Apophatic finitism and infinitism
Jan Heylen

Abstract

This article is about the ontological dispute between finitists, who claim
that only finitely many numbers exist, and infinitists, who claim that in-
finitely many numbers exist. Van Bendegem set out to solve the ‘general
problem’ for finitism: how can one recast finite fragments of classical math-
ematics in finitist terms? To solve this problem Van Bendegem comes up
with a new brand of finitism, namely so-called ‘apophatic finitism’. In this
article it will be argued that apophatic finitism is unable to represent the
negative ontological commitments of infinitism or, in other words, that which
does not exist according to infinitism. However, there is a brand of in-
finitism, so-called “apophatic infinitism’, that is able to represent both the
positive and the negative ontological commitments of apophatic finitism.
Unfortunately, apophatic finitism cannot adopt that way without losing the
ability to represent the positive ontological commitments of infinitism.
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Strict finitism is the philosophical doctrine that there exist only finitely many
mathematical objects. This doctrine conflicts with all the main mathematical
theories: set theory postulates the existence of infinitely many sets, arithmetic
entails the existence of infinitely many natural numbers, analysis studies an
infinity of real numbers, and so on. In this article we will focus on strict finitism
with respect to natural numbers, i.e. the doctrine that there are only finitely
many natural numbers and, consequently, that there is a largest natural number.
Henceforth, the qualifier ‘strict’ will be dropped. Let us use the label ‘infinitism’
for the position that there are infinitely many natural numbers and, therefore,
that there is no largest natural number.

In section[T|a challenge to finitism, due to[Van Bendegem| (1999;2012), will
be presented. In section [2] the solution offered by [Van Bendegem) (1999; 2012)
will be given. This solution leads Van Bendegem to adopt so-called ‘apopathic
finitism’. It will then be argued in section[3|that apophatic finitism is confronted
with a new problem. Next, so-called ‘apophatic infinitism” will be introduced
in sectionfd} It will be shown that this brand of infinitism can solve the problem
that apophatic finitism is faced with in a way that is unavailable to the latter.



1 The general challenge to finitism

To repeat, finitism conflicts with all the main mathematical theories: set theory
postulates the existence of infinitely many sets, arithmetic entails the existence
of infinitely many natural numbers, analysis studies an infinity of real numbers,
and so on. This raises the following question: can one recast mathematics in
finitist terms?

This question is related to what is called the ‘the general problem’ or the
‘argument from poverty’ in (Van Bendegem|1999, pp. 120-121) and (Van Ben-
degem 2012, p. 146){1_] The challenge to finitism is described by Jean Paul Van
Bendegem as follows:

1. Consider any finite set S of sentences of the language of first-order logic
with identity.

2. Is it always possible to give an interpretation of those sentences in the
form of a model with a finite domain?

At first sight, the answer is clear: no, it is not always possible. For consider the
finite set that contains exactly the following three sentences.

Vr-Rxx (1)
VedyRxy (2)
VaVyVz ((Rxy A Ryz) — Rxz) (3)

It is easily provable that any model for — has an infinite domainE]

Note that R can be interpreted as the successor relation of arithmetic: ‘Rzy’
means that y succeeds x. Under this interpretation means that no natu-
ral number succeeds itself, (2)) means that every natural number has a natural
number that succeeds it, and means that, if a natural number is succeeded
by another natural number and that second natural number is in turn succeeded
by a third natural number, then that third natural number succeeds the first nat-
ural number. The question is then: can one recast finite fragments of arithmetic,
including — under their arithmetical interpretation, in finitist terms?

I The paper has been derived from (Van Bendegem|2010).

2Suppose that there is a model for - that has a domain D with only n elements (n € N).
Pick an element, d;. By , there is an element d2 € D such that (d1,d2) € I (R) (with I the
interpretation function of the model, which assigns pairs from D to R). By (), d1 # dz, because
otherwise (di,d1) € I (R). By again, there is an element d3 € D such that (d2,d3) € I (R).
Again by , do # d3. Moreover, by , (d1,ds3) € I (R)and, therefore, by , dy # ds. Continue
this reasoning until you have reached the n-th element of the domain, dn. By (2), there has to be
an element d; € D such that (dn,d;) € I (R). By , i # n. But then by (3) and by what has been
proved before, it follows that (d;, dn) € I (R). By again, it follows that (dn,dn) € D, which
contradicts ().



2 Van Bendegem'’s solution to the general problem

Van Bendegem has a strategy for dealing with the above challenge — see (Van
Bendegem|[1999, pp. 120-123) and (Van Bendegem|[2012, pp. 146-147). In sec-
tion 211 T will introduce his translation. In Subsection 2.2]T will describe his
models. In section[2.3|I will show that all ‘truths’ of infinitism are kept. Finally,
in section [2.4]I will show that some ‘truths’ are gained.

2.1 The translation

The first step consists in giving a franslation of the sentences of S.

