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Abstract

From Leibniz to Krauss philosophers and scientists have raised the question as
to why there is something rather than nothing (henceforth, the �estion). Why-
questions request a type of explanation and this is o�en thought to include a
deductive component. With classical logic in the background only trivial answers
are forthcoming. With free logics in the background, be they of the negative,
positive or neutral variety, only question-begging answers are to be expected.
�e same conclusion is reached for the modal version of the �estion, namely
‘Why is there something contingent rather than nothing contingent?’ (except that
possibility of answers with neutral free logic in the background is not explored).
�e categorial version of the �estion, namely ‘Why is there something concrete
rather than nothing concrete?’, is also discussed. �e conclusion is reached that
deductive explanations are question-begging, whether one works with classical
logic or positive or negative free logic. I also look skeptically at the prospects of
giving causal-counterfactual or probabilistic answers to the �estion, although
the discussion of the options is less comprehensive and the conclusions are more
tentative. �e meta-question, viz. ‘Should we not stop asking the �estion’, is
accordingly tentatively answered a�rmatively.

Keywords Existence; Nothingness; Why-questions; Explanations; Free Logic

1 Introduction: �e�estion and Logic
�e central question of this article (henceforth called the �estion) is: why there is
something rather than nothing? �e following modal question (henceforth called the
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Modal �estion) will also be considered: why is there something contingent rather
than nothing contingent? �ese were the questions originally asked by Leibniz (1714).
Another question that is of a more recent origin is the following question (henceforth
called the Categorial �estion): why is there something concrete rather than nothing
concrete?

Ever since Leibniz raised the �estion and the Modal �estion, philosophers con-
tinue to re�ect on these questions and variations on them and this remains true of
contemporary times – see e.g. (Sommers, 1966; Fleming, 1988; Van Inwagen and Lowe,
1996; Carlson and Olsson, 2001; Rundle, 2004; Par�t, 2004; Grünbaum, 2004; Maitzen,
2012; Goldschmidt, 2013). �at being said, several philosophical participants to the de-
bate, notably Grünbaum (2004) and Maitzen (2012), have come to the conclusion that it
is an ill-posed question. Grünbaum (2004) calls into question the so-called ‘spontane-
ity of nothingness’, which shi�s the burden of explanation to there being something.
He is in favour of asking the counterquestion as to why there should be nothing (con-
tingent) rather than something (contingent). Maitzen (2012) calls into question the
determinateness of the question, because he thinks that ‘thing’ is a so-called dummy
sortal for which instances there are no clear criteria of identity. �is article will also
present a skeptical outlook, albeit from a di�erent perspective than Grünbaum (2004)’s
or Maitzen (2012)’s.

A recent development is that some scientists have also started to think about the
�estion. What is more, they claim to have answered the �estion (Krauss, 2012;
Mlodinow and Hawking, 2010). Here is Richard Dawkins, who wrote the a�erword of
(Krauss, 2012):

Even the last remaining trump card of the theologian, ‘Why is there some-
thing rather than nothing?,’ shrivels up before your eyes as you read these
pages. If ‘On the Origin of Species’ was biology’s deadliest blow to su-
pernaturalism, we may come to see ‘A Universe From Nothing’ [(Krauss,
2012)] as the equivalent from cosmology. �e title means exactly what it
says. And what it says is devastating.

�e alleged answer to the �estion invokes the scienti�c hypothesis that seemingly
empty space is pervaded by quantum �elds that carry energy. Albert (2012) rightly
criticizes this a�empt at answering the �estion:

Relativistic-quantum-�eld-theoretical vacuum states – no less than gira�es
or refrigerators or solar systems – are particular arrangements of elemen-
tary physical stu�. �e true relativistic-quantum-�eld-theoretical equiva-
lent to there not being any physical stu� at all isn’t this or that particular
arrangement of the �elds – what it is (obviously, and ineluctably, and on
the contrary) is the simple absence of the �elds! �e fact that some ar-
rangements of �elds happen to correspond to the existence of particles
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and some don’t is not a whit more mysterious than the fact that some of
the possible arrangements of my �ngers happen to correspond to the ex-
istence of a �st and some don’t. And the fact that particles can pop in and
out of existence, over time, as those �elds rearrange themselves, is not a
whit more mysterious than the fact that �sts can pop in and out of exis-
tence, over time, as my �ngers rearrange themselves. And none of these
poppings – if you look at them aright – amount to anything even remotely
in the neighborhood of a creation from nothing.

Albert’s point, namely that in a�empting to answer the �estion Krauss already pre-
supposes that something exists, will be generalized in the present article. I don’t in-
tend to criticize the particular naturalistic answer that has been put forward. I intend
to criticize any answer that satis�es certain conditions. And my criticism is in spirit
very similar to the point made by Albert.

In this article the main but not exclusive focus is on a logical investigation into the
�estion. For this purpose one needs to have a rough idea about the logic of why-
questions, since the �estion is a why-question. Building on Hempel and Oppenheim
(1948)’s classical theory about explanations, Bromberger (1966, p. 604) developed what
appears to be the �rst modern theory about why-questions. Let us apply his theory
of why-questions to the why-question at hand. �e question has a presupposition,
viz. that there is something rather than nothing. A sentence is only then an answer
to the question why there is something if the presupposition is deducible from the
sentence together with other true premises. Bromberger (1966)’s speci�c account was
criticized by Teller (1974) along similar lines as the well-known criticism of Hempel
and Oppenheim (1948)’s theory of explanation. Later, Hintikka and Halonen (1995)
and Schurz (2005) developed their own theories about why-questions in turn. �e
details of their theories di�er, but each defends the idea that answers to why-questions
stand in a deductive relation to what an explanation is asked for – see e.g. (Hintikka
and Halonen, 1995, p. 648) and (Schurz, 2005, 171-172). So, whatever else needs to be
satis�ed in order to answer the �estion, at the very least one needs a set of true
premises from which one can logically deduce that something exists. �e former is
the most prominent approach to why-questions in the literature, but it is not the only
one. Notably Koura (1988) investigates non-deductive explanations as answers to why-
questions. In particular, he studies causal and probabilistic explanations that serve as
answers to why-questions.

As noted by Salmon (1992) it is disputed whether every kind of explanation can
function as an answer to a why-question. Still, it is worth to have a brief look at the
theories of explanation, even if perhaps not every kind of explanation will do as an an-
swer to a why-question. Some might think that the extant literature on why-questions
is too much in�uenced by an outdated model of scienti�c explanation, namely Hempel
and Oppenheim (1948)’s deductive-nomological theory of scienti�c explanation. But
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the la�er is not the only theory of explanation that has a deductive element in it. A
prominent contemporary theory about explanation is the uni�cation approach put for-
ward by Kitcher (1981, 1989). Roughly, an event is explained by deducing it from the
most unifying scienti�c theory. Another example is the kairetic account introduced by
Strevens (2004, 2008), according to which a causal model explains an event only if the
event is entailed by it. To be sure, there are accounts of scienti�c explanation that are
not deductive. But the important point is that there still are prominent approaches to
explanation that do contain deductive elements. On this point there is no big discon-
nect between the literature on why-questions on the one hand and the literature on
(scienti�c) explanations on the other hand. Nevertheless, it is also important to discuss
the prospects of non-deductive answers to the �estion.

Let us assume for now that answers to why-questions involve deductive arguments
and, therefore, depend on logic. �is brings me to investigate the relation between
the �estion on the one hand and logic on the other hand. In Section 2 I look at
the relation between the �estion and the canonical theory about logical deduction,
to wit classical �rst-order logic with identity. In Section 3 I scrutinize the relation
between the �estion on the one hand and free �rst-order logic with identity on the
other hand. Section 4 is devoted to the Modal �estion and the Categorial �estion.
�ese questions also studied from both the perspective of classical logic and free logic.
Although the main focus of this article is on deductive answers to the �estion, I will
brie�y comment on causal and probabilistic answers in Section 5. Finally, in Section 6
I summarize my �ndings and discuss my conclusions.

