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The Confirmational Significance of
Agreeing Measurements

Casey Helgeson*y

Agreement between “independent” measurements of a theoretically posited quantity is
intuitively compelling evidence that a theory is, loosely speaking, on the right track. But
exactly what conclusion is warranted by such agreement? I propose a new account of the
phenomenon’s epistemic significance within the framework of Bayesian epistemology.
I contrast my proposal with the standard Bayesian treatment, which lumps the phenom-
enon under the heading of “evidential diversity.”

1. Introduction. The agreement of independent measurements occurs when
a theoretically posited quantity is measured via multiple and ðin some senseÞ
“independent” methods and those measurements agree ðcf. Forster 1988Þ.
The phenomenon is also called “the method of overdetermination of con-
stants” ðNorton 2000Þ and “the consilience of inductions” ðWhewell 1989Þ.
Judging by the scientific episodes most studied and celebrated by philoso-
phers, the phenomenon is of central importance to confirmation in science.
The agreement of independent measurements played a key role in confirm-
ing, for example, Newton’s theory of gravity ðForster 1988Þ, the wave theory
of light ðWhewell 1989Þ, Darwin’s theory of common ancestry ðHelgeson
2013Þ, the atomic theory of matter ðSalmon 1984; Norton 2000Þ, the charged
particle ðelectronÞ theory of cathode rays ðNorton 2000Þ, and the theory of
plate tectonics ðKoolage 2008Þ. In the present essay I propose a new, formal
account of the phenomenon’s epistemic significance and contrast my pro-
posal with a more established approach to the same problem.

*To contact the author, please write to: Centre for Philosophy of Natural and Social Science,
Lakatos Building, London School of Economics, Houghton Street, London WC2A 2AE,
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The agreement of independent measurements is often treated under the
“diversity of evidence” heading ðwhere the “independence” of individual
measurements is taken to enhance the “diversity” of a total set of observa-
tions that includes those measurementsÞ. But that approach ðin its current
formÞ does not adequately acknowledge the hierarchical structure that is char-
acteristic of hypothesis spaces in science. Specific scientific hypotheses are
nested within more general hypotheses, and those are nested within hy-
potheses more general still. Within such a structured hypothesis space, the
diversity of evidence approach locates the evidential significance of agree-
ing measurements at the nitty-gritty level of parameter estimates: agreement
warrants extra confidence that the measured value is accurate. While not
incorrect, this result is incomplete and does little to explain the perceived
significance of agreeing measurements in the history of science. My pro-
posal complements existing accounts by identifying, in addition, warrant for
the “higher-level” theory that posits the measured quantity. It is the confir-
mation of this higher-level hypothesis—more so than the very specific hy-
pothesis that a parameter takes a certain value—that explains the historical
significance of the real scientific examples.

Regarding formal methodology, I will judge the evidential import of an
observation via the law of likelihood ðHacking 1965; Edwards 1984; Royall
1997Þ. That is, I take observation o to favor hypothesis h1 over hypothesis
h2 iff pðojh1Þ > pðojh2Þ. Bayesians of all stripes can agree that it is through
these probabilities that observations confirm hypotheses. I wish to bracket
the finer points about how strongly a hypothesis is confirmed by an observa-
tion ðFitelson 1999Þ; my proposal concerns the more basic issue of exactly
which hypotheses and observations to label o, h1, and h2 such that the im-
port of agreeing measurements can be better appreciated within the frame-
work of Bayesian epistemology broadly understood.

2. The Phenomenon to Be Analyzed. As an example of the phenomenon
to be analyzed, consider Whewell’s account of scientific work by Thomas
Young: “And what was no less striking a confirmation of the truth of the
½wave� theory ½of light�, Measures of the same element deduced from var-
ious classes of facts were found to coincide. Thus the Length of a luminif-
erous undulation, calculated by Young from the measurement of Fringes of
shadows, was found to agree very nearly with the previous calculation from
the colours of Thin plates” ðWhewell 1858/1989, 154Þ. Whewell is saying
that agreement between measurements of the wavelength of light confirms
the theory that light is made of waves ðas opposed to the hypothesis that
light waves have such and such lengthÞ. Similarly, Norton says of Perrin’s
argument for the atomic theory of matter that “Perrin was able to report
roughly a dozen differentmethods for estimatingN ½Avogadro’s number� and
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they all gave values of N in close agreement” and that “the case for the real-
ity of atoms and molecules lay in this agreement” ðNorton 2000, 73Þ.