1. Write each sentence ¢ of S in an equivalent prenex normal form, i.e. a sen-
tence v that is of the form

Q1v1 ... Qnunb, (4)

with each @; (1 < i < n) either 3 or VE] with v; meta-variables (i.e. vari-
ables ranging over variables), and with 6 a quantifier-free formula. The
sequence

Q1v1 ... Qnup
is called the prefix and @ is called the matrix. The prenex normal form the-
orem says that, for every sentence, there is a logically equivalent sentence
that is in prenex normal form (Boolos et al[2003, p. 246).

2. If there are multiple sentences in prenex normal form that are logically
equivalent to ¢, then pick the first according to the lexicographical order
of those sentences in their KTgX-notation.

3. Pick a k € N and replace 6 in @ by the followingﬂ
(v <kA---Av, <k)—0),
with v, . .., v, the free variables in § (if any). The result is the following:

Q1v1 ... Qnu, (1 <kA---Avp, < k) —0). (5)

4. Introduce k individual constants that do not appear in any of the sen-
tences of S. These are, say, ¢, ..., ¢j+k—1. Next, foreach 1 < i < n,
replace v; < kin (5] by:

(’U,’ =Cy Ve Vo = Cj+k_1) (6)
Call the result ¢7.
3S0-called ‘bounded quantifiers’, i.e. Vv < w and Jv < wu, are defined away — see (Boolos et al.
2003, p. 76).

*Here I use < rather than <, because I will include 0 in the set of natural numbers. Therefore,
number k is the k£ + 1-th number. For instance, 0 is the first number, 1 is the second number, and
So on.



For the application of the above procedure to the set that contains exactly (T])-
one needs to fix a natural number k. Let’s pick the number two. Note that
step one is redundant, because ([I])-(B) are already in prenex normal form. Note
also that we can pick individual constants ¢y and ¢; (= 0 + 2 — 1), because
there are no individual constants in (I])-(B)). The result of the application of the
translation procedure to (I])-(B) is then the following:

Vo ((x =co Vo =c1) = ~Rax) (7)
Vedy (z=coVe=c)AN(y=coVy=c1)) = Rxy) (8)

VaVyVz((x =coVa=c)AN(y=coVy=c1))AN(z=coVz=rc1))
— ((Rzy N Ryz) — Rxz)) (9)

So, @) is (@), @) is (@), and () is @).

2.2 Apophatic finitism

The second step consists in defining a model with a finite domain that makes
translations of all the sentences in S true. What follows, is a variation on the
strategy illustrated in (Van Bendegem|1999)). Given the canonical-domains the-
orem (Boolos et al.|2003| p. 147), any set of sentences that has a model, has a
model whose domain is a subset of the natural numbers (N). We have seen that
the domain of any set that makes — true, is a set with an infinite domain.
So, there is a model M of (I)-(B]) with the set of natural numbers as its domain.
Now define a model M* as follows:

o the domain D* of M*is {n € N | n < k}f]

e for the non-logical vocabulary of the sentences in S, let the interpreta-
tion function I* of M* be the same as the interpretation function I of M,
except that it is restricted to {n e N | n < k —1};

o [* (Cj) :O,I* (Cj+1) :1,...,.[* (CjJrk,l) =k—-1.

Itis necessary that k —1 is not smaller than the greatest natural number denoted
by an individual constant occurring in S. Consequently, all the natural numbers
denoted by the individual constants in sentences in .S belong to D*.

This gives us a model M* with a finite domain. [Van Bendegem)| (1999,
p- 121) refers to models such as M* as ‘finite (quasi-)models’. Since no atomic
formulas are true of k in the model, Horsten| (2010)) speaks of ‘apophatic finitism’,
i.e. the doctrine that holds that no (primitive) predicate is true of the largest
number. The reason for restricting the interpretation function I* to all elements
of D* except k will become clear in what follows.

SVan Bendegem| (1999, p. 122) opts for a domain consisting of the individual constants them-
selves. From the logical point of view, nothing essential seems to depend on that.



2.3 Keeping the ‘truths’ of infinitism

The upshot is that a finite (quasi-)model makes (I]'), (27) and (@) true. Sup-
pose again that k& = 2. Then the domain D* of M* is {0, 1,2}. Suppose that
in model M the interpretation function assigns to R the same extension as the
successor relation, i.e. the infinite set the following of pairs:

0,1),(1,2),(2,3),...

Consequently, I* (R) = {(0,1)}. Furthermore, I* (¢g) = 0O and I* (¢;) = 1. It
is easy to check that (7)-(9) are true in M*. Take (7). Neither (0,0) nor (1, 1)
belong to the interpretation of R. Sentence (9)) is left to the reader. Finally, take
(). The only relevant cases are those in which z is assigned 0 or 1. (In case it
is assigned 2, the antecedent is not satisfied.) In case « is assigned 0, pick 1 for
y, because (0,1) € I'* (R). In case «x is assigned 1, pick 2 for y, because then the
antecedent is not satisfied. Here the importance of choosing for a conditional
restriction even on existential quantifiers, cf. @, becomes clear. The proof of
the theorem below generalizes this reasoning.