2 �e�estion and Classical Logic
Let us consider �rst-order logic with identity,CL=. I assume familiarity with the syntax
and semantics of the language of C=, namely L=, and with proof systems for classical
�rst-order logic with identity – see (Halbach, 2010). One of the uses of identity is
to express numerosity (Halbach, 2010, ch. 8) and this is key to understand the way
existence is expressed in L=. Suppose that P stands for being a Wagner opera. One
can use:

∃xPx ; (1)
∃x∃y (Px ∧ Py ∧ x , y) ; (2)

∃x∃y∃z (Px ∧ Py ∧ Pz ∧ x , y ∧ x , z ∧ y , z) (3)

to express respectively that:

there is at least one Wagner opera; (4)
there are at least two Wagner operas; (5)

there are at least three Wagner operas. (6)

4



If one wants to abstract away from Wagner operas, one needs a universal property.
Self-identity, viz. x = x , will do, since the law of self-identity is a theorem of the logic
of identity. With the help of the predicate that expresses self-identity one can use the
following sentences:

∃x (x = x) ; (7)
∃x∃y (x = x ∧ y = y ∧ x , y) ; (8)

∃x∃y∃z (x = x ∧ y = y ∧ z = z ∧ x , y ∧ x , z ∧ y , z) (9)

to express respectively that:

there is at least one thing; (10)
there are at least two things; (11)

there are at least three things. (12)

Note �rst that the two last formulas are respectively equivalent to:

∃x∃y (x , y) ; (13)
∃x∃y∃z (x , y ∧ x , z ∧ y , z) ; (14)

Second, note that ∃x (x = x) is truth-conditionally equivalent to ∃x∃y (x = y). �is is
by way of motivating the following de�nition, which introduces the existence predi-
cate, E!.

De�nition 1 (Existence). E!t =d f ∃x (x = t), for any term t .

Importantly, the proof principles ofCL= and in particular the principle of existential
generalisation and the law of self-identity allow one to prove that ∃xE!x . In other
words, that there is at least one thing is a theorem of CL=. But then it deductively
follows from any set of premises. Consequently, none of these premises is deductively
essential: the conclusion follows even without them. So, any potential answer violates
a non-triviality constraint, viz. that it is only then an answer when without it one
cannot deduce that there is at least one thing – see e.g. (Hintikka and Halonen, 1995,
p. 648). From the point of view of standard logic, the question why there is something
rather than nothing can only be answered in a trivial way.

Non-trivial answers can only be forthcoming if it is not a theorem of logic that there
exists at least one thing. For this purpose one should drop classical logic in favour of
free logic, which is so-called because it is free of existential commitment. �e relation
between the �estion and free logic is the topic of the next section.
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3 �e�estion and Free Logic
�ere are three main varieties of free logic. Suppose that nothing exists. How does this
a�ect the truth-value of atomic subject-predicate sentences? �ere are three options:

1. they are false;

2. they can be true;

3. they are neither true nor false.

�e �rst variation is known as negative free logic, the second as positive free logic,
the third as neutral free logic. �e three subsections deal with each variation in turn.
�e emphasis will be on proof theory, not model theory, since deduction is the central
notion in the logic of why-questions. Details about free logics can be found in (Nolt,
2014) and (Lehmann, 2002).

3.1 �e�estion and Negative Free Logic
Apart from the axiom schemes of sentential logic, the following are the axiom schemes
of negative free �rst-order logic with identity (NFL=):

A1 ϕ → ∀xϕ, with x not free in ϕ;

A2 ∀x (ϕ → ψ ) → (∀xϕ → ∀xψ )

A3 ∀xϕ, if ϕ (t/x) is an axiom;

A4 ∀xϕ → (E!t → ϕ (t/x));

A5 ∀x (x = x);

A6 t = t ′ → (ϕ → ϕ′), with ϕ′ identical to ϕ except that zero or more occurrences of
t have been replaced by t ′;

A7 P (t1, . . . , tn) → E!ti , with 1 ≤ i ≤ n and with P any n-place predicate, including
the identity predicate;

A8 E!f (t1, . . . , tn) → E!ti , with 1 ≤ i ≤ n.

�e only rule of inference is modus ponens. For convenience we will assume that no
free variables occur in the above terms and formulas, except possibly x in ϕ or ψ in
A2 or in ϕ in A3 or A4. Axiom scheme A4 is characteristic for free logic, while axiom
schemes A7 and A8 are characteristic for negative free logic. It is important to notice
that one cannot prove the reverse of axiom scheme A1, although it is a theorem of
classical logic. Especially important is that axiom scheme A1 is equivalent to
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A1∗ ∃xϕ → ϕ (with x not free in ϕ).

Naturally, the converse is also not provable. Also important is that axiom scheme A4
is equivalent to:

A4∗ (E!t ∧ ϕ (t/x)) → ∃xϕ.

Although the o�cial proof system is the axiomatic one, the following natural deduc-
tion rules will also be used sometimes:

∀I Given a derivation of ϕ (c/x) from E!c , where c is a new individual constant and
does not occur in ϕ, discharge E!c and infer ∀xϕ.

∃E Given ∃xϕ and a derivation of a formula ψ from ϕ (c/x) ∧ E!c , where c is a new
individual constant and does not occur in either ϕ or ψ , discharge ϕ (c/x) ∧ E!c
and inferψ from ∃xϕ.

�e above rules can be derived in the axiomatic proof system.
�e main result of this subsection is that any deduction with an existential conclu-

sion (i.e., a sentence of the form ∃xψ for someψ ) starts from at least one premise that
is itself existential or that is logically equivalent to an existential assumption.

Lemma 1. For every sentence ϕ there is formulaψ with at most one free variable x such
that `NFL= ϕ ↔ ∃xψ or `NFL= ϕ ↔ ∀xψ .

Proof. �e proof is by induction on the complexity of ϕ.
Case 1: suppose that ϕ is P (t1, . . . , tn), with P an n-place predicate (possibly the

identity predicate) and with t1, . . . , tn terms. �en one can prove that ϕ is provably
equivalent in NFL= to:

∃x1 . . . ∃xn (x1 = t1 ∧ · · · ∧ xn = tn ∧ P (x1, . . . , xn)) .

For the le�-to-right direction use axiom scheme A7 to derive that

P (t1, . . . , tn) ∧ E!t1 ∧ · · · ∧ E!tn .

Use the combination of axiom schemes A5 and A4 to further derive that t1 = t1 ∧
· · · ∧ tn = tn. �e conclusion follows by A4∗. For the right-to-le� direction use ∃E and
axiom scheme A6.

Case 2: suppose that ϕ is ¬θ . By the induction hypothesis, there is formulaψ with
at most one free variable x such that `NFL= θ ↔ ∃xψ or `NFL= θ ↔ ∀xψ . But then one
can prove that ¬θ is equivalent to ¬∃xψ or, equivalently, ∀x¬ψ , or one can prove that
¬θ is equivalent to ¬∀xψ or, equivalently, ∃x¬ψ .

Case 3: suppose that ϕ is θ → ρ. We have to consider four subcases.
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Case 3.1: θ is provably equivalent to ∃xα and ρ to ∃xβ . �en ϕ is provably equiv-
alent to ∀x (α → ∃xβ). Let us prove both directions by reductio ad absurdum. For the
le�-to-right direction suppose that ∃xα → ∃xβ but ¬∀x (α → ∃xβ). �en

∃x (α ∧ ¬∃xβ) .

Proceed by ∃E. Suppose that E!c ∧ α (c/x) ∧ ¬∃xβ . �e last conjunct together with
the �rst main assumptions entails that ¬∃xα . Using A4 one can derive that E!c →
¬α (c/x), which quickly leads to a contradiction. For the right-to-le� direction suppose
that ∀x (α → ∃xβ) but ¬ (∃xα → ∃xβ). It follows that ∃xα ∧ ¬∃xβ . Continuing with
∃E, assume that E!c ∧ α (c/x). With A4 and the �rst of the main assumptions one
can deduce that E!c → (α (c/x) → ∃xβ) and, hence, α (c/x) → ∃xβ and, �nally, ∃xβ .
Contradiction.

Case 3.2: θ is provably equivalent to ∀xα and ρ to ∀xβ . �en ϕ is provably equiv-
alent to ∀x (∀xα → β). Let us prove both directions by reductio ad absurdum. For
the le�-to-right direction suppose that ∀xα → ∀xβ but ¬∀x (∀xα → β). Exchang-
ing the quanti�er in the second assumption and proceeding by ∃E assume that E!c ∧
∀xα ∧ ¬β (c/x). Together with the �rst assumption this entails that ∀xβ . By A4
one can deduce that E!c → β (c/x), which quickly leads to a contradiction. For the
right-to-le� direction suppose that ∀x (∀xα → β) but ¬ (∀xα → ∀xβ). �en it fol-
lows that ∀xα ∧ ¬∀xβ . Exchanging the quanti�er and proceeding by ∃E assume that
E!c ∧ ¬β (c/x). Next, use A4 to derive E!c → (∀xα → β (c/x)) from the �rst main
assumption. �is yields β (c/x). Contradiction.

