a good approximation to the locally most powerful test in this case, and it
can also be related to the asymptotic theory of such tests [48].
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MULTIVARIATE DATA ANALYSIS AND
STATISTICS.

8.1 Introduction.

In recent years there has been a large scientific activity connected to the de-
velopment of data-analytic methods that seem to have little or no connection
to traditional statistics. Some of these methods have been originated within
the machine learning community; some are separate developments. Many of
the methods are discussed - to some extent from an ordinary statistical per-
spective - in Hastie, Tibshirani and Friedman’s monograph [100].

In this book I have to a large extent argued for non-traditional ways of
looking at ordinary statistics. This has been related to my views upon quan-
tum mechanics, and the viewpoint that there can be seen a connection between
the two areas related to focusing upon functions of c-variables, to model re-
duction, to symmetry and to the concept of complementarity. A remaining
question is to which extent this connection can be extended to the other
data-analytic methods.

I will give a brief review of some of the other methods in Section 8.7 below,
but in his book I will concentrate on one of them, namely the partial least
squares (PLS) method originated by Herman Wold, partly under the name
’soft modelling’. Today the partial least squares culture may be considered as
split into two directions, a class of prediction methods employed in chemomet-
rics and related fields on the one hand, and soft models with many variables
used in economical and social science investigations on the other hand. There
has been relatively little communication between these areas and ordinary
statistics. In Section 8.2 I will introduce the partial least squares algorithm
used in prediction problems and show later that it can be connected to a
’hard’ statistical model, which can most naturally be seen as a reduced model
with the kind of model reduction discussed in Chapter 3 above.

Note that one element of the statistical paradigm: The distinction be-
tween parameters and observations, will be crucial to the conclusion of this
discussion. This distinction has been looked upon with scepticism by the PLS-
community, who emphasize the ’softness’ in their own way of thinking. A
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similar attitute can be found in some other data-analytic communities, and
it has spread to certain users of data analysis. Our view is clear here: By
emphasizing model reduction as one of the main concepts upon which the
connection between paradigms is built, the importance of the distinction be-
tween parameters and observations is enhanced rather than reduced. As in
the earlier chapters of this book, however, I will at times allow myself to look
upon parameters as more than just indices of probability distributions for
data.

8.2 The Partial Least Squares Data Algorithms.

The least squares method from the ordinary regression model y = Xβ + ε
boils down to a projection method: The prediction of y is given by ŷ =
X(X ′X)−1X ′y and the residual vector is y−X(X ′X)−1X ′y. A stepwise ver-
sion of this can be seen as the motivation behind the partial least squares
(PLS) algorithm.

A crucial element of the algorithm is that it is assumed to be stopped
after a certain number of steps; this number is most often determined by
cross validation.

There are variants of the PLS algorithm, but these are equivalent; see [101]
and Appendix 4. I will formulate below the original algorithm, also the most
common one in use today.

Algorithm 8.2.1. Start with data (X, y) of dimension n × (p + 1) as in
ordinary regression. To simplify, we assume that the X-matrix and the y-
vector are centered, that is, the mean has been subtracted in each column. Put
E0 = X and f0 = y. Then compute in steps for k = 1, ..., a:

tk = Ek−1wk with weights wk = E′
k−1fk−1, (8.1)

pk = E′
k−1tk/t

′
ktk = X ′tk/t

′
ktk, (8.2)

qk = f ′k−1tk/t
′
ktk = y′tk/t

′
ktk, (8.3)

Ek = X − t1p
′
1 − ...− tkp

′
k, (8.4)

fk = y − t1q1 − ...− tkqk. (8.5)

The interpretation of the first crucial part of this algorithm is as follows: In
equation (8.1), the latent variables or scores tk are constructed as linear com-
binations of the x-variables from the previous steps. What can be discussed



8.2 The Partial Least Squares Data Algorithms. 203

in connection to this equation, is if the choice of weights wk by necessity is
the best possible. It has been pointed out [124] - see Appendix 4 - that PLS
with this choice can be motivated by the property that the sample covariance
between y and t1 is maximized in the first step, and that a similar property
holds in later steps. This may certainly be seen as a nice property, but it is
a property that is connected to each single step. Any satisfactory optimality
property of a prediction method should be connected to the method as such,
not to the substeps in the construction of the method.

But anyway, accepting this step, in equations (8.2) and (8.3), loadings pk

and qk are constructed by least squares fit. Finally, in equations (8.4) and
(8.5), new x- and y-variables are computed as residuals in latent structure
equations.

If now x0 = (x01, ..., x0p)′ is a set of x-measurements on a new unit, one
defines e0 = x0 − x̄ with x̄ = (x̄1, ..., x̄p)′ and then new scores and residuals
consecutively by

tk0 = e′k−1wk, ek = ek−1 − tk0pk, (8.6)

corresponding to equations (8.1) and (8.4). Then finally the y0−value corre-
sponding to x0 is predicted in step a by

ŷ0 = ȳ +
a∑

k=1

tk0qk = ȳ +
a∑

k=1

tk0(t′ktk)−1t′ky. (8.7)

The number of components a is usually determined by cross-validation, but
other options have also been proposed [103], [119], [145]. Another possibility,
if there is enough data, is to use an independent test set.

Note that (8.4) and (8.5) give a decomposition of (X, y) into latent vari-
ables and residuals. Plots of scores tj and loadings pj are much used in the
applications of this method. Several mathematical properties of the variables
of the algorithm can now be found.

Lemma 8.2.1. The scores tk are orthogonal.

Proof.
This follows from equations (8.1), (8.2) and (8.4).

Proposition 8.2.1. (a) The weights satisfy the recursion relation

wk+1 = s− SWk(W ′
kSWk)−1W ′

ks, (8.8)

with Wk = (w1, ..., wk), S = X ′X and s = X ′y.
(b) The weights wk are orthogonal.

Proof. (a) here can be seen by using an equivalent algorithm - see Appendix
4. Given (a), the orthogonality (b) follows by premultiplying (8.8) by W ′

k.
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(Another proof of this is given in [124], where also other orthogonality relations
are discussed).

A further result most easily proved by the above mentioned alternative,
equivalent algorithm (Appendix 4) is that

Proposition 8.2.2. The PLS regression vector with a components can be
written

ba = Wa(W ′
aSWa)−1W ′

as. (8.9)

A final important result is then:

Proposition 8.2.3. The weights w1, ..., wk span the same space as the
Krylov sequence: s, Ss, ..., Sk−1s.

Proof.
We have w1 = s. Use induction in k together with (8.8) to show that each

wk is a linear combination of s, Ss, ..., Sk−1s. It is left to prove that this latter
set of vectors is linearly independent. It is shown in the next Section that this
holds as long as k is smaller than the number of different eigenvalues of S. If
this latter condition does not hold, the algorithm will stop in the sense that
the next wk vanishes.

Note that from this we have that Wa in equation (8.9) may be replaced by
Va = (s, Ss, ..., Sa−1s), giving a simple explicit form for the PLS regression
vector.

A few exact results have been proved about PLS regression. In de Jong
[56] it is shown that PLS shrinks in the sense that one always has:

|b1| ≤ |b2 ≤ ... ≤ |bp|.

A similar shrinkage result was also proved by Goutis [96]. Also, de Jong [55]
proved that with the same number of component, PLS will always give a
higher coefficient of determination R2 than principal component regression
PCR.

Thus the PLS algorithm implies several nice mathematical properties for
the variables involved, but its motivation remains heuristic. It has also been
argued in [107] that for theoretical reasons it is very unlikely that the PLS
method gives optimal prediction in any reasonable sense. This has recently
been confirmed Cheng and Wu [41], who constructed concrete improvements
of the method and verified numerically that these were indeed improvements.
Nevertheless, one can argue that PLS in essence is a good idea, something that
can be seen by going from the data algorithm to the corresponding parameter
algorithm.
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8.3 The Partial Least Squares Population Model.

The PLS algorithm was shown above to connect to properties of the empirical
covariance structure (S, s). To study the theoretical properties of this algo-
rithm, it is natural to replace S here by the theoretical x-covariance matrix
Σ, and replace s by the (x, y)-covariance vector ζ = Cov(x, y). In effect this
is done by replacing Algorithm 8.2.1 by

Algorithm 8.3.1. Let x be a random p-vector with expectation µx, and
et y be a random scalar with expectation µy, and let the covariance structure
be as above. Define starting values for the x-residuals εk and y-residuals fk:

ε0 = x− µx, (8.10)

f0 = y − µy. (8.11)
Then compute in steps for k = 1, ..., a:

τk = ε′k−1ωk with weights ωk = Cov(εk−1, fk−1), (8.12)

πk = Cov(εk−1, τk)/Var(τk), (8.13)

φk = Cov(fk−1, τk)/Var(τk), (8.14)

εk = εk−1 − πkτk, (8.15)

fk = fk−1 − φkτk. (8.16)

It is clear from (8.10), (8.11), (8.15) and (8.16) that this algorithm at each
step a gives a bilinear representation

x = µx + π1τ1 + ...+ πaτa + εa, y = µy + φ1τ1 + ...+ φaτa + fa. (8.17)

From the usual regression argument using (8.13)-(8.16), the residual εk
will be ucorrelated with τk; hence all the scores τ1, ..., τa will be uncorrelated.
As a result, we have the alternative expression ωk = Cov(εk−1, y), which can
be used in (8.12), and we can replace εk−1 [fk−1] by x [y] in the definition
of πk [φk] in (8.13)-(8.14). It can again be shown that the weight vectors
ω1, ..., ωa are orthogonal, and that

Proposition 8.3.1.

a) ωa+1 = ζ −ΣWa(W ′
aΣWa)−1W ′

aζ, [Wa = (ω1, ..., ωa)]. (8.18)

b) ŷa,PLS = µy +φ1τ1 + ...+φaτa is of the form ŷa,PLS = µy +β′a,PLS(x−µx)
with

βa,PLS = Wa(W ′
aΣWa)−1W ′

aζ. (8.19)



206 8 MULTIVARIATE DATA ANALYSIS AND STATISTICS.

8.4 Theoretical Aspects of Partial Least Squares.

It is useful to start by a general representation of the theoretical regression
vector, already met in Chapter 3. Let the x covariance matrix Σ have full rank
p. Then Σ has a spectral decomposition with positive, different eigenvalues

Σ =
q∑

j=1

λjPj (8.20)

as in Section 3.8.2. Also, as shown there, this implies that the theoretical
regression vector β = Σ−1ζ can be written

β =
q∑

j=1

γjej , (8.21)

where there is one unit vector ej from each of the orthogonal spaces upon
which the operators Pj project, and where γj are non-negative scalars. Note
that the operator Pj projects upon a space of dimension larger than 1 if and
only if Σ has coinciding eigenvalues λj . Thus q equals p if and only if there
are no coinciding eigenvalues.

A further reduction of terms in (8.21) occurs if some of the γj ’s vanish.

Definition 8.4.1. The eigenvectors ej occuring in (8.21), that is, those
with γj 6= 0 and one for each λj are called the relevant eigenvectors. The
corresponding principal component scores e′j(x − µx) are called the relevant
components for predicting y.

With this specification the parameters describing the covariance structure
of x1, ..., xp, y are Σ and β together with the residual variance σ2. When p is
larger than the number n of observations, and also in some intermediate cases
with collinearity, it may be natural to do a model reduction. In these cases it
may be adequate to use the word c-variable instead of parameter for Σ, β, σ2

in agreement with the nomenclature used elsewhere in this book. This use of
words is not too important, however.