It is this type of inference—confirmation for the higher-level theory based
on agreeing measurements of a quantity posited within the theory—that
I will reconstruct formally in what follows. Again, this is not to deny that
such agreement can also confirm the measured value for the quantity posited
within the theory if that theory is already taken to be true. But Young’s main
conclusion was that light is a wave. Perrin’s main conclusion was that matter
is made of atoms. ðAnalogous statements hold for the other examples men-
tioned above.Þ

3. Measurement Formally Characterized. To begin my analysis of the
agreement of measurements, I first abstractly characterize the phenomenon
itself. I formally characterize measurement as the statistical procedure of
parameter estimation. Parameter estimation requires a statistical model—a
family of probability distributions, each associated with a particular value
for the model’s adjustable parameter ðor with a vector of values if the
model has multiple parametersÞ. Given a set of data, the highest-likelihood
distribution ðor distributionsÞ within the family can be identified, and the
associated parameter value ðor intervalÞ is the parameter estimate. On this
characterization of measurement, the statistical model’s adjustable param-
eter is the quantity to be measured, and estimation of that parameter’s value,
as just described, is a measurement. For example, suppose that we want to
measure the mass of an object using a spring scale. Like any measuring
device, our scale is imperfect. Suppose that its readings are normally dis-
tributed around the true mass of the object that is hung from it. This sup-
position is the statistical model. We produce a set of data by hanging the
object, observing the reading, removing the object, then repeating the pro-
cedure a number of times. These data are then used to estimate the mean of
the normal distribution from which the individual readings were treated as
random draws. This estimate is a measurement of the object’s mass.

What then, is the agreement of measurements? Suppose that we have
two disjoint data sets and a statistical model for each. The two models need
not be the same, and each may include adjustable parameters that the other
does not, but they must both contain an adjustable parameter represent-
ing the quantity to be measured. Each model is fitted to its respective data
set, generating two vectors of parameter estimates and two estimates of the
shared parameter, that is, two measurements of the quantity to be measured.
Continuing with the spring scale example, suppose that we measure the mass
of the same object again, this time ðas astronauts are “weighed” in spaceÞ by
applying a known force, observing the object’s motion, and working back
to its mass through f 5 ma. In this case the data are ðposition, timeÞ points,
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and the statistical model is a Newtonian equation of motion with a stochas-
tic element representing observation error. The resulting estimate of m is
a second measurement of the object’s mass. ðI understand agreement as a
matter of degree, and I quantify this precisely in the worked example below.Þ

4. Agreement as Observation. With the phenomenon formally character-
ized, I turn to its epistemic significance. I first illustrate my approach using
the simplest possible case of the agreement of measurements. Say we will
make two measurements of the mass of an object, using two separate spring
scales. Let there be two data sets with 20 points each, xa 5 fx1; : : : ; x20g and
xb 5 fx21; : : : ; x40g, corresponding to 40 scale readings, 20 from each scale,
all using the same object. For each data set employ the location-normal model
with known variance j2 5 1 and unknown mean m. That is, model a says
that the 20 points xa are drawn from 20 independent and identically distrib-
uted random variables fX1; : : : ;X20g, each normal with variance j2 5 1 and
mean ma. Model b says the same about points fx21; : : : ; x40g, with mean mb.
Under the location-normal model, the maximum likelihood estimator of m
is the mean of the data set. So the two maximum likelihood estimates for the
true values of ma and mb are �xa and �xb, respectively.