TueoreM 1 Let S be a finite set of sentences belonging to the language of first-
order logic with identity. Suppose that S has amodel M = (D, I), with D = N.
Picka k € N, with k — 1 > I (t), for any individual constant ¢ (if any) occurring
in S. Then the finite (quasi-)model M* = (D* I*) (relative to M and k) is
such that: for any ¢ € S, if M = ¢, then M* |= ¢7 (with ¢ the Van Bendegem
translation of ¢ relative to S and k).

Proor  Recall that ¢ is logically equivalent to a sentence ¢ that is of the form

@), ie.
lel s annaa

with each Q; (1 < i < n) either 3 or V, with v; meta-variables, and with 6 a

quantifier-free formula. Also recall that ¢ is of the form

Q101 - Quon (01 = V- -Vor = ¢j k1) A A(vn = ¢;V- -V, = jqp_1))
—0). (10)

By the definition of the interpretation function I* (and the choice of k), for any
of the constants ¢ in ¢, I (t) = I* (t), which belongs to {n | n < k — 1}. Also
by the definition of I*, for any of the m-place predicates ® in 6, for any m-tuple
(dy,...,dn) of elements of {n | n < k — 1}, (d1,...,dn) € I(®) if and only if
(dy,...,dm) € I" (®). Next, consider any two variable assignment functions s
and s*, defined respectively over D and D*, which agree on vy, ..., v,, which
are all the free variables that may occur in §. Given that 0 is quantifier-free,
if M,s [= 0, then M*,s* |= 6. This can easily be proved by induction on the



complexity of 6, given that I and I* agree on the constants and predicates in
¢ and given that s and s* agree on vy, ...,v,, which are all the free variables
that may occur in GE] It follows by tautological reasoning that, if M, s |= 0, then

M*, s = (1), with the following:

((’01:Cj\/-'-\/Ul:Cj+k_1)/\'~'/\(vn:Cj\/"'\/vn:Cj+k_1))
—=0. (11)

Next, consider @),,. We will now suppose that the two variable assignment
functions s and s*, defined respectively over D and D*, agree on v1,...,Un_1,
which are all the free variables that may occur in Q,v,6.

First, suppose that @, is V. Assume that M, s = V,v,6. By the definition
of satisfaction, M, s’ = 6, for all v,,-variants s’ of s. Note that all these variants
assign elements of {n | n < k — 1} to v4,...,v,—1. Moreover, the set of all
vp-variants of s includes the set of all v,,-variants of s that assign elements of
{n | n <k — 1} to v,. Therefore, it follows that M, s’ |= 6, for all s’ that assign
elementsof {n | n < k—1}towvy,...,v,, which are all the free variables that may
occur in §. By what has been proved above, it follows that M*, s** = , for
all v,-variants s** of s* that assign elements of {n | n < k—1} tovy,...,v,. For
any variable assignment function s** that assigns to v,, an element of D* outside
{n|n <k—1},ie. thatassigns k to vy, s** (v,) # ¢, ..., 8" (vy) # ¢j1x—1. For
those variable assignment functions, it follows that

M*,S** l#'l)n:cj\/"'\/vnzcj+k*1
and, therefore,
M* s (v =¢ V- Vur =cjgp—1) A A(Up =¢j V-V Uy = Cjgp—1))

and, hence, M*,s** |= (11). Putting these two facts together, it follows that
M, s** |= (1)), for all v,-variants s** of s*. Consequently, M*, s* = Vo, (L1).

Second, suppose that @, is 3. Then M*, s* = an, since there is a v,,-
variant s** of s* that assigns & to v,, for which the antecedent of is not
satisfied relative to M*, whence it follows that is satisfied relative to M*.
It is a tautological consequence that, if M, s = Jv,0, then M*, s* |= Elvn.
So, if M, s = Qu,0, then M* s* | Qvn. To repeat, the latter holds for any
two variable assignment functions s and s*, defined respectively over D and
D*, which agree on vy, ..., v,_1.

Next, consider (),,—1. We will now suppose that the two variable assignment
functions s and s*, defined respectively over D and D*, agree on vy, ..., 0n_2,
which are all the free variables that may occur in Q,,—1v,—1Qnv50.

6Compare to the extensionality lemma (Boolos et al.[2003} p. 118-119).