In any case, the above general concepts turn out to be very useful when
we now we go back to PLS. A natural point of departure for a theoretical
analysis of PLS is the population algorithm 8.3.1.

Definition 8.4.2. In general, let Sa be the space spanned by the weight
vectors ω1, ..., ωa, and let m be the maximal dimension of this sequence of
spaces, i.e., m is the first integer such that (8.18) gives ωm+1 = 0.

Below, I will prove three theorems which characterize Sa and m, and I will
show that there is a very close connection between the Definitions above. In
particular, m turns out to be the number of relevant components.
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Theorem 8.4.1 a) Sa is also spanned by the vectors ζ,Σζ,Σ2ζ, ..., Σa−1ζ.
b) m is the least integer a such that Σaζ belongs to Sa.
c) m is the least integer a such that β = Σ−1ζ belongs to Sa.

Proof.
A straightforward induction argument is used to prove a), observing that

the last term in (8.18) is Σ multiplying a vector which is a linear combination
of ω1, ..., ωa. It follows from a) that m is the maximal dimension of the space
generated by the vectors of this sequence, so b) follows. Since we have assumed
that Σ is inveertible, c) is equivalent to b).

Theorem 8.4.2. a) m is the number of different eigenvalues λj such that
e′jζ 6= 0 for at least one eigenvector corresponding to λj.

b) m is equal to the number og relevant components in x for predicting y.
c) The space Sm is also spanned by the relevant eigenvectors e1, ..., em of

(8.21).

Proof
Using a version of (8.20) including all eigenvectors implies

a∑
k=1

ckΣ
k−1ζ =

p∑
j=1

ej{
a∑

k=1

ck(λj)k−1e′jζ}, (8.22)

and this is 0 if and only if

a∑
k=1

ck(λj)k−1 = 0 for all j such that e′jζ 6= 0. (8.23)

Let J be the maximal number of such λj , and look at the system of
equations (8.23) for a = J . The determinant corresponding to this set of
equations will be a Vandermonde determinant (also called alternant), and
this determinant is non-zero if and only if λ1, ..., λJ are different. This implies
then that ζ,Σζ, ..., ΣJ−1ζ are linearly independent, and that dependence is
introduced by adding ΣJζ to the set. Thus by Theorem 1 b) we have J = m,
and a) follows.

In this argument we can also replace e′jζ by e′jβ, and b) follows then from
a) and (8.18). To prove c), we start similarly with

Σk−1β =
p∑

j=1

(λj)k−1ej(e′jβ) (k = 1, 2, ...,m)

Her we can drop on the right-hand side the irrelevant components, that is,
the terms with e′jβ = 0 and by rotation all terms except one when some
correspond to the same eigenvalue. Thus by Theorem 3.8.1 a), a basis for Sm
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can be expressed in terms of the m relevant eigenvectors of Σ, which therefore
also must be a basis.

It is a well known fact that the sample PLS algorithm, when carried out
to the maximal number of steps p will give the ordinary multiple regression
estimator. This has by some been taken as a ’proof’ of the consistency of PLS.
The following result gives a stronger theoretical result in the same direction:
The population PLS algorithm, when carried out in m steps is consistent
indeed. In the next Section I will discuss a sample estimator which corresponds
to a model with m relevant components.

Theorem 8.4.3. The theoretical PLS regression vector βa,PLS will be equal
to the theoretical regression vector β if and only if a is equal to the number m
of relevant components.

Proof.
From (8.18) and (8.19) we have

ωa+1 = ζ −Σβa,PLS .

Hence βa,PLS will be equal to Σ−1ζ = β if and only if ωa+1 = 0.

The above results also give a point of departure for understanding the sta-
tistical properties of the ordinary PLS algorithm 8.1.1, since the quantities of
this algorithm can be looked upon as estimates of the corresponding parame-
ters given by Algorithm 8.2.1. This point has so far not been much appreciated
by the chemometrical literature, and in the statistical literature the general
interest around PLS as a general prediction method has been rather limited.
Nevertheless some asymptotic calculations under this framework have been
published by Helland and Almøy [113].

These asymptotic expressions are relative complicated. Qualitatively, it
turns out that the difference between principal component regression (PCR)
and PLS in most cases is relatively small. No method dominates the other.
PCR does best when the irrelevant eigenvalues are relatively small or relatively
large. PLS does best for intermediate irrelevant eigenvalues. Since the differ-
ence is very small for small irrelevant eigenvalues, and since large irrelevant
eigenvalues seem to be very rare, this can be interpreted as an, admittedly
relatively weak, argument for PLS in this comparison. The conclusions above
are confirmed in the systematically designed simulation study by Almøy [11].

Most of the comparisons between regression methods have been done via
simulation studies. An extensive discussion of PLS from a statistical point of
view, including systematic Monte Carlo simulations, has been given in Frank
and Friedman [83]. In these simulations, ridge regression came out best in an
overall assessment, followed closely by PLS and PCR, while variable selection
did not perform as well as the other methods. The small difference between
PLS, PCR and ridge regression were commented upon by the authors by
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saying that one would not sacrifice much average accuracy over a lifetime by
using one of them to the exclusion of the other two. In the discussion, Svante
Wold gave arguments to the effect that ridge regression would probably have
performed differently under a different simulation design.

In my view, the evaluation of the PLS algorithm should be done in taking
into account the relationship to the population PLS model of Section 8.2.
The population model with m < p steps is equivalent to a definite restriction
of the original model parameter, say, by stating that the population weigh
ωm+1 at step m + 1 is zero. In some sense, it is true that the PLS loadings,
weights, etc. give reasonable estimates of teh corresponding sample quantities,
but these estimates have a very important defect: The sample estimators do
not satisfy the restrictions implied by the population model. For instance, the
probability that the sample weight wm+1 at step m+ 1 should vanish, given
the correspondin population model, is zero.

Thus, any question about finding out in which sense the ordinary PLS
algorithm should be optimal, seems to be meaningless. The most we can do
is to state the following two questions:

1. In what settings is the model reduction assumed by the population PLS
model the most meaningsful one?

2. Given the population PLS model with m steps, what are the best pos-
sible estimates of the parameters of this model?

A fairly satisfying answer to 1) is given by the theorems above together
with the results of Section 3.8. In fact, taking the latter results as a point of
departure, we can also to a large extent answer 2).

8.5 The Best Equivariant Predictor.

As a summary, in the model with m relevant components we have

β =
m∑

k=1

γkek, (8.24)

with γk being positive constants, and where ek is an orthonormal set of m
vectors. The group G acting upon this vector consists of multiplying each γk

by a positive constant ck and rotating each ek in such a way that the set still
is orthonormal.

Lemma 8.5.1. The group G is transitive on the parameter space for β.

Proof.
Starting with some β0 every β of the form (8.24) can be obtained by a

transformation of the type described above.

Definition 8.5.1. Let the lossfunction under estimation of β be given by
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L = (β̂ − β)′S(β̂ − β). (8.25)

Lemma 8.5.2. Whenever the estimator β̂ is equivariant, the loss function
L is invariant under the group G.

Proof.
Each group element g corresponds to a combination of rotations and scale

transformations in {γk}, hence to some linear transformation β → Aβ, which
again must correspond to xi → A−1xi for each data point xi. This gives
X → XA−1 and S = X ′X → (A′)−1SA−1. For equivariant estimators we
have β̂ → Aβ̂, and L is invariant under the group element g.

The above results are what we need to derive the best equivariant estimator
β̂ under the group G by using Corollary 3.5.5. Strictly speaking this Corollary
assumes that the group is transitive on the whole parameter space Θ, but
using the extension formulated in Theorem 3.5.6, it is enough that the group
is transitive on the image space of the function θ → β(θ), whch is what I
proved in Lemma 8.4.1 above.

Recall that PLS, PCR and ridge regression are equivariant under the ro-
tation group. What I give now is the best equivariant estimator under the
larger group G.

Theorem 8.5.1 For fixed σ2, the best equivariant estimator under G is
given by

β̂ =

∫
βexp(− 1

2σ2 ‖y −Xβ‖2)dν∫
exp(− 1

2σ2 ‖y −Xβ‖2)dν
, (8.26)

where β =
∑m

k=1 γkek and

dν = (Πm
k=1

dγk

γk
)de1d(e2|e1)...d(em|e1, ..., em−1). (8.27)

In the last expression, de1 is the uniform measure on the p-dimensional unit
sphere, while d(ek|e1, ..., ek−1) is the uniform measure on the (p − k + 1)-
dimensional sphere orthogonal to e1, ...ek−1.

Proof.
A straightforward application of Corollary 3.5.5 as extended by Theorem

3.5.6.

Note that (8.26) is a Bayesian posterior expectation under the prior mea-
sure dν. In recent years there has been a rapid development in methods for nu-
merical calculation of Bayesian estimators, based upon Markov Chain Monte
Carlo methods and related procedures. Investigations in the numerical calcu-
lation in in the trial out of (8.26) is under way.
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A special problem is σ2, which first must be fixed at some value, then
estimated from the end result. A few times iteration is probably enough.

Recently, R.D. Cook et al. [44] have also developed a model reduction
technique related to PLS. They use extensively their concept of a central
subspace. Their result contains essentially PLS as a special case, and provides
some insight into the effectiveness of this method.

8.6 The Case of a Multivariate Dependent Variable.

It is well known that the multivariate linear regression model Y = XB + E,
where Y is an n×r data matrix and B is a p×r matrix of regression coefficient,
under the maximum likelihood or least squares paradigm leads to nothing
new compared to r separate linear regressions. The corresponding fact is not
true for PLS. There has been proposed slightly different PLS algorithms for
this case [55]. I will not go into detail with this here, but discuss briefly the
corresponding model reduction issue.

Let Σ be the p×p covariance matrix for the x-variables, let B be as above,
and let τ be the r× r covariance matrix. Then the covariance structure is de-
termined by the parameter (c-variable) (Σ,B, τ). Again the model reduction
is determined by a number m of relevant components, but this number must
be taken so large that it can cover all r dimensions in Y .

Recall that in the simple case the orthonormal set of eigenvectors ek in
(8.24) can be rotated freely. This is the case also here, but since we now
have a matrix B, we must now replace the earlier formula by a singular value
decomposition of this matrix. Thus

B = EΓV ′ =
m∑

k=1

γkekv
′
k, (8.28)

Here ek are p-vectors, γk are scalars, and vk are r-vectors. This implies that
the group G is composed of scale groups for the γk’s together with the rotation
of the ek’s and rotation in the Y -space. Using this, one can go through the
arguments of the previous Sections and arrive at:

Theorem 8.6.1 For fixed τ , the best equivariant estimator under G is
given by

B̂ =

∫
Bexp(− 1

2 tr((Y −XB)′τ−1(Y −XB))dν∫
exp(− 1

2 tr((Y −XB)′τ−1(Y −XB))dν
, (8.29)

where B =
∑m

k=1 γkekv
′
k and

dν = (Πm
k=1γ

−1
k dγk)de1d(e2|e1)...d(em|e1, ..., em−1)du1...d(ur|u1, ..., ur−1).

(8.30)
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In the last expression, de1 is the uniform measure on the p-dimensional unit
sphere, while d(ek|e1, ..., ek−1) is the uniform measure on the (p − k + 1)-
dimensional sphere orthogonal to e1, ...ek−1. The last part is similar with V =
(v1, ..., vm) = (u1, ..., ur)′.

