CHAPTER 1

How to Prove the Consistency of Arithmetic

JAAKKO HINTIKKA AND BESIM KARAKADILAR

1. Has Hilbert’s project been shown to be unrealizable?

In the nineteen-twenties, one of the most important developments in
the foundations of mathematics was the project by the prominent German
mathematician David Hilbert.! This program is often called formalistic,
and Hilbert’s “formalism’ is still routinely listed as one of the three main
traditional approaches to the foundations of mathematics, besides logicism
and intuitionism. This is nevertheless a seriously oversimplified view. What
Hilbert wanted to do was to free the foundations of mathematics from the
doubts and uncertainties that had been surfaced partly as a consequence of
set-theoretical paradoxes and partly as a result of the criticisms by Brouwer
and Brouwer’s followers, notably Hermann Weyl.? Hilbert proposed to elim-
inate all these doubts in one fell swoop by proving the consistency of dif-
ferent mathematical theories, in the first place analysis. The success of the
gradual process of the arithmetization of analysis in the nineteenth century
suggested that the crucial part of this program was to prove the consistency
of arithmetic.® Needless to say, the consistency proof had to be carried
out by means that were not subject to the doubts that affected set theory
and—at least according to Brouwer—analysis and even logic. The main
stumbling-block for Brouwer in classical mathematics was the use of infini-
tistic methods, in the first place of the law of excluded middle applied in
infinite domains.*

So far there is nothing in Hilbert's enterprise that could properly be
called formalistic.> Indeed, it would be much more apt to call Hilbert an
axiomatist.5 Now the way an axiom system operates is by specifying a class
of models. What a mathematician does is to study those models by deriving
theorems from the axioms and by establishing metatheorems about the ax-
iom system. Hence the crucial presupposition of mathematical activity was
the existence of models, in other words, the model-theoretical consistency
of the axiom system. The goal of Hilbert's program was therefore to prove
the model-theoretical consistency of different axiom systems.
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This Hilbert proposed to do by proving the deductive consistency of the
relevant systems. This was supposed to be done by formalizing the axiom
systems and the logic they used and by then showing purely combinatorially
(‘formally’)7 that the formalized rules of inference could not lead to incon-
sistencies. It is this tactic that has given the misleading impression that

Hilbert was a ‘formalist’. Now according to the usual rules of logic, if any

inconsistent proposition is provable, then any proposition is provable and

any proposition is disprovable. Hence it suffices to show the existence of

a single proposition that is not disprovable in order to show-the deductive

consistency of the system in question.
In 1931 Kurt Godel demonstrated that the formal consistency of as basic

a mathematical theory as elementary arithmetic cannot be proved by means
of elementary arithmetic itself. This proof was a by-product of Godel’s
famous incompleteness theorem. This theorem says that if any formal axiom
system AX of elementary arithmetic is consistent, then there are propositions
G that are true but unprovable in AX. Godel’s proof thus assumed that AX
is consistent. As Godel (and John von Neumann)® quickly realized, his proof
could be formulated in AX itself. Hence, if the consistency of AX could be
proved in AX, G could likewise be proved in AX, which would contradict its
unprovability.

Gédel’s result, known as his second incompleteness theorem, has vir-
tually universally been taken to imply a failure of Hilbert’s program in its
original form.® This construal of the consequences of Codel’s results is nev-
ertheless mistaken. For one thing, it will be shown in this paper that the
consistency of a suitable first-order system of elementary arithmetic can be
proved in the same system. As a consequence, we have to reconsider the
entire question of the prospects of Hilbert’s program.

