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ABSTRACT

This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and
Landauer's principle in physics. The multiple-computations theorem implies that certain physical systems
implement simultaneously more than one computation. Landauer's principle implies that the physical
implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We
show that the multiple-computations theorem is incompatible with, or at least challenges, the universal
validity of Landauer's principle. To this end we provide accounts of both ideas in terms of low-level
fundamental concepts in statistical mechanics, thus providing a deeper understanding of these ideas
than their standard formulations given in the high-level terms of thermodynamics and cognitive science.
Since Landauer's principle is pivotal in the attempts to derive the universal validity of the second law of
thermodynamics in statistical mechanics, our result entails that the multiple-computations theorem has
crucial implications with respect to the second law. Finally, our analysis contributes to the understanding
of notions, such as “logical irreversibility,” “entropy increase,” “implementing a computation,” in terms of
fundamental physics, and to resolving open questions in the literature of both fields, such as: what could

it possibly mean that a certain physical process implements a certain computation.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we make a direct and hitherto unnoticed linkage
between the multiple computations theorem in philosophy of mind
and cognitive science and Landauer's principle in physics. Both are
central in their respective fields. We show that this linkage has very
surprising consequences in physics and in philosophy of mind and
cognitive science (see more details in this introductory section).

The multiple-computations theorem (also called pan-
computationalism or the indeterminacy of computations theorem')
says that certain physical systems that implement computations,
implement simultaneously more than one computation.” One

* Corresponding author.

E-mail addresses: meir@research.haifa.ac.il (M. Hemmo), orly.shenker@mail.
huji.ac.il (O. Shenker).

1 See for example (Piccinini, 2017).

2 The distinction between implementing “computation” and implementing
“formal structures” is addressed later, in Sections 3 and 8. In the context of Lan-
dauer's principle, which is our focus here, the terminology in the literature does not
make these subtle distinctions. The “formal structures” in question here are single-
valued maps from input states to output states, typically logical transformations.
See discussion of the relevant notion of computation in (Ladyman, 2009, Section 3).
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implication of this theorem is that if the mind is understood as a
computation implemented in the brain, it may be that a single brain
implements two entire minds simultaneously, thus challenging the
computational theory of mind.?

Landauer's principle says that there is a systematic connection
between abstract logical properties of computations and the
physical properties of the computers on which they are imple-
mented: it claims that the physical implementation of “logically
irreversible” functions is accompanied by some minimal dissipa-
tion of energy (increase of thermodynamic entropy). This principle
is pivotal in contemporary defenses of the universality of the sec-
ond law of thermodynamics, since it is taken to be crucial in
showing that Maxwell's Demon, which is a counter example for the
second law, is physically impossible.

The tasks undertaken in this paper are these:

I. Show that the multiple-computations theorem challenges the
universal validity of Landauer's principle. Combining the insights
concerning “physical (implementation of) computation” from both
physics and cognitive science, our surprising result is that the

3 On the computational theory of mind, see (Rescorla, 2017).
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multiple-computations theorem in cognitive science has important
implications with respect to the second law of thermodynamics. We
open this paper with a presentation of the two theses, in Sections 2
and 3. The incompatibility between them is first demonstrated in
Section 4.

II. Provide the multiple-computations theorem with a general
physical underpinning, by formulating it in terms of fundamental
physics, based on recent findings in the philosophy of physics. This
task involves clarifying what the notion of “implementing a
computation” could mean in terms of fundamental physics, given
the insights on this topic from recent literature in the philosophy of
computation and cognitive science. This physical underpinning
sheds light on some aspects of this theorem that are (still) under
debate in contemporary literature, e.g., under what conditions can
we justifiably say that a given physical system uniquely implements
a given computation. This task is undertaken in Sections 5 and 8.

[ll. Formulate Landauer's principle in terms of fundamental
physics (rather than in terms of thermodynamics or statistical
mechanics), thus clarifying where (according to fundamental
physics) this principle holds and where it doesn't. This task involves
clarifying the notions of “implementing a computation”, “logical
irreversibility” and “entropy increase” in terms of fundamental
physics, given insights from recent literature on the philosophy of
physics and in particular of statistical mechanics. This task is un-
dertaken in Sections 5, 6, and 7. The results of tasks I and IIl support
the results of task L

2. Introducing Landauer's principle

In 1961, in a paper published in the IBM Journal for Research and
Development, Rolf Landauer suggested an idea that, if true, is quite
astonishing. Technically, the idea — that since then came to be
known as Landauer's principle — is this: The physical implementa-
tion of logically irreversible operations (namely those in which
from the output one cannot infer the input) is necessarily accom-
panied by dissipation of energy (i.e. increase of entropy) in the
amount of (at least) klog2 per loss of one bit of information (see also
Landauer, 1992, 1996).% This typically means that implementing
logically irreversible properties — but not logically reversible ones
— is responsible for the generation of heat in the minimum amount
of kTlog2 per lost bit. The simplest example of a logically irrevers-
ible operation is “logical erasure” (hereafter for short: “erasure”),
which is the mapping 1 — 1 and 0 — 1 (or equivalently 1 — 0 and
0 — 0). In this operation one bit of information — e.g. an answer to
one yes/no question — is “lost”, since the input cannot be recovered
from the output.® According to Landauer's principle the physical
implementation of this logical operation must be accompanied by
entropy increase of at least klog2.

Why is this idea astonishing? Landauer's principle posits a
substantive but non-reductive connection between the physical
level and the logical level that seem to be straightforwardly in ten-
sion with the thesis of physicalism. The first issue is this: Landauer's
principle does not satisfy the condition of supervenience; see Fig. 1.

4 Entropy has no physical units; it is a number. This holds for all expressions of
entropy, in all the different approaches to statistical mechanics; see e.g., (Frigg,
2008).

5 We take “erasure” to be a logical function; erasure by, for example, blowing up a
computer is not what we are after.

6 See discussion of this term in (Hoefer, 2016, Section 2.3) Note that accounting
for irreversible logical functions in terms of bi-directionally-deterministic physical
theories (e.g., classical mechanics) requires a macroscopic description, since in a bi-
directionally deterministic world, there is no microscopic erasure; see Section 5. For
more on the notion of ‘determinism’ and its connection with causation, see (Hoefer,
2016; Ben-Menahem, 2018).
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Fig. 1. Entropy increase and logical (ir)reversibility; failure of supervenience.

This is because Landauer's principle entails that physical processes
that result in entropy increase above the minimum may implement
both logically reversible and logically irreversible computations, so
that Landauer's minimum bound on entropy increase is only partly
correlated with logical irreversibility. Since supervenience is usually
taken to be the (minimal) hallmark of physicalism (e.g., Kim, 1990,
2012), it turns out that the notion of logical (ir)reversibility in Lan-
dauer's principle is (in this sense) a non-physical one. While the idea
that logical properties are not physical properties may, in itself, be
acceptable for many (according to main stream views, at least’), the
astonishing idea is that facts, that (as we now see) are non-physical,
are claimed to put strong measurable constraints on possible phys-
ical facts (concerning entropy increase), and moreover that this idea
is (claimed to be) based on considerations within physics (see Sec-
tions 2, 5, 6, 7 on these physical considerations).

The second implication of Landauer's principle that is in tension
with (reductive) physicalism is that Landauer's principle entails
that the property of the logical reversibility of computations is
multiply realizable in the following sense: Reversible computations
may be implemented by physical processes that result in entropy
increase above the minimum as well as by physical processes that
result in entropy increase below the minimum. So, according to
Landauer's principle, also the property of logical reversibility of
computations is not fully correlated with the minimum entropy
bound set by the principle.?

When reading Landauer’s (1961) and later literature on the
subject, it is not easy to see this problem: the connection between
the logical (ir)reversibility of the implemented function and the
nature of the physical implementation is treated as if it is
straightforward, almost as if the logical properties are inherent in
the physical properties of the implementing system, or that
(conversely) the physical properties are inherently implementing
the logical properties.

The fact that in Landauer's principle logical properties do not
supervene on physical properties may be a hint that problems lurk
in it, waiting to be uncovered (as we do in this paper). (This is the
first, but not the last, insight to be taken from the philosophy of
mind and cognitive science and applied in the foundations of
physics. We shall encounter more as we proceed.)

Why is Landauer's principle significant? Landauer's principle
is key to the contemporary establishment of the universal validity
of the second law of thermodynamics, since it is pivotal in the at-
tempts to solve the riddle of Maxwell's Demon. Maxwell's Demon is
a thought experiment proposed in 1867 by J.C. Maxwell as a per-
petuum mobile of the second kind, that is, as a counter example for
the second law of thermodynamics. Since then physicists and
philosophers have tried, in a variety of ways, to ensure the universal
validity of the second law by showing that Maxwellian Demons are
incompatible with the principles of fundamental physics. There is,
of course, overwhelming empirical evidence supporting the second

7 See (Szabo, 2012) on physicalism concerning mathematics.

8 The thesis of multiple realizability cannot be reconciled with physicalism but
we will not argue for this point here; see (Hemmo & Shenker, 2019). Our arguments
below do not depend on this issue.
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law of thermodynamics, and yet, such a thought experiment is
taken by many to be problematic. The most recent attempts to solve
this problem are based on Landauer's principle: The currently
prevalent view is that if Landauer’s principle is true then Maxwell's
Demon is “exorcised”,’ and the universality of the (probabilistic
counterpart of the) second law is preserved.'” Hence the great
importance ascribed to Landauer's principle.’

Most of the physicists as well as philosophers take Landauer's
principle to be established and validly supported by physics (see
e.g., Bennett, 1982, 2003; Bub, 2001; Feynman, 1996; Ladyman,
2009; Ladyman & Robertson, 2014), although some arguments
have been put forward that criticize it (including e.g., Earman &
Norton, 1998, 1999; Maroney, 2005; Norton, 2005, 2011; Hemmo
& Shenker, 2010, 2012, 2013).

How should the acceptability of Landauer's principle be
decided?

Empirical testing: First of all, Landauer's principle entails
empirical predictions, and attempts are constantly made to estab-
lish either its truth or its falsity on the basis of empirical findings."?
At this point, however, we do not take these findings to be
conclusive, and we shall not go into their details.

A-priori considerations: As is usual, we do not take Landauer's
principle to be assumed a-priori, or to be a tautological definition,
that identifies loss of n bits with energy dissipation of nklog2.!>'4

Compatibility with the theories of physics: In this paper, and
as is usual, we take Landauer's principle to concern the physics of
computing systems, that needs to be supported by the theories of
physics that are relevant for such systems. Accordingly, the crite-
rion that we employ for deciding on the acceptability of this prin-
ciple is its support by these theories of physics. We undertake this
task in two ways:

(1) In Section 4 we provide a counter example for Landauer's
principle, that is based on the multiple-computations theorem
(presented in Section 3), which we take (in turn) to have a foun-
dation in fundamental physics (discussed in Section 8).

(2) In Sections 5, 6 and 7 we re-examine the compatibility of
Landauer's principle with fundamental physics. This line of enquiry
is different from the standard treatment of this principle, carried
out in terms of the high-level theories of thermodynamics and
statistical mechanics. We discuss our reasons for preferring this line
of thinking in Section 5.