8.7 The two cultures in statistical modelling.

Breiman [36] initiated an interesting discussion in 2001. Most of his paper
is a criticism of the data modelling culture, which he claims is adhered to
by 98% of all statisticians. I guess this estimate is approximately true. The
common procedure of the data modelling culture is simply what you find
in most statistical textbooks, in very many statistical papers and in much
statistical practice: Start the statistical analysis by formulating a parametric
probability model for the data. Then make all the further discussion relative
to this model. This is simply what I called standard statistical inference in
Chapter 2.

Breiman’s criticism of the standard statistical inference is based on several
points, but he mentions three specific items:

First he cites McCullagh and Nelder [147]: ”Data will often point with
equal emphasis on several possible models, and it is important that the statis-
tician recognize and accept this.” For instance, in a regression analysis which
starts with 30 variables, there are 140 000 five-variable subset model in com-
petition for the best one. There will typically be many models that have
residual sum of square (RSS) within 1.0% of the lowest RSS, and several of
these models will tell a completely different story.

This point is valid also for some of the alternative model approaches which
Breiman promotes, and it can be illustrated by the concept developed in the
preceding chapters of the present book: Let the parameters of all competing
models together be called a c-variable φ, and for model a let the parameter
vector be λa. Different model may correspond to complementary explanations.

The second item raised by Breiman, is related to Occam’s razor: Sim-
pler models are better. A problem, however, is that prediction accuracy and
simplicity may be in conflict. Again this is a point also for the alternative
model approaches. While the simple tree models (see below) can give poor
predictions, the more complicated forests typically gives better prediction.

The third item is related to the curse of dimensionality. Traditionally, the
first step in prediction methodology has been to avoid this curse. If there were
too many predictor variables, the recipe was to find a few features (functions
of the predictor variables) that ”contain most of the information” and then use
these features to replace the original variables. Typically one has used variable
deletion to reduce the dimensionality. But according to Breiman, recent work
has shown that dimensionality can be a blessing.
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It is impossible to evaluate Breiman’s arguments against a routine use of
standard statistical inference without discussing his alternative: Algorithmic
modelling. This is a large class of method containing the following:

1) Classification and regression trees. A predictor f̂(X) is constructed
through a series of splits in the multidimensional X-space. The mean in each
resulting region is taken as predictor in that region.

2) Random forests grow many classification trees. Each tree gives a clas-
sification, and we say that the tree ”votes” for that class. The forest chooses
the classification having the most votes.

3) Neural network is a parallel distributed processing network, whose func-
tioning is modeled after the structure of the brain. The output relies on the
cooperation of individual neurons within the network. There are variants; the
most common one is called the single hidden layer back-propagation network,
or single layer perceptron; see [100]

4) Smoothing spline algorithms; in particular he mentions Grace Wahba’s
research built on theory involving reproducing kernels in Hilbert space [193].

5) Vapnik’s support vector machines [191].
This list could have been made much longer. The machine learning commu-

nity and other groups are constantly developing new algorithms for analysing
data, and are improving old algorithms. In particular, the partial least squares
algorithms could have been included. With these algorithms we have estab-
lished a new phenomenon in the preceding sections: It is possible to find a link
between the two cultures! The population version of the algorithm is closely
related to a specific model reduction in the multinormal model, as shown in
Section 8.5.

Let me try on this background to give a personal summary and conclusion
of the debate initiated by Breiman. The statistical modelling culture does in
fact have many useful applications, not least connected to simple methods
like t-tests, F-tests and chisquare tests, or to binomial or Poisson modelling
in various biological contexts. Going further, the literature is full of more
advanced applications. In the great majority of these cases the distiction be-
tween parameter and observation is useful and relevant. What one perhaps
can criticize mathematical statisticians for, is that this is taken as the only
possible paradigm, and consequently that data analysis is taught at universi-
ties as merely a logical deduction from this specific modelling concept. In my
view this modelling concept must be supplemented by other tools in order to
have a complete and universally useful tool chest for data analysis.

A special problem is of course to understand these other tools. To this
end I think it is particularly useful to have a link, as we have in the PLS
case to model reduction in a well understood model. Note that it is crucual
throughout this argument to keep the distinction between the parameter space
and the sample space: Model reduction does in fact boil down just to reducing
the parameter space, that is, restricting the set of probability models which
is used to ’explain’ the data.
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8.8 A multivariate example resembling quantum
mechanics.

A concept which should be central to statistical inference, is that of focusing.
Focusing on which parameter to measure was also central to the foundation of
quantum mechanics as it was argued for in the previous chapters of this book.
This paved the way towards at least some elements of a common foundation.
To illustrate this in a different setting, I will end this chapter with a macro-
scopic example, that is, a statistical example not from the world of quantum
mechanics, but containing the elements of learning, choice of measurement
and inference at a distance, resembling in this way part of the discussion
found in Sections 6.3, 6.4 and 6.10. I am grateful to Harald Martens for the
example.

In Martens and Næs [146] the multivariate regression model with two sets
of regression variables T and U was considered:

Z = TA+ UB + E. (8.31)

Here Z is an n × k matrix of response variables, T (n × p) and U (n × q)
may be possible input variables, A (p × k) and B (q × k)are the parameter
matrices, and E is the n× k matrix of errors.

In the discussion in [146], U was an unknown matrix of latent variables. In
such cases it is difficult to obtain a good estimate of the parameters A, even
if the error E is nearly vanishing.

Also, recall that our definition of a c-variable includes everything that is
unknown, so the latent variable U can be included in this c-variable.

For the purpose of illustration, let us neglect the error E, and let us assume
that all variables T,U are unknown to start with, so that we can consider the
c-variable φ = (T,A,U,B). It should be clear from the previous chapters that
the word ’c-variable’ in this book has a wider meaning than what is usually
called ’parameter’ in statistics, so this example is consistent with that.

Also, assume that we have two distant measurement stations, so that T
(and therefore A) are connected to one station, while U (and B) are connected
to the other station. Assume that the response Z has been measured and is
known, so that one has

Z = TA+ UB (8.32)

Now assume that we measure T . Let PT = T (T ′T )−1T ′, and let V =
(I − PT )U . Then from (8.32) we know the product

V B = (I − PT )Z. (8.33)

But this implies that by using principal component analysis, we can find a
considerable portion of the unknown parameter B. (The simplest case is for
q = 1, when the k× k matrix B′B is proportional to Z ′(I −PT )Z.) This is of
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course no action at a distance, but information obtained at station 1 implies
considerable information about what is unknown at station 2.

On the other hand, PTUB = PTZ − TA is unknown since A is unknown
and this matrix is premultiplied by T . This must imply that an essential
portion of the matrix U is unknown.

From a purely algebraic point of view, there is symmetry between (T,U)
and (A,B) in equation (8.32). This means that one in principle can imagine a
complementary experiment where T is unknown, but where one gets accurate
information aboutA from some source. By using the same argument again, one
now obtains accurate information about a large portion of U , but considerable
parts of B is unknown. Again of course, there is no action at a distance.

It is essential here that we have a choice between measuring T or A at
station 1, and through this have a choice between getting information on B
or on U at station 2. We must imagine that there is some mechanism ensuring
that we only are able to measure one of T or A, not both.

Note that a necessary prerequisite for this argument is the restriction that
the combination Z = TA+UB is known. The analogue in the EPR experiment
discussed earlier is that we know there that we have an equality φ1 = φ2 among
the c-variables, or in the ordinary quantummechanical language we know that
we are in a singlet state.

If we accept that an example like this can be understood from the point
of view of statistical inference under choice of focus/choice of measurement,
we must in my opinion accept that quantummechanical phenomena like the
EPR experiment can be understood from a similar point of view. And this
phenomenon can be understood without assuming that the universe or peo-
ple’s minds are divided into parallel branches. In my opinion the multiple
word/multiple minds concepts represent the most abstract and most compli-
cated approach to a theory whose foundation should be concrete and simple.





9

QUANTUM MECHANICS AND THE
DIVERSITY OF CONCEPTS.

9.1 Introduction.

The basic concept of a c-variable - a conceptually defined variable - was intro-
duced already in Chapter 1. Typically, such a variable is natural to introduce
in contrafactual situations - situations where there are several possible back-
ground possibilities, and only one of these possibilities can be realized. In a
statistical setting this may mean that one has to choose one out of several
possible experiments. The c-variable φ can then be taken to be the cartesian
product of the parameters of the single experiments. Given the choice a, one
must assume that the corresponding experiment is maximal in the sense that
the parameter λa is a maximal function of φ. Several such situations were
described in Chapter 2 and in Chapter 7.

Then in Chapter 4 and in Chapter 5 such a situation was taken as a point
of departure in my development of quantum mechanics. In Definition 4.6.1.
the basic setting was formulated; later 5 specific axioms for this setting were
given, and the link to ordinary quantum theory was established in Chapter 5.

One limitation of this approach lies in a specific element of the setting
given by Definition 4.6.1: It was assumed there that there is a transitive group
G under which the c-variable transforms. Several of the axioms make use of
this symmetry group. This means that the theory here is only applicable to
physical systems with symmetry. This class of systems is interesting enough:
It includes particles with spin, systems of particles with spin and much more,
but the existence of a symmetry group is definitively a limitation.

From a mathematical point of view, probability theory and statistical the-
ory are based upon set theory, and then my approach to quantum mechanics
is based upon group theory. There is a mathematical theory which generalizes
both these foundations, namely category theory. Recently, Döring and Isham
[62, 63, 65, 64] have developed a completely new foundation for physical the-
ories, including quantum mechanics, based on a variant of category theory,
namely topos theory. This is motivated from problems in quantum gravity, an
area where it is unnatural to talk about an observer, and thus it may seem
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very different from my own epistemically based theory. However, one should
keep in mind that even in the statistics, at the very outset an epistemic sci-
ence, there has been proposed a foundation based on category theory [151]. It
may seem like, when using such a general and abstract language, the distinc-
tion between epistemology and ontology disappears, or at least becomes less
important.

I will not go into catagory theory here. On the contrary, very little abstract
mathemathics will be used in this Chapter. But I will use the results of Döring
and Isham as an indication that the group theory setting can be generalized.
Hence I will drop any reference to symmetry from now on in this Chapter,
and I will concentrate on the c-variable φ and the different choices of focus
λa. This will lead us into various conceptual contexts where the connection
to quantum mechanics may be more or less clear. I will start by reviewing
recent developments by Diederik Aerts and his group in Brussels, who arrive
at connections between concepts and quantum theory which are explicit and
reasonably obvious.

9.2 Concepts and Quantum Mechanics.

Concepts are closely related to states of mind. In Aerts at al [6] one finds sev-
eral examples, in particular one on the state of mind of a person A observing
one or two cats. The main point arrived at in this example is that the vari-
ous states of mind together violate Bell’s inequality, the quantum mechanical
inequality here discussed earlier in Section 6.3.

Later, in Aerts et al [7] the authors remark that the situation considered
in the earlier paper introduced conceptual as well as physical contexts, and
therefore could not be reduced easily to a purely linguistic situation. A new
example is proposed which gives a more clearcut situation. I will give a sum-
mary of this example below.

Example 9.2.1. Two sisters both have a pet. Sister A owns a cat C, and
sister B own a dog D. The cat eats only one kind of food E, while the dog
eats only one kind of food F . The mother of the sisters may feed the pets, and
is in fact feeding one of them inside the house. The sisters play in the garden.

Consider the following statements:
p: The pet eats the food.
d: I think D is eating, because I saw him just go in. (pronounced by B)
e: I believe the food served was E, because I think I smell it. (pronounced

by A)
g: One of the pets is eating one of the foods. (thought by both)
Now d is a context for p, and changes ’pet’ to D in that sentence. Similarly,

e is a context for p, changing ’food’ to E, while g is a trivial context for p,
causing no change.
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The next step is to define effects: Define E(d, p) = +1 if it is D who is
eating, while E(d, p) = −1 if it is C who is eating. Similarly, E(p, e) = +1 if
the food eaten was E, while E(p, e) = −1 if the food eaten was F .