Now I introduce a supermodel that expresses the assumption, required for
the agreement of measurements, that �xa and �xb are two estimates ðmeasure-
mentsÞ of the same quantity. This supermodel is the location-normal model
treating all 40 random variables fX1; : : : ;X40g as independent, normal dis-
tributions, each with variance j2 5 1 and mean m. And to quantify the de-
gree of agreement between the two measurements of the parameter m, I
define the following statistic of the total data set fx1; : : : ; x40g: �xa 2 �xb. The
closer this statistic is to zero, the greater the agreement between measure-
ments. Call this the agreement statistic.1 What does the supermodel predict
about the value of the agreement statistic? With respect to the supermodel,
this particular statistic is what is called ancillary, meaning that the distri-
bution for the statistic under the model does not depend on the adjustable
parameter. This is easy to understand intuitively since if all 40 random var-
iables have the same distribution, then we can predict that fx1; : : : ; x20g and
fx21; : : : ; x40g will cluster around roughly the same value ðmÞ, even without
knowing what that value will be. So the supermodel should assign higher
probability to values of the agreement statistic near zero and lower prob-
ability to large positive or negative values. The actual distribution is shown
as the solid line in figure 1.

1. I do not mean to privilege the formula �xa2 �xb over other ways of quantifying agree-
ment, e.g., j�xa2 �xbj or ð�xa2 �xbÞ2. Either of these alternatives can be substituted for the
simple difference statistic used in the text without affecting my conclusions.
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To summarize what I have done so far, I first treat measurement as pa-
rameter estimation and the agreement of measurements as agreement be-
tween two estimates, based on disjoint data sets, of a single parameter shared
by two statistical models. To formally encode the idea that the parameter
appearing in both statistical models is the same quantity, I introduce a super-
model that posits a single parameter m underlying all 40 data points. Then
I characterize the agreement of measurements as a statistic of the total data
ðin this case �xa2 �xbÞ and I treat the degree of agreement itself as an ob-
servation. I must emphasize this last part because it is the key to my ap-
proach. It may initially seem unintuitive ðor worseÞ to treat the degree of
agreement between two estimates of a posited quantity as an observation.
Admittedly, it is an abstract, “high-level” observation. Yet the agreement
statistic is a straightforward function of the total data set and is thus entirely
determined by the data.2 And as long as we can calculate a probability func-
tion for the statistic, nothing prevents us from treating it as an observation
within our statistical framework. For my simplest-case example, I have dis-
played the probability distribution assigned to the agreement statistic by
the supermodel. My next step is to introduce a competing supermodel and
calculate the distribution that it assigns to the same agreement statistic. I
will then locate the epistemic significance of the agreement of independent
measurements in the likelihood favoring of the one supermodel over the
other, given observed values of the agreement statistic near zero.

5. A Competing Supermodel. I want the competing supermodel to lack
the commitment to �xa and �xb estimating the same theoretically posited quan-

Figure 1. Probability density distributions for the agreement statistic under the one-
parameter and two-parameter supermodels.

2. Compare the “higher-level regularities in the data” in Forster’s ð1988Þ discussion of
Whewellian methodology, Sober’s ð1999Þ observation of “matching” character states be-
tween two species, and the treatment of differences between Akaike information crite-
rion scores in Forster and Sober ð2011Þ.
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tity, so rather than positing a single parameter m underlying all the data, I
let the alternative supermodel be a composite of the two separate location-
normal models ðone for xa 5 fx1; : : : ; x20g and one for xb 5 fx21; : : : ; x40gÞ,
retaining both parameters ma and mb. Call the original supermodel the one-
parameter supermodel and call the alternative the two-parameter super-
model.

What does the two-parameter supermodel say about the agreement sta-
tistic �xa2 �xb? Unlike the previous case, the statistic’s distribution under the
two-parameter supermodel does depend on the parameters. On its own, the
two-parameter supermodel does not say enough—it is too logically weak—
to predict anything about that statistic. We can, however, use a standard
Bayesian technique to generate a distribution over the agreement statistic
by logically strengthening the two-parameter supermodel hypothesis. We
can assume prior probability distributions for the parameters ma and mb and
then “integrate out” those priors. Think of this logically strengthened hy-
pothesis as describing a two-layered stochastic process. The data fx1; : : : ; x40g
are generated by first drawing values for ma and mb from their respective prior
distributions and then drawing data points fx1; : : : ; x20g and fx21; : : : ; x40g
from normal distributions with means ma and mb, respectively. The first layer
is intended to represent uncertainty about the true values of the parame-
ters, and the two-layered process incorporates that uncertainty into the su-
permodel’s predictions about the data. Adding priors in this way logically
strengthens the two-parameter supermodel enough to generate a distribution
over the agreement statistic, and I employ this procedure in order to contrast
the two supermodels vis-à-vis observed values of that statistic.