3. Introducing the multiple-computations theorem

In 1988, in an appendix to his book Representations and Reality,
Hilary Putnam suggested an idea that, too, was quite astonishing

9 In the terms of Earman and Norton (1998, 1999).

10 Because of this role of Landauer's principle, grounding its proof in the second
law is viciously circular, since the second law is defended against the counter
example of Maxwell's Demon by relying on Landauer's principle; we return to this
point below.

1 See introductory overview and papers in (Leff & Rex, 2003). But see also the
argument that Maxwell's Demon is compatible with fundamental physics in
(Hemmo & Shenker, 2010, 2011, 2012, 2013, 2016) for the classical case, and in
(Hemmo & Shenker, 2017) for the quantum mechanical case.

12 Recent examples of attempts to establish the empirical falsity of Landauer's
principle are: (Cottet et al., 2017; Chida, Desai, Nishiguchi, & Fujiwara, 2017);
Masuyama et al., 2018).

13 Ladyman and Robertson (2014, p. 2287) write: “[W]e could take LP as a regu-
lative principle that is somehow constitutive of the theory and assumed a priori.”

4 One reason for why this principle cannot be a tautology (that is not discussed in
the literature) is the fact that phase space regions can be measured using a variety
of measures.

when it was first presented: “Every ordinary open system is a real-
ization of every abstract finite automaton.“'> (Hemmo & Shenker,
2013, p. 121) Putnam originally illustrated this very strong thesis
as follows. Consider a system that, following the laws of physics,
evolves from time 12:00 to time 12:07, changing its physical state
every minute, such that its states at these moments are S0, S1, S2, S3,
S4, S5, 6 and S7.'° If (with Putnam) we assign the value “1” to the
disjunction SO v S2 v S4 v S6 and the value “0” to the disjunction S1
v S3 v S5 v S7, then the sequence of physical states may be seen as
implementing the sequence of symbols 1010101. To see the nature of
the multiple-computations thesis, notice that a different value
assignment, in which the value “1” is assigned to the disjunction SO v
S1v S2 v S3 and the value “0” to the disjunction S4 v S5 v S6, results
in the system implementing the sequence of symbols 1111000, as it
undergoes exactly the same physical evolution as before. The reader
can easily construct implementations of additional sequences by the
same system during the same physical evolution."” Thus, as the
system undergoes one and the same microphysical evolution it
implements all the computations resulting from all the possible
value assignments, not only potentially but in actuality. This is an
illustration of Putnam'’s idea.

Putnam's insight is usually taken to mean that “syntax is not
intrinsic to physics” (Searle, 1992, p. 208), or that the physics is
“blind” to the syntax, in the sense that, since one physical matter of
fact gives rise to a multiplicity of computations, all of which are
equally and simultaneously carried out, it turns out that the phys-
ical matters of fact do not fix one of these as a computations that is
actually carried out.'® Searle illustrated this idea with an example
that since then became paradigmatic: “Thus for example the wall
behind my back is right now implementing the Wordstar program,
because there is some pattern of molecular movement that is
isomorphic with the formal structure of Wordstar.” More generally,
“For any program and for any sufficiently complex object, there is
some description of the object under which it is implementing the
program.” (Searle, 1992. pp. 208-9).

Since its formulation by Putnam (1988), a number of criticisms
were mounted against the strong form of this thesis, arguing that
not every system is a computer, and those that are, do not imple-
ment every computation: various kinds of constraints (modal,'
causal,?’ semantic,”' functional,>? and others) have to be satisfied
if we are to say that a given system implements a certain compu-
tation (for an overview see Piccinini, 2017). Still, a modest version of
the thesis remains non-controversial, namely, that some systems

15 Adding the physical input and output adds some constraints, but even in that
case Putnam's claim is quite strong. We address the approach of computational
externalism in Section 8.

16 The Si states are macrostates, a notion explained below (since its analysis is
pivotal in understanding the limitations of Landauer's principle).

17 Copeland (1996), in his criticism of Putnam's idea, claims that examples in
which the computation is given first, and the physical states are chosen so as to fit
it, do not support pan-computationalism. We don't address this claim here, since it
is not relevant to our criticism on Landauer's principle in Section 4.

18 This understanding is not universal. Some say that Putnam's thesis does not
imply that syntax isn't intrinsic to physics, since one may still say that “all these
implemented structures are intrinsic” (Shagrir, 2001, p. 379). Others say that Put-
nam's thesis does not imply that computation is not intrinsic to physics, since
“computation” should be associated with the basic physical process itself (see
Shagrir, 2018, Section 4, for a critical presentation of this idea and for references).

19 For example (Chalmers, 1996; Copeland, 1996); see more on this in Section 6.

20 For example, in order for a system to implement a computation it has to have a
certain causal organization; see (Chalmers, 1996, 2012, Section 5).

2! For example, some argue that computations involve representations, see
(Shagrir, 2001; Sprevak, 2010); Egan, 2012). For a recent defense of the semantic
approach to individuation of a computation, see (Shagrir, 2018); for criticism, see
(Dewhurst, 2018).

22 For example, see (Coelho Mollo, 2017; Egan, 2017).
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that are taken to implement computations (and ipso facto satisfy
the requirements for doing so) do in fact implement more than one
computation as they undergo one and the same microphysical
process (e.g. Shagrir, 2012). For our argument in this paper the most
modest non-controversial version of the thesis is all we need.
Hereafter, we use the name “the multiple-computations theorem” to
refer to this modest version, and it is the one for which we provide
examples below. (Whether or not this is a strictly speaking theo-
rem, and in this case, what entails it, is a matter that we shall come
back to at Sections 5 and 8, as we consider its physical
underpinning.)

Why is the multiple-computations thesis astonishing, and
what makes it significant? The (modest) multiple-computations
thesis, by implying that “syntax is not intrinsic to physics”
(Searle, 1992, p. 208), challenges physicalism about computation.
Some think that, ipso facto, it also challenges “realism about
computation”, which is the idea that “whether or not a particular
physical system is performing or implementing a particular
computation is at least sometimes a fact that obtains independently
of human beliefs, desires and intentions.” (Ladyman, 2009, p. 377).
Therefore, the (modest) multiple-computations theorem has a
number of significant implications.

One implication is that the multiple-computations theorem
presents a challenge to the computational theory of mind (Rescorla,
2017), since it implies that the brain (assuming that it implements
computations) simultaneously implements two (or more) different
computations, which may be two (or more) different entire minds
(see discussions in Chalmers, 1996, 2012; Shagrir, 2001, 2012;
Piccinini, 2015, 2017).23 To face this challenge, there is an ongoing
debate in the philosophy of mind and cognitive science about the
nature of computing systems and the computations that can be
implemented in them, and about the nature of computations that
can give rise to minds. The present paper is not part of this debate:
the computing systems that we shall discuss in the context of Lan-
dauer's principle needn't be brains, and needn't be minds. Still, some
insights gained in this debate will be important for us, and will be
addressed in Section 8.

Another implication, that is directly relevant to the first task of
our paper, is that if determining which computation is carried out is
not physical, it is hard to see how the properties of this computation
(e.g. its logical (ir)reversibility) can have implications with respect
to its physical properties (e.g., energy dissipation, as in Landauer's
principle). Therefore, examining Landauer's principle in terms of
fundamental physics requires that we provide an underpinning, in
terms of fundamental physics, of the multiple-computations theo-
rem. This task is carried out in Sections 5-8 below.

To see how the multiple-computations theorem challenges
Landauer's principle, let us consider an illustration of this theorem,
provided by Shagrir (2012), that we will extend later (in Section 4).

Consider a physical system (call it L) that consists of three ele-
ments A, B, and D; Lis prepared at ty such that A and B are in certain
physical states; and it evolves (according to the laws of nature) such
that at some later time t; element D is in a certain physical state;
see Fig. 2. Call the initial states (at tp) of A and B “input states” and
call the final state (at t1) of D “output state”. Alternatively, one may
think of system L as consisting of two elements, that change their
states according to some dynamical law Qy. In this case, illustrated
in Fig. 3, A and B are the initial states of these two elements (called
“input states”), and their final states are C and D; but only the state D

23 The strong thesis (but not the modest one) also entails that the computational
theory of mind is vacuous since every system, including Searle's famous wall, im-
plements the computations that are allegedly associated with minds.

A-—>

»D

B-—

Fig. 2. Configuration of a computing system with three elements.

A »C

B-—s »D

Fig. 3. Configuration of a computing system with two elements in four states.

is called “output state”.>* We shall want to use system L as a com-
puter, that implements symbol manipulation, and will now
consider some minimal conditions for doing so.

Let X, Y and Z be three possible values of some physical
magnitude pertaining to A, B and D (it is convenient to think of L as
tri-stable in this context). For example, X, Y and Z may be three
voltage ranges, or three position ranges, etc.> The dynamical rule
Q. that governs the evolution of system L is this:

(i) If both inputs A and B are Z, then the output D is Z.
(ii) If both inputs A and B are X, then the output D is X.
(iii) In all other cases, the output D is Y.

System L is built (or conveniently found in nature) such that, due
to its structure and parameters, the laws of nature (described by an
equation of motion) are such that the rule Qi obtains. The three first
columns of Table 1, with header “physical states”, describe all possible
evolutions of L, given all its possible input states, according to Qy.

Of course, if we want L to implement the computation of a
certain logical function, we need to define a mapping that associ-
ates the physical states of L with computational states, 0 and 1, so
that given this mapping the change of L's physical states could be
seen as corresponding to the desired logical function. On the
question of the nature of this mapping, let us make at this stage
only two important and related comments:

(i) To avoid the triviality result of the Putnam-Searle argument,
according to which almost every microphysical evolution
implements almost any computation, critics have proposed
that further constraints should be imposed on this mapping
if it is to be considered a “computation”.”® But these

24 Regarding this second case, it is well known that, taking into account additional
degrees of freedom, and treating them as information bearing, can affect the logical
properties of the computed function (by making all computations “logically
reversible”). We address this point later, and for now focus on Shagrir's (2012)
example in which the output is D only.

25 In (Shagrir, 2012) X is voltage in the range [0, 2.5), Y is voltage in the range [2.5,
5), and Z is voltage in the range [5, 10]. In this case, since the voltage ranges are
unequal, one may say that the states A and B may have different probabilities or
different entropies. This case is compatible with Landauer’s principle, as Landauer
(1961) already noticed, but for simplicity of presentation it is better to think of
examples in which A and B have the same probability and entropy.

26 Constraints (e.g., modal, causal, or others) must be added to the formal map-
ping to avoid the triviality result of the multiple computations theorem in its strong
version. Which kinds of constraints is a debated topic in the literature, that we don't
explicitly address here, since (as we said) our focus is the weaker modest multiple
computations theorem which is presumably immune to all of the proposed con-
straints. For causal constraints, see (Chrisley, 1994); Melnyk, 1996; Chalmers, 1996,
2011); for dispositional ones, see (Klein, 2008); for mechanistic, see (Piccinini, 2008,
2015; Mitkowski, 2013); for modal, see (Chalmers, 1996, 2011; Copeland, 1996);
Shenker, 2000); and for pragmatic constrains, see (Egan, 2012); Matthews &
Dresner, 2016).
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Table 1

System L with dynamics Q, implementing two logical functions under different value assignments.