Going further, the effects E(d, p, e), E(d, p, g), E(g, p, e) and E(g, p, g) are
defined in relation to the sequence of statements above. Then in particular,
E(d, p, e) = +1 if the dog eats E or if the cat eats F and E(d, p, e) = −1 if the
dog eats F or if the cat eats E. Similarly E(d, p, g) = +1 if the dog eats one
of the foods, and E(d, p, g) = −1 if the cat eats one of the foods. Furthermore
E(g, p, e) = +1 if it is one of the pets who eat E, and E(g, p, e) = −1 if it is
one of the pets who eats F . Finally, E(g, p, g) = +1 if one of the pets eats one
of the foods, and E(g, p, g) = −1 if it is not so that one of the pets eats one
of the foods.

We imagine now the situation where A smells the food E, while B claims
seeing the dog D enter the house. If then a) the dog is eating F , and A is
mistaken about the food, or b) the cat is eating E, and B is mistaken about
which pet went in, we have E(d, p, e) = −1. Another possibility which can be
imagined is that a new uncommon event occured, and the dog was eating the
cat food E. Then E(d, p, e) = +1, but we will exclude that. It is consistent
with the observations made by both in the situation and the contexts chosen
that E(d, p, g) = +1, E(g, p, e) = +1 and E(g, p, g) = +1. Thus from these
observations

E(d, p, g) + E(g, p, e) + E(g, p, g)− E(d, p, e) = +4 > 2,

and Bell’s inequality is maximally violated. Note that this violation is closely
connected to the conflict between the two premises here. This is a fairly simple
example. In relations between human beings there often occur more compli-
cated situations where there is a conflict between premises.

Anyway, examples like this can always be criticized, but the point is that
they indicate in a concrete setting a connection between conceptual entities
and quantummechanical phenomena. The same research group gave a closer
study of modelling concepts and the lattice of contexts in [8], and embed-
ded these entities in a complex Hilbert space, like the one used in quantum
mechanics, in [9]. Again, this gives a strong indication of a link between the
concepts of the macroworld and the physics of the microworld.

9.3 Daily Life Complementarity.

Whenever we aim at completing a reasonably complicated task, we are faced
with a multitude of often conflicting goals for this task. As an example, writing
a piece of homework as a student, one can aim at minimizing the time T used
for the homework, or one can try to maximize the quality Q of the homework.
Very few people are able to optimize in both respects, at least without a
substantial training.



220 9 QUANTUM MECHANICS AND THE DIVERSITY OF CONCEPTS.

In fact, in many of our daily life decisions we have to decide against such
conflicling goals. Just look at a simple task like crossing a street. This may
easily be seen as a conflict between minimizing the time used for the crossing
and maximizing the safety. Or in a certain social setting one may have the
conflift between aiming at feeling relaxed and trying to make a good impres-
sion on some person. Or in another social setting there is a heated argument
on some issue, and our subject may have difficulties in deciding which party
to support. Of course, rational arguments play an important rôle in such sit-
uations, but there is nearly always also an emotional component which has to
be handled through some intuitive decision mechanism.

We live constantly in such decision conflicts, not least during the interac-
tions with other humans. Most people have developed - at least to a certain
extent - an automatic mechanism which help them to take these intuitive
decisions. However, for some people the learning process leading to such an
automatic mechanism may have been imperfect in some way or another. These
people sometimes end up needing help from professionals in psychology and
psychiatry. In our setting this may remind us of the fact that these latter
sciences are very useful and very interesting, but perhaps also sciences where
there is much unknown, and where much further development is needed.

The goal of this chapter is to argue for a link between the decision process
as developed in the earlier chapters in the border area between statistics and
quantum theory, over the daily life decision processes to what I feel is also
a part of the decision process in psychology, psychiatry and social sciences.
Of course, since I am not an insider of any of these sciences, some of my
arguments should perhaps be taken with a grain of salt. I have nevertheless
taken the chance to include some words of this discussion, partly since it is
an opportunity to discuss concepts in a broader setting, and partly since the
overall goal of the whole book is to argue for an element of unity in science.

9.4 From Learning Parameter Values to Learning to
Make Other Decisions.

In modern statistical science it is sometimes said that the aim of a statistical
investigation is to use data to learn the value of a parameter. Not least is
that the case when the statistical method is an algorithmic one, like in neural
networks, but this way of speaking is also used in simple estimation problems.

In any case, the statistical learning situation requires first a conceptually
defined context, in order to describe the whole setting and the model used for
estimation/learning. Then there are data, and there is a focus parameter λa

that we want to estimate. All the model parameters, together with the param-
eters in the context may be called the c-variable φ. Finally, there may be a
learning criterion, like maximum likelihood, and there may be a final criterion
by which the estimator can be judged, like bias together with variance.
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Fig. 9.1. A learner-driver.

The learning in psychology is similar, but somewhat more involved. Think
of the task of learning a skill, to be concrete, say, learning to drive a car. There
is first a conceptually defined context, consisting of a description of the basic
functioning of the car, of its engine and of the instruments that one need to
know about, of the trafic rules and so on. Then in any driving situation there
are data in the form of visual impressions from the road, from other cars and
so on. Given a situation a, including the driver’s intention in that situation,
the driver wants to use the data to make an optimal decision λ̂a. This includes
taking actions with the steering wheel, the gear, the gas pedal and so on. The
driver has certain criteria in the situation to help him in making the best
possible decisions. To begin with, these criteria are attempted handled in a
fairly conscious and perhaps somewhat clumsy way. Then it takes a certain
skill in order that the decision process shall be really automatic and at the
same time good according to some objective criterion.

9.5 Basic Learning; With and Without a Teacher.

Imagine again the situation of the learner-driver. There are really many sit-
uations a that he has to learn in a relative short time to be able to tackle.
Some of these situations will turn up during his driving lessons. Then he will
be able to try out what he thinks is the best decisions. Say that he meets a
set of situations A0 during his driving lessons; some of these situations may
be repeated. Each time he meets a situation a ∈ A0 he makes what he thinks
is the best possible decision. He will perhaps get some feedback from the re-
action of the car, from other trafficants and finally from his teacher. All this
may make him take a better decision next time a occurs.
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The teacher is of course an important factor in this. In theory it is possible
to learn to drive a car without a teacher, but, even where this is legal, it takes
a long time. One function of the teacher is to stand for the objectively best
decision in each situation a. This is theory, but if the pupil is just learning to
drive, and if the teacher is experienced, it may not be far from the truth. Then
given some situation a, the teacher, if he in addition is a good pedagogue, will,
after the pupil has made his decision, be able to give him valuable feedback
on how the decision really should be. In practice the teacher will also have his
bad habits, or he may not be clever enough to transfer his knowledge to the
pupil. This may make the resulting education less valuable than it could have
been.

In any case, after the pupil has finished his education, he will continue
driving, and ultimately he will meet all relevant situations a ∈ A. Each time
he meets a new situation, he has to try out a new decision. This may not
be the best one the first time a new situation is met, but he will have the
advantage of earlier experience, and may, if the experience is used correctly,
become a better and better driver. A part of this latter learning process will
be to use the conceptual setting given by φ to transfer skill used earlier to the
process of making good decisions in new situations a.

However, the new driver may also develop bad habits, like driving too
fast on motorways. Such habits are often developed collectively: We see that
other drivers do the same. This is only one way of achieving mutual negative
learning.

9.6 On the Forming of Cultures.

After this one may discuss whether or not the same mechanisms can be trans-
ferred to the task of learning science. In my view there are both differences
and parallel elements here. In science there is a larger body of theory to learn;
hence rational and concious elements take a bigger place. On the other hand,
in learning science there is also an important element of learning a skill. Stu-
dents do their homework, make their exercises in classes and take their exam,
and get feedback from teachers on all this. PhD students and young faculty
give talks on international meetings and get feedback from the audience. Older
faculty learn from discussions with colleagues.

There is one more difference from the learner-driver situation: All our
teachers belong to the same science. Of course there are many differences in
detail between the teachers, but their basic way of thinking is the same. This
has many advantages: First, it is much easier to communicate when we share
the same basic concepts. In fact, the common platform may be seen as a
prerequisite for the impressive progress that science has made in many areas.

But at the same time: The common way of thinking within each science
may have made communication across sciences difficult.
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In particular, there is a common particular way of thinking in theoretical
statistics, concentrating only on single experiments of the standard type with
a model constructed from a parametric class of probability distributions. Also,
there is a common particular way of thinking in quantum theory, focusing ex-
clusively upon state vectors as unit vectors in a complex Hilbert space and
upon comparisons with classical mechanics. These separate bases have turned
out to be very useful in the development of each science. It is wrong to say
that the separation between these two areas are completely culturally deter-
mined. It also plays a rôle that the mathematics of each field has a separate
deep aestethical appeal. And of course, there are basic differences between the
physics of the microworld and the problems associated with gaining informa-
tion from macroscopic data.

Nevertheless, I will claim that there are some cultural differences, and
in this book I have tried to sketch the elements of a common basis. It may
still be useful to think separately when contemplating questions for which the
separate conceptual basis is best suited. But my hope is that I have argued
sufficiently for the common basis that others will be convinced of its usefulness,
and perhaps also that other people may help in developing it further. In my
opinion it can already be used on questions which it was difficult to address
before. For this I refer to the discussion in earlier chapters.

Some readers may be sceptical to the thesis that separate sciences have
separate cultural development to the extent that this may be of importance.
To counter this scepticism, it may be enough to point at all the other areas in
the world where separate learning has lead to separate cultural development.
Some of this is connected to religion, some to ethnical group and some to
geographical region. Children have been raised in different ways, pupils have
been given different education, and adults have developed different senses of
belonging. One should not study this world much before realizing that cultural
differences are extremely strong forces; why shouldn’t science also be affected
by it?

Another argument may be related to the development within the sciences
themselves. The international statistical community thinks differently today
than 30 - not to mention 50 - years ago. Part of this is due to the technological
development, other parts to new theoretical achievements. But in addition to
this: If we regard some of the opinions held by statisticians 50 years ago as out
of fashion, don’t we at the same time admit that there is a fashion component
in science, and perhaps even also that this may be of relevance today?

The culture in science may be related to which questions are beeing focused
upon, both in terms of what is being discussed, or in terms of what research
questions that may be regarded as interesting. More generally one might say
that the culture in some way or other determine important parts of the context
of the various research questions.

More precisely, Ralph D. Stacey has put the following definition forth in
[184]: ’Culture is a set of attitudes, opinions and convictions that a group of
people share, about how one should behave against each other, how things
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shall be evaluated and done, what questions that are important and which
answers that are acceptable. The most important elements of culture are sub-
conscious and cannot be enforced from the outside.’

Of course, cultural elements can be positive, but cultural clashes between
different groups can have very negative consequences. To state things in its
extreme form: In a world constantly treatened by war and terror on the basis
of cultural conflicts, one could hope for at least one part of society which
seeks just objective values across all cultural differences. My wish is that in
the long run, parts of science will, in addition to all its other positive values,
concentrate on being such an element of societey. A prerequisite for this is
that we at least to a certain extent, and related to these parts of science,
develop a common language, so that we can communicate across the scientific
professions.