This claim might easily seem puzzling and even paradoxical. Godel's

second incompleteness theorem is a valid metatheoretical result. In view of

its indisputable validity, it seems hopeless to try to get around it. Some of
11 be examined and dispelled in this essay.
The most general perspective in any case is easily explained. Godel's argu-
ment does not rest on any assumptions that can be challenged in any literal

However, the framework Godel is operating in, including the logic

sense.
used in one's arithmetic, is not the only possible one, and is turning out not

to be the happiest one, cither. Godel assumes that the logic that is used
in his elementary arithmetic is the ordinary first-order logic. Or, perhaps,
we should rather speak of the received Frege-Russell logic of quantifiers of
any order, for the first-order part was separated from it only slowly under
Hilbert’s influence.’® It has by now turned out that this logic is too weak
to be replaced by a logic that is richer in
known as the independence-friendly (IF)
in respects richer than ordinary first-
the possibility that, when it

the sources of this puzzlement wi

in its expressive pPOWer, and has
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this arithmetic should become provable in the same arithmetic (with the
same stronger logic, of course). Such a resurrection of Hilbert’s project
mathematics brought about by IF logic.}? Or perhaps the term ‘revolu-
tion’ is inappropriate. Unfortunately, it is not easy to find an appropriate
term, even a metaphoric one, that would capture the double development of
deepening the foundations of logic and ipso facto extending the range of its
applications.

However, it is far from obvious that enriching one’s basic logic facilitates
a Hilbert-style project. Three prima facie reasons seem to discourage rather
than encourage any attempt to salvage Hilbert’s project with the help of

a richer logic. For one thing, enriching the underlying logic makes one’s:

arithmetic stronger and hence more prone to contradictions than before,
and presumably by the same token more difficult to prove consistent.

A closely related indication of the difficulties here is the fact that Godel's
incompleteness proofs apparently turn on reasoning closely related to the liar
paradox, even though in Gédel’s hands it results in an incompleteness result
rather than a contradiction. Enriching the underlying logic thus might, sight
unseen, heighten the danger of liar-type paradoxes.

Most importantly, it seems to become more difficult to carry out
Hilbert's strategy of proving the semantical (model-theoretical, intuitive)
consistency of a formal system of elementary arithmetic by proving its deduc-
tive (syntactical, formal) consistency. This strategy apparently presupposes
that the formalized logic is semantically complete in the sense that every log-
ical truth in the semantical (model-theoretical) sense can be formally proved
in it. For otherwise hidden contradictions may lurk at the bottom of one'’s
axiom system that cannot be brought out to the open by the deductive
methods used. The received first-order logic was proved complete in this
sense by Godel in his 1930 dissertation. But IF first-order logic is known to
be semantically incomplete.’® The set of its valid formulas is not recursively
enumerable in the sense in which fully formalized rules of inference effect
an enumeration of the theorems that can be proved by their means from
formalized axioms. Hence at first sight a reliance on IF logic might seem to
make consistency proofs in Hilbert's style totally impracticable.

2. Consistency proofs by means of IF logic

This pessimistic impression is nevertheless unfounded. The reasoning
used to motivate the pessimism uses a tacit appeal to the law of excluded
middle. The question is whether contradictory conclusion can be derived in
an axiom system. If we assume tertium non datur, then we can show that
a proposition C is inconsistent if and only if we can prove its contradictory
negation —C. But there is no contradictory negation in (unextended) IF
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first-order logic.'* Hence for an axiom system using IF logic we must have
available a disproof procedure over and above a proof procedure. And for
Hilbertian purposes what is needed is indeed not a complete proof procedure
in the sense of complete method of demonstrating logical truth. What is
needed is a complete disproof procedure, that is, a recursive enumeration of
contradictory formulas. For if we have such a method and if we can show
that not everything can be disproved in the axiom system by this method,
then we can conclude in virtue of its completeness that the axiom system is
consistent also in the model-theoretical sense. And since there is no tertium :
non datur in IF first-order logic, it is perfectly possible to have complete 1“
disproof procedure without a complete proof procedure. Indeed, a small |
modification in the well-known tree method yields such a complete disproof |
procedure for IF first-order logic.'® And that is all that is in principle needed |
for Hilbert's project. 1

But can we show that this disproof procedure (as used in a suitable el- i
ementary arithmetic based on IF logic) cannot disprove every proposition?
Answering this question becomes a little easier to formulate if we first ex-
tend IF logic by allowing sentence-initial contradictory negation — into the
language. The resulting logic is called extended IF logic. Within it there
obtains a duality (symmetry) between IF sentences and their contradictory 1
negations. For the former, there exists a complete disproof procedure but i
not a complete proof procedure. For the latter, there exists a complete proof |
procedure but not a complete disproof procedure. j