First, suppose that Q),_; is V. Assume that M, s = V,v,_1Qnvn0. By the
definition of satisfaction, M, s’ = Q,,v,,0, for all v,,_;-variants s’ of s. Note that
all these variants assign elements of {n | n < k — 1} to vy, ..., v,—2. Moreover,
the set of all v,,_;-variants of s includes the set of all v,,_;-variants of s that
assign elements of {n | n < k — 1} to v,_1. Therefore, it follows that M, s’ |=
Qnv,0, for all s’ that assign elements of {n | n < k — 1} to vy, ..., v,_2, which
are all the free variables that may occur in 6. By what has been proved above,
it follows that M*, s** Qvn, for all v,_q-variants s** of s* that assign
elementsof {n | n < k—1}towv,...,v,_o. For any variable assignment function
s** that assigns to v,—1 an element of D* outside {n | n < k — 1}, i.e. that
assigns k to vp,—1, s** (vp—1) # ¢j, ..., " (Un—1) # ¢j4x—1. For those variable
assignment functions, it follows that

M*, s b& Up—1 =Cj VeV Un—1 = Cj4+k—1
and, therefore,
M s (v =¢ V- Vo =cjgp—1) N AUy =¢j V- VU, =Cjgp—1))

and, hence, M*, s** |= . For any v,,-variant s*** of s**, it also holds that
M* s = , since s*** (v,—1) = k. So, by the definition of satisfaction,
M*, s 1= Vo, (D). It follows from the latter that M*, s** = v, (LI). There-
fore, M*, s** = Qvn. Putting these two facts together, it follows that

M*, S** ': 7
for all v,,_;-variants s** of s*. Consequently, M*,s* = Vv, _1Quy (11)).

Second, suppose that Q,_; is 3. Then M* s* = Elvn_len for the
following reason. There is a v,_;-variant s** of s* that assigns & to v,,_1, for
which the antecedent of is not satisfied relative to M*, whence it follows
that is satisfied relative to M*. The latter holds for all v,,-variants s*** of
s** as well and, therefore, M*, s** = an, from which it also follows that
M* s = Eivn. So, M*, s** = Qvn, for at least one v,,_;-variant s** of
s*. By definition, this means that M*, s* = Elvn_len. It is a tautological
consequence that, if M, s = Jv,—1Qu,,0, then M*, s* |= an,len.

So, if M,s = Quu_1Qun0, then M*,s* = Qu,_1Qun(LI). To repeat, the
latter holds for any two variable assighment functions s and s*, defined respec-
tively over D and D*, which agree on vy, ..., v,—2.

Continue the above line of reasoning in an analogous way until it has been
established that, if M, s = Qui ...Qu,0, then M* s* = Qu;...Qu, (1)), for
any two variable assighment functions s and s*, defined respectively over D
and D*. Hence, if M,s = Qui...Qu,0, for any variable assignment s, de-
fined over D, then M*,s* E Qu; ... Qvn, for any variable assignment s*,



defined over D*. By definition this means that, if M = Qu;...Qu,0, then
M* |= Quy ... Quy (TT). In other words, if M = ¢, then M* |= ([L0). O

The conclusion of Theorem 1 is that all ‘truths” of infinitism are kept (Van
Bendegem|[1999, p. 122). This is Van Bendegem’s solution to the general prob-
lem (section[)).

2.4 Gaining ‘truths’ relative to infinitism

It has been argued that all ‘truths’ of infinitism are kept. In addition, some
‘truths” will be gained (Van Bendegem|1999, p. 122). Note that the following is
false in any model with as its domain the set of natural numbers and with an
interpretation of R as the standard successor relation, given that is true in
every such model:

JzRzx. (12)

Yet, in the example of finite (quasi-)model given above the following is true:
Jz (((r=coVa=c1)) = Rxx). (13)

The above sentence is true, because there is an element of the domain, namely
2, that when assigned to x does not satisfy the antecedent.

More generally, there is at least one sentence ¢ such that M = ¢ (with M a
model with as its domain the set of natural numbers) but M* = ¢™ (with M*
the associated finite (quasi-)model and with 7 the Van Bendegem translation).
It follows from M - ¢ by definition that M |= —¢, which by Theorem|I|implies
that M* |= (—¢)" as well. So, there is at least one sentence such that M* = ¢7
and M* = (—¢)". Van Bendegem| (1999, p. 124) says that

we get pretty close in the neighbourhood of paraconsistency].]

Within the context of 7, ¢ and —¢ are no longer contradictory sentences.

Van Bendegem| (1999, p. 124) uses V* and 3* as abbreviations for respec-
tively the reinterpreted universal quantifier and the reinterpreted existential
quantifier. With the help of that notation one can rewrite as follows:

FzRzxx. (14)

Given the truth of (I)) and Theorem([lit is also the case that the following is true
in finite (quasi-)models:
V*r—Rxx. (15)

Note that, if ([14)) is an abbreviation of the form ¢7, then ([15)) is an abbreviation
of the form (—¢)". This means that the reinterpreted quantifiers are no longer



so-called ‘duals’, i.e. there are formulas ¢ such that both M* |= V*v;—¢ (M* [~
—V*v;—¢) and M* |= F*v;¢. In contrast, in classical logic V and 3 are duals (i.e.
Jv;¢ is equivalent to =Vv;—¢).