9.7 On Psychology.

We are all good or bad teachers in one way or another. One important rôle
that many of us have or have had, is that of a parent. Some years ago, certain
psychologists, partly influenced by aspects of Freudian theory, had a tendency
to blame the child’s parents when a child developed a psychiatric illness. To-
day one usually look for a diversity of possible causes. However, the following
example from Bateson [20], describing the phenomenon of double bind, illus-
trate a kind of parent behaviour which definitively may be detrimental.

According to [20] the family situation of a schizophrenic may have the
following characteristics:

A child whose mother becomes anxious and withdraws if the child responds
to her as a loving mother. That is, the child’s very existence has a special
meaning to the mother which arouses her anxiety when she is in danger of
intimate contact with the child. At the same time the mother looks upon these
feelings as forbidden.

In this situation the mother will be expressing at least two different mes-
sages: λa: hostile or withdrawing behaviour whenever the child approaches her;
and λb: simulated loving or approaching behaviour which is aroused when the
child responds to her hostile and withdrawing behaviour, as a way of denying
that she is withdrawing.

In a given situation, both these messaged may both be intended and per-
ceived through the simple words: ’Go to bed, you’re very tired and I want
you to get your sleep’. While the child might respond literally to this verbal
message, it is impossible for him to react adequately at the same time to both
the perceived messages λa and λb. The point from a psychiatric point of view
is that a child which repeatedly experiences such double messages, will get
his feelings confused, and may later develop difficulties in his relationship to
other humans.
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Let this small example illustrate one type of insights from modern psychi-
atry. There are many schools within psychology and psychiatric therapy; most
of them are in one way or other influenced by the writings of Sigmund Freud.
Freud himself got much of his insight from introspection, and in modern psy-
chology much is learned through case studies and conceptual discussions. This
may be called the qualitative part of psychology.

On the other hand, some psychiatrists feel that knowledge obtained in
this way may be uncertain and partly subjective. There is a certain tendency
today to seek objective, empirical knowledge in psychiatry to a larger degree.
A recent example is Høglend et al [123], a fully empirical study of what psy-
chiatrists call transference interpretation in therapy: The therapeut takes a
rôle where he and the patient get the chance to play out treumatic feelings
during the therapy hour. This has been a debatable mechanism in psychother-
apy, but according to Freud’s theory is should be useful for patients with good
resources. The present investigation was the first empirical study ever of trans-
ference interpretation. It involved 7 therapist who had been given a 4 year
training in making a deliberate choice between transference interpretation
and other treatments. Then 100 patients were given a blind random choice
of treatment during a year and finally followed up in a 2 year period. The
statistical analysis used a longitudinal mixed model, and the clear result was
contrary to what Freud had told us: Patients with poor resources where the
ones who benefitted most from transference interpretation.

Having been a statistical consultant of this study, I also experienced what
I have argued for elsewhere in this book: Prior to the analysis a meaningful
discussion on the choice of statistical model using a conceptual framework φ.
We ended up with consensus on a model with total parameter λ, including
one covariate. One outlier case was deleted prior to the final analysis.

I also observed elements of cultural differences, the most clearcut being:
In this community it was a tendency to test statistical hypotheses at the 10%
in order to get increased power, a policy that I have never seen elsewhere.

In conclusion, psychology is a science which develops in many ways:
Through theoretical discussions, through introspections, through case studies
and through statistical investigations, In particular, statistics has an increas-
ingly important rôle to play here. But it can in no way function alone. In order
that statistics as a tool shall do what it is supposed to do in psychological
sciences, it is important that it functions in a conceptual framework related
to the same sciences.

9.8 On Social Sciences.

The situation is similar in sociology and other social sciences. Here the natural
framework for discussion is the concept of positivism developed by August
Comte [43] in the middle of the 19th century. Positivism is a philosophy that
states that the only authentic knowledge is scientific knowledge, and that
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such knowledge can only come from positive affirmation of theories through
strict scientific methods. Today, many will add that scientific methods should
be taken as empirical, statistical methods, in sociology often specialized to
opinion polls and similar techniques.

Even though much of the discussion in sociology today is methodological,
I will in this Section go back to the fundamental concepts of Comte. In the
last couple of decades there has been an increasing critique of positivism
among certain groups of sociologs: Man is simply too complicated to be fully
describable by the objective terms used in natural science, it is said.

One of the first of these critics was Skjervheim [180]. Skjervheim was a
philosopher, and he relates his discussion to the antagonistic philosophical
currents that exist today: The naturalistic-positivistic-pragmatic trend and
the phenomenological-existentialistic trend. One can even find a geographical
distribution of these trends: In the Anglo-American world as well as in Scan-
dinavia the former trend has been dominating, while in Germany, France and
the Spanish-speaking world the latter is dominating.

Very simply put, one might say that the present book contains elements of
both these traditions: From a conceptual framework φ one chooses a maximal
question λ, and then investigates this question through objective naturalistic
methods.

A related theme, discussed extensively by Skjervheim in his positivism
critique, is that of a truthfunctional language and the implied thesis of exten-
sionality. The ideal language used by Russell in his Principia Mathematica was
truthfunctional : It is constructed in such a way that the truth of a complex
proposition is only dependent upon the truth of its constituent propositions,
not their meaning. An extensional language means the following: If two propo-
sitions a and b have the same truth-value, then we can substitute a for b in
any context were the latter occurs (and vice versa) without thereby changing
the truthvalue of the context.

Skjervheim’s opinion is that an extensive truthfunctional language might
well be used in natural science, but such a language is too poor to be used in
any science of Man. This kind of language will exclude all 1) modal statements
(’It is necessary that p’); 2) semantical statements (’The words ”p” mean p’)
and 3) belief-sentences (’A believes p’). Several examples are given to justify a
claim that behavior cannot be adequately described in an extensional language
for the purpose of social science.

The limitation of language is also an aspect of the last part of his critique.
But more broadly, it is related to the theme of intersubjectivity: Another per-
son may in some connections be an object that I may gain certain experiences
about. In other connections he may be a subject that I can share experiences
with. In particular, the social scientist, when writing, cannot escape this sit-
uation: Those about whom he writes are partly identical to those for whom
he writes.

Consider the following statements which may be uttered by a seminar
holder in some discipline:
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’When I gave this seminar last week, everybody understood what I have
just said.’

’I hope that you understood what I have just said.’
’I am sure that you understood what I have just said.’
The first statement is of a truth-functional type, while the two last express

various degrees of belief. The point is that in the given situation he could never
express a statement of the first truth-functional type about the understanding
today. Thus the context limits what it is possible to say.

Another point is that the three statements can be taken as answers to
three differently focused questions, related to the type of questions that have
been treated earlier in this book.

In these sentences, I have only very briefly discussed a few aspects of a
very big and complicated debate: That of positivism in social sciences and in
other sciences on human beings. The relation to my interpretation of quantum
mechanics is also only touched upon.

But it is amusing that Skjervheim [180], when he wants to give an example
where the objective, naturalist way of thinking in science is dominating, re-
peatedly mentions physics. Quantum mechanics was of course well developed
in 1959, but it was not perhaps too well known to that author.

But, after all, perhaps the main difficulty that many physicists have seen
in quantum mechanics, has been that it has turned out to be very difficult to
fit into a completely objectivistic way of thinking. And perhaps it shouldn’t;
it may fit better in with other sciences in that way.
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So the final question is: Is it possible to translate into one common language,
and thus create a mutual understanding between cultures of empirical sci-
ence? My claim is that this book contains many indications in that direction.
Others have had similar thoughts before; for instance the physicist John A.
Wheeler may have thought of this when he said: ’Progress in science owes
more to the clash of ideas than to the steady accumulation of facts’. Admit-
tedly, this citation can be interpreted in many directions, but in my opinion
it is potentially very useful to bring ideas together that have originated in
completely different fields.

Quite generally, science implies searching for the truth, or in particular it
implies searching for good questions and then seaching for convincing answers
to these questions. And when one searches for something, it can be wise to
look several places.

Similarly, to have a good enough background for one’s own opinions, it
can be useful to have contact with several cultures.

But of course the whole process of searching for truth in science is difficult.
This is the first point that can be interpreted from Albert Einstein’s famous
saying ’Subtle is the Lord, but not malicious’. The last, optimistic point is
that, after all, the search should not be impossible.

Our point of departure in this search is imperfect; one way to underline
this is to cite 1. Coritheans 13.9: ’For we know in part.’ This brings us briefly
into the field of religion, a field that I have great respect for. But I find it
utterly absurd that our beliefs about the final things tend to depend upon
whether we are born in Rome, in Western Norway or in Teheran. Secterism is
a great problem in religion; the sad thing is that this problem to some degree
seems to have affects on the prospects of peace on earth, too.

Modern society and modern science are faced with very many challenges:
We have the struggle for a better global environment, the fight against poverty,
the search for better medicines, for a deeper understanding in genetics, of
the universe and of the basic building blocks of matter. One cannot of course
expect a united science over all these fields, but what on can hope for, is a more
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unified understanding of the process of gaining information from observations.
In this process, mathematics will certainly play an important part, but one
should also be willing to include the experience gained in the various empirical
fields; in fact, this can to some extent be used as a calibration on how to use
the mathematics.

Ultimately it should not be impossible to head in the direction of some-
thing like a common basis for understanding across various professional sci-
entific groups. This does not of course mean that we all should have the same
opinions about science, but there should be some basic context that we were
able to agree on. And what one could hope for, was that this conceptual
context was common for many different professions.

If one somehow could see a development where a type of multicultural
understanding is first indicated in certain specific parts of science, then one
could at least hope for some inspiration to other areas of human endeavour,
too.

I know that parts of this book are controversial, and I am willing to dis-
cuss any questions that can be raised. I am also willing to modify details, if
necessary. However, the arguments shall be very strong indeed before I am
willing to give up the final aims of the search, as indicated in the last para-
graphs above. Simply put, I feel that a closer unification of scientific methods
is useful - and possible.
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APPENDIX

A.1 Mathematical Aspects of Basic Statistics.

A.1.1 Kolmogorov’s axioms.

Kolmogorov’s axioms for probability theory are derived from set theory. The
basic probability space, the certain set, is denoted by Ω, and the events for
which probabilities can be specified, are subsets of Ω. Specifically, these events
constitute a σ-algebra F , a concept defined by the axioms:

1. The certain set Ω is in F .
2. If A ∈ F , then its complement Ac = {ω ∈ Ω : ω /∈ A} also is in F .
3. If the events A1, A2, . . . are in F , then their union

⋃∞
i=1Ai also belongs

to F .

The probability P is assumed to be a normed measure on these events,
which in axiomatic terms means that it satisfies:

1. For every A we have P (A) ≥ 0.
2. If the events A1, A2, . . . are in F , and if pairs of events are disjoint, i.e.,

Ai ∩Aj = ∅ for i 6= j, then P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai).
3. P (Ω) = 1.

From these axioms many properties of probability models may be derived.
Two simple consequences are that P (∅) = 0 and P (Ac) = 1 − P (A). With
some more effort one can derive a general formula for the probability of a
union of events, simplest in the case of two events:

P (A ∪B) = P (A) + P (B)− P (A ∩B). (A.1)
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A.1.2 The Derivation of the Binomial Distribution.

Assume an experiment which satisfies the three assumptions of Example 1.8.1.
Then each such experiment will result in a sequence of n outcomes of the
form AABA . . . B, where B = Ac. By the constant probability assumption
2, the independence assumption 3 and the definition of independence (1.4),
each such sequence which contains exactly s A’s will have a probability of

θs(1 − θ)(n−s). By simple combinatorics there are
(
n
s

)
such sequences. An

application of the second of Kolmogorov’s axioms finishes the proof of the
derivation of the binomial distribution.