Case 3.3: θ is provably equivalent to ∃xα and ρ to ∀xβ . �en ϕ is provably equiv-
alent to ∀x (α → ∀xβ). Let us prove both directions by reductio ad absurdum. For the
le�-to-right direction suppose that ∃xα → ∀xβ but ¬∀x (α → ∀xβ). Exchanging the
quanti�er and proceeding by ∃E assume that E!c ∧ α (c/x) ∧ ¬∀xβ . �e last conjunct
together with the �rst main assumption entails that ¬∃xα . Exchanging the quanti�er
and using A4 one can deduce that E!c → ¬α (c/x), which quickly leads to a contra-
diction. For the right-to-le� direction suppose that ∀x (α → ∀xβ) but ¬ (∃xα → ∀xβ).
�e la�er implies that ∃xα ∧ ¬∀xβ . Proceeding by ∃E assume that E!c ∧ α (c/x). By
A4 one can deduce from the �rst main assumption that E!c → (α (c/x) → ∀xβ). So,
∀xβ and, hence, contradiction.

Case 3.4: θ is provably equivalent to ∀xα and ρ to ∃xβ . �en ϕ is provably equiv-
alent to ∃x (∀xα → β). Let us prove both directions by reductio ad absurdum. For the
le�-to-right direction suppose that ∀xα → ∃xβ but ¬∃x (∀xα → β). Let us reason
by cases from the �rst assumption. A�er exchanging the quanti�ers the �rst case is
∃x¬α . Proceeding by ∃E assume that E!c ∧ ¬α (c/x). Exchange the quanti�ers of the
second main assumption and use A4 to derive that E!c → (∀xα ∧ ¬β (c/x)). �erefore,
∀xα . Use A4 once more to derive E!c → α (c/x). �is quickly leads to contradiction.
�e second case is ∃xβ . Proceeding by ∃E assume that E!c ∧ β (c/x). Use A4 to derive
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that E!c → (∀xα ∧ ¬β (c/x)). Hence, ¬β (c/x). Contradiction. For the right-to-le�
direction suppose that ∃x (∀xα → β) but ¬ (∀xα → ∃xβ). We are going to use ∃E and
suppose that E!c ∧ (∀xα → β (c/x)). It follows from the second main assumption that
∀xα ∧ ¬∃xβ . Hence, β (c/x). By A4 it also follows, a�er exchanging the quanti�er,
that E!c → ¬β (c/x). Contradiction follows quickly.

Case 4: ϕ is ∀xθ . �is is trivial. �

�eorem 1. An existential sentence can only be deduced in NFL= from a set of sentences
Γ if at least one of the sentences in Γ is provably equivalent to an existential sentence.

Proof. Consider a set of sentences Γ. Either all sentences in Γ are not provably equiv-
alent to existential sentences or at least one sentence in Γ is provably equivalent to an
existential sentence. In the �rst case it follows by Lemma 1 that they are all equivalent
to universally quanti�ed sentences. But a model with an empty domain of quanti�ca-
tion makes all the universally quanti�ed sentences true while making any existentially
quanti�ed sentence false. So in the �rst case one cannot validly deduce an existential
sentence from Γ. So, if one can validly deduce an existential sentence from Γ, then at
least one of the sentences of Γ is logically equivalent to an existential sentence.

�

Whereas CL= has a problematic relation with the �estion because it has as a
theorem that there exists something, NFL= does not have the existential claim as a
theorem but it does only yield an existential output if there is an existential input.
�ere is no free lunch in negative free logic. I take this result to mean that answers to
the �estion are question-begging, because the arguments that are the explanations
are question-begging. According to Jacque�e (1993, p. 319, 322), an argument A is
question-begging if and only if

(1) [. . . ] A contains premise P and conclusion C, and P presupposed C.
(2’) P presupposes C if and only if it is not justi�ed to believe P unless it is
justi�ed to believe C.

Similarly, Fischer and Pendergra� (2013, p. 584) claim that

[. . . ] an argument begs the question just in case the proponent of the ar-
gument has no reason to accept the relevant premise, apart from a prior
acceptance of the conclusion.

I claim that these conditions are ful�lled in the case of deductive arguments for the
existence of something. If such arguments have to start from at least one premise
that is itself existential or logically equivalent to an existential assumption, then that
premise is only justi�ed if the existential conclusion is justi�ed.
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3.2 �e�estion and Positive Free Logic
�e axiomatic theory laid out in the previous subsection contains the core of positive
free logic as well: axiom schemes A1-A4, A6 are retained, but A5 is replaced by

A5∗ t = t

and A7-A8 are dropped. Axiom scheme A5∗ is characteristic for positive free logic.
Since A7 has been dropped, one cannot get the proof of a result similar to Lemma

1 o� the ground: the base case depends essentially on A7.
�e main result of this subsection is that any deduction with an existential conclu-

sion starts from at least one premise that is itself existential or it starts from premises
the conjunction of which is logically equivalent to an existential assumption.

�eorem 2. An existential sentence can only be deduced in PFL= from a set of sentences
Γ if at least one of the sentences in Γ is an existential sentence or there are sentences in Γ
such that their conjunction is logically equivalent to an existential sentence.

Proof. �e proof is by induction on Γ `PFL= ∃xϕ, with ϕ a formula with at most x free.
Case 1: no existential sentence is a logical axiom of PFL=.
Case 2: if ∃xϕ ∈ Γ, then the condition holds, since ∃xϕ is an existential sentence.
Case 3: there is a ψ such that Γ `PFL= ψ and Γ `PFL= ψ → ∃xϕ. �e claim is that

ψ ∧ (ψ → ∃xϕ) is logically equivalent to an existential sentence. In what follows keep
in mind that we are dealing with sentences here. First, note that, given ψ → ∃xϕ, it
also follows that ψ → ∃xψ . Since ψ → ∃xϕ is logically equivalent to ¬ψ ∨ ∃xϕ, we
can argue by cases. Indeed, if ¬ψ , then ψ → ∃xψ , and if ψ , then ∃xϕ and so by ∃E
and A4∗ ψ → ∃xψ as well. Second, given the previous result and A1∗, it follows that
Γ `PFL= ψ ↔ ∃xψ . �ird, ∃xψ ∧ (ψ → ∃xϕ) logically entails ∃x (ψ ∧ (ψ → ∃xϕ)). �e
proof is by ∃E and axiom scheme A4∗. �erefore, ∃x (ψ ∧ (ψ → ∃xϕ)) is entailed by
ψ ∧ (ψ → ∃xϕ). Given A1∗, ∃x (ψ ∧ (ψ → ∃xϕ)) entailsψ ∧ (ψ → ∃xϕ).

Of course,ψ orψ → ∃xϕ may not belong to Γ. �en there is a �nite (and possibly
empty) set of sentences α1, . . . ,αn such that α1, . . . ,αn ∈ Γ and

α1, . . . ,αn `PFL= ψ .

Furthermore, there is a �nite (and non-empty) set of sentences β1, . . . , βm such that
β1, . . . , βm ∈ Γ and

β1, . . . , βm `PFL= ψ → ∃xϕ .

�erefore,
α1, . . . ,αn, β1, . . . , βm `PFL= ψ ∧ (ψ → ∃xϕ) .

As we have seen, the conclusion is logically equivalent to ∃x (ψ ∧ (ψ → ∃xϕ)). It is a
consequence that

α1, . . . ,αn, β1, . . . , βm `PFL= ∃x (ψ ∧ (ψ → ∃xϕ)) .
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Hence,
α1, . . . ,αn, β1, . . . , βm `PFL= α1 → ∃x (ψ ∧ (ψ → ∃xϕ)) .

By familiar reasoning, it follows that

α1, . . . ,αn, β1, . . . , βm `PFL= α1 → ∃xα1,

which entails that
α1, . . . ,αn, β1, . . . , βm `PFL= ∃xα1,

and therefore also

α1, . . . ,αn, β1, . . . , βm `PFL= ∃xα1 ∧ . . . αn ∧ β1 ∧ · · · ∧ βm .