Exactly what the augmented two-parameter supermodel predicts about
the agreement statistic of course depends on what priors are built into that
hypothesis. But qualitatively, the likelihood comparison between the two
supermodels is not very sensitive to the choice of priors. Here is one exam-
ple calculation. For convenience, suppose that the priors for ma and mb are
normal, and in accord with the intent of the two-parameter supermodel, let
them be independent. A variance of j2 5 25 for each will represent a mod-
erate degree of uncertainty. The distribution over the agreement statistic fur-
ther depends only on the difference between the means of the two priors,
not on the means themselves. A difference of zero is most advantageous for
the two-parameter supermodel ðbut will not destroy the contrast I wish to
drawÞ. The resulting distribution is shown as the dotted line in figure 1.3

3. The distribution is centered on zero only because I have made the means of the two
priors equal; any difference between those means will shift the agreement statistic’s
distribution away from zero, making the likelihood comparison with the single-parameter
supermodel even more dramatic. The effect of increasing or decreasing the variance
depends on how close the two means are, but the likelihood of the two-parameter su-
permodel, for values of the agreement statistic near zero, can approach that of the one-
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A comparison of the two distributions pictured in figure 1 shows that
the one-parameter supermodel has the higher likelihood for observed values
of the agreement statistic near zero. It is this likelihood comparison between
the two supermodels that, on my account, expresses the evidential signifi-
cance of the agreement of independent measurements.

6. Application. So far I have provided a concrete illustration, framed in
abstract mathematical terms. It remains to be explained how the competing
hypotheses that are salient within the real scientific episodes characterized
as “the agreement of independent measurements” are relevantly similar to
the two supermodels from my illustration.

The real-world analogues of the one-parameter supermodel are hypoth-
eses that posit a quantity that is not ðcolloquially speakingÞ directly observ-
able but can ðaccording to its hypothesized natureÞ be measured in multiple
ways. For example, in Newton’s physics the mass of an object can be mea-
sured by observing how much the object stretches a spring or by observing
how much it accelerates when a force is applied. Likewise, the wave theory
of light posits a wavelength, and the atomic theory of matter posits a num-
ber of particles in a standard unit of a substance. Each posited quantity was
ðeventuallyÞ measurable in a variety of ways. These are the one-parameter
hypotheses.

The real-world analogues of the two-parameter supermodel are harder
to characterize as a group since these hypotheses vary a great deal in how
fully and explicitly they are articulated. They lie on a scale from full-fledged
alternative scientific theory to vague skeptical worry. Despite the variation
exhibited in that dimension, I will endeavor to explain how they all share
the relevant similarity to the two-parameter supermodel from my illustra-
tion. To do this, I must go back and discuss an aspect of my formal illustra-
tion that I glossed over in the first pass.

Returning to the formal illustration, consider the dual nature of the quan-
tity �xa, the mean value of the data set xa 5 fx1; x2; : : : ; x20g. On the one hand,
�xa is the maximum likelihood estimate of the value of the parameter ma. Call
this the theoretical perspective on �xa. But at the same time, �xa is merely the
result of a mathematical operation applied mechanically to the data set xa.
Call this the observational perspective on �xa. Notice that while the two su-
permodels share the same observational perspective on �xa, they take dif-
ferent theoretical perspectives. We might say that they offer different in-

parameter supermodel only if the variance of the priors is very low and their means are
very close to one another. In subjective terms this means that the agent is very confident
that ma 5 mb, in which case the two-parameter supermodel collapses to the one-parameter
supermodel; in this case it is no concern that comparing likelihoods no longer distin-
guishes the two hypotheses.
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terpretations of �xa. The one-parameter supermodel interprets �xa as the best
estimate of the single parameter m that underlies all the data fx1; : : : ; x40g.
The two-parameter supermodel interprets �xa as the best estimate of the pa-
rameter ma ðwhich parameter has no bearing on the second data set xb 5
fx21; : : : ; x40gÞ. The common thread among real-world analogues of my
two-parameter supermodel is that those hypotheses offer more limited, local
interpretations of a single measurement.