Physical states according to Q.

Value assignment 1

Value assignment 2

Input A Input B Output D Input A Input B Output D AND Input A input B Output D OR
Voltage ranges & Value Assign-ments X X X 0=X 0=X 0=X 0= XorY 0 = XorY 0 =XorY

X Y Y 0=X 1=YorZ 1=YorZ 0=XorY 0= XorY 0=XorY

X Z Y 0=X 1=YorZ 1=YorZ 0 =XorY 1=2 0 =XorY

Y X Y 1=YorZ 0=X 1=Yorz 0 =XorY 0 = XorY 0 =XorY

Y Y Y 1=YorZ 1=YorZ 1=YorZ 0=XorY 0= XorY 0 =XorY

Y Z Y 1=YorZ 1=YorZ 1=YorZ 0=XorY 1=2 0 =XorY

Z X Y 1=YorZ 0=X 1=Yorz =Z 0 =XorY 0 =XorY

Z Y Y 1=YorZ 1=YorZ 1=YorZ 1=2 0= XorY 0 =XorY

Z Z Z 1=YorZ 1=YorZ 1=YorZ 1=2 1=2 1=2Z

constraints are not enough to avoid the much weaker modest
multiple computations theorem in cases like Shagrir's (2012;
see also Shagrir, 2018).?7

(ii) At this stage we are neutral with respect to the meaning of a
“mapping that associates physical states with computational
states.” This is part of the subject matter of intensive dis-
cussions in the philosophy of cognitive science, where the
question of which features of a computing system “individ-
uate the computation” that it carries out is still open (see
Piccinini, 2017 for overview, Shagrir, 2018 for a recent critical
discussion). Since Landauer's principle is allegedly proved
within physics, it is important that the mapping relation, as
well as the individuation of a computation, will be given in
physical terms. We shall address this issue, i.e., of which
physical facts determine the mapping and which physical
facts individuate the computation, in Section 8.2

Let us now go back to the construction of the physical-to-
computational mapping. Since each of A, B and D can be in any of
three possible physical states,>® the association of the physical
states with the symbols is not trivial. Shagrir (2012) considers two
options of value assignment. In value assignment 1, the symbol O is
implemented by the physical state X, and the symbol 1 is imple-
mented by any of the physical states Y or Z. In assignment 2, the
symbol 0 is implemented by any of the physical states X or Y, and
the symbol 1 is implemented by the physical state Z. In short:

(Value assignment 1) X is 0; {Y or Z} is 1.

(Value assignment 2) {X or Y}is 0; Z is 1.

In Table 1, the columns headed “Value assignment 1” and “Value
assignment 2" describe these cases. For example, consider the sec-
ond row, in which A is in the physical state X, B is in the physical
state Y, and D is (according to the dynamical rule Q;) in the physical
state Y. According to value assignment 1, X implements 0 and Y
implements 1, and therefore this row stands for the case A=0,
B =1,D =1, that is, the mapping (0,1)— 1; and when applying value
assignment 2, X implements 0 and Y implements 0, and therefore

27 See (Dewhurst, 2018), for a recent criticism, and an attempt to individuate
computations (but not logical functions) on the basis of macroscopic physical fea-
tures without representation (and without syntax). But this proposal too faces
trivialization: since it entails that almost every sequence of macroscopic states is a
computation (regardless of which logical functions it computes) and this leads
immediately to a problem of unlimited multiple computations of a somewhat
different sort than the standard problem.

28 The multiple-computations theorem may be understood as implying that the
physics is not sufficient for fixing the mapping. The prevalent view is that the
physics is also not necessary for fixing the mapping, since computations are
multiply realizable.

29 Other examples require a continuum of physical states.

this row stands for the case A=0, B=0, D=0, and the mapping is
(0,0)—0.%°

Considering all the nine input options (described in Table 1), it
turns out that under value assignment 1 the computed function is:
(0,0)—0, (0,1)—1, (1,0)—1, (1,1)—1, which is known as the OR
function; and under value assignment 2 the computed function is:
(0,0)—0, (0,1)—0, (1,0)—0, (1,1)—1, which is known as the AND
function. Notice that the implementation of these logical functions
is an outcome of the combination of both the value assignments and
the dynamics.

If both value assignments are possible, then both computations
are carried out simultaneously by the same microphysical evolu-
tion Q. Hence, the physics does not determine which of these two
computations is carried out; both are! And so Shagrir's (2012)
example is an illustration of the multiple-computations theorem.>!

The last two statements depend, of course, on the meaning, and in
particular the physical meaning, of “value assignment”. What kind of
fact makes it the case that a given physical state, say Y in our example,
“corresponds to” or “is associated with” or “stands for” or “realizes”
or (finally) “implements” (etc.) the symbol 1 under one “value
assignment” and 0 under another? (We shall not address the dif-
ferences between these notions. We take this to be essentially the
problem sometimes called in the literature “individuation of
computation”.) This topic is under debate in contemporary thinking
in both philosophy of physics and philosophy of cognitive science,
and is also important for the philosophy of computation in general.
Our aim in this paper is to offer an account of computation in terms of
fundamental physics, and therefore our task is to describe physical
facts that will carry out the roles of the above notions that are rele-
vant for Landauer's thesis and for the multiple-computations theo-
rem (we do not examine whether or not our fundamental physical
account fully replaces all of these terms; this discussion is beyond the
scope of this paper). We return to this subject in Section 8.

4. The multiple-computations challenge for Landauer's
principle

In the example of the multiple-computations theorem by
Shagrir (2012), presented in Section 3, both computations (AND
and OR) are logically irreversible, since one cannot infer the input

state uniquely from the output state. This is always the case where

30 Notice that in Shagrir's (2012) example both value assignments, and hence both

simultaneous computations, are implemented at the same level of organization;
others have described simultaneous implementations at different levels of orga-
nization, e.g., (Chalmers, 1996), and Section 7 below.

31 Note that this conclusion, i.e. that both computations are equally real, is part of
the modest multiple-computations theorem; see Section 8 for more on this issue.
Also, here we first have the dynamics and value assignment, and then we discover
which logical functions they implement; rather than the other way around. So,
Copeland's (1996) criticism does not hold.
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Table 2

System K with dynamics Qg implementing a reversible computation under Value assignment 1.

Physical states for dynamics Qx

Value assignment 1

Input A Input B Output C Output D Input A Input B Output C Output D
Voltage ranges & Value Assign-ments X X Y Y 0=X 0=X 1=YorZ 1=YorZ

X Y Y X 0=X 1=YorZ 1=Yorz 0=X

X Z Y X 0=X 1=YorZ 1=YorZ 0=X

Y X X Y 1=Yorz 0=X 0=X 1=Yorz

Y Y X X 1=YorZ 1=Yorz 0=X 0=X

Y Z X X 1=YorZ 1=YorZ 0=X 0=X

z X X Y 1=Yorz 0=X 0=X 1=Yorz

z Y X X 1=YorZ 1=Yorz 0=X 0=X

Z Z X X 1=YorZ 1=YorZ 0=X 0=X

there are two inputs and one output, and it is well known that such
logically irreversible computations can be embedded within logi-
cally reversible ones if additional ports (inputs and especially out-
puts) are added to the system. Let us now consider another system,
call it K, in which there are two inputs A and B and two outputs C
and D (as in Fig. 3 above). System K works under different dynamical
rules Qg, but is seen under the same two value assignments as
above. As we shall see, just like system L in the example by Shagrir
(2012), our system K carries out (at least) two computations during
one and the same physical evolution (governed by the dynamics
Qx), where the difference between these computations is only in
the assignment of values. However, in our example one computa-
tion (implemented by the dynamics Qg under value assignment 1)
is logically reversible, while the other computation (implemented
by the same dynamics Qg under value assignment 2) is genuinely
logically irreversible.

As before, the abstract terms X, Y and Z stand for three possible
physical states of the ports A, B, C, and D. The dynamical rule Q that
governs the evolution of system K is this:

(i) If input A is X, then output Cis Y.

(i) If input A is either Y or Z, then output C is X.
(iii) If input B is X, then output D is Y.
(iv) If input B is either Y or Z, then output D is X.

The value assignments are the same as before:

(1) Xis0; {Yor Z}is 1.
(2) {XorY}is0; Zis 1.

In each of Tables 2 and 3, the first four columns headed “physical
states for dynamics Qk” describe all the 9 possible pairs of inputs and
the corresponding physical outputs according to the dynamical
rules Qg. Therefore, these four columns are identical in the two
Tables 2 and 3. The next four columns (in each table) describe, for
each physical state, the value 0 or 1 assigned to it according to the
value assignment. In Table 2 value assignment 1 is applied, with the
result that the physical transformation (A,B)—(C,D) implements
the mapping (0,0)—(1,1); (0,1)—(1,0); (1,0)—(0,1); (1,1)—(0,0). In
Table 3 value assignment 2 is applied, and accordingly the physical
transformation (A,B)— (C,D) implements the mapping (0,0)— (0,0);
(0,1)—(0,0); (1,0)—(0,0); (1,1)—(0,0). According to the multiple-
computations theorem, as discussed above, there is no objective
physical matter of fact in the world as to which of these mappings is
carried out; both are. (Once again, this depends on the meaning of
“value assignment,” see Section 8 below.)

It is of utmost importance to distinguish between two ways of
using system K as a computer, as follows.

(I) Focusing on only some of the ports (in Figs. 2 and 3) as the
information bearing ones. Suppose that the user wishes to focus,

for her practical needs, on only some of the ports and ignore others
(as in the example discussed in the previous section) (We discuss
the subtle term “user” in Section 8, and for now use it informally
and intuitively.). Consider, for example, Tables 2 and 3: If she fo-
cuses on only A, B and D and ignores C, then under value assign-
ment 1, the physical transformation (A,B) — D may be interpreted as
a computation of the logically irreversible mapping (0,0)—1;
(0,1)—0; (1,0)—1; (1,1)—0; and under value assignment 2, the
same transformation may be seen as a computation of a different
logically irreversible mapping: (0,0)—0; (0,1)—0; (1,0)—0; (1,1)—
0. (That both are logically irreversible is not surprising since we
have two inputs and one output.) Alternatively, she may focus on
the physical transformation B— D, ignoring both A and C, then
under value assignment 1, this transformation may be seen as a
computation of the logically reversible mapping sometimes called
“not”, 0 - 1 and 1 — 0, and under value assignment 2, the same
transformation may be seen as a computation of the logically
irreversible function of “erasure”, 0 — 0 and 1 — 0. These two
computations implemented by the B—D physical transformation
are already problematic for Landauer's principle, but we do not
focus on this case for the following reason.

While, in the practice of implementing computations, ignoring
some elements of the computer may be very useful, it is well
known that in the context of Landauer's principle one must care-
fully consider all the physical elements of the system, ignoring
none, since only by taking all of them into account can one assess
whether or not the process is genuinely irreversible, and whether or
not it is genuinely dissipative. (Bennett's, 2003 analysis and re-
sponds to critics includes examples of such a meticulous search for
the missing degrees of freedom.) Hence from now on we shall
follow all the system's elements. (This will be our guiding line also
in the analysis based on fundamental physics, in Section 5
onwards.)