�e existence quanti�er distributes over sentences, so the conclusion is that

α1, . . . ,αn, β1, . . . , βm `PFL= ∃x (α1 ∧ . . . αn ∧ β1 ∧ · · · ∧ βm) .

�e other direction can be proved by axiom scheme A1∗. �

Corollary 1. An existential sentence can only be deduced in PFL= from a set of sentences
Γ if and only if it can be deduced from a set of sentences Γ∗ that contains at least one
existential sentence or a sentence that is logically equivalent to an existential sentence.

�e philosophical import of Corollary 1 is again taken to be that any purported
answer to the �estion is question-begging.

3.3 �e�estion and Neutral Free Logic
�e third and �nal variation is neutral free logic (NEFL=). In fact, there are quite a
few options one can take, depending on how one wants to calculate the truth-value of
formulas that have subformulas that are neither true nor false. For the sake of conve-
nience, I will restrict myself to the Fregean option: complex formulas that have subfor-
mulas that are neither true nor false are themselves neither true nor false. �e proof
theory is quite di�erent from NFL= and PFL=. I will brie�y describe the tree proof
system developed by Lehmann (2002, 235-237).

A marker ∗ is added to L=. If ϕ is a well-formed formula of L=, then ϕ∗ is a well-
formed formula of L∗=. �ink of the star marker as an indicator that the formula has a
determinate truth value. An elementary formula is an atomic formula or its negation.
�e tree proof rules can be found in Table 1.1

If α is a quanti�ed formula or the negation thereof, or an elementary formula, each
term of which occurs in an elementary ∗-formula above α∗, then the following tree
proof rule applies:

1Lehmann (2002) did not provide rules for vacuously quanti�ed sentences.
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¬¬α

α

¬¬α∗

α∗

α → β

¬α β

(α → β)∗

α∗

β∗
¬α∗

β∗
¬α∗

¬β∗

¬(α → β)

α
¬β

α
¬α

β
¬β

¬(α → β)∗

α∗

¬β∗

α(s)
s = t∗

α(t)

α(s)∗

s = t∗

α(t)∗

if α is an elementary formula
∀xα(x)∗

α(t)

¬∃xα(x)∗

¬α(t)
if t occurs in an elementary ∗-formula above α(t) or ¬α(t)

¬∀xα(x)∗

y = y∗

¬α(y)∗

∃xα(x)∗

y = y∗

α(y)∗

if y does not occur free above y = y∗

Table 1: Tree proof rules for NEFL=
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α

α∗

A branch closes if and only if

1. it contains a formula and its negation and at least one of those two formulas is a
∗-formula, or

2. it contains t , t∗ for some term t .

A tree is closed if and only if each of its branches is closed.
One can distinguish between three di�erent deducibility relations:

1. Γ `1 ϕ i� the tree starting with Γ∗ (i.e., {ϕ∗ | ϕ ∈ Γ}) and ¬ϕ∗ closes;

2. Γ `2a ϕ i� the tree starting with Γ∗ and ¬ϕ closes;

3. Γ `2b ϕ i� the tree starting with Γ and ¬ϕ∗ closes.

�e �rst deducibility relation is supposed to correspond with inferences that do not
lead from true premises to false conclusions. �e second deducibility relation is sup-
posed to correspond with truth-preserving inferences, while the third deducibility re-
lation is supposed to correspond to inferences that preserve non-falsehood. �e notion
of deducibility that is most relevant here is the second one. For theories about deduc-
tive explanations hold that an explanans has to be true. �erefore, an explanans has to
have a determinate truth value, which is syntactically indicated by the star. �is rules
out the third notion of deducibility. In favour of using the second notion and not the
�rst notion is that the notion of provable equivalence that can be de�ned with it has
two useful properties that it otherwise would not have. First, it allows the substitution
of a true sentence in the premise set with another sentence that is provably equivalent
to it and, hence, is true as well. Second, it allows the substitution of a subsentence
of a starred sentence, which itself also has a determinate truth value, with another
sentence that is provably equivalent to it and, hence, has the same determinate truth
value. Both properties will be used below.

With the proof theory in place we are ready to prove the following crucial lemma:

Lemma 2. For every sentence ϕ there is a formula ψ with one free variable x such that
ϕ a2a`2a ∃xψ (x) or ϕ a2a`2a ∀xψ (x).

Proof. �e proof is by induction on the complexity of ϕ. �e tree proofs for all the
claimed equivalences can be found in Appendix A.

Case 1-i: ϕ is P (t1, . . . , tn), with P an n-place predicate (possibly the identity pred-
icate) and with t1, . . . , tn terms. �e sentence in question logically entails

∃x1 . . . ∃xn (x1 = t1 ∧ · · · ∧ xn = tn ∧ P (x1 ∧ · · · ∧ xn)) .
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Case 1-ii: ϕ is ¬P (t1, . . . , tn), with P an n-place predicate (possibly the identity
predicate) and with t1, . . . , tn terms. �e sentence in question logically entails

∃x1 . . . ∃xn (x1 = t1 ∧ · · · ∧ xn = tn ∧ ¬P (x1 ∧ · · · ∧ xn)) .

Case 2: ϕ is¬¬ψ . Given the induction hypothesis and the rules for double negation,
this is trivial.

Case 3-i: ϕ is (α → β). �ere are four subcases to consider.
Case 3.1-i: ϕ is (∃xψ1 (x) → ∃xψ2 (x)). �e la�er is provably equivalent to

∀x (ψ1 (x) → ∃xψ2 (x)) .

Case 3.2-i: ϕ is (∀xψ1 (x) → ∀xψ2 (x)). �e la�er is provably equivalent to

∀x (∀xψ1 (x) → ψ2 (x)) .

Case 3.3-i: ϕ is (∃xψ1 (x) → ∀xψ2 (x)). �e la�er is provably equivalent to

∀x (ψ1 (x) → ∀xψ2 (x)) .

Case 3.4-i: ϕ is (∀xψ1 (x) → ∃xψ (x)). �e la�er is provably equivalent to

∃x ((∀xψ1 (x) → ∃xψ (x)) ∧ x = x) .

Case 3-ii: ϕ is ¬ (α → β). �ere are four subcases to consider.
Case 3.1-ii: ϕ is ¬ (∃xψ1 (x) → ∃xψ2 (x)). �e la�er is provably equivalent to

∃x¬ (ψ1 (x) → ∃xψ2 (x)) .

Case 3.2-ii: ϕ is ¬ (∀xψ1 (x) → ∀xψ2 (x)). �e la�er is provably equivalent to

∃x¬ (∀xψ1 (x) → ψ2 (x)) .

Case 3.3-ii: ϕ is ¬ (∃xψ1 (x) → ∀xψ2 (x)). �e la�er is provably equivalent to

∃x¬ (∃xψ1 (x) → ψ2 (x)) .

Case 3.4-ii: ϕ is ¬ (∀xψ1 (x) → ∃xψ (x)). �e la�er is provably equivalent to

∀x ((∀xψ1 (x) → ∃xψ (x)) ∧ x = x) .

Case 4-i: ϕ is ∃xψ (x) or ∀xψ (x). �is is trivial.
Case 4-ii: ϕ is ¬∃xψ (x) or ¬∀xψ (x). It is provable that ¬∃xψ (x) is equivalent to

∀x¬ψ (x) and that ¬∀xψ (x) is equivalent to ∃x¬ψ (x).
Again, the tree proofs for all the claimed equivalences can be found in Appendix

A.
�

14



�eorem 3. An existential sentence can only be deduced in NEFL= (in the sense of `1 or
`2a) from a set of sentences Γ if at least one of the sentences in Γ is an existential sentence
or logically equivalent (in the sense of `2a) to one.

Proof. For any sentence ϕ ∈ Γ there is a formula ψ with one free variable such that
ϕ a2a`2a ∃xψ (x) or ϕ a2a`2a ∀xψ (x) (Lemma 2). Suppose that they are all provably
equivalent to universally quanti�ed sentences only. �en an existential sentence can-
not be deduced. �e only rule that can applied to universally quanti�ed sentences is
the instantiation rule. But that rule can only be applied if there is a term t that occurs
in an elementary ∗-sentence higher up. In the proof of Lemma 2 it was shown that ele-
mentary ∗-sentences are provably equivalent to existentially quanti�ed sentences. By
contraposition, a valid deduction of an existential sentence from a set of starred sen-
tences can only happen if at least one of the starred sentences is logically equivalent
to an existential sentence. �

�e philosophical lesson of �eorem 3 is once again that any potential answer to
the �estion is question-begging.