As we will see in the next section, we already have here one element of a
new problem.

3 The problem of internalizing negative ontological

commitments

I will introduce some concepts and distinctions that will be very useful for the
evaluation of Van Bendegem’s solution to the general problem.

The first concept is that of ontological commitment. According to Quine’s fa-
mous criterion (Quine|1948, [Bricker|2016)), a theory T  has (explicit) ontological
commitment to K’s if and only if T logically entails 3z /K« (with 3 the objec-
tual existential quantifier). Let us call the latter a criterion for positive (explicit)
ontological commitment. From it one can easily derive a criterion for lack of pos-
itive ontological commitment: a theory 7' does not have (explicit) ontological
commitment to K’s if and only if T does not logically entails 3z Kz (with 3 the
objectual existential quantifier). In the latter negation has wide scope of each
of the sides of the equivalence. If one gives negation narrow scope in each of
the sides of the equivalence one gets a criterion for negative ontological commit-
ment: a theory T has (explicit) negative ontological commitment to K’s if and
only if T logically entails -3z K« (with 3 the objectual existential quantifier).
For example, classical number theory has positive (explicit) ontological com-
mitment to prime numbers and has negative (explicit) commitment to even
prime numbers larger than two. This is a first useful conceptual distinction[]
Ontology is not only about what there is but also about what there is not. The
ontology of monotheism does not only recognize the existence of a god but also
the denial of the existence of any other gods.

Another useful conceptual distinction is that between internal and external
ontological questions |Carnap| (1950). An example of an ontological question
is: ‘Do natural numbers exist?” This question can be asked internal to a frame-
work, e.g. classical number theory. Since it is provable within the latter that
five is a natural number, it follows logically within the framework of classical
number theory that numbers exist. Alternatively, one could ask the same ques-
tion relative to a kind of nominalistic framework in which it is false that, for
instance, three is a prime number, let alone that natural numbers exist. What
Carnap denies, is that it makes sense to ask the ontological question about the

7 Asay| (2010} also makes this distinction.



existence of numbers external to frameworksﬂ Of course, this leaves open that
the ontological commitments of one framework can be internalized within the
other framework via a reinterpretation or translation. Whether Van Bendegem’s
translation strategy is adequate is very important, because it is about how the
two parties to the debate internalize the ontological commitments of each other.

Let’s start from a infinite model, M, with the set of natural numbers as its
domain, and the associated theory, 7', namely the set of sentences that are true
in M. After a choice of the largest natural number, we then also have a finite
(quasi-)model, M*, and its associated theory, T*, namely the set of sentences
that are true in M*. The question before us is how T™* internalizes the ontolog-

ical commitments of T relative to Van Bendegem's translation.

Let us begin with the positive (explicit) ontological commitments of T'. First,
going by those sentences of the form 3*v¢ that belong to T™* is not going to fly,
because it was already established in section that M* | 3*xRxx, whereas
M = JxRxx. In other words, as a criterion it would overshoot. Second, going
by sentences of the form —V*v—¢ does work. If M* | —V*v—¢, then M* [~
V*v—¢, whence it follows by Theorem [I| that M [~ Vv—¢, which entails that
M | —Vv—¢ and, therefore, M |= Jvé. In other words, there is a way of
internalizing the positive (explicit) ontological commitments of 7" in T™*.

Next, let us consider the negative (explicit) ontological commitments of T'.
First, going by those sentences of the form —3*v¢ that belong to 7™ is not going
to fly, because M* |= F*v¢, for all ¢, and therefore, there are no sentences of
the form —3*v¢ that belong to 7. In other words, as a criterion it would un-
dershoot. Second, going by sentences of the form V*v—¢ would also not work,
because there are formulas ¢ such that M* = V*v—-¢ but M* [ Vv—¢. Take
V*x——z < k (withz < k eliminated as in Van Bendegem'’s translation). Clearly,
Vo (x < k — -z < k) is logically true and, therefore, also true in M*. Yet, in
M with as its domain the set of natural numbers, it is false that Va——z < k.
In other words, as a criterion, it overshoots. So, relative to the Van Bendegem
translation strategy there is no way of internalizing the the negative (explicit)
ontological commitments of 7" in 7.

To sum up, relative to Van Bendegem'’s translation the apophatic finitist can
internalize the positive but not the negative (explicit) ontological commitments
of the infinitist. This is the new problem that the apophatic finitist is facing. In
the next section a new approach is considered, one in which both the positive
and the negative (explicit) ontological commitments can be internalized in one
of the frameworks.