(II) Taking all the ports (in Figs. 2 and 3) into account. As
Tables 2 and 3 show, the microphysical evolution (A,B)—(C,D)
governed by Qg implements two computations, of which one (value
assignment 1, Table 2) is logically reversible and the other (value
assignment 2, Table 3) is logically irreversible. This is similar to the
two computations implemented by the physical evolution B— D, as
we saw above, but in this case, we have taken all the ports into
account.

According to Landauer's principle, the logically irreversible
computation is necessarily accompanied by energy dissipation by at
least klog?2 per bit of lost information, while the logically reversible
computation need not be accompanied by any minimal amount of
dissipation. What does Landauer's principle predict for the physical
process described by the dynamical rule Qk? Is there or is there not
a minimal amount of dissipation that must accompany the physical
process in question? If we focus on one value assignment the
answer is that there is; if we focus on another value assignment the
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Table 3

System K with dynamics Qg implementing an irreversible computation under Value assignment 2.

Physical states for dynamics Qg

Value assignment 2

Input A Input B Output C Output D Input A Input B Output C Output D
Voltage ranges & Value Assign-ments X X Y Y 0 = XorY 0 = XorY 0= XorY 0 = XorY
X Y Y X 0= XorY 0=XorY 0=XorY 0= XorY
X Z Y X 0 =XorY 1=2 0=XorY 0 =XorY
Y X X Y 0 =XorY 0 =XorY 0= XorY 0 = XorY
Y Y X X 0=XorY 0=XorY 0=XorY 0= XorY
Y Z X X 0 =XorY 1=2 0 =XorY 0 =XorY
z X X Y =Z 0 =XorY 0= XorY 0 =XorY
z Y X X 1=2Z 0=XorY 0=XorY 0= XorY
Z Z X X 1=2 1=2 0 =XorY 0 =XorY

answer is that there isn't. Assuming that the amount of energy
dissipation is a fact in the world,>? it seems that the multiple-
computations theorem, as illustrated in the above example, en-
tails that Landauer's thesis makes contradictory statements con-
cerning this fact. If that is the case, then the multiple-computations
theorem entails that Landauer's principle is false.>® (This challenge
to Landauer's principle is new and comes from a direction hitherto
unexamined in the literature.)

This result — if true — is important, and has quite astonishing
consequences: it entails that the multiple-computations theorem is
crucial for determining whether or not the second law of thermo-
dynamics is a theorem of contemporary physics.>* The reason is
that, as we said above, the contemporary dominant argument for
the universal validity of the second law of thermodynamics relies
on Landauer's principle, since this principle plays a central role in
“exorcising” a potential counter example for the second law,
namely Maxwell's Demon. And so, since this result is quite dramatic,
let us examine it carefully. Can the above problem be solved? Two
lines of thinking come to mind.

(1) A solution from rejecting the (applicability for this case of
the) multiple-computations theorem. There may be a criterion
for preferring one computation as the one that — in some sense —
actually takes place. In that case, the physical process described
above implements either a logically reversible computation or a
logically irreversible one (exclusive or), and no contradiction arises.
The search for such a criterion is central in the contemporary
research in the philosophy of cognitive science and philosophy of
mind, and huge efforts are made to come up with it. In Section 8 we
examine this issue in terms of fundamental physics. It is of interest
to notice that the validity of Landauer's thesis hinges on this matter,
so that a topic that is usually taken to be in the field of cognitive
science and its philosophy has highly important implications for
physics. This will become understandable once we provide the
physical underpinning for the multiple-computations theorem, in
Sections 5 and 8.

If one assumes the universal truth of Landauer’s principle, then
one can use it as a constraint on possible computations: Dynamical
processes that allow for both logically reversible and logically
irreversible computations under suitable value assignments are
physically prohibited. However, since this entails radical conclu-
sions, concerning the impossibility of certain sequences of

32 While this assumption may prima facie seem almost trivial, this is not the case,
since as we shall see the question of which degrees of freedom (in a given
microevolution of a given system) are the information bearing ones is subtle. We
address this point below.

33 Note that our two computations are compatible with the restrictions on
implementation proposed by Ladyman, Presnell, Shrot, and Groisman (2007);
Ladyman (2009).

34 But see also (Hemmo & Shenker, 2010, 2011, 2012) for proofs that Maxwell's
Demon is compatible with fundamental physics.

microstates, where the only reason for their prohibition comes
from the “top down” constraint of Landauer's principle, we think
that this response is unacceptable.

(2) A solution by amending Landauer's principle. Another
option that comes to mind is to embrace (a modest version of) the
multiple-computations theorem, as indeed implying that more
than one computation takes place during the same physical evo-
lution, and revise Landauer's principle in a way that will be
consistent with this fact. The key here is to notice that Landauer's
thesis posits a minimum of klog2 of dissipation per lost bit, rather
than a fixed amount of dissipation. One may then say that the
minimum amount of dissipation in a given physical process should
be one of the following.

Amended Landauer's principle, Option 1: The minimum amount
of dissipation (according to the amended principle) should be equal
to the sum of the dissipations (according to the original principle) in
all the irreversible computations that are implemented by a given
system during a given microphysical evolution (this may result in a
huge amount of dissipation, since the number of computations may
be unbounded).

Amended Landauer's principle, Option 2: The minimum amount
of dissipation (according to the amended principle) should be the
dissipations (according to the original principle) of Nklog2, where N
is the number of bits lost in the computation for which this number
is the largest, among those implemented by that microphysical
process.

Notice that in order for Options 1 or 2 to be empirically (or at
least ontologically) significant there must be a matter of fact in the
world concerning which implemented computations take place
during a given microevolution, and consequently there must be a
matter of fact in the world concerning which set of coarse grained
degrees of freedom are information bearing, so that the dissipation
takes place (in each such case, according to the original Landauer's
principle) in the rest of the degrees of freedom.>> However, a given
set of coarse-grained degrees of freedom can be both information
bearing in the framework of one implemented computation, and
non-information bearing in the framework of another computation
that is implemented simultaneously by the same microevolution.
Here is a simple example: if the voltage ranges implement the
computation, then the position of the system on the laboratory
table is a set of non-information bearing degrees of freedom; but
ranges of positions on the laboratory table may implement a
computation, and relative to this computation, the voltage ranges
are non-information bearing degrees of freedom. Consequently,
Options 1 and 2 concern the sum or the maximum of the dissipa-
tion in the computations that are implemented by every set of

35 We are grateful to an anonymous referee for this journal for encouraging us to
present this result.
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degrees of freedom, under every possible coarse graining, and in
both roles — as information bearing and as non-information
bearing.

Options 1 and 2 are consistent with the letter of Landauer's
principle, even though they do not seem to have been envisioned in
the standard arguments by Landauer and others. Let us point out
two implications of these options.

(a) Reversible Computing. Famously, if the original Landauer's
principle (i.e., not the amended principle as in Options 1 or 2) is true
then Reversible Computing algorithms, e.g., as in (Bennett, 1973,
1982) or (Fredkin & Toffoli, 1982) could have entropic advantage.
However, it follows from the multiple-computations theorem that a
physical evolution that implements a Reversible Computing algo-
rithm could, in the general case, under different value assignments,
also implement irreversible computations, and then, according to
Options 1 or 2, the logical reversibility associated with the said
algorithms may not always have the entropic advantage they are
often thought to have.

(b) Maxwell's Demon. Great efforts have been made to “exorcise”
Maxwell's Demon using Landauer's principle, where this principle
was implemented given some specific value assignment (starting
with Bennett’s, 1982). But if the abovementioned Options 1 or 2 are
accepted then, even if no dissipation occurs under a given value
assignment (as for example in Hemmo & Shenker, 2010, 2011), other
value assignments may provide the necessary dissipation to save the
second law of thermodynamics. On this latter line of thinking it turns
out that the question of Maxwell's Demon cannot be decided
conclusively on the basis of any particular value assignment.

While (again) the amended versions 1 and 2 of Landauer's
principle agree with the letter of the original principle, and avoid the
threat of inconsistency following the multiple computations theo-
rem, we think these amended versions are so far from the argu-
ments by Landauer (1961), Bennett (1982, 2003), and many others,
that they cannot be taken as established by those arguments. The
force of the original arguments has been in making a surprising
connection between logical irreversibility and dissipation of energy,
which is a physical matter of fact (perhaps even measurable); but in
the amended versions 1 and 2 this connection between logic and
entropy is so weak, as to be practically lost. Finally, while the
empirical predictions of the original Landauer's principle were not
tested due to technological limitations (because the dissipation
involved was too small to be uncontroversially detected), the
amended principle verges on being unfalsifiable, as one can always
bring in the hypothesis that additional hidden computations take
place on some additional coarse-grained sets of degrees of freedom.
In our view these are signs that we are on the wrong track, and that
a much simpler and down-to-earth approach is called for.

Indeed, as we shall see below, the fact that Landauer's principle
seems to imply inconsistent predictions (due to the multiple
computations theorem) is not surprising, since there are additional
strong reasons to think that this principle is not a theorem of
fundamental physics, reasons that are independent of the multiple-
computations thesis. In the next sections we shall explore the
physical basis of Landauer's principle, and then return to the
physical explanation of the notion of value assignment, that is: to
the physical basis of the multiple-computations theorem, thus
solving the above problems.

5. The principles of fundamental physics that are in play in
Landauer's principle and the multiple-computations
theorem: microstates, macrovariables, macrostates

If Landauer's principle were a theorem of physics, then its threat
by the multiple-computations theorem would have been not only
surprising, but also worrying. However, Landauer's principle has

been challenged in a number of ways. The criticisms mounted
against the universal validity of this principle can be divided into
two kinds: from high level theories and from fundamental physics.

Criticism from high level theories. In his ground-breaking
paper, Landauer (1961) described his principle as follows.
“Consider a statistical ensemble of bits in thermal equilibrium. If
these are all reset to ONE, the number of states covered in the
ensemble has been cut in half. The entropy therefore has been
reduced by klog.2 = 0.6931 per bit.>® The entropy of a closed sys-
tem, e.g. a computer with its own batteries, cannot decrease; hence
this entropy must appear elsewhere as a heating effect, supplying
0.6931 KT per restored bit to the surroundings.” (Landauer (1961).
p. 265) This line of thinking, according to which the principle is
grounded in the second law of thermodynamics (or its statistical
mechanical counterparts) is the prevalent one, both in arguments
supporting Landauer's principle (including e.g., Bennett, 1982,
2003; Feynman, 1996; Bub, 2001; Ladyman, 2009; Ladyman &
Robertson, 2014) and in arguments criticizing it (including e.g.,
Earman & Norton, 1998, 1999; Maroney, 2005; Norton, 2005, 2011).