4 �e Modal�estion and the Categorial�estion
One might object that the logical investigation of the �estion is nice, but the �estion
is not the real question. Rather the real question is the Modal question, viz. ‘Why is
there something contingent rather than nothing contingent?’. Or maybe the be�er
question is the Categorial �estion, viz. ‘Why is there something concrete rather than
nothing concrete?’. Let us discuss these more restricted questions in turn.

To carry out a logical investigation into the Modal �estion, we need to consider
a �rst-order language with identity and a necessity operator �, viz. L=,�. It has the
expressive resources to express that something contingent exists:

∃x (E!x ∧ ¬�E!x) . (15)

Note that the above is logically equivalent to ∃x¬�E!x , regardless of whether one uses
classical logic or free logic.

With classical �rst-order logic with identity and the weakest normal modal system,
K, in the background one can prove that everything has necessary existence, expressed
by∀x�E!x or∀x�∃y (x = y) – see (Menzel, 2014). �is makes the presupposition of the
Modal �estion logically false. �erefore, no sound argument for the presupposition
is forthcoming.

�e situation is di�erent with free modal logic. Let us call it NFL=,�. or PFL=,�,
depending on whether it is an extension of negative free logic or positive free logic. �e
la�er are extended with modal system S5. For more on axiomatic modal free logic, see
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(Hughes and Cresswell, 1996, p. 293-296).2 Necessary existence is no longer a theorem.
So the presupposition of the Modal �estion is not logically false. Still, one can prove
a result analogous to �eorem 2.

�eorem 4. A sentence of the form ∃x (¬�E!x ∧ ϕ) can only be deduced in N /PFL=,�
from a set of sentences Γ if at least one of the sentences in Γ is a sentence of the form
∃x (¬�E!x ∧ψ ) or there are sentences in Γ such that their conjunction is provably equiv-
alent to a sentence of the form ∃x (¬�E!x ∧ψ ).

Proof. �e proof is by induction on Γ `N /PFL=,� ∃x (¬�E!x ∧ ϕ), with ϕ a formula with
at most x free.

Case 1: no sentence of the form ∃x (¬�E!x ∧ ϕ) is a logical axiom of N /PFL=,�.3
Case 2: if ∃x (¬�E!x ∧ ϕ) ∈ Γ, then the condition holds.
Case 3:4 there is aψ such that Γ `N /PFL=,� ψ and

Γ `N /PFL=,� ψ → ∃x (¬�E!x ∧ ϕ) .

First, note that, givenψ → ∃x (¬�E!x ∧ ϕ), it also follows that

ψ → ∃x (¬�E!x ∧ψ ) .

Since ψ → ∃x (¬�E!x ∧ ϕ) is logically equivalent to ¬ψ ∨ ∃x (¬�E!x ∧ ϕ), we can
argue by cases. Indeed, if ¬ψ , thenψ → ∃x (¬�E!x ∧ψ ), and ifψ , then by the fact that
ψ is a sentence, ∃E and A4∗ ψ → ∃x (¬�E!x ∧ψ ) follows as well. Second, given the
previous result, the fact that ψ is a sentence and ∃E, it follows that Γ `N /PPL=,� ψ ↔
∃x (¬�E!x ∧ψ ). �ird, ∃x (¬�E!x ∧ψ ) ∧ (ψ → ∃x (¬�E!x ∧ ϕ)) provably implies

∃x (¬�E!x ∧ψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ))) .
2�ere is one important di�erence between N /PFL=,� on the one hand and LPCE + S5, the system

in (Hughes and Cresswell, 1996), on the other hand: ϕ ↔ ∀xϕ (provided that x is not free in ϕ) is an
axiom scheme of LPCE + S5, whereas only the le�-to-right direction is an axiom scheme of N /PFL=,�.
Semantically, the di�erence is that in N /PFL=,� the world-relative domains of quanti�cation can be
empty, whereas they cannot in LPCE + S5. �e formal relevance of S5 consists in the fact that one
does not need to assume a certain primitive rule called UGL∀n . �e material relevance of S5 is due to
the fact that it is generally taken to the correct logic for metaphysical or counterfactual necessity – see
(Williamson, 2013) for an argument. �e dialectical relevance of S5 is that it gives very strong modal
resources to those who a�empt a deductive explanation.

3Note that, even if ϕ ↔ ∀xϕ (with x not free in ϕ) were one of the axiom schemes (as in LPCE + S5
– see footnote 4), this would still hold.

4Hughes and Cresswell (1996, p. 293) mention three other inference rules. For one of these, see note
4. �e two other rules are the rule of necessitation (if `N /PFL=,� ϕ, then `N /PFL=,� �ϕ) and the rule of
universal generalisation (if `N /PFL=,� ϕ, then `N /PFL=,� ∀xϕ). For the two others, note the following
two things. First, they can be made redundant, e.g. one can stipulate that all the axioms are necessary.
(Necessity is closed under modus ponens.) Second, in neither case is the conclusion of the inference of
the right syntactic form.
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�e proof is by ∃E and axiom scheme A4∗. �erefore,

∃x (¬�E!x ∧ψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ)))

is entailed byψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ)). �e other direction holds because of ∃E and
the fact thatψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ)) is a sentence.

Of course, ψ or ψ → ∃x (¬�E!x ∧ ϕ) may not belong to Γ. �en there is a �nite
(and possibly empty) set of sentences α1, . . . ,αn such that α1, . . . ,αn ∈ Γ and

α1, . . . ,αn `N /PFL=,� ψ .

Furthermore, there is a �nite (and non-empty) set of sentences β1, . . . , βm such that
β1, . . . , βm ∈ Γ and

β1, . . . , βm `N /PFL=,� ψ → ∃x (¬�E!x ∧ ϕ) .

�erefore,

α1, . . . ,αn, β1, . . . , βm `FL=,� ψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ)) .

As we have seen, the conclusion is provably equivalent to

∃x (¬�E!x ∧ψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ))) .

It is a consequence that

α1, . . . ,αn, β1, . . . , βm `N /PFL=,� ∃x (¬�E!x ∧ψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ))) .

Hence,

α1, . . . ,αn, β1, . . . , βm `N /PFL=,� α1 → ∃x (¬�E!x ∧ψ ∧ (ψ → ∃x (¬�E!x ∧ ϕ))) .

By familiar reasoning, it follows that

α1, . . . ,αn, β1, . . . , βm `N /PFL=,� α1 → ∃x (¬�E!x ∧ α1) ,

which entails that

α1, . . . ,αn, β1, . . . , βm `N /PFL=,� ∃x (¬�E!x ∧ α1) .

Since α1, . . . ,αn, β1, . . . , βm are sentences and since one has ∃E, the conclusion is that

α1, . . . ,αn, β1, . . . , βm `FL=,� ∃x (¬�E!x ∧ α1 ∧ . . . αn ∧ β1 ∧ · · · ∧ βm) .

�e other direction follows directly from ∃E and the assumption that

α1, . . . ,αn, β1, . . . , βm

are sentences.5 �
5Note that the proved equivalences in Case 3 are una�ected even if one were to add ϕ ↔ ∀xϕ (with

x not free in ϕ) as an axiom scheme.
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With free logic of either the positive or negative �avour in the background, it is not
only the �estion that can only receive question-begging answers, but also the Modal
�estion can only receive question-begging answers. For neutral free logic one would
need to have rules for �ϕ (∗) and ¬�ϕ (∗), but I am not going to pursue that option
here.

To carry out a logical investigation into the Categorial �estion, we need to con-
sider a �rst-order language with identity, the necessity operator � and a concreteness
predicateC , viz. L=,�,C . It has the expressive resources to express that something con-
crete exists:

∃x (E!x ∧C (x)) . (16)

Note that the above is logically equivalent to ∃xC (x), regardless of whether one uses
classical logic or free logic.