The expectation and the variance of this distribution can be found from the
frequency function, but the following argument is simpler: From the definition
of the binomial variable, we can write y = i1 + . . . + in, where the indicator
variables ij are independent with ij = 1 if the j’th voter answers A, otherwise
ij = 0, hence E(ij) = 0 · P (ij = 0) + 1 · P (ij = 1) = P (ij = 1) = θ,
with a similar way to calculate the variance. Since the expectation operator
E is linear, and since V ar(y) = E(y − µ)2 = E(y2) − µ2, it is then a fairly
straightforward exercise to show that µ = E(y) = nθ and V ar(y) = nθ(1−θ).

A.1.3 The Normal Distribution and Series of Observations.

The characteristic function φ(u) = E(exp(iuy)) for a random variable y is
a useful concept. It characterizes the distribution of y in the sense that two
variables with equal characteristic function also must have the same distribu-
tion. Also, for sets of independent variables the chracteristic function of their
sum is the product of the individual characteristic functions.

By a direct integration we find that the characteristic function for the
normal (µ, σ2) distibution is

φ(u) = exp(iuµ− σ2u2

2
). (A.2)

From this we see first that a + by is normal (a + bµ, b2σ2) when y is normal
(µ, σ2). Furthermore, for a set of normal independent variables y1, . . . , yn we
have that a + b1y1 + . . . + bnyn is normal with the appropriate expectation
and variance. In particular, for a normal measurement series the mean ȳ is
normal (µ, σ2/n).

Generalizing to the multivariate case, one can show by characteristic func-
tions that each yi− ȳ is independent of ȳ for such a measurement series, hence
that ȳ and s2 (Definition 2.3.2) are independent.

Take now for simplicity µ = 0 in the measurement series; the general case
is similar. Since
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s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 =
1

n− 1

n∑
i=1

y2
i − nȳ2, (A.3)

we have that
(n− 1)s2

σ2
+
nȳ2

σ2
=

1
σ2

n∑
i=1

y2
i . (A.4)

By the definition in Section 2.5, the righthand side of (A.4) has a chisquare
distribution with n degrees of freedom. Since nȳ2/σ2 trivially is chisquared
with one degree of freedom, this strongly suggests - and in fact it can be
proved rigorously by using characteristic functions - that

(n− 1)s2

σ2
(A.5)

has a chisquare distribution with n− 1 degrees of freedom.

A.1.4 Some Results for Linear Models.

The multivariate normal distribution (µ,Σ), where µ is a q-vector and Σ is a
positive definite q×q-matrix can be uniquely be defined as the distribution of
a vector z such that a′z is normal (a′µ, a′Σa) for each a. This can be shown
by using appropriate characteristic functions.

Maximum likelihood in the linear model y = Xβ+e (e multivariate normal
(0, σ2I)) can be shown to be equivalent to least squares, i.e., minimizing

‖ y −Xβ ‖2= (y −Xβ)′(y −Xβ) = y′y − 2β′X ′y + β′X ′Xβ. (A.6)

Derivation with respect to β here lads to the normal equations X ′Xβ =
X ′y, hence β̂ = (X ′X)−1X ′y. Using the model, the properties of this vector
estimator is found as follows:

E(β̂) = (X ′X)−1X ′E(y) = (X ′X)−1X ′Xβ = β, (A.7)

V (β̂) = V ((X ′X)−1X ′e) = (X ′X)−1X ′V (e)X(X ′X)−1 = (X ′X)−1σ2,
(A.8)

where V () denotes the covariance matrix.
It follows from linearity that β̂ is multivariate normal (β, (X ′X)−1σ2),

that Xβ̂ is multivariate normal (Xβ, σ2P ) with the projection operator
P = X(X ′X)−1X ′ and that y − Xβ̂ is multivariate normal (0, σ2Q) with
the projection operator Q = I − P .

From these properties one can show that SSR′ = (β̂ − β)′X ′X(β̂ − β)/σ2

has a chisquare distribution with p + 1 degrees of freedom, that SSE′ =
(y −Xβ̂)′(y −Xβ̂)/σ2 has a chisquare distribution with n− p− 1 degrees of
freedom, and that these two sums of squares are independent.

A slight modification of this result (using the fact that the first column of
X is 1 or at least, the vector 1 belongs to the span of the coloumns of X) can
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be used to prove that the test variable (2.50) has the required F-distribution
under the null hypothesis. The same results combined with the normality of β̂,
and the independence of β̂ and s2, which can be shown to hold here, gives the
t-distribution of the testvariables for single β-components. Details are given
in textbooks.

A.1.5 On the Fisher Information.

Consider a standard statistical model with parameter θ, here assumed one-
dimensional, and with a probability density qθ for the observations y. For
fixed y let

l(θ) = lnL(θ) = lnqθ(y). (A.9)

Since l(θ) depends on y, it will be a random variable.
Regularity conditions needed for the arguments below are given for in-

stance in [27], p. 179-180.
First, define the score by s(θ) = ∂

∂θ l(θ) and the Fisher information by

I(θ) = Eθ(s(θ)2) =
∫

(
∂

∂θ
lnqθ(x))2qθ(x)dx. (A.10)

Since
∫
qθ(x)dx = 1, we have 0 = ∂

∂θ

∫
qθ(x)dx = Eθ(s(θ)). Hence

I(θ) = V ar(s(θ)). By a second derivation one can also show that I(θ) =
−Eθ( ∂2

∂θ2 l(θ)).
We now prove the Cramer-Rao inequality, which says: Let θ̂ be any unbi-

ased estimator of θ. Then
V arθ(θ̂) ≥ 1

I(θ)
. (A.11)

Proof: By differentiation of

θ = Eθ(θ̂) =
∫
θ̂(x)qθ(x)dx,

we find
1 =

∫
θ̂(x)(

∂

∂θ
l(θ))qθ(x)dx,

Using the Cauchy-Schwarz inequality on this, (A.11) follows.
Multivariate and other generalizations of these results are given in [27].

A.1.6 Prediction Errors in Example 2.15.1.

From the model yi = β0 +βxi + ei (errors ei independent and normal (0, σ2))
the prediction error at a point x0 with µ0 = β0 + βx0 is found from the
difference between a hypothetical observation y0 at that point and the corre-
sponding predicted observation from the model ŷ0:
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P = E(y0 − ŷ0)2 = σ2 + E(µ0 − ŷ0)2 =
σ2 + V ar(β̂0 + β̂x0) = σ2 + σ2

n + x2
0

σ2∑
x2

i

, (A.12)

where the last expression is found from the fact that β̂0 = ȳ and is uncorrelated
with β̂ in this case; this and V ar(β̂) is found from (A.8).

From the reduced model corresponding to putting β equal to 0 in tme
model the prediction error is

PR = E(y0 − ȳ)2 = σ2 + E(µ0 − ȳ)2 =
σ2 + V ar(ȳ) + (Eȳ − µ0)2 = σ2 + σ2

n + β2x2
0

, (A.13)

since E(ȳ) = β0 + βx̄ = β0 since x̄ = 0 and µ0 = β0 + βx0.

A.2 Transformation Groups and Group Representation.

A.2.1 Further Properties of Group Actions.

Adding a group to a statistical model specification is often of interest, and
does have consequences, see Lehmann and Casella [141]. First let a group
G act on a measurable sample space S. Measurability questions are ignored
here, as is common when discussing transformation groups; a full account of
this aspect is given in Varadarajan [192]. Basic topological assumptions are
made throughout the book, though: Both G, S and the parameter space Θ are
assumed to be locally compact Hausdorff such that each point has a compact
neighborhood and the topology has a countable base (cf. [66]).

Orbits are defined in Section 3.1.1, while group actions on the parameter
space and on the sample space in statistical models are introduced in Section
3.2. Under conditions as given below, each set of orbits can be given an index.
The orbit index in the sample space will always have a distribution which
depends only upon the orbit index in the parameter space (Lemma 3.2.1).

Concentrate now on the group G acting on the total parameter space Φ.
Similar concepts can be defined for the other group actions discussed above.
The group G is also assumed to have a topology.

We assume, as is commonly done, that the group operation (g1, g2) 7→ g1g2
and g 7→ g−1 are continuous. Furthermore, we will assume that the action
(g, φ) 7→ φg is continuous for φ ∈ Φ. An additional condition, discussed in
Wijsman [196], is that every inverse image of compact sets under the function
(g, φ) 7→ (φg, φ) should be compact. A continuous action by a group G on
a space Φ satisfying this condition is called proper. This technical condition
turns out to have useful properties and will be assumed throughout this paper.
When the group action is proper, the orbits of the group can be proved to be
closed sets relative to the topology of Φ.

For fixed φ ∈ Φ, a stabilizor H of G is defined as {h : φh = φ}. These are
transformed within orbits of G as H 7→ g−1Hg.
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A.2.2 Haar measure and the modular function.

Since in the literature ([153, 116]) Haar measures are introduced as Radon
measures, that is, measures on functions rather than sets, we take this as a
point of departure. Let G be a locally compact group, and let CG be the space
of continuous functions on G with compact support. Then one can define in a
unique way except for a multiplicative constant two positive Radon measures,
a left Haar measure satisfying

µG(f(g·)) = µG(f(·)), (A.14)

and a right Haar measure satisfying

νG(f(·g)) = νG(f(·)). (A.15)

By the Riesz theorem, ordinary measures are associated with these through

µG(f) =
∫

G

f(g)µG(dg) and νG(f) =
∫

G

f(g)νG(dg), (A.16)

Definition A.1 (A.16) defines the left and right Haar measures on the
group.

These left and right Haar measures satisfy

µG(gD) = µG(D) and νG(Dg) = νG(D) for D ⊂ G. (A.17)

Again, µG and νG are uniquely defined up to a multiplicative constant.
If G is compact or commutative, or if it is finite or countable, we can

take µG = νG. In the compact case, the Haar measure can be taken to be a
probability measure, otherwise, it is an unnormalized measure.

Introduce temporally for some fixed g ∈ G a new measure by µg,G(D) =
µG(Dg)). Then

µg,G(hD) = µG(hDg)) = µG(Dg) = µg,G(D).

Hence µg,G is left invariant, and by the uniqueness of such measures we must
have

µg,G(D) = ∆G(g)µG(D)

for some scalar function ∆G.

Definition A2. The function ∆G is called the modular function of the
group G.

Lemma A1. The modular function is a homomorphism:
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∆G(gh) = ∆G(g)∆G(h). (A.18)

Proof:

∆G(gh)µG(D) = µgh,G(D) = µG(Dgh) = ∆G(g)∆G(h)µG(D).

Furthermore,

µG(Dg−1) = µg−1,G(D) = ∆G(g−1)µG(D) = ∆G(g)−1µG(D), (A.19)

which implies that λ(dg) = ∆G(g−1)µG(dg) is right invariant, since for fixed
h one has:

λ(dgh) = ∆G(gh)µG(dgh) = ∆G(h)∆G(g)∆G(h)−1µG(dg) = λ(dg), (A.20)

so

Lemma A2.
µG(dg) ∝ ∆G(g)νG(dg). (A.21)

Finally, by a similar argument we show that ∆G(g−1)νG(dg−1) is a right
invariant measure, which then must be proportional to νG(dg). Considering
the special case g = e, we see that the constant of proportionality must be 1,
so:

Lemma A3.
νG(dg−1) = ∆G(g)νG(dg). (A.22)

So far we have only talked about measures on the group itself. A measure
ν on the space Θ (or on any space on which a group G acts) is called relatively
invariant with multiplier δ(·) if ν(Eg) = δ(g)ν(E) for all g and E.