One problem in grounding Landauer's principle in the second
law is that Landauer's principle is itself central in contemporary
defenses of the universality of the second law; thus, relying on the
second law to establish Landauer's principle is viciously circular.
Here are a few more details. There are two kinds of ways to
establish the universal truth of the second law of thermodynamics.
One is empirical evidence: the second law enjoys enormous
empirical support, and the overwhelming empirical evidence
makes it uncontroversial that there are no perpetual motion ma-
chines in our world. The second kind of way to establish the uni-
versal truth of the second law of thermodynamics is by showing
that this universal truth is a theorem of fundamental physics (which
is, in turn, taken to be fundamentally universally true). Maxwell's
Demon is a thought experiment that challenges this latter
grounding of the second law. Importantly, Maxwell's Demon is not
in conflict with the empirical evidence, because the available proofs
that Maxwell's Demon is compatible with fundamental physics
leave open the possibility that both second law behavior and
Maxwellian Demon behavior are compatible with fundamental
physics; they may hold for different initial conditions of the

36 In the literature concerning Landauer's principle the notion of “entropy” is
usually applied without explaining it. However, as is well known, there are two
“theoretical frameworks” (see e.g., Frigg, 2008; Werndl & Frigg, 2017) both called
statistical mechanics, that offer two different notions of entropy that are supposed
to account (at least approximately) for the thermodynamic notion of entropy: one
follows the work of Boltzmann and the other of Gibbs. The notion standardly used
in the literature in our context is a Boltzmannian one: the entropy of a system in a
given microstate is a function of the (Lebesgue) measure of the macrostate to which
this microstate belongs. The Gibbs entropy is defined for systems in equilibrium,
where “equilibrium” is understood as a measure that is invariant under the dy-
namics. On this account, “entropy” is a function of the entire phase space, that may
be seen as some sort of weighted averages calculated given the appropriate mea-
sures over that space (for the appropriate ensembles). One consequence of this is
that this notion of Gibbsian entropy remains constant, and cannot account for the
approach to thermodynamic equilibrium. To solve this problem Gibbs introduced
the idea of successive coarse graining. Unlike the Boltzmannian coarse graining into
macrostates, the Gibbsian coarse graining is not associated with macrovariables,
and moreover, it needs to change constantly (in our terms: constantly replacing one
measuring device with another as it were) in a way that makes the graining finer
and finer, and in the limit much finer than the capabilities of any measuring device.
We find it difficult to see how this notion of entropy can be applied in the context of
Landauer's principle. Landauer's principle concerns the evolution of the computing
system from an initial macrovariable to a final one, and on our view the “trans-
lation” of this idea to Gibbsian terms leaves out the essential magnitudes of Lan-
dauer's principle and the arguments for it. Let us also remark that the Gibbsian
approach is known to be conceptually very problematic; see (Callender, 1999;
Ridderbos & Redhead, 1998). One explanation for its usefulness in practice is that it
can be explained in terms of Botlzmann's macrostates, if the dynamics is taken into
account; this idea is described in (Hemmo & Shenker, 2012, Ch. 11).
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universe, for example. Nevertheless, for many thinkers this last
option is not satisfactory, and they strive to prove that Maxwellian
Demons are incompatible with fundamental physics. One way of
doing so, in fact the most prevalent way in contemporary research,
is by relying on Landauer's principle (Leff & Rex, 2003). Clearly,
however, relying on the second law in establishing Landauer's
principle is circular if that law itself is defended by relying on
Landauer's principle. Not every circularity is vicious; we think this
one is (see also Earman & Norton, 1998, 1999). In order to defend
the universality of the second law, Landauer's principle should be
grounded, not in the second law, but in independent arguments,
such as those of fundamental physics.>” Whether or not this can be
done is precisely the subject we are about to examine in what
follows.

Criticism from fundamental physics. The notion of “physical
computation” has been studied extensively in recent philosophy of
cognitive science, and the question of which physical processes can
justifiably be said to “implement” computations>® has been greatly
clarified, although it is still under debate (see overview in Piccinini,
2017). Taking from these insights some minimal requirements that
a physical process ought to satisfy in order for it to implement a
computation, we describe what “implementing a computation” may
mean in terms of fundamental physics, and then show how Lan-
dauer's principle might arise in this framework. This approach,
which is far more reductive than the standard studies of Landauer's
principle (that are couched in high level theories, as mentioned
above), strengthens the status of Landauer's principle where it
holds, but — at the same time — exposes the cases for which it does
not hold, thus showing that it is not a universal principle of
physics.>®

Rendering Landauer's principle in terms of fundamental physics
will help us bring out more strongly the connection between this
principle and the multiple-computations theorem, and provide a
basis for the latter in fundamental physics. We shall also see (in
Section 8 below) that our approach will give physical basis for the
attempts to counter the triviality result of the multiple computa-
tions theorem in its strong version by adding to the formal physical-
to-computational mapping some physical conditions on the asso-
ciation of physical states with functional and computational states
(see e.g. Godfrey-Smith, 2009; Schuetz, 2012). Even more inter-
estingly, we shall propose a way to counter on the basis of physics
the modest multiple computations theorem, but as we shall see this
will require a reductive mind-brain identity theory (see Section 8).

Let us begin in the remainder of this section with clarifying the
notions of “microstate”, “macrovariable” and “macrostate” that
appear in this principle and the arguments for it. We shall then
address the dynamical aspects of the principle (in Section 6) and
the entropic aspects (in Section 7). These notions are crucial also for
the physical basis of the multiple-computations theorem (as we
shall see in Section 8).

The first thing to notice is that, according to each of the
fundamental theories of physics, the world*® is at any moment*' in
a ‘microstate’, that is, in a well-defined, (ideally) fully (or maximally)
describable in terms of that theory (e.g. as personified by “Laplace’s
Demon”). In other contexts, the term ‘microscopic’ sometimes
means “small”, or “part of a whole”, but in our context the term

37 We thank James Ladyman for a correspondence about this point.

38 Or “corresponds to” or “is associated with” or “stands for” or “realizes” them,
etc. We shall not address the important differences between these ideas.

39 QOur present line of thinking continues our work on Landauer's principle and
Maxwell's Demon in (Hemmo & Shenker, 2010, 2011, 2012, 2013).

49 Or the part of it to which the theory pertains.

41 Relativistically understood.

Fig. 4. State space and trajectories of a system implementing erasure.

‘microstate’ denotes the complete state of the system (according to a
given theory). Although we use classical physics for illustration, we
employ the notion of “microstate” in a way that is general and
applicable to any fundamental theory.* In classical mechanics the
microstate is the 3-dimensional-positions plus 3-dimensional-ve-
locities (or momenta) of each of the n particles that comprise the
world, so that to describe the microstate we need 6n numbers.*>
Accordingly we say that the system has 6n “degrees of freedom”,
that is, 6n ways of changing the microstate. The equations of motion
of each theory describe the evolution of the world, that is, the
sequence of microstates through which the world evolves, given its
parameters and constraints; this sequence is called “trajectory”.

Fig. 4 depicts the state space of system S, in which every point
represents a microstate of S and every axis (or dimension) stands
for one degree of freedom (The details of Fig. 4 will be explained as
we proceed.). For obvious reasons, in Fig. 4 we cannot depict all the
axes of the state space, and therefore we present two degrees of
freedom, called I and N; The generalization to more degrees of
freedom is conceptually straightforward. For example, in classical
mechanics, I (and similarly N) might be the position or the velocity
of some particle of S along some direction.

System S is meant to be the most general case of a physical
system that implements the logical function of erasure: 1 —1,
0 — 1. (Other logically irreversible operations can be seen as
combining logically reversible ones plus erasures, so that this case
is quite general.) What does this mean in terms of fundamental
physics? Since, according to physics, the world, including system S,
is at any moment in a microstate (and that is all that there is in the
world), our first task is to explain how can the microstate of S at
some given instant tp implement a given logical symbol, either O or
1 as the case may be. To achieve this task, we introduce the notion
of “macrovariable”.**

Consider a microstate x that is represented by a point some-
where in the region (1,A) in Fig. 4. Being a member of the set (1,A) of
microstates of S, our microstate X shares with all the other micro-
states in this set the following feature. The projection of x (and of
each of the other microstates in this set) onto axis I is onto the
interval marked “1” in Fig. 4, in which the degree of freedom I has a
certain range of values. Whenever the microstate x of system S has
this feature, we say that S is in state 1 or that it implements the
symbol 1; and similarly, for region (0,A) and the symbol 0. Since by

42 For the problem of Hempel's dilemma, see (Ney, 2008).

43 Constraints reduce this number, but this point is not essential here.

44 For more details on the meaning of macrovariables and macrostates in statis-
tical mechanics see (Hemmo & Shenker, 2012, 2016; Shenker, 2017a, 2018).
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looking at the I degree of freedom (without looking at the N degree
of freedom) we can know which symbol is implemented by S, we
call 1 an “information bearing degree of freedom” (following
Landauer, 1961). As system S evolves in time, it goes through a
sequence of microstates (the “trajectory”), and the projections of
these microstates on the information bearing degree of freedom
may change between the regions marked “0” and “1.” In this way S
can implement a computation (In the examples presented in Sec-
tions 3 and 4 we could say that the degree of freedom I stands for
voltage and the regions “1” and “0” stand for certain values of the
voltage, according to the value assignments 1 and 2.).

Importantly, while the projection of the microstates onto the
regions “0” and “1” along the information bearing degree of
freedom, is all we need in order to implement the corresponding
symbols, from a physical perspective this projection is only an
aspect of the microstate x, given by a partial description of it, since
it ignores other degrees of freedom and other details concerning
the microstate Xx. We call an aspect of a microstate, given by a
partial description of it, a “macrovariable”. For example, all the
microstates within the region (1,A) in Fig. 4 share the macro-
variable that we denote by “1” as well as the macrovariable we
denote by “A”, the former being a range of values of the informa-
tion bearing degree of freedom I and the latter being a range of
values of the non-information bearing degree of freedom N. While
for the purpose of computation we are interested in the I degree of
freedom and its partition to the “1” and “0” regions, for other
purposes we may be interested in other aspects of the microstate x
of system S (e.g., the velocity of the object S when it is thrown at
us). “We simply think of each bit as being located in a physical
system, with perhaps a great many degrees of freedom, in addition
to the relevant one. However, for each possible physical state
which will be interpreted as ZERO, there is a very similar possible
physical state in which the physical system represents a ONE.”
(Landauer, 1961, p. 265, p. 265).

It is important (for our present argument) to notice that mac-
rovariables have a dual nature. On the one hand, they pertain to
individual microstates, as we have just explained. On the other
hand, they pertain to sets of microstates. To realize this duality,
consider the following. The actual microstate x of S at each point of
time has a variety of macrovariable, i.e. a variety of aspects, given by
various partial descriptions of it, and in this sense all of them “exist”
when that microstate x obtains. When we carry out a particular
measurement of S, our measuring device is sensitive to a particular
macrovariable of the microstate X (and not to other macrovariables
of x), and reveals the value of that macrovariable (and not others) of
the actual microstate of the system that obtains at the time of
measurement (since, by assumption, that microstate is all there is
in the world at that moment).*> However, since a macrovariable is
given by a partial description of the microstate, it gives rise to an
equivalence set of microstates, consisting of all those that share the
same macrovariable; this set is often called macrostate.*® At each
moment one of the microstates (at most) of the macrostate set is
actual and the rest are counterfactual, but in all of them the system
would appear to us the same, whenever our measuring device is
only sensitive to the shared macrovariable.”’ Measurements and

45 This is a useful idealization. For a discussion of the idea that measurements take
time, see (Hemmo & Shenker, 2012, Ch. 11; Shenker, 2017a).