Some philosophers embrace the necessity of existence (∀x�E!x ), which is provable
in classical-�rst order logic with identity and modal system K (Linsky and Zalta, 1994;
Williamson, 2013). �ey think that the necessity of existence is defensible, as long as
one is careful not to interpret the quanti�ers as ranging over concrete objects only and,
if the domain of quanti�cation does contain concrete objects, then one should allow
objects to be contingently concrete. Coming from this angle one may want to refor-
mulate the Categorial �estion as follows: why does anything contingently concrete
exist rather than nothing? In other words, one requests an explanation for

∃x (E!x ∧C (x) ∧ ¬�C (x)) , (17)

which again can be simpli�ed to ∃x (C (x) ∧ ¬�C (x)). It is for this reason that I con-
sider a language that contains the necessity operator as well.

Now let me make two observations. First, one can a prove a theorem that is com-
pletely analogous to �eorem 4.

�eorem 5. A sentence of the form ∃x (C (x) ∧ ϕ) can only be deduced in N /PFL=,�,C
from a set of sentences Γ if at least one of the sentences in Γ is a sentence of the form
∃x (C (x) ∧ψ ) or there are sentences in Γ such that their conjunction is provably equiva-
lent to a sentence of the form ∃x (C (x) ∧ψ ).

Proof. Run through the proof of �eorem 4 and systematically replace ¬�E!x with
C (x). �

Second, unlike with the �estion and the Modal �estion one does not get trivial-
isation if classical logic in the background, but one can expect the deductive explana-
tions to be question-begging. Note that one can obtain classical logic from free logic
by adding ∃xE!x and E!t to the axioms. Neither of these has the form ∃x (C (x) ∧ ϕ).
Since classical logic is an extension of free logic and since ∃x (C (x) ∧ ϕ) still does not
belong to the axiomatic base, �eorem 5 applies as well.
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5 �e�estion andCausal andProbabilisticAnswers
So far we have been assuming that answers to why-questions are deductive arguments
and, hence, depend on logic. Let us now drop that assumption and have a brief look
at non-deductive answers. Koura (1988) studies two main alternatives, namely causal
answers and probabilistic answers. Let us discuss them in turn.

�e �rst main alternative consists in causal answers. As was already mentioned in
Section 1, there are variations of the causal approach that are deductive as well, notably
the kairetic account of Strevens (2004, 2008). But here the focus has to be on non-
deductive causal theories. Also, some of the theories about causation are probabilistic
in nature, notably the causal-relevance model of Salmon (1971). �is also has to be
put aside. What is le� is the counterfactual approach to causation, which goes back
to Lewis (1973a, 1986), but which nowadays comes in di�erent shapes (Woodward
and Hitchcock, 2003). Surveying all the possibilities would considerably lengthen this
article, so I propose to have a look at the simplest counterfactual theory of causation
(Lewis, 1973a): an event C causally depends on an event E if and only if, had C not
occurred, E would not have occurred, and if C had occurred, E would have occurred.
Let� be the symbol for the counterfactual conditional. �e condition on causation
can then be expressed as follows: (¬C� ¬E) ∧ (C� E). It is this theory that was
used by Koura (1988, p. 196) in his theory about why-questions.

Before we continue, it is important to stop for a moment and re�ect on the inter-
pretation of the symbols. It is all good and well to have a theory that is about the causal
relation between events, but events are located in space and time and this restricts the
applicability of the theory to the �estion. Let us assume then that the counterfactual
account has been properly generalized. I don’t need to provide any details here: that
is up for those who want to answer the �estion.

�e (simple) counterfactual approach to causation and, indirectly, explanation does
not allow for non-question-begging answers to the �estion. Suppose that there is a
sentence ϕ such that ϕ� ∃xE!x . Note that an important inference rule for counter-
factual conditionals is the following (Lewis, 1973b, p. 27): if ϕ � ψ , then ϕ → ψ .
So, we also have that ϕ → ∃xE!x . As Koura (1988, p. 196) points out, a causal-
counterfactual answer to a why-question requires that the antecedent of the coun-
terfactual conditional is true. So, we also have ϕ. �en we can reason as before
and deduce that ϕ → ∃xϕ and, hence, ∃xϕ. One can then logically deduce that
∃x (ϕ ∧ ϕ� ∃xE!x). Since the la�er logically entails ϕ ∧ϕ� ∃xE!x (axiom scheme
A1∗), the answer is again question-begging. �is analysis presupposes negative or
positive free logic. For an analysis that starts from neutral free logic one would need
rules for (α� β) (∗) and ¬ (α� β) (∗).

�e second main alternative consists in probabilistic answers. �e minimal version
of this is thatC explains E if and only if the probability of E conditional onC is higher
than the unconditional probability of E. Let Pr be the symbol for probability functions.
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�e condition can then be expressed as follows: Pr (E | C) > Pr (E). It is this version
that was used by Koura (1988, p. 197). Of course, the conditional probability of E on C
might be low as long as the unconditional probability of E is lower still. Some philoso-
phers think that this is too minimal. E.g., Salmon (1992, p. 33) remarks that statistical
relevance, to which probability-raising belongs, can be used as evidence for causal rel-
evance, but it is causal relevance that carries explanatory weight. Woodward (2014,
Section 3.4) elaborates on this. Strevens (2000) claims that probabilistic explanations
with higher probabilities are be�er, while he also suggests that in the case of low prob-
abilities it is something else that is explanatorily signi�cant. With these quali�cations
in mind, let us look at probabilistic answers to the �estion.

An immediate problem is to �nd a suitable interpretation of the probabilities. �e
subjective interpretation of probability as degree of belief by a doxastic agent is not
well-suited. For broadly speaking Cartesian considerations make it implausible that a
doxastic agent does not assign probability one to the proposition that he exists.6 �is
would make probabilistic answers to the �estion impossible. For if Pr (∃xE!x) = 1,
then there cannot be an answer ϕ such that Pr (∃xE!x | ϕ) > Pr (∃xE!x). Of course,
there are alternative interpretations of probability, viz. quasi-logical and objective in-
terpretations (Hájek, 2012). Let us assume for the sake of the argument that an inter-
pretation of probability can be given that also makes sense of the �estion. A further
issue is then how to assign probabilities to the various possibilities, including the pos-
sibility that nothing exists. Kotzen (2013) discusses various di�culties with this. I will
not go into these di�culties, but I want to point out that there is a common but de-
batable assumption that goes back at least to the contribution by Van Inwagen and
Lowe (1996) to the debate. �e assumption is that there is only one possible world
with an empty universe. �at assumption is all right if one presupposes negative free
logic. But in positive free logic there are, for instance, at least two models with an
empty domain of quanti�cation, where the �rst model makes an atomic sentence true
and the second model makes it false. �e reason is that besides a possibly empty inner
domain of quanti�cation models for that logic have also a non-empty outer domain.
�e interpretation function can assign subsets of that outer domain to predicates.

Suppose that one can make sense of the probability in a probabilistic answer to
the �estion and that one has a grasp on how to assign the probabilities. Let ϕ be
a sentence such that Pr (∃xE!x | ϕ) > Pr (∃xE!x). Normally it is postulated that, if
`CL= ϕ, then Pr (ϕ) = 1. �is postulate has to be replaced by the corresponding one
for free logic. Note also that, if ϕ ` ψ , then Pr (ϕ) ≤ Pr (ψ ). Moreover, if ϕ a` ψ ,
then Pr (ϕ) = Pr (ψ ). Finally, we need some facts about conditional probability. First,
if ϕ ` ¬ψ , then Pr (ψ | ϕ) = 0. Second, if ϕ a` ψ , then Pr (ϕ | θ ) = Pr (ψ | θ ). �ird,
Pr (ϕ | ψ ) = Pr (ϕ ∧ψ | ψ ). Applying the law of total probability to ∃xϕ yields the

6I say ‘broadly speaking’, because Hintikka (1962) points to some problems that I will not elaborate
on.
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following:

Pr (∃xϕ) = (Pr (ϕ) × Pr (∃xϕ | ϕ)) + (Pr (¬ϕ) × Pr (∃xϕ | ¬ϕ)) .

One can prove in free logic that ∃xϕ is logically equivalent with ∃xE!x ∧ ϕ. But then

Pr (∃xϕ | ¬ϕ) = 0.