8For a contemporary defense of a broadly Carnapian position in meta-metaphysics, see
(Chalmers|2009).
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4 Relative interpretation and absolute infinity

In section [4.1] will briefly introduce the notion of a relative interpretation and
compare it to Van Bendegem'’s translation. In section[4.2]a particular relative in-
terpretation will be introduced and it will be connected to a variety of infinitism
called ‘apophatic infinitism’ that is related to apophatic finitism. In section [4.3]
it will be shown that the ontological commitments, both positive and negative,
of apophatic finitism can be internalized within apophatic infinitism via the
relative interpretation introduced earlier.

4.1 Relative interpretation and the Van Bendegem translation

The key property of Van Bendegem’s translation strategy is the reinterpreta-
tion of the existential quantifier (Jv;). In a so-called ‘relative interpretation” an
existential quantifier Jv is replaced by:

Fv(a(v)A...).

In constrast, in Van Bendegem'’s translation an existential quantifier Jv; was
reinterpreted as something of the following form:

J(a(v) —...).

Van Bendegem| (2003| p. 243, fn. 13) is aware that his translation strategy devi-
ates from classical relative interpretation in this respect.

In addition, within relative interpretations the reinterpreted existential quan-
tifier, which is of the form Jv (a (v) A ...), is the dual of the reinterpreted uni-
versal quantifier, which is of the form Vv (o (v) — ...): v (a(v) A ...) is equiv-
alent to =Vv (« (v) — —...). Recall that Van Bendegem's reinterpreted univer-
sal quantifier Vv is not the dual of his reinterpreted existential quantifier: i.e.
there are formulas ¢ such that in a finite (quasi-)model M* both M* = ¥V*v—¢
(M* £ =V*v—¢) and M* |E T ve.

Given two models, M’ and M”, let us call a translation © of M’ into M"’
faithful if and only if, for every sentence ¢, M’ |= ¢ if and only if M"” = ¢™
(with ¢™ the translation 7 of ¢). We have already seen in Subsection 2.4 that
there is at least one sentence ¢, namely , such that M (£ ¢ (with M a
model with as its domain the set of natural numbers) but M* = ¢™ (with M*
the associated finite (quasi-)model and with 7 the Van Bendegem translation,
which translates into ([13))). The question that we will answer in the next
section is whether there is a faithful relative interpretation of a finite (quasi)-
model into a infinite model of a certain kind.
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The connection with the problem of how to internalize the negative (ex-
plicit) ontological commitments of a theory is as follows. If the relative inter-
pretation is faithful, then the truth/falsity within the kind of infinite model of
the reinterpreted existentially quantified sentences that are of the form

Fv (a(v) A @),

is equivalent to the truth/falsity within the finite (quasi-)model of the existen-
tially quantified sentences that are of the form Jv¢. So an infinitist of the variety
alluded to would be able to internalize both the positive and the negative (ex-
plicit) ontological commitments of the apophatic finitist. In the next section
more will be said about the kind of infinitist alluded to and about the relative
interpretation that goes with it.

4.2 Apophatic infinitism

Before I define a relative interpretation, let me comment on a choice that can
be made. One option is to use individual constants, as before. In our working
example these were ¢y and ¢;. Another option is to use individual descriptions.
In a variation on the example we make use of the distinguished relation symbol
R, which is informally interpreted as before as ‘is succeeded by’ and which is
formally interpreted as the standard successor relation on natural numbers. We
could then use the following individual descriptionsﬂ

1. Zero (v) := =3yRyv A JyRvy

2. One (v) := y1 (Zero (y1) A Ryyv)

Of course, the above could be extended to any finite natural number. The choice
between using individual constants and using individual descriptions is more
interesting once one introduces a non-standard number. Think for a moment
about Van Bendegem's largest natural number that does not satisfy any primi-
tive non-logical predicate. We could introduce an individual constant for it, e.g.
c3. Alternatively, we could define it (in a negative way):

3. Abs (v) := =y Rysv A —Jya Rvys

The second conjunct is needed to distinguish the non-standard number from
zero, which does have a successor, and the first conjunct is needed to dist-
inghuish it from the second-largest number, which does have a predecessor.

9Note that on the interpretation of R as the standard successor relation it is true that and,
hence, that successors are distinct from their predecessors. As a result, Zero (v) and One (v) have
to be satisfied by different elements of the domain. Furthermore, it is true on that same interpreta-
tion that VaVyVz ((Rzy A Rzz) — y = z) or, in other words, successors are unique.
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Whichever option one prefers may depend on whether one thinks that one can
have knowledge by acquaintance or merely knowledge by description of the
largest number. (For the distinction between those two types of knowledge,
see (Russell[1910)).) Relatedly, it may depend on the conditions under which
one can introduce a name by description (Kripke|1980;2011)). Here I will choose
the definitional, descriptive approach.