46 This is a generalization of the famous partition of the Gamma space on the basis
of coarse graining of the p space, described by Ehrenfest and Ehrenfest (1912) in
explaining Boltzmann's view: that partitioning is an example of partitioning the
state space into macrostates on the basis of macrovariables. See detailed account in
(Hemmo & Shenker, 2012, Section 5.6).

47 In statistical mechanics this set gives rise to the notions of probability and
entropy, see (Hemmo & Shenker, 2012, 2016; Shenker, 2017a,b).

their connection to macrovariables, in both senses, will be central
to our argument later.

(The reader may ask herself at this point the following ques-
tion, that we shall address in Section 8 below. In the case illus-
trated by Fig. 4, the values “0” and “1” are assigned to certain
regions of the degree of freedom I. Since nothing in Fig. 4 tells us
what that degree of freedom is and what these regions are, they
could be anything: certain values of voltage or other values of
voltage, certain positions of certain particles or other positions of
other particles, and so on. Any macrovariable, that is, any aspect of
the microstate x of S at t, given by any partial description of this
microstate, could be assigned the values 0 and 1 (as long as it can
have two sufficiently well-defined regions of values). However,
when we actually use a system as a computer we in general know
which macrovariables to focus our attention on, in order to read
out the information. The question arises: what fact fixes the
assignment of values 0 and 1 to certain values of certain macro-
variables, and not others? We discuss this important issue below,
in Section 8.).

Finally, let us also make a comment that will make the
connection between our approach and the literature concerning
the multiple computations theorem more transparent. As we
mentioned earlier, to avoid the triviality result of the multiple
computations theorem (in its strong reading) according to which
almost every microphysical evolution implements almost any
computation, some authors have proposed to add constraints on
the value assignment (the physical-to-computational mapping), in
particular on what counts as the right physical states for imple-
menting a computation and the way physical states are joined
together by the mapping. For example, Godfrey-Smith (2009, p.
292) proposed that the realization of a function should involve not
just a mapping between physical and formal states, but that “mi-
crostates grouped into coarse-grained categories be physically
similar.”. And similarly, Schuetz (2012, p. 104) argued that: “If
physical states are not given, CVI/SVIs run into insurmountable
difficulties: following the construction of the Slicing Theorems,
physical states supporting counterfactuals can be defined, for
which the system implements almost any computation.”. It seems
to us that these authors propose that certain physical conditions
need be satisfied in order for one to say that a certain computation
(or a function) is implemented. Perhaps this approach might be
workable to avoid the triviality result of the strong version of the
multiple computations theorem. If so, as we shall see, our approach
provides a naturalized physical basis for these proposals in terms of
macrovariables. The idea is that a given kind of computation (or a
function) may be implemented by a microphysical process if and
only if the implementing physical system evolves through a certain
sequence of macrovariables.

However, although as we shall show below, such conditions may
be formulated in terms of physics, it is unclear what would be the
physical justifications of these conditions. Why is it that only certain
macrovariables (physical conditions) may implement a computa-
tion, or even a certain kind of computation, and not others? We
shall see that even if one just had a list of macrovariables that may
be said to implement a given kind of computation, this will pre-
sumably not be enough to avoid the modest multiple computations
theorem and defend Landauer's principle: The two value assign-
ments associated with different ranges of voltage in the computa-
tions of Section 4 are equally based on the same kind of physical
macrovariables (that would presumably appear in our list), and so
in this sense they seem to have equal fit for realizing computations.
What one needs, in addition, is a criterion for selecting as physically
preferred the macrovariables that give rise to only one of the two
computations (and more generally a physical criterion for selecting
only one computation for a given microphysical evolution). We
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shall briefly examine some proposals in Section 8, and see their
limitations, and then propose a criterion that results in a selection of
macrovariables, which we think is unavoidable in a physicalist
approach.

6. Landauer's principle in fundamental physics: the dynamics

Computers are built to handle all possible inputs: they are ex-
pected to carry out the computation correctly for any input. This
point has been strongly emphasized in the context of both theses
discussed in this paper. In the context of the multiple-computations
theorem:

“The conditionals involved in the definition of implementation
... have modal force, and in particular are required to support
counterfactuals: if the system were to be in state p, then it would
transit to state q. This expresses the requirement that the
connection between connected states must be reliable and
lawful, and not simply a matter of happenstance.” (Chalmers,
1996, p. 312-3).

In the context of Landauer's thesis:

“[A] computer pushes information around in a manner that is
independent of the exact data which are being handled, and is
only a function of the physical circuit connections.” (Landauer,
1961 p. 262 p. 262)

This important requirement — which we accept — is seen by
many to lead almost directly to Landauer's principle (e.g., Ladyman,
2009). This, however, is not the case, and our next task is to prove
this. But let us first show how to account, in terms of fundamental
physics, for the following two statements:

1. The particular case: As system S evolves from its particular
initial microstate at a particular time ty to its particular final
microstate at time t;, it implements (a token of) a given computa-
tion. For example, if the computation is of a logical function such as
the ones presented in Sections 3 and 4, each individual “run” of the
computation implements one row of the Tables only.

2. The set of counterfactual cases: Had system S evolved from a
different initial microstate (or: if it does evolve from a different
initial microstate at some other time t;) to its final microstate, it
would also implement (a token of) the same computation. Here, for
example, all the rows in the Tables in Sections 3 and 4 are
considered.

(In Sections 7 and 8 we discuss the physics of associating a
macrovariable with a symbol, that is, the physics of value
assignment.)

This duality may remind the reader of the duality, pointed out
above, of the notion of macrovariable. And here lies the key for
achieving this desideratum. In terms of the physics of our
computing system, the equations of motion that govern the evo-
lution of S over time must describe its evolution for all possible
initial microstates. In our example of Fig. 4, since both values 1 and
0 along the I degree of freedom are possible initial macrovariables,
all the microstates in both sets (1,A) and (0,A) are possible initial
microstates. (We assume here that along the N axis only A is
possible; B and C are not possible input states in this system; those
are considered later.) And so, if S is to implement logical erasure
(1 -1, 0 - 1) then the equation of motion must describe what
happens to all of those microstates: all of the trajectory segments,
that start out at the input time tp in either the region (1,A)
(implementing the input 1) or the region (0,A) (implementing the
input 0), must end up at the output time t; in microstates that

implement the symbol 1. Prima facie one might think that this
means that all the final microstates should be in (1,A). However,
such an evolution is impossible, due to a theorem of mechanics
(called Liouville's theorem) that places a certain limitation on
possible mechanical evolutions. The limitation is that the total
volume (by Lebesgue measure) of the final set of microstates cannot
be smaller than the total volume (by Lebesgue measure) of the
initial set of microstates; but the region (1,A) is smaller (by Leb-
esgue measure) than region (1,A) plus region (0,A). Since the
transformation from region (1 + 0,A) to region (1,A) violates Liou-
ville's theorem of classical mechanics, this is an impossible evolution
according to this theory.*

In order to implement logical erasure in a way that satisfies
Liouville's theorem, we need to distinguish between the informa-
tion bearing degrees of freedom I and the non-information bearing
degrees of freedom N. Suppose, for example, that the equations of
motion bring about the transformation (1 + 0,A)—(1,B + C) (in
terms of Fig. 4), then:

(i) Looking at the projection of the mapping on the information
bearing degrees of freedom I, the transformation is from
region “1 + 0” to region “1”, implementing the computation
1-1,0-1

(ii) If one takes into account all the degrees of freedom, in both I
and N, then Liouville's theorem is satisfied.

There are a number of dynamical rules (i.e. equations of motion)
that satisfy both requirements (i) and (ii). In the simplest case (call
it Dynamics 1) trajectory segments that start out in microstates in
either (1,A) or (0,A) end up in microstates anywhere in the region
(1,B + C). In Section 7 we describe other examples of dynamical
rules that satisfy requirements (i) and (ii), and have interesting
implications for Landauer's principle; but for now, the simple case
of Dynamics 1 suffices.

Remark. It may be (as Landauer, 1961 noticed) that the Lebesgue
measures of the “1” and “0” projections on I (or those of regions
(1,A) and (0,A)), are not the same. Everything we say applies to this
generalized case as well.

Remark. Above (in Section 5) we mentioned that the prevalent
way of thinking about Landauer's principle is not in terms of
fundamental physics, but rather in terms of thermodynamics and
statistical mechanics; not in terms of Liouville’ theorem but in
terms of the second law of thermodynamics. Landauer (1961)
wrote that “the entropy of a closed system, e.g. a computer with
its own batteries, cannot decrease; hence this entropy must appear
elsewhere as a heating effect, supplying 0.6931 kT per restored bit
to the surroundings.” (Landauer (1961). p. 265). It might seem,
prima facie, that the ideas are essentially the same, if entropy is
associated with the Lebesgue measure of the macrostate, as is usual
in Boltzmannian statistical mechanics. However, the difference
between the two ways of thinking is crucial, as will become clear as
we proceed, in Section 7.

7. Landauer's principle in fundamental physics: the entropy

Now that we have the dynamics of implementing logical erasure
in place, we can turn to see what is the entropic behavior during
such an implementation. Here, let us begin with a very important
distinction that Bennett (2003) introduced to the literature with
respect to Landauer's principle:

48 Obviously, other physical theories may impose other constraints.
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“If a logically irreversible operation like erasure is applied to
random data, the operation still may be thermodynamically
reversible .... But if, as is more usual in computing, the logically
irreversible operation is applied to known data, the operation is
thermodynamically irreversible .... ” (Bennett, 2003, p. 502, our
italics)

The thermodynamic irreversibility alluded to here is the one
stemming from Landauer's principle; and for Bennett, the argu-
ment for this principle is grounded in the second law of thermo-
dynamics (or its statistical mechanical counterpart).*® However,
Bennett's distinction between random data and known data is
meaningful and significant also in the context of fundamental
physics that we address here. The exact nature of this distinction is
a bit subtle, and this subtlety is the same whether one works in
Bennett's theoretical framework or in ours. Let us explain this
distinction in two stages:

1) We shall start (in the present section 7) by explaining what
“known data” and “random data” mean by understanding them
as pertaining to two possible measuring devices. Our main point
agrees with Ladyman's (2009 p. 382) remark that “In practice of
course it is only possible to use a system as a computer if the
relevant physical states are distinguishable by us, with our
measurement devices; and it is possible for us to put the system
into a chosen initial state so as to compute the function in
question for it“.

2) In Section 8 we shall examine what these “measuring devices”
might mean in terms of fundamental physics, and we will see
how important the notion of “measuring device” is for under-
standing the physics of “value assignment” (or “implementa-
tion” or “individuation” of computation, mentioned in Sections
3 and 4 above). In this section we shall talk about “measuring
devices” and avoid terms like “observers”, in order to avoid
reference to notions like “subjectivity” and “agency” that might
come up if the latter are used; compare Searle, 1992, pp. 208-9;
but we shall come back to “observers” in Section 8.