Regarding relative invariant and in particular right invariant measures on
the parameter space, the following result due to Weil is proved in Wijsman
[196], Theorem 2.3.13(c):

Theorem A1. Consider an orbit in Θ given by Ψ = {θ = θ0g; g ∈ G} for
some θ0. Let the stabilizor H be defined by H = {h : θ0h = θ0}. Then there
exists a relatively invariant measure (see (3.2)) on Ψ with multiplier δ(·) if
and only if

∆H(h) = δ(h)
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for all h ∈ H. This measure is unique except for a strictly positive constant
factor of proportionality, and can be defined by νG(β−1(E)), where νG is a
corresponding relative invariant measure on G, defined as in (3.2), and β :
G 7→ Ψ is defined by β(g) = θ0g.

As a special case, a measure which is right invariant as defined in Section
3.3, and induced by right invariant Haar measure on G, exists if and only if
∆H(h) = 1 for all h ∈ H. In particular this holds if H is compact, which is
the case if the action of G on Θ is proper and the group is locally compact.

A.2.3 Proofs concerning orbits, model reduction and estimation of
orbit indices.

Proof of Theorem 3.5.6.
It follows from equation (3.10), summed over the orbits in the sample space

and from Theorem 3.5.2 that η̂τ minimizes the risk in orbit τ corresponding
to the quadratic loss function.

To prove that η̂τ (y) is equivariant under G, fix some group element h.
Then

η̂τ (yh) =

∫
G
η(θg)qθg(yh)µG(dg)∫
G
qθg(yh)µG(dg)

=

∫
G
η(θg)qθgh−1

(y)µG(dg)∫
G
qθgh−1(y)µG(dg)

=

∫
G
η(θgh)qθg(y)∆G(gh)νG(dg · h)∫

G
qθg(y)∆G(gh)νG(dg · h)

=

∫
G

(ηh)(θg)qθg(y)∆G(g)∆G(h)νG(dg)∫
G
qθg∆G(g)∆G(h)νG(dg)

=

∫
G

[(ηh)(θg)]qθg(y)µG(dg)∫
G
qθg(y)µG(dg)

= η̂τ (y)h.

Proof of Theorem 3.8.2.
It is trivial to verify that the quantities (1)-(5) are invariant under rotation.

We have to prove that the set is maximal invariant. To this end we show that
if two parameter values θ(1) and θ(2) are on the same orbit, then necessarily
they have the same values for the quantities (1)-(5).

So assume that (Σ(1), β(1), σ(1)) and (Σ(2), β(2), σ(2)) are on the same orbit.
Then necessarily σ(1) = σ(2). Also, there is a rotation C such that β(2) = Cβ(1)

and Σ(2) = CΣ(1)C ′, that is Σ(2)C = CΣ(1), or

q(2)∑
i=1

λ
(2)
i P

(2)
i C =

q(1)∑
i=1

λ
(1)
i CP

(1)
i .

This implies

Σ(2)CP
(1)
j = λ

(1)
j CP

(1)
j and P (2)

k CΣ(1) = λ
(2)
k P

(2)
k C.
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Multiplying the first equation here from the left by P (2)
k and the second equa-

tion from the right by P (1)
j and using again Σ(2)C = CΣ(1), we find

λ
(1)
j P

(2)
k CP

(1)
j = λ

(2)
k P

(2)
k CP

(1)
j .

It follows that either λ
(1)
j = λ

(2)
k or P

(2)
k CP

(1)
j = 0. Now fix j. If

P
(2)
k CP

(1)
j = 0 for all k, then I =

∑q(2)

k=1 P
(2)
k implies that CP (1)

j = 0, hence

P
(1)
j = 0, which is impossible. Therefore there must be at least one k such

that λ(2)
k = λ

(1)
j . Furthermore, there can not be more than one such k, since

the λ(2)
k are assumed to be different. Hence if the λ’s are ordered according to

size, it follows that λ(1)
1 = λ

(2)
1 , . . . , λ

(1)
q = λ

(2)
q and q(1) = q(2) = q.

Finally, P (2)
k CP

(1)
j = 0 (j 6= k) implies:

P
(2)
k C

∑
j 6=k

P
(1)
j = P

(2)
k C(I − P

(1)
k ) = 0, hence P (2)

k C = P
(2)
k CP

(1)
k .

∑
k 6=j

P
(2)
k CP

(1)
j = (I − P

(2)
j )CP (1)

j = 0, hence CP (2)
j = P

(2)
j CP

(1)
j .

Putting j = k one gets P (2)
k C = CP

(1)
k , that is P (2)

k = CP
(1)
k C ′ (k = 1, . . . , q).

Since β(2) = Cβ(1) it follows in particular that P (2)
k β(2) = CP

(1)
k β(1), and

hence γ(2)
k = γ

(1)
k (k = 1, 2, . . . , q). Also, equality of the dimensions vk follows.

Proof of Theorem 3.9.1.
(a) It is clear that if y 7→ y+ c, where c ∈ V = span(X), then a 7→ a, so a

is invariant. Since y can be recovered from a and the projection of y upon V ,
and since no part of this projection can be invariant under translations in V ,
we must have that a is maximal invariant.

(b) From the model equation of the form y = Xβ+e, where e is multinor-
mal (0, Σ), we see that a = Pe, where P = I−X(X ′X)−1X ′ is the projection
upon the (n−p)-dimensional space orthogonal to V . From this we see directly
that z = A′e has a distribution which is independent of β, specifically it is
multinormal (0, A′ΣA), which is non-singular, since the covariance matrix
here must have rank n− p.

(c) For any n× (n−p) matrix B of rank n−p such that B′X = 0 we must
have that the coloumns of B have to span the space orthogonal to V ; hence
B = AC for a nonsingular matrix C. This implies that B′y = C ′A′y, and the
likelihoods of A′y and B′y can be simply transformed into each other.

Proof of Proposition 3.11.2.
Dropp the index a. Let T be the space of complete sufficient statistics, and

let λ be a measure such that each Qθ is a measure on T , absolutely continuous
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with respect to λ. Define for fixed θ and g the set function Rθ,g(A) = Qθg(A).
Then Rθ,g is a measure.

Define for fixed A the set Ag−1 by Rθ,e(Ag−1) = Rθ,g(A). This is uniquely
defined by the following argument: Assume that Rθ,e(B) = Rθ,e(B′) for some
set B′ = B′(A) 6= B = B(A). Then this implies

(IB(A)(du)− IB′(A)(du))Qθ(du) = 0.

Now varying A, this implies two different measures, and since these measures
by assumption must be absolutely continuous with respect to each other, it
follows that there exists a function k such that∫

(f(u)− f(u)k(u))Qθ(du) = 0

for all functions f . But by (2.58) this implies that k(u) = 1 almost surely with
respect to the measure Qθ(du). In particular, the indicators of the sets B and
B′ must be equal almost surely with respect to Qθ(du).

By a variant of the same argument it follows that Ag−1
2 g−1

1 = A(g1g2)−1.
Hence the mapping from the actions on Θ to the actions on subsets of T is a
homomorphism, and the actions upon T can be seen upon as actions by the
same group.

Finally we have

Qθ(Ag−1) =
∫

Ag−1
Rθ,e(dt)

=
∫

A

Rθ,g(dt) = Qθg(A)

as desired, and uniqueness follows from the results above.

A.2.4 On Group Representation Theory.

A matrix representation of a group G is defined as a function U from the
group to the set of (here complex) matrices satisfying U(gh) = U(g)U(h)
for all g, h ∈ G. In other words, a representation is a homomorphism from
G to the multiplicative group of square matrices of a fixed dimension. Any
representation U and any fixed nonsingular matrix K of the same size can
be used to construct another representation S(g) = KU(g)K−1. If the group
is compact (and also in some other cases), we can always find such S of
minimal block diagonal form, and at the same time we can take S to be
unitary (S(g)†S(g) = I). If (and only if) the group is Abelian, each minimal
block will be onedimensional.

An important aspect of this reduction appears if we look upon the ma-
trices as operators on a vector space: Then each collection of blocks gives an
invariant vector space under the multiplicative group of matrices, and each
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single minimal block gives an irreducible invariant vector space. For compact
groups, the irreducible invariant vector spaces will be finitedimensional. The
minimal matrices in the blocks are called irreducible representations of the
group.

More generally, a class of operators {U(g); g ∈ G} (where G is a group) on
a, possibly infinite dimensional, vector space is a representation if U(gh) =
U(g)U(h) for all g, h. A representation of a compact group has always a com-
plete reduction in minimal matrix representations as described above. In par-
ticular, this holds for the unitary regular representation defined on a Hilbert
space L2(Φ, ν) by UR(g)f(φ) = f(g−1φ). Here ν is the right invariant measure
for G on Φ (defined by ν(Bg) = ν(B) for all B, g).

Two useful results are Schur’s lemmas:
(1) If U and U ′ are irreducible representations of different dimensions, and

A is such that U(g)A = AU ′(g) for all g, then necessarily, A = 0.
(2) If U and U ′ are irreducible representations of the same dimension, and

A is such that U(g)A = AU ′(g) for all g, then either U and U ′ are isomorphic
or A = 0. If U(g)A = AU(g) for all g, then necessarily A = λI for some scalar
λ.

An important class of continuous groups. the groups which also are dif-
ferential manifolds, in such a way that the group operations are compatible
with the smooth structure, are the Lie groups, which play an important rôle
in modern physics. Simple, but important Lie groups have the representation
U(s) = exp(isA) for some fixed operator A.

More on group representations can be found in Diaconis [60], Hamermesh
[99], James and Liebeck [127], Serre [178], Wolbarst [198], Naimark and Štern
[154] and Barut and Raczka [19].

A.3 Technical aspects of quantum mechanics.

A.3.1 Parameters of several statistical experiments.

Several places in the main text I have assumed the existence of a c-variable.
This subsection gives a very general alternative way to arrive at this concept.

Consider a set A of mutually exclusive experiments, each of the ordinary
statistical kind, but I will concentrate on the parameter spaces Λa; a ∈ A.
The whole set of parameters of the experiments is given by points in the big
space

Π = ×aΛ
a,

a Cartesian product. If all parameter spaces have the same structure Λ, this
can be considered to be the set of functions from A to Λ.

Let there be defined a transformation group G on Π.

Example A1. Let π = (λ1, λ2), where λ1 and λ2 are the expected lifelengths
of a single patient under two mutually exclusive treatments. Let G be the joint
set of time scale transformations together with the exchange λ1 ↔ λ2.
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Example A2. Consider electron spin. Let π = ×a∈Aλ
a, where λa is the

spin component of a perfect measurement in the direction a of an electron.
Let G be the group generated by the transformations:

i) Inversions: λa 7→ −λa.
ii) Rotations of experiments: If a 7→ ao under a rotation o, replace each λa

with λao. This gives a permutation within the Cartesian product.

Note in general that the points of Π make sense mathematically, but not
directly physically. Hence it does not make sense in a concrete physical context
to give values to the individual points of this space. And the space will not
be called state space.

In particular, I will not look upon it as meaningful to consider Bayesian
probabilities over the space Π. Over most subspaces it is also meaningless
to talk about Bayesian probabilities, but it is meaningful to consider such
probabilities over the λa’s corresponding to individual experiments.

So what operations are meaningful with the spaces Π? I have mentioned
group operations. One can also adjoin such spaces corresponding to different
systems, and adjoin π with some other parameter if this is maningful with
respect to the theory of the physical system in question. Finally, one can look
at subspaces.