On the full-fledged scientific theory end of the spectrum, take, for ex-
ample, the Ptolemaic theory of the solar system as an alternative to the Co-
pernican theory. Ptolemy put the earth at the center of the solar system and
decomposed the apparent motion of each planet ðas viewed from the earthÞ
into an orbit around the earth ðthe deferentÞ plus a second, smaller orbit
ðthe epicycleÞ that circles a point moving along the deferent. It turns out that
the Ptolemaic epicycle captures the component of apparent planetary mo-
tion that is in fact contributed by the motion of the earth around the sun. In
effect, Ptolemy ðunknowinglyÞ took the motion of the earth around the sun
and displaced it to another location within his picture of the solar system—
but another location from which it could make the same contribution to the
overall motion of a planet relative to the earth. Thus the relative motion of
the sun and earth is replicated within the Ptolemaic model for each planet.
A Ptolemaic supermodel addressing two planets plus the earth will then in-
clude one parameter for the period of the first planet’s epicycle and another
parameter for the period of the second planet’s epicycle. The correspond-
ing Copernican supermodel, however, will treat the estimates of those two
parameter values as two estimates of the same quantity, namely, the period
of the earth’s orbit around the sun.

At the other end of the spectrum we have less fully articulated ideas
about a measurement being an “artifact” of the measuring procedure, the
measuring device, or the particular experimental setup generating the data
ðcf. Hacking 1985Þ. The single-parameter hypothesis interprets the mea-
surement as an estimate of a property of the entity under study, which prop-
erty will naturally be constant across repeated measurements or measure-
ments using different techniques. The alternative hypothesis interprets the
measurement as a property of the dust on the microscope lens, of a glitch in
the computer software, or of a one-off spike in emissions from the factory
down the road, that is, as an estimate of some quantity that is of less general
significance and would not be expected to influence attempted measure-
ments of the target property on other occasions or through other media. Fully
articulating such alternative hypotheses would involve positing separate pa-
rameters underlying the results of separate measurement attempts on other
occasions or through other media, as per the two-parameter supermodel in
my illustration.
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7. Independence. Insofar as the account given here furnishes an analysis
of “independence,” measurements are independent where any among the
competing hypotheses fail to interpret those measurements as estimates of
a single quantity. This is, in any case, the feature of the hypothesis space
that is ultimately responsible for the likelihood contrast displayed in fig-
ure 1, and we can treat the “independent” in “agreement of independent
measurements” as flagging this feature.4 To better situate my account with
respect to existing literature, I contrast it with a more established approach
to independent evidence. The important point of contrast will be not so much
the particular meaning of “independence” ðthough this too is differentÞ, but
rather the inference problem to which independent evidence is taken to be
relevant.

The intuitive notion of “independent” evidence ðor perhaps there is more
than oneÞ overlaps with that of observations being “of different kinds.”And
where a set of observations has parts deemed independent ðor different in
kindÞ, that set is often called “diverse” or “varied.”Within Bayesian episte-
mology, there is a standard approach to all these terms, exemplified ðamong
other placesÞ in Hempel’s discussion of the “criteria of confirmation and
acceptability.” Hempel first remarks that “broadly speaking, the increase
in confirmation effected by one new favorable instance will generally be-
come smaller as the number of previously established favorable instances
grows,” before quickly adding a caveat: “If the earlier cases have all been
obtained by tests of the same kind, but the new finding is the result of a dif-
ferent kind of test, the confirmation of the hypothesis may be significantly en-
hanced. For the confirmation of a hypothesis depends not only on the quan-
tity of the favorable evidence available, but also on its variety: the greater
the variety, the stronger the resulting support” ðHempel 1966, 33–34Þ. Hempel
is here addressing a set of observations each of which individually confirms
the hypothesis in question and then gesturing at a notion of variety within
such sets and a relationship between this variety and the sum total of confir-
mation provided by the set.5

In my example above, the “independent” observations are �xa and �xb.
What hypothesis is favored by each of those observations considered in-
dividually? We have so far had no use for a prior on the parameter m, and
consequently, the likelihood of the one-parameter supermodel, given ei-

4. This feature of the hypothesis space is a special case of that exploited by Myrvold’s
ð2003Þ Bayesian account of the value of unification.