Suppose that the state of system S is measured by some
measuring device that measures whether the input is 0 or 1. (If S is
an element in a computer then the measuring device may be some
other element in the computer that uses S's state as its own input;
or it may be something external to the computer. We address the
computational theory of mind in Section 8.) In order for the
measuring device to be suitable for its task, its physical interaction
with the computing system S must be such that the device is sen-
sitive to the value of the degree of freedom I of the microstate x of
system S.°° Specifically, if the microstate x of S is in the region “1”
(of degree of freedom I) then the pointer of the measuring device
should point at the symbol “1” (say, engraved on its plate), and if

49 Bennett (2003, p. 502) continues: “... because the environmental entropy in-
crease is not compensated by any decrease of entropy of the data. This wasteful
situation, in which an operation that could have reduced the data's entropy is
applied to data whose entropy is already zero, is analogous to the irreversibility that
occurs when a gas is allowed to expand freely, without doing any work, then
isothermally compressed back to its original volume.” As we said, grounding the
proof of Landauer's principle in the second law is circular, since the second law is
defended against the counter example of Maxwell's Demon by relying on Lan-
dauer’s principle.

50 Recall that at the end of Section 4 we said that the questions: which degrees of
freedom are “information bearing; ” and what is the fact that makes it the case that
(in a certain context) a certain degree of freedom is “information bearing,” are
highly non-trivial. We set aside now these questions; and will address their far-
reaching consequences in Section 8.

the microstate x of S is in the region “0” along I then the pointer of
the measuring device should point at the symbol “0”. Since the
state of the pointer is correlated with the microstate of S being in
either the region (1,A) or the region (0,A) (exclusive or), we say
(metaphorically!) that (after the measurement has been
completed) the measuring device “knows” the input of the
computation. This is the case of “known data” in Bennett's (2003)
terms. (We stress that this “knowledge” is merely the state of the
pointer of a measuring device, no agency is involved. We return to
this point in Section 8.) Accordingly, alluding to Bennett's (2003)
terminology, we call this device “known data measuring device”.

We could also have another measuring device, which is not
sensitive to the distinction between the ranges “0” and “1” of axis I:
the pointer of this insensitive device points in the same way
regardless of whether the microstate x of S is in region “0” or “1”
along 1. The only thing that one can read from the pointer of this
device, once the measurement is completed, is that the microstate x
of S is somewhere in the region (1 + 0,A). We shall say (meta-
phorically!) that this device “does not know” the input; and again,
alluding to Bennett's (2003) terminology of “random data”, we shall
call this device “random data measuring device”.

(Remark. Sometimes the term “random data” implies, in addi-
tion, that the unknown values “0” and “1” have equal probabilities
(in some appropriate sense of this term). Our discussion can be
generalized for the case of unequal probabilities, as well as to the
case in which (1,A) and (0,A) differ in their Lebesgue measures. We
do not discuss this issue here as it does not contribute to our main
point.)’!

(Notice that these two measuring devices could be said to
pertain to different “levels of organization”, unlike the two com-
putations in the examples in Section 3 and 4 which pertain to the
same “level of organization”. We submit that this difference is not
important for the assessment of Landauer's principle, nor to other
implications of the multiple computations theorem, due to the
fundamental-physical understanding of these theses that we pro-
pose here.)

Bennett (2003) writes that in the case of “known data” the
implementation of logical erasure is necessarily dissipative, and in
the case of “random data” it is not. What can this mean? While
Bennett (2003) takes Landauer's principle to be grounded in the
second law of thermodynamics and not in Liouville's theorem, with
respect to the distinction between these two cases there is an
important similarity between the two ways of thinking, which is
this.

Suppose that the equation of motion that governs the evolution
of S is Dynamics 1 (in which — recall — trajectory segments that start
out in microstates in either (1,A) or (0,A) end up in microstates
anywhere in the region (1,B + C)), and assume further that both of
our measuring devices (both the “known data device” and the
“random data device”) are physically insensitive to the difference
between regions B and C along the non-information bearing de-
grees of freedom N.*? Thus, for both devices the region that contains
the final microstate of S is (1,B + C). For the “known data device”,
the transformation is (1,A)—(1,B + C), (0,A)—(1,B + C); and for the
“random data device” the transformation is (1 + 0,A)—(1,B + C).

51 In general, the notions of “entropy” and “probability” are not only conceptually
different, but may not even coincide quantitatively. Probability is determined by the
relation between the partition of the phase space to macrostates and the dynamics
which determines the evolution of the bundle of trajectories. See (Hemmo &
Shenker, 2012, 2016).

52 The random data user, that is insensitive to the distinction between “1” and “0”,
can nevertheless infer that the output is “1” from knowing that the non-
information bearing state is B or C and not A.



102 M. Hemmo, O. Shenker / Studies in History and Philosophy of Modern Physics 68 (2019) 90—105

To see how these cases fit Landauer's principle we need to look
at their entropy and at their logical reversibility.

Entropy is associated with klogW where W is the volume by
Lebesgue measure of the macrostate of the system.’> Assume (as is
usual, and for simplicity) that each of the regions (1,A), (0,A), (1,B),
and (1,C) has volume (by Lebesgue measure) that we shall denote
“1 rectangle”. Thus, for the “known data device” the entropy in-
creases by klog2 (from klog (1 rectangle) to klog (2 rectangles)); and
for the “random data device” the entropy remains constant (klog (2
rectangles)) throughout the computation.

For the known data device, the evolution is logically irreversible,
since from the output (1,B + C) one cannot infer whether the input
was (1,A) or (0,A); but for the random data device the evolution is
logically reversible, since from the output (1,B + C) one can infer
that the input was (1 + 0,A).

Notice that in both cases the mapping along the information
bearing degrees of freedom I is the logically irreversible erasure
1 — 1,0 — 1, as an artifact of ignoring the non-information bearing
degrees of freedom N. Ignoring N is useful for pragmatic purposes,
of using S as a computer; but since the entropy of S is determined
by the volume taking into account all the degrees of freedom, in
considering logical reversibility in the context of Landauer's prin-
ciple we need to consider all of them (Recall that we stressed a
similar point in Section 4.).

The result is that Dynamics 1 is in line with Landauer's principle
for both kinds of measuring devices: In the “known data” case one
bit of information is lost, and the minimum dissipation is klog2; In
the “random data” case no information is lost, and there is no
minimum dissipation.

However, the case of Dynamics 1 is not the only possible one for
implementing logical erasure, and the “known data” and “random
data” are not the only relevant measuring devices. The following
are also cases of implementing logical erasure while satisfying
Liouville's theorem:

Dynamics 2: (1,A)—(1,B), (0,A)—(1,C).

Dynamics 3: (0,A)—{(1,Btop)+(1,Ctop)}, (1,A)—{(1,Bbot-
tom)+(1,Cbottom)}, see colored regions and trajectory segments in
Fig. 4.

The following are also cases of measuring devices that can be of
either “known data” or “random data” with respect to the
distinction between “1” and “0”:

“Known BC data measuring device” and “random BC data
measuring device” are (correspondingly) sensitive (or not) to the
difference between the regions B and C along the N degrees of
freedom, in exactly the same sense that the “known 1,0 data” and
“random 1,0 data” — considered above — are sensitive (or not) to the
difference between the regions “0” and “1” along the I degrees of
freedom. The argument so far focused (implicitly) on “random BC
data measuring devices”; we shall describe here the “known BC
data” ones. With respect to the I degrees of freedom, we shall only
consider the case of “known 1,0 data” (the reader can complete the
picture by examining the case of “random 1,0 data” by herself).

Dynamics 2 is in line with Landauer's principle for both
measuring devices, and the case of Dynamics 3 is in line with this
principle for the “random BC data” device. But the combination of
the “known BC data measuring device” and Dynamics 3 is not in
line with Landauer's principle. The entropy is klog (1 rectangle)
throughout the process, since the input (being a case of “known
data” concerning “0” and “1” in the sense of Bennett, 2003) is either

53 This is entropy in a Boltzmannian framework, which is the one used in this
context. See footnote above concerning Gibbsian entropy. In a Gibbsian framework
it is not trivial to account for the entropy of Dynamics 1, but on our view given an
acceptable account the result is the same. We do not go into this here.

(1,A) or (0,A) and the output (being, again a case of “known data”
concerning “B” and “C”) is either (1,B) or (1,C). Nevertheless, the
process is genuinely logically irreversible, since given Dynamics 3
knowing that the output is either (1,B) or (1,C) is not sufficient to
entail whether the input was (1,A) or (0,A). This logical irrevers-
ibility is due to the “blending” of the trajectories of Dynamics 3 as
seen by the “known BC data” measuring device (for more on
“blending” see Landauer, 1992, 1996; Hemmo & Shenker, 2012,
2013).
This case is a counter example for Landauer's principle.>*

7.1. Landauer's principle: empirical generalization or theorem?

There are a number of possible objections to the above
conclusion, and to the argument that leads to it. One of them is this.
It is sometimes said that the vast empirical support of the second
law of thermodynamics entails the falsity of arguments that chal-
lenge the universal validity of this law; in other words, the idea is
that if the conclusion of an argument challenges this universal
validity, then so much the worse for its argument: this is a sign that
something is wrong with it. In particular, in our context, if the
“known BC data measuring device” entails that Landauer's princi-
ple is not universally true, and if this entails that Maxwell's Demon
is possible, threatening the universal truth of the second law, then
— on this line of thinking — this is a good enough reason to say that
the “known BC data measuring device” is not acceptable.

We beg to differ, on logical grounds and on philosophical
grounds.

While we do not doubt that the second law of thermodynamics
(and some of its statistical mechanical counterparts) enjoys enor-
mous empirical support, we do stress that its proof from funda-
mental physics should be non-circular. This is a crucial point of logic
and of philosophy. Therefore, we insist that the only way to save
Landauer's principle from the counter example based on the
“known BC data measuring device” is to prove a no-go theorem, that
precludes this hypothetical device as impossible, and that is
derived from fundamental physics. We are not aware that such a no-
go theorem of fundamental physics exists. (We doubt that this is
possible, given our analysis of the concept of macrovariable, here
and elsewhere.)

In order to consider this possible objection, we need to give
some thought to the notion of a “possible measuring device”. Recall
that we introduced this idea in order to clarify Bennett's (2003)
distinction between “known data” and “random data”. This inves-
tigation will take us back to the multiple-computations theorem
and its physical foundations. We now turn to this.

8. Measuring devices, value assignments, and the physics of
the multiple-computations theorem

The challenges to Landauer's principle (in Sections 4 and 7
above) boil down to two questions, and we shall now see that
they are essentially the same question, and try to answer it.

Section 4 question: Can one value assignment be preferred, e.g.
as the “actual” one? If so, what sort of fact fixes this preference? In

54 Notice that while this counter example is of entropy conserving genuine
erasure, one can come up with counter examples in which the erasure will be even
entropy decreasing. These stronger counter examples involve partitioning the phase
space in a different way (that expresses the resolution power of other measuring
devices) and possibly also different dynamical rules. This has been shown in
(Hemmo & Shenker, 2010, 2011, 2012, 2013). We do not expand here on the im-
plications of this idea for Maxwell's Demon and the second law of thermody-
namics; these topics exceed the framework of this paper.
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other terms, sometimes used in the literature, what fact fixes the
“individuation of computation” implemented by a given physical
system during a given process? (If no fact fixes one value assign-
ment as preferred, then all assignments equally coexist, including
those that give rise to logically reversible computation and those
that give rise to logically irreversible ones, and then Landauer's
principle makes contradictory predictions.)