So, Pr (∃xϕ) = Pr (ϕ) × Pr (∃xϕ | ϕ). Furthermore, note that the logical equivalence
of ∃xϕ and ∃xE!x ∧ ϕ entails that Pr (∃xE!x | ϕ) = Pr (∃xϕ | ϕ). Next, assume that
Hempel and Oppenheim (1948) are right about the fact that probabilistic explanations
need to make the explanandum highly probable, or that Strevens (2004) is right that
higher probabilities result in be�er explanations. We already knew that Pr (∃xϕ) ≤
Pr (ϕ). If Pr (∃xE!x | ϕ) is higher and, therefore, on our assumption gives a be�er
probabilistic explanation, then the di�erence between Pr (∃xϕ) and Pr (ϕ) is smaller.
�is argument may induce one to think that probabilistic answers to the �estion
may be in a sense question-begging as well, although I admit that the result is not as
rock-solid as previously obtained results.

In this section the possibility of causal and probabilistic answers to the �estion
has been investigated. For the simplest type of causal-counterfactual answers and
against a background of negative or positive free logic I have argued that any answers
have to be question-begging. I have not surveyed all the types of causal-counterfactual
answers nor have I looked at it from the perspective of neutral free logic. For proba-
bilistic answers I have mentioned a couple of issues. �ey may ultimately have to be
replaced by causal answers. It is not clear how to interpret the probabilities in this
context. And one has to to be careful in one’s assignment of probabilities. Se�ing all
that aside, I have argued that the higher the probability of there existing something
conditional on the answer, the closer to equiprobability the answer and its existential
counterpart are. �e discussion in this section is much less comprehensive and the
conclusions are more tentative than the discussion and conclusions in Sections 2 and
3.

6 Conclusion: Stop Asking �e�estion?
Leibniz’s question ‘Why is there something rather than nothing?’ continues to a�ract
a�ention. In this article I have undertaken a logical study of the �estion. �e starting
point was the logic of why-questions. An answer to a why-question is an explanation.
According to some prominent theories of explanation an explanation has a deductive
component: at some point the presupposition of the question has to be deduced from
something else.

�e background logic cannot be classical �rst-order logic with identity, since it has
as a theorem that at least one thing exists. �erefore any purported answer to the
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�estion is trivial. In free logics it is not a theorem that at least one thing exists. Free
logics come in three main varieties, viz. negative, positive and neutral. I have proved
that, if negative free logic is the background logic, any argument with an existential
sentence as conclusion has at least one premise that is provably equivalent to an ex-
istential sentence (�eorem 1). Next I have proved that, if positive free logic is in the
background, any argument with an existential sentence as conclusion has at least one
premise that is itself an existential sentence or there are premises such that their con-
junction is provably equivalent to an existential sentences (�eorem 2). �en I have
proved that, if neutral free logic (in its Fregean form) is in the background, any argu-
ment with an existential sentence as conclusion and truth-determinate sentences as
premises has at least one premise that is provably equivalent to an existential sentence
(�eorem 3). All three main results are taken to imply that any answer to the �estion
is question-begging.

In addition I have looked at the Modal �estion, viz. ‘Why is there something con-
tingent rather than nothing contingent?’. If the deductive framework is classical, the
presupposition of the question is logically false, which precludes sound arguments for
it. If the deductive framework is free logic in its positive or negative variety, then any
purported answer is question-begging (�eorem 4). �e possibility of answering the
modal version of the �estion against the backdrop of neutral free logic has not been
investigated. Furthermore I have discussed the Categorial �estion, viz. ‘Why is there
something concrete rather than nothing concrete?’. Here we have found that deduc-
tive explanations are question-begging, whether one assumes positive or negative free
logic or classical logic (�eorem 5).

In Section 5 the assumption that answers to why-questions have a deductive com-
ponent was dropped. Two major alternatives were considered, namely ‘causal’ or
rather counterfactual answers and probabilistic answers. In both cases there are in-
terpretational di�culties, but se�ing those aside I provided two reasons to be skepti-
cal. On a simple counterfactual analysis answers to the �estion have to be question-
begging. Probabilistic answers are be�er to the extent that the probability of the ex-
istentially quanti�ed version of the answer is closer to the answer itself, which has a
whi� of circularity around it. �e discussion and conclusions of the Section 5 were
much less comprehensive and much more tentative than before but the outlook re-
mained negative.

On the assumption that answers to why-questions need to have a deductive compo-
nent, the conclusion is that neither the �estion nor the Modal �estion nor the Cate-
gorial �estion can be answered adequately. (But recall that the possibility of answers
to the modal and the categorial versions of the �estion against the background of
neutral free logic have not been studied.) �e meta-question is then naturally: should
we not stop asking the �estion and its ilk? According to Searle (1969) the point of
asking questions is to request something. In the case of why-questions (a type of) ex-
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planations is requested for. If one knows that a request cannot be met, it is pointless
to keep requesting it. So, the rational answer to the meta-question is positive. If the
underlying assumption is dropped and the possibility of ‘causal’ or probabilistic an-
swers to the �estion are considered, then it may still be rational to ask the �estion,
although there are reasons to be skeptical in this case as well.

A Tree proofs for Lemma 2
Before giving the tree proofs, let me remind the reader that (α ∧ β) is de�nitionally
equivalent to ¬ (α → ¬β) and, consequently, ¬ (α ∧ β) is de�nitionally equivalent to
¬¬ (α → ¬β), which logically entails (α → ¬β) (cf. the tree rules for double negation).
So, one can use the rules for material implications.

α ∧ β

α
β

α
¬α

β
¬β

(α ∧ β)∗

α∗

β∗

¬(α ∧ β)

¬α ¬β

¬(α ∧ β)∗

α∗

¬β∗
¬α∗

¬β∗
¬α∗

β∗

For convenience, whenever the reductio assumption of a tree proof is a quanti�ed
sentence or the negation thereof the marker ∗ will be added directly.

Case 1-i. For convenience and without loss of generality, let us consider only P (t)∗

and ∃x (x = t ∧ P (x))∗.

P (t)∗

¬∃x (x = t ∧ P (x))∗

¬ (t = t ∧ P (t))

t , t

t , t∗

×

¬P (t)
×

∃x (x = t ∧ P (x))∗

¬P (t)

y = y∗

(y = t ∧ P (y))∗

y = t∗

P (y)∗

¬P (y)
×

�
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Case 1-ii. For convenience and without loss of generality, let us consider only P (t)∗

and ∃x (x = t ∧ P (x))∗.

¬P (t)∗

¬∃x (x = t ∧ ¬P (x))∗

¬ (t = t ∧ ¬P (t))

t , t

t , t∗

×

¬¬P (t)
×

∃x (x = t ∧ ¬P (x))∗

¬¬P (t)

y = y∗

(y = t ∧ ¬P (y))∗

y = t∗

¬P (y)∗

¬P (t)∗

×

�
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Case 3.1.

(∃xψ1 (x) → ∃xψ2 (x))
∗

¬∀x (ψ1 (x) → ∃xψ2 (x))
∗

y = y∗

¬ (ψ1 (y) → ∃xψ2 (x))
∗

ψ1 (y)
∗

¬∃xψ2 (y)
∗

∃xψ1 (x)
∗

∃xψ2 (x)
∗

×

¬∃xψ1 (x)
∗

∃xψ2 (x)
∗

×

¬∃xψ1 (x)
∗

¬∃xψ2 (x)
∗

¬ψ1 (y)
×

∀x (ψ1 (x) → ∃xψ2 (x))
∗

¬ (∃xψ1 (x) → ∃xψ2 (x))

∃xψ1 (x)
¬∃xψ2 (x)

∃xψ1 (x)
∗

¬∃xψ2 (x)
∗

y = y∗

ψ1 (y)
∗

(ψ1 (y) → ∃xψ2 (x))

¬ψ1 (y)
×

∃xψ2 (x)
×

∃xψ1 (x)
¬∃xψ1 (x)

∃xψ1 (x)
∗

×

∃xψ2 (x)
¬∃xψ2 (x)

∃xψ2 (x)
∗

×

�
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Case 3.2.