Let a finite set S of sentences belonging to the language of first-order logic
with identity be given. Let there be a finite (quasi-)model M* = (D*, I'*) with
D* = {n € N | n < k}, which makes all the sentences in S true. If R belongs
to the language of S, then it is furthermore presupposed that the interpretation
I* of R is the standard successor relation on the natural numbers restricted to
{n € N| n <k —1}. (Otherwise some relettering would be required.) Then
for all formulas ¢ belonging to the language of S, define ¢™ as follows:

1. if ¢ is an atomic formula, then ¢™ = ¢;
2. if ¢ = =), then ¢™ = )7,
3. if ¢ = (¥ A 0), then ¢™ = (Y™ A O™);
4. if $ = Yuip, then ¢™ = Vo ((v < kV Abs (v)) = ¢™).
Note that in the above v < k can be replaced by:
Zero (v) V One (v),

assuming that & = 2 (as in our working example). Then define a infinite model
M as follows:

o the domain D is NU {g}{]

e for the non-logical vocabulary of the sentences in 5, let the interpretation
function I* of M* be the restriction of the interpretation function IT of
Mhto{neN|n<k—1}{]

e let IT (R) be the standard successor relation on N.

The symbol g could be taken to stand for God, if one accepts negative theism,
i.e. the doctrine that no (primitive) predicate applies to God. Indeed, in the
model no atomic formula is true of g. There is a clear analogy with apophatic
finitism, which is the doctrine that holds that no (primitive) predicate is true of
the largest number (see section[2.2)). One could also link it to Cantor’s notion of
the ‘absolute infinite’, which he associates with God and which he considers in
some sense beyond description. As we will see, only g can satisfy the predicate
Abs, which could be taken to stand for ‘absolute infinity’. Let us talk about
‘apophatic infinitism’ in this context.

19The cardinality of this domain is the same as the cardinality of the set of natural numbers.
UThere are many such I T, but that does not matter: any interpretation function that satisfies the
condition will do.
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4.3 Internalizing all ontological commitments

As we are about to see, the ontological commitments, both positive and neg-
ative, of apophatic finitism can be internalized within apophatic infinitism. A
key role is played by “absolute infinity’, which has the same role as the ‘largest
number”.

Tueorem 2 Let a finite set S of sentences belonging to the language of first-order
logic with identity be given. Let there be a finite (quasi-)model M* = (D*, I*)
with D* = {n € N | n < k}, which makes all the sentences in S true and, if R
occurs in S, then the interpretation I* of R is the standard successor relation on
the natural numbers restricted to {n € N | n < k — 1}. Then, for all sentences
¢ € S, M* = ¢ if and only if MT = ¢™.

Proor Iam going to prove this via a slightly more general result: for all for-
mulas ¢ of the language of S, for all variable assignment functions s* defined
over D*, for all variable assignment functions s' that are defined over D' and
that assign elements of {n € N | n < k — 1} U {g} to any variable v that occurs
freely in ¢ (if any) such that

1. 5% (v) = s' (v) or

2. s*(v) =kand s (v) =g,

it is the case that M*,s* = ¢ if and only if M, s = ¢™. The proof is by
induction on the complexity of ¢.

First, suppose that ¢ is an atomic formula. Note that by definition ¢™ = ¢.
The interpretations of the predicates and individual constants occurring in S
are by the definition of M exactly the same in M* and M. Furthermore, for
any variable v that occurs freely in ¢,

1. s* (v) = s' (v) or

2. s*(v) =kand st (v) =g,

If s* and s’ agree on all the free variables in ¢ (if any), then there is agree-
ment on the denotations of all the terms (variables or individual constants) in
¢. Given that there is also agreement on the extensions of the predicates, it fol-
lows then from the definition of satisfaction of atomic formulas that M*, s* = ¢
if and only if MT, sT |= ¢™. If s* and s' disagree on at least one free variable in
¢ (if any), then s* assigns k to that free variable and s' assigns g. By the stip-
ulations on M* and M neither element is within the extension of any of the
predicates that occur in S. Therefore, if s* and s' disagree on at least one free
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variable in ¢ (if any), then it follows from the definition of satisfaction of atomic
formulas that M*, s* [~ ¢ and M, sT £ ¢, whence it follows that M*, s* [~ ¢
if and only if M1, sT [£ ¢. Either way, it follows that M*, s* }£ ¢ if and only if
M st ¢

Second, the cases of negation and conjunction are left to the reader.