Section 7 question: Can certain hypothetical measuring de-
vices be ruled out, e.g. as “impossible” ones or (conversely) be
“preferred”? If so, what sort of fact makes a hypothetical measuring
device actual, or possible, or impossible? (If no fact makes certain
measuring devices impossible then all of them are possible,
including the “known BC data measuring device” that is associated
with a dissipationless logically irreversible computation that Lan-
dauer's principle deems impossible.) Let us begin by showing the
connection between value assignment (or individuation of
computation) and measuring devices.

What is “value assignment” with respect to a physical system
that implements a computation? What sort of fact “value assign-
ment” is? Let's start with Searle’s (1992) proposal. For Searle, the
fact of value assignment is a fact about an “agent” or “observer”,
that assigns the values to the states of the observed system. He
writes: “the ascription of syntactical properties is always relative to
an agent or an observer who treats certain physical phenomena as
syntactical” (Searle’s (1992)., p. 208). On this view, to understand
what sort of fact “value assignment” is, we need to understand
what sort of facts “agent” or “observer” are.

The problem is that notions like “agent” or “observer” are vague,
and clarifying them for our present purpose (of addressing Lan-
dauer's principle and its connection to the multiple computations
theorem, in terms of fundamental physics) may require that we
offer a naturalistic-physicalist solution to the mind-body problem,
a task that is far beyond the scope of this paper. Therefore, if
possible, we would like to treat Landauer's principle in a way that
does not depend on one's views concerning the mind-body prob-
lem. How, then, should we go about explaining “value
assignment”?

Our first attempt at accounting for the notion of “value assign-
ment” while sidestepping the mind-body problem is by using the
notion of a “measuring device” to replace (Searle's) “agent” or
“observer”. The idea is to understand the phrase “value assignment
w for system S” as the phrase “measuring device w that measures
the state of system S”.°° Let us explain this idea, and then see
whether our attempt (at explaining “value assignment” while by-
passing the mind-body problem) is successful. We shall shortly
see its limits.

(Remark. Notice that prima facie, this idea may not work for the
computational theory of mind, since the “agent” or “observer” is
taken to observe the computing system S, rather than to be system
S.°% But we will come a bit closer to the theory of mind later on.)

What is a measuring device, in this context? Very roughly, we
take a measuring device to be a physical system, that interacts with
the system of interest S, such that the final physical state of the
“pointer” element of the measuring device reflects the physical
state of the measured system S as it was at the interaction time.>’

55 Ladyman (2009 p. 382) writes: “In practice of course it is only possible to use a

system as a computer if the relevant physical states are distinguishable by us, with
our measurement devices; and it is possible for us to put the system into a chosen
initial state so as to compute the function in question for it“.

56 In the context of the semantic view concerning the individuation of compu-
tation, Shagrir (2018) writes: “Presumably, the content of the computations that
take place in our brain is not defined by the interpretation of an external observer”.

57 We do not address the stability requirement involved here.

For example, consider a measuring device in which the pointer
ends up pointing at either the symbol “1” or the symbol “0”
engraved on its plate, following an interaction with system S. We
call our measuring device “value assignment 1” if it interacts with
system S in such a way that if the state of S is X, then the pointer
ends up pointing at “1”, and if the state of S is either Y or Z then the
pointer points at “0”. We call the device “value assignment 2” if the
interaction is slightly different, so that the pointer points at “1” if S
is in either X or Y, and points at “0” if S is in Z. Thus, to say that we
assign the value 0 or 1 to the state of S according to value assign-
ment w, means to say that we describe the state of the measuring
device called “value assignment w” following its interaction with S,
rather than the state of S directly.

On this way of thinking about value assignment it seems that we
have a physical criterion for preferring one value assignment for
the states of a computing system S, e.g. as the “actual” one: the
preference is fixed by the measuring device that is actually at work
measuring the states of S.

Here the next question arises: What makes it the case that, at a
given occasion, measuring device 1 rather than 2 (say) is actually at
work, so that computation 1 rather than 2 (say) is actually imple-
mented? In the context of physics (and more particularly in the
context of providing the physical foundations of the multiple
computations theorem and Landauer's principle), it is preferable to
avoid (if possible) talk about “choice” of a measuring device by
some “agent”, since otherwise we would need to provide a physi-
calist account of these terms, a task that is far beyond our present
scope. Our attempt at avoiding the need to “choose” between two
optional measuring devices is to endorse a framework in which
there is only one possible measuring device, and our way to do this
is to take the entire relevant actual environment of system S
(possibly its entire unlimited environment) as the measuring de-
vice: In this way there is no distinction between the measuring
device and a possible “user” that may “choose” it: the “user” is part
of the physical environment as well. Thus, the actual state of affairs
that happens to obtain in the universe, including the way in which
the environment interacts with S, fixes the computation that is
actually implemented by S, rendering the other computations
merely counterfactual.®®

This line of thinking has been suggested in the philosophy of
cognitive science: it is a form of “externalism about computation,”
the view that value assignment (computational individuation) is
based on features that are external to the system (see Shagrir, 2018
Section 5 for a critical discussion of this idea). Externalism about
computation implies that if a given physical system S, undergoing a
given micro-physical process, is transferred to a different envi-
ronment, it can change its computational identity.”® In our termi-
nology this means that if S is measured by a different measuring
device, it is given a different syntactic value assignment, and
accordingly implements a different computation. This idea is under
debate in contemporary philosophy of cognitive science (Shagrir,
2018.59), and we would now like to address it from a perspective
that is relevant for our interest.

58 We assume for simplicity that the state of affairs is stable in a way that enables
us to speak of the same value assignment obtaining for the entire duration of the
computation. Relaxing this assumption adds complications that do not contribute
to understanding the heart of the matter.

59 For example, according to Piccinini (2008) the computational identity changes
if this transfer involves a change of a functional task.

60 Shagrir's (2001) main aim is to support the claim that content has a role in
individuating cognitive computations. We do not address this topic here.
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Suppose that we have a good measuring device E (for “envi-
ronment”), which is of the “value assignment 1” kind. This means
that if system S happens to be in a microstate x in which the value of
the particular macrovariable, to which the device E is sensitive, is X,
then the pointer of E ends up pointing at the symbol “0” engraved
on its place (for short: “E ends up in state 0”). (And similarly, for
values Y or Z of S and engraved symbol “1”.)

But what do we mean by saying that “E is in state 0”?

If we want “E is in state 0” to have a physical meaning, then it has
to be the same kind of physical meaning as that of “S is in state X”.
We explained the latter above, recall: the microstate x of S has
infinitely many macrovariables (infinitely many aspects, given by
infinitely many possible partial descriptions), and the way to prefer
one of them as obtaining (and thus the corresponding computation
as implemented) is by noticing that the environment E is sensitive
to that macrovariable, and reflects its value. For instance, E's pointer
state responds to S's state in the way we call “value assignment 1”
and not “value assignment 2”.

Now, the environment E is also a physical system, and as such it
is (at any moment) in some microstate y of its own, which also has
infinitely many macrovariables (infinitely many aspects, given by
the infinitely many possible partial descriptions). And just like
system S, the way to prefer one of the macrovariable of system E is
by noticing that its environment acts as a measuring device that is
sensitive to one of its macrovariables, and not to the others; call
that extra-environment E'. In our example, the environment E’
should prefer the macrovariable of pointing at “0” or “1”, over
other options such as more fine-grained macrovariables (e.g.
pointing at the leftmost part of the region marked “0”) or more
coarse-grained ones (e.g. pointing at “O or 1”) or qualitatively
different ones (e.g. having temperature T). And so, in order to say
(in a physically meaningful way) that E is in a state in which its
pointer points at the engraved symbol “0” we need E to be
measured by an extra-environment E’, that is sensitive to precisely
that macrovariable. For example, we would say that E is in state
“01” (or that we assign the value “0;” to E) just in case the extra
environment E’ is in state “0¢”, and we would assign the value “1;”
to E just in case the extra environment E’ is in state “17”; and so on,
ad infinitum (See Shagrir, 2018; Section 5 for an example in the
same spirit.).

As long as this infinite regress is not halted within the frame-
work of fundamental physics, externalism about computation
cannot solve the multiple-computations problem, and hence
cannot solve the challenges for Landauer's principle in Section 4
and Section 7.

And so, the question is, finally: Can this infinite regress be
stopped using the resources of fundamental physics? To do so one
would need to show that some level in the regress has a special
status, due to which no further regress is needed.

One option here might be seeing S itself as the extra-
environment of E, so that each of them is the environment of the
other. However, the reader can easily see for herself that in this case
it is not clear which system implements the computation and what
is the value assignment, so the very claim that computation is being
implemented becomes unclear.

The other option is that the particular macrovariable of E (in
which its pointer points at “0” or “1” engraved on its plate) has
some physically-describable internal feature in virtue of which we
can justifiably say that no further regress is needed. (It could be the
macrovariable of the extra-environment E’ or any other one along
the line, as long as the regress is halted somewhere.) What might
this be? Some ideas in the philosophy of mind can be understood
along these lines.

One proposal is that the preferred macrovariable (but not
the others) is associated with a (preferred) internal semantic
contents.®! For example, with respect to the simultaneous imple-
mentation of AND and OR in Section 3, if it happens to be a fact that
the state X of system L has as its content the number 0 and states Y
and Z have as their content the number 1, then system L falls under
the computational kind AND. We are not sure how to understand
“content” in physical terms, and hence find it difficult to incorpo-
rate this idea into our analysis. Indeed, the semantic view is not
committed to naturalism. Notice that if the notion of contents is
understood in an externalist way, then a version of the above
infinite regress problem recurs. (For a defense of the semantic view,
see Shagrir, 2001, 2012, 2018). Another proposal is to revert to
“functional tasks” as fixing the value assignment (e.g., Piccinini,
2008, 2015), possibly by being co-extensive with, or even explan-
atory of, “semantic tasks”. We are not sure how to understand
“function” or “task” or “functional task” in physical terms, and
whether it can be naturalized, and hence find it difficult to incor-
porate this idea, too, into our analysis. We don't expand on this
point here.

On our view, the only fully physical solution, i.e., a solution that
can (in principle) be fully described in physical terms, is to say that
the preferred macrovariable is (identical with) “mental states” of
(elements of) E, in which case the values “0” and “1” are (identical
with) experiences of an observer, so that S carries out the corre-
sponding computation only relative to that observer. Some ob-
servers may be “value assignment 1 observers”, and others may be
“value assignment 2 observers”; which is which is determined,
entirely, by the physics of E and its interaction with S. This — the
reader may recall from the beginning of this section — takes us back
to Searle's (1992) brief remark, but we do not endorse Searle's
views on the mind-body problem (see Searle, 2002). The view we
put forward here, as a solution to the multiple-computations
problem, as well as a potential way to face the challenges to Lan-
dauer's principle, is in the framework of a reductive physicalist
identity theory of mind. We do not argue for this view here (see
Shenker, 2017¢): our point is that it turns out that (a) the multiple-
computations theorem in cognitive science has a sound basis in
fundamental physics; and (b) the challenge to Landauer's principle
in physics is strongly connected to the question of whether the
mental is physical; (c) The way to meet both challenges is by
adopting an identity theory of mind and brain.
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