(∀xψ1 (x) → ∀xψ2 (x))
∗

¬∀x (∀xψ1 (x) → ψ2 (x))
∗

y = y∗

¬ (∀xψ1 (x) → ψ2 (y))
∗

∀xψ1 (x)
∗

¬ψ2 (y)
∗

∀xψ1 (x)
∗

∀xψ2 (x)
∗

ψ2 (y)
×

¬∀xψ1 (x)
∗

∀xψ2 (x)
∗

×

¬∀xψ1 (x)
∗

¬∀xψ2 (x)
∗

×

∀x (∀xψ1 (x) → ψ2 (x))
∗

¬ (∀xψ1 (x) → ∀xψ2 (x))

∀xψ1 (x)
¬∀xψ2 (x)

∀xψ1 (x)
∗

¬∀xψ2 (x)
∗

y = y∗

¬ψ2 (y)
∗

(∀xψ1 (x) → ψ2 (y))

¬∀xψ1 (x)
×

ψ2 (y)
×

∀xψ1 (x)
¬∀xψ1 (x)

∀xψ1 (x)
∗

×

∀xψ2 (x)
¬∀xψ2 (x)

∀xψ2 (x)
∗

×

�
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Case 3.3.

(∃xψ1 (x) → ∀xψ2 (x))
∗

¬∀x (ψ1 (x) → ∀xψ2 (x))
∗

y = y∗

¬ (ψ1 (y) → ∀xψ2 (x))
∗

ψ1 (y)
∗

¬∀xψ2 (x)
∗

∃xψ1 (x)
∗

∀xψ2 (x)
∗

×

¬∃xψ1 (x)
∗

∀xψ2 (x)
∗

×

¬∃xψ1 (x)
∗

¬∀xψ2 (x)
∗

¬ψ1 (y)
×

∀x (ψ1 (x) → ∀xψ2 (x))
∗

¬ (∃xψ1 (x) → ∀xψ2 (x))

∃xψ1 (x)
¬∀xψ2 (x)

∃xψ1 (x)
∗

¬∀xψ2 (x)
∗

y = y∗

ψ1 (y)
∗

(ψ1 (y) → ∀xψ2 (x))

¬ψ1 (y)
×

∀xψ2 (x)
×

∃xψ1 (x)
¬∃xψ1 (x)

∃xψ1 (x)
∗

×

∀xψ2 (x)
¬∀xψ2 (x)

∀xψ2 (x)
∗

×

�
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Case 3.4.

28



(∀xψ1 (x) → ∃xψ2 (x))
∗

¬∃x ((∀xψ1 (x) → ∃xψ2 (x)) ∧ x = x)∗

∀xψ1 (x)
∗

∃xψ2 (x)
∗

y = y∗

ψ2 (y)
∗

¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ y = y)

¬ (∀xψ1 (x) → ∃xψ2 (x))
×

y , y
×

¬∀xψ1 (x)
∗

∃xψ2 (x)
∗

y = y∗

ψ2 (y)
∗

¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ y = y)

¬ (∀xψ1 (x) → ∃xψ2 (x))
×

y , y
×

¬∀xψ1 (x)
∗

¬∃xψ2 (x)
∗

y = y∗

¬ψ1 (y)
∗

¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ y = y)

¬ (∀xψ1 (x) → ∃xψ2 (x))
×

y , y
×

∃x ((∀xψ1 (x) → ∃xψ2 (x)) ∧ x = x)∗

¬ (∀xψ1 (x) → ∃xψ2 (x))

y = y∗

((∀xψ1 (x) → ∃xψ2 (x)) ∧ y = y)
∗

(∀xψ1 (x) → ∃xψ2 (x))
∗

y = y∗

×

29
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Case 3.1-ii.

¬ (∃xψ1 (x) → ∃xψ2 (x))
∗

¬∃x¬ (ψ1 (x) → ∃xψ2 (x))
∗

∃xψ1 (x)
∗

¬∃xψ2 (x)
∗

y = y∗

ψ1 (y)
∗

¬¬ (ψ1 (y) → ∃xψ2 (x))

ψ1 (y) → ∃xψ2 (x)

¬ψ1 (y)
×

∃xψ2 (y)
×

∃x¬ (ψ1 (x) → ∃xψ2 (x))
∗

¬¬ (∃xψ1 (x) → ∃xψ2 (x))

y = y∗

¬ (ψ1 (y) → ∃xψ2 (x))
∗

ψ1 (y)
∗

¬∃xψ2 (x)
∗

∃xψ1 (x) → ∃xψ2 (x)

¬∃xψ1 (x)

¬∃xψ1 (x)
∗

¬ψ1 (y)
×

∃xψ2 (x)
×

�
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Case 3.2-ii.

¬ (∀xψ1 (x) → ∀xψ2 (x))
∗

¬∃x¬ (∀xψ1 (x) → ψ2 (x))
∗

∀xψ1 (x)
∗

¬∀xψ2 (x)
∗

y = y∗

¬ψ2 (y)
∗

¬¬ (∀xψ1 (x) → ψ2 (y))

∀xψ1 (x) → ψ2 (y)

¬∀xψ1 (x)
×

ψ2 (y)
×

∃x¬ (∀xψ1 (x) → ψ2 (x))
∗

¬¬ (∀xψ1 (x) → ∀xψ2 (x))

y = y∗

¬ (∀xψ1 (x) → ψ2 (x))
∗

∀xψ1 (x)
∗

¬ψ2 (y)
∗

∀xψ1 (x) → ∀xψ2 (x)

¬∀xψ1 (x)
×

∀xψ2 (x)

ψ2 (y)
×

�
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Case 3.3-ii.

¬ (∃xψ1 (x) → ∀xψ2 (x))
∗

¬∃x¬ (∃ψ1 (x) → ψ2 (x))
∗

∃xψ1 (x)
∗

¬∀xψ2 (x)
∗

y = y∗

¬ψ2 (y)
∗

¬¬ (∃ψ1 (x) → ψ2 (y))

¬∃xψ1 (x)
×

ψ2 (y)
×

∃x¬ (∃xψ1 (x) → ψ2 (x))
∗

¬¬ (∃xψ1 (x) → ∀xψ2 (x))

y = y∗

¬ (∃xψ1 (x) → ψ2 (y))
∗

∃xψ1 (x)
∗

¬ψ2 (y)
∗

∃xψ1 (x) → ∀xψ2 (x)

¬∃xψ1 (x)
×

∀xψ2 (x)

ψ2 (y)
×

�
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Case 3.4-ii.

¬ (∀xψ1 (x) → ∃xψ2 (x))
∗

¬∀x¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ x = x)∗

y = y∗

¬¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ y = y)
∗

(∀xψ1 (x) → ∃xψ2 (x))
∗

y = y∗

∀xψ1 (x)
∗

¬∃xψ2 (x)
∗

∀xψ1 (x)
∗

∃xψ2 (x)
∗

×

¬∀xψ1 (x)
∗

∃xψ2 (x)
∗

×

¬∀xψ1 (x)
∗

¬∃xψ2 (x)
∗

×
�

Case 3.4-ii Cont.
∀x¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ x = x)∗

¬¬ (∀xψ1 (x) → ∃xψ2 (x))

∀xψ1 (x) → ∃xψ2 (x)

¬∀xψ1 (x)

y = y∗

¬ψ1 (y)
∗

¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ y = y)

¬ (∀xψ1 (x) → ∃xψ2 (x))

∀xψ1 (x)
¬∃xψ2 (x)
×

∀xψ1 (x)
¬∀xψ1 (x)
×

∃xψ2 (x)
¬∃xψ2 (x)

∃xψ2 (x)
∗

×

¬y = y
×

∃xψ2 (x)

y = y∗

ψ2 (y)
∗

¬ ((∀xψ1 (x) → ∃xψ2 (x)) ∧ y = y)

¬ (∀xψ1 (x) → ∃xψ2 (x))

∀xψ1 (x)
¬∃xψ2 (x)
×

∀xψ1 (x)
¬∀xψ1 (x)
×

∃xψ2 (x)
¬∃xψ2 (x)

∃xψ2 (x)
∗

×

¬y = y
×
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Case 4-ii.

¬∃xϕ (x)∗

¬∀x¬ϕ (x)∗

y = y∗

¬¬ϕ (y)∗

¬ϕ (y)
×

∀x¬ϕ (x)∗

¬¬∃xϕ (x)∗

∃xϕ (x)∗

y = y∗

ϕ (y)∗

¬ϕ (y)
×

¬∀xϕ (x)∗

¬∃x¬ϕ (x)∗

y = y∗

¬ϕ (y)∗

¬¬ϕ (y)
×

∃x¬ϕ (x)∗

¬¬∀xϕ (x)∗

y = y∗

¬ϕ (y)∗

∀xϕ (x)∗

ϕ (y)
×

�
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