Third, suppose that ¢ = Vu1). Recall that IT interprets R as the standard
successor relation on the natural numbers. Since on the standard interpretation
only zero has no predecessor, if Zero (v) is satisfied by a variable assignment
s, then s (v) = 0. Moreover, due to the fact that on the standard interpretation
the successor of zero is one, it is also the case that, if One (v) is satisfied by a
variable assignment s, then s (v) = 1. This can be continued. Finally, given
that that under the interpretation of R as the standard successor relation on the
natural numbers every natural number has a successor, if Abs (v) is satisfied by
a variable assignment s, then s (v) ¢ N and, therefore, s (v) = g. Now suppose
that M*, s* |= Vuiy. By the definition of satisfaction of universally quantified
formulas the latter is equivalent to the claim that, for all v-variants s** of s*,
M*, s** |= 1. Given the induction hypothesis, the latter is in turn equivalent to
M, st = 47, for all variable assignments sT such that, for any variable v’ that
occurs freely in ¢ (if any),

1. s** (v/) = s'T (/) or
2. s** (v') = kand 5T (v/) = g.
Recall that, if v" # v, then
1. s* (') = s (v') = s'T (V') or
2. s* (V) = s (v') = kand s'T (v) = g.

Note that all the variable assignments s'T assign elements from {n € N | n <
k—1}U{g} to v. Given what has been said above about the satisfaction of Zero,
One and Abs and the satisfaction clause for material implication, the latter is
equivalent to

Mt | (Zero () v One (v) V Abs (1) = 4,

for all variable assignment functions s'' that are v-variants of s' in light of the
enumerated conditions. Based on the satisfaction clause of universally quanti-
fied formulas and the stipulation, the latter is equivalent to

M st = Yo ((Zero (v) V One (v) V Abs (v)) — ¥7).

Now that the general result has been proven, the theorem can be derived as
a special case, since sentences do not contain any free variables. 0
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It is an immediate consequence of Theorem [2| that, under the conditions
listed in the theorem, for all sentences Jv1) € S, M* = Fvy) if and only if MT =
(3vy)™. In other words, apophatic infinitism can via the relative interpretation
defined in section 4.2 internalize the ontological commitments, both positive
and negative, of apophatic finitism. This is important for two reasons.

First, as we have seen, the Van Bendegem translation does not enable the
apophatic finitist to internalize the negative ontological commitments of in-
finitism. This is like a polytheist grasping that a monotheist believes in the
existence of a god without grasping that that person rejects the existence of
any other gods. The relative interpretation defined in section 4.2| does enable
the apophatic infinist to internalize the negative ontological commitments of
apophatic finitism.

Second, the apophatic finist cannot use the same relative interpretation to
internalize the negative ontological commitments of apophatic infinitism. Take
the following example:

JzRe x, (16)

with ¢; the name of the second largest natural number, which in our working
example is the number one. Clearly, is true in any of the infinitist models
that have a domain that includes the natural numbers and that interpret R as
the standard successor relation on the natural numbers. Indeed, those models
have the number two in their domain and two is the successor of one. Yet, the
following is false in a finite (quasi-)model with as its domain {0, 1, 2} and with
an interpretation of R as the standard successor relation, restricted to {0, 1}

Jz ((Zero (z) V One (x) V Abs (x)) A Reyx) . (17)

So, the relative interpretation fails to give the apophatic finitist the means to
internalize all the positive ontological commitments of the apophatic infinitist.
This is like the Greek polytheist grasping that the Jewish monotheist repudiates
the existence of Ares but failing to grasp that that person accepts the existence
of Yahweh.

5 Conclusion

Finitism is the ontological doctrine that there exist only finitely many num-
bers, whereas infinitism is the ontological doctrine that there exist infinitely
many numbers. The general problem for finitism is that even finite sets of sen-
tences from the language of first-order logic are sometimes only true in models
with infinite domains. This is connected to the problem of recasting finite frag-
ments of classical mathematics in finitist terms. To solve this problem Van Ben-
degem has proposed a translation strategy and a new type of models, namely
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finite (quasi-)models. A striking feature of the latter is that they contain a
‘largest number’ that does not satisfy any of the primitive predicates. Hence
why Horsten dubbed this ‘apophatic finitism’. As it turns out, the ‘truths” of
infinitism, namely the sentences that are true in a given model with an infinite
domain that are translated according to Van Bendegem’s translation strategy,
are also ‘truths’ of finitism in the sense that they are true in an appropriate
(quasi-)model.

With Van Bendegem’s solution to the general problem there came a new
problem on the horizon: Van Bendegem'’s translation strategy is adequate when
it comes to representing within apophatic finitism the positive ontological com-
mitments of infinitism but not its negative ontological commitments. To repeat,
this is like a polytheist grasping that a monotheist believes in the existence
of a god without grasping that that person rejects the existence of any other
gods. It was then shown that there is a variety of infinitism, namely apophatic
infinitism, for which it holds that, under a certain relative interpretation, it
can represent both the positive and the negative ontological commitments of
apophatic finitism. This makes that relative interpretation superior to Van Ben-
degem’s translation. Alas, it turns out that it cannot be used by the apophatic
finitist to represent the positive ontological commitments of infinitism (whether
it is apophatic or not). To repeat, this is like the Greek polytheist grasping that
the Jewish monotheist repudiates the existence of Ares but failing to grasp that
that person accepts the existence of Yahweh.
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