Assume that the experiments are related in some way. Then it may be rea-
sonable to try to reduce Π. This purpose of this reduction may be to achieve
parsimony. This should not be thought of as an approximation, however, but
is a result of some reasonable physical theory. Note that theories are formu-
lated not in terms of observations, but in terms of parameters, the theoretical
language behind observations.

Let Π be reduced to a subspace Ψ with the properties:

Property A1. Ψ is an orbit or a set of orbits for the group G. Use the
notation G also for this group acting on Ψ .

This is a necessary condition in order that G should be a transformation
group on the reduced space. It is also consistent with the discussion elsewhere
in this book.

It is natural in certan situations to demand also:

Property A2. Each section {π ∈ P : λa(π) = λ0} has a nonzero intersection
with Ψ .

In fact, this will always be true for some values λ0

Let now a model reduction be associated with some function φ on Π which
is one-to-one on the subset Ψ and undefined elsewhere. It follows then from
Property A1 that the group is well defined on the range of φ.

Definition A1. If such a function exists, call Φ = φ(Ψ) the c-variable
space. Any function with the above properties is called a c-variable.
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A c-variable φ can in principle be replaced by any other c-variable in
one-to-one correspondance with φ. But it is important to have a simple rep-
resentation.

If Property A2 holds, then each λa can be regarded as a function on Φ.
Furthermore, one can always find a subgroup Ga of G such that this function
is permissible under Ga.

Example A2 (continued). Restrict Π to the subset Ψ , the set of all π such
that there exists a direction φ that gives each λa equal to sign(a ·φ). Let φ(π)
be this direction normed as a unit vector.

- The vector φ(π) is a unique function of π. Proof: Suppose that there is
a π which corresponds to two different vectors φ1 and φ2. Then a = φ1 − φ2,
normalized gives λa = +1 corresponding to φ1 and λa = −1 corresponding to
φ2, a contradiction.

- The set Ψ is an orbit of G. Proof: It is easy to see that Ψ is closed under
inversions and rotations.

- All sections {π : λa = ±1} have nonzero intersections with Ψ . Proof:
Obvious.

- The subgroup Ga as defined on Φ is generated by the set of rotations
around a together with a single rotation of 180o around an axis perpendicular
to a. Proved before.

A.3.2 Proofs from Section 5.4.

Proof of Theorem 5.4.2.
Without loss of generality consider a system where each experimental pa-

rameter λ only takes two values, say -1 and +1. Otherwise we can reduce
to a degenerate case with just these two eigenvalues: The statement va

i = vb
j

only concerns the eigenvalues λa
i and λb

j ; without loss of generality the other
eigenvalues can be taken as equal.

Take Ua = W (gca)U(gac) and U b = W (gcb)U(gbc). The assumption is that

Uafa
i = U bf b

j . (A.23)

. Using (5.9) and its extensions, we see that every W (g) can be written as a
product of U()−terms, and therefore as some U(g′). This implies that Ua is
equal to some U(g′′) and similarly U b, so finally U b(−1)Ua is equal to some
U(g0) for the right regular representation U().

Without loss of generality, let both λa
i and λb

j be equal to 1. Then

I(λb(φ) = 1) = f b
j (φ) = U b(−1)Uafa

i (φ) = I((λag0)(φ) = 1).

Thus I(λb = 1) = I(λag0 = 1). But this means that the two level curves
coincide, and we must have λb = λag0 = F (λa).

(b) follows trivially from (a).
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Proof of Corollary 5.4.1.
We have

T aW (ga)va
k = {W (gca)Ra(−1)SaRaW (gac)}{W (gca)Ra(−1)U(ga)RaW (gac)}{W (gca)Ra(−1)fa

k .

This whole expression reduces to

W (gca)Ra(−1)SaU(ga)fa
k = λa

kg
ava

k .

Proof of Theorem 5.10.1.
We will show that the mapping Aa can be replaced by a unitary map in

the relation Ha = AaKa.
Recall that the connection ġ 7→ ḡ from the observation group to the pa-

rameter group Ḡa is given from the reduced model by

Pλaḡ(B) = Pλa

(Bġ−1). (A.24)

For ġ ∈ Ġ and ḡ ∈ Ḡa define U1(ġ) = Ū(ḡ) as operators on Ha when ġ 7→ ḡ
as in (A.24). Here Ū is the regular representation of the group Ḡa. Then it
is easy to verify that U1 is a representation of Ġ. Also, if V1 is an invariant
space for U1, then it is also an invariant space for Ū . However, the space V1

is not necessarily irreducible for Ū even if it is irreducible for U1.
Using the definition (5.34) and the connection (A.24) between ġ and ḡ

we find the following relationships. We assume that the random variable y(·)
belongs to Ka ⊂ L2(S,P) and that Ū is chosen as a representation on the
invariant space Ha. Then

U1(ġ)Aay(λa) = Ū(ḡ)Aay(λa) =
∫
y(ω)Pλaḡ(dω)

=
∫
y(ω)Pλa

(dωġ−1) =
∫
y(ωġ)Pλa

(dω) = AaU̇(ġ)y(λa),
(A.25)

where U̇ is the representation on Ka given by U̇y(ω) = y(ωġ), i.e., the regular
representation on L2(S,P) restricted to this space.

Thus U1(ġ)Aa = AaU̇(ġ) on Ka.
Furthermore

U(g) = Ū(ḡ) = U1(ġ) = AaU̇(ġ)Aa −1 when ġ 7→ ḡ and g 7→ ḡ.

Recall that g 7→ ḡ in this setting if (λaḡ)(φ) = λa(φg), and that Ū(ḡ) = U(g)
in this case. Furthermore, U(g)f(φ) = f(φg) when f ∈ V a

λ and g ∈ Ga.
By [154] p. 48, if two representations of a group are equivalent, they are

unitary equivalent; hence for some unitary Ca we have

Ū(ḡ) = CaU̇(ġ)Ca † (A.26)

when ġ 7→ ḡ.
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Since the unitary operators in this proof are defined on Ka and Ha, re-
spectively, it follows that these spaces are related by Ha = CaKa.

Definition 5.10.2 may also be coupled to the operator Aa and to an arbi-
trary Hilbert space K′ of sufficient statistics, which may trivially be the whole
space L2(S,P). Let first

La = {y ∈ K′ : Eλa

y = 0 for all λa}. (A.27)

Then Ka may be considered as the factor space K′/La, i.e., the equivalence
classes of the old K′ with respect to the linear subspace La (cf [154], I.2.10V).

Here is a proof of this fact: Let ξ ∈ AaK′, such that ξ(λa) = Eλa

(y)
for some y ∈ K′. Then y is an unbiased estimator of the function ξ(λa). By
[141], Lemma 1.10, ξ(λa) has one and only one unbiased estimator which is
a function h(ta) of ta. Then every unbiased estimator of ξ(λa) is of the form
y = h(ta) + x, where x ∈ La; this constitutes an equivalence class. On the
other hand, every h(ta) can be taken as such a y.

A.4 Some aspects of Partial Least Squares Regression.

Lemma A4.1 The weights wk = E′
k−1fk−1 lead to a maximization of the

empirical covariance between tk and fk−1.

Proof.
Since all variables are centered, the empirical covariance is

f ′k−1tk = f ′k−1Ek−1wk,

and for a fixed norm of the weight wk this is maximized for wk = E′
k−1fk−1.

An alternative PLS algorithm. As a start, put E∗
0 = X, f∗0 = y, and

then determine p∗k, t
∗
k, T

∗
k , q̃

∗
k = (q∗k1, ..., q

∗
kk)′, E∗′

k and f∗k consecutively by the
formulas

p∗k = E∗
k−1f

∗
k−1,

t∗k = E∗
k−1p

∗
k/p

∗′
k p

∗
k,

T ∗k = (t∗1, ..., t
∗
k),

q̃∗k = (T ∗
′

k T
∗
k )−1T ∗

′

k y,

E∗
k = E∗

k−1 − t∗kp
∗′
k ,

f∗k = y −
k∑

j=1

t∗jq
∗
kj .
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If again x0 = (x01, ..., x0p)′ is a set of x-measurements on a new unit,
define e∗0 = x0 − x̄ with x̄ = (x̄1, ..., x̄p)′ and then new scores and residuals
consecutively by

t∗k0 = e∗
′

k−1p
∗
k/p

∗′
k p

∗
k,

e∗k = ek−1 ∗ −t∗k0p
∗
k = e∗0 −

k∑
j=1

t∗j0p
∗
j .

Predict y0 in step a by

ŷ∗a0 = ȳ +
a∑

k=1

t∗k0q
∗
ak.

The next result shows to which extent the above algorith is equivalent to
the algorithm in Section 8.1:

Proposition A4.1. With the notation as above we have for a = 1, 2, ...:
a) p∗a = wa,
b) {t∗1, ..., t∗a} span the same space as {t1,
c) f∗a = fa,
d) ŷ∗a0 = ŷa0.

Proof.
Let P ∗ta and Pta be the projections upon the two spaces described in b).

Then using the orthogonality of t1, t2, ..., we find from (8.2)− (8.5):

Ea = (I − Pta)X,

fa = (I − Pta)y,

while the above algorithm gives

E∗
a = X −

a∑
k=1

t∗kp
∗′
k ,

f∗a = (I − P ∗ta)y.

I will prove a) and b) simultaneously by indoction on a. They are trivial for
a = 1. Assume them to be true up to a − 1. then the formulas above show
that

E′
a−1fa−1 = E∗′

a−1f
∗
a−1 = X ′(I − Pt,a−1)y,

giving a). But the two set of scores are given by

ta = Ea−1wa = (I − Pt,a−1)Xwa = Xwa − Pt,a−1Xwa,

t∗a ∝ E∗
a−1p

∗
a = (X −

a−1∑
k=1

t∗kp
∗′
k )p∗k = Xp∗a = Xwa.
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Since, by the induction hypothesis, the vector subtracted from Xwa in ta
belongs to the span of t∗1, ..., t

∗
a−1, this proves b).

By the formulas above for fa and f∗a , c) follows from b).
It follows from b) that T ∗a = TaD for some non-singular matrix D. From

the way the scores t∗k0 and tk0 are constructed, one must then also have
[t∗10, ..., t

∗
a0] = [t10, ..., ta0]D. Thus we have a simple linear change of variable

between the two sets of scores, and since prediction in both cases is based
upon linear regression on the scores, d) follows.

Proposition A4.2. We have the following relationships:
a) wa+1 = s− SWa(W ′

aSWa)−1W ′
as, where s = X ′y, S = X ′X and Wa =

(w1, ..., wa).
b) ŷa0 = ȳ + (x− x̄)′ba with ba = Wa(W ′

aSWa)−1W ′
as.

Proof.
From the previous proof, t∗a is proportional to Xwa, or properly normed

t∗a = Xwa/w
′
awa. Thus T ∗a = XWaCa, where Ca = diag(‖w1‖−2, ..., ‖wa‖−2).

From this
wa+1 = E∗′

a f
∗
a = X ′(I − P ∗ta)y

with P ∗ta = T ∗a (T ∗
′

a T
∗
a )−1T ∗

′

a gives a).
From d) in Proposition A4.1 and from the definition of ŷ∗a0 we find

ŷa0 = ȳ + (t∗10, ..., t
∗
a0)q̃

∗
a.

Similarly to the relation T ∗a = XWaCa, we get

(t∗10, ..., t
∗
a0) = (x0 − x̄)WaCa.

Finally, the definition of q̃∗a in the last algorithm gives

q̃∗a = C−1
a (W ′

aSWa)−1W ′
as.

b) follows.
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