5. Accounts of independence or diversity that adopt this understanding of the phe-
nomenon include Sober ð1989Þ, Earman ð1992Þ, Howson and Urbach ð1993Þ, Wayne
ð1995Þ,Myrvold ð1996Þ, Fitelson ð2001Þ, Bovens andHartmann ð2003Þ, andWheeler and
Scheines ð2011Þ.
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ther observation, is undefined. So we cannot say that either observation fa-
vors one supermodel over the other. We can, of course, supplement the one-
parameter supermodel with a prior distribution over m and integrate out to
arrive at probabilities for �xa and �xb conditional on that supermodel. But sup-
posing that we choose the same prior for m and ma ðas would seem to facilitate
a fair contestÞ, the two supermodels will assign exactly the same probability
to the observation �xa ðand to any other statistic of xaÞ. If we instead choose
different priors for m and ma, then the observation �xa may favor one super-
model over the other, but this will be due entirely to the choice of priors, with
no general validity. The same can be said, mutatis mutandis, of the second
observation, �xb. ðIn terms of the spring scale example, one hypothesis says
that two scales measure the same property of an object, while the other says
that they measure two different properties, or at least may do so. Naturally,
weighing an object on only one of the scales does not discriminate between
the two hypotheses.Þ

To find a hypothesis that is favored by each measurement considered
individually, we must set aside the two-parameter supermodel and look
within the one-parameter supermodel, to hypotheses about the parameter
m. When �xa and �xb agree, each observation favors parameter values near
the agreed-on number over those further away ðrecall that �x is the maxi-
mum likelihood estimate of mÞ. Thus, the standard approach to independence
and variety points us to hypotheses about the parameter m within the one-
parameter supermodel, whereas the focus of my approach is the supermodel
itself.

When this distinction is mapped back onto the motivating scientific ex-
amples, the standard approach to independence and diversity presupposes
the wave theory of light and then asks how diversity among measurements
helps confirm a value for the wavelength. The standard approach presup-
poses the atomic theory of matter and addresses the confirmation of hy-
potheses about the size of the atom, and so on for the other examples. In
contrast, I have tried to show how agreement between measurements of the
wavelength of light can evidentially favor the wave theory of light over cer-
tain alternatives ðand, through this, confirm the theoryÞ, how agreement be-
tween measurements of the size of the atom can favor the atomic theory of
matter over alternatives, and so on.

8. Conclusion. Seeing that multiple, “independent” measurements of a
quantity agree, one intuitive conclusion is that the value about which the mea-
surements agree is correct ðand, moreover, the greater the independence,
the more confidence is warrantedÞ. But there is another, more basic ðyet less
obviousÞ conclusion, which is equally intuitive once made explicit: that the
several procedures used for measurement in fact measure the same prop-
erty. The first conclusion, which is the subject of the diversity of evidence
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literature, presupposes the second. I have pointed to historically detailed phil-
osophical work suggesting that the second conclusion is at least as impor-
tant as the first within the scientific episodes that are described as the agree-
ment of independent measurements and partially motivate the diversity of
evidence literature. I have provided a template for formal reconstruction and
rationalization of this second and more basic element within the motivat-
ing scientific episodes. The key innovation is to treat the degree of agree-
ment between measurements as a single observation ða statistic of a total data
setÞ. Hypotheses that posit a single property underlyingmultiplemeasurement
attempts will tend to assign a higher probability to close agreement between
measurements, as compared to hypotheses that posit different parameters un-
derlying different measurement attempts.
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