What can be done in an elementary arithmetic based on extended IF |
logic can now be seen by a comparison with Godel’s original incompleteness ,
argument. Godel constructs a predicate prov[x] in a self-applied number
theory which expresses the provability of the sentence S with the Godel
number g(S) = x. Then he applies a diagonal argument to the predicate i
—prov[x] to find a sentence

(1) —prov(n]

with the Gddel number n such that n is the numeral expressing n. In
familiar but somewhat misleading terms (1) says ‘I am not provable’. Now
if (1) is false the sentence with the Godel number n is provable. But if the
system of number theory is consistent in the strong sense that whatever is
provable is true, then (1) is true. This contradicts the assumption of its
falsity, wherefore it must be true. Consequently, it is not provable, because
that is what it says.

Likewise, we can in our number theory form the IF predicate displx]
which says that the sentence with the Godel number x is disprovable. A
diagonal argument then produces a sentence of the form

(2) disp[n]
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where n is the numeral representing n and where the Godel number of (2)
is n. If (2) is true, it is disprovable. Assuming that all disprovable sentences
are false, (2) is then false. (We shall call this assumption the soundness of
the disproof procedure.) This contradicts the hypothesis that it is true and
shows that (2) is not true. This means that the sentence with the Godel
number 1 is not disprovable. Hence there is at least one sentence that is not
disprovable, which was to be proved.

This argument does not depend on the consistency of the system of
arithmetic in question in the sense that all provable sentences should be
true. Instead, what is required is the soundness of the disproof procedure,
that is, the assumption that all disprovable sentences are false. This can
be proved by induction on the length of the disproof in the elementary

arithmetic itself.
There are variants to this argument. For instance, instead of (2) we

might consider
(3) —dispn] D true[n],

where 1 is the Godel number of (3) and n the numeral representing n. This
is possible, for a truth predicate truelx] can be defined in the extended IF

logic. Here (3) is equivalent to
(4) disp[n] V true[n].

Now (4) is either disprovable or not. If it is assumed to be disprovable,
then both its disjuncts are disprovable, including the first one. Assuming
soundness this disjunct is hence false, which contradicts the assumption.
Hence (4) is not disprovable, proving the deductive consistency. Accordingly,
(4) is either true or neither true nor false.

This shows the deductive consistency of our IF elementary number the-
ory, assuming the soundness of our disproof procedure. But in what system
can this consistency be demonstrated? Ultimately, we would like it to be
demonstrated in the IF-logic-based number theory itself. Now the sound-
ness that was assumed in our argument can be demonstrated in elementary
number theory. For instance, we can assume that the disproof procedure
uses the tree method, and then carry out the argument by induction on the
length of the tree procedure.

We are making some progress here. For in the original Godel case,
he had to assume that the system of number theory (including the proof
procedure it uses) that he was using is consistent in the sense that each
provable sentence is true. For in his argument we had to show that if the
critical sentence —prov[n] is false and prov[n] is therefore true, then the
sentence with the Godel number n is in fact true. This presupposes both
consistency and the law of excluded middle. Otherwise we cannot eliminate
the possibility that the critical sentence is false. In contrast, we now have
to assume only the soundness of the disproof procedure in the sense that
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each disprovable sentence is false, which does not depend on the tertium
non datur and is hence possible to prove elementarily, at least if we can
assume that it is the use of tertium non datur that makes an argument
nonelementary.'®

This turns out to be a crucial advance. For in the same way as in the
case of Godelian incompleteness proof, the argument presented above about
(2) can be carried out in elementary number theory itself. Since it does
not involve the law of excluded middle, it can even be carried out in IF
logic. Since in the extended IF logic there is a complete proof method for
contradictory negations of IF sentences, —disp[n] can be proved formally
in the extended IF logic. This shows that the deductive consistency of the
kind of elementary number theory we are considering can be proved in that

number theory itself.

3. From deductive consistency to model-theoretical consistency

But there is a major catch here. What can be proved in this way is the
deductive consistency of the number theory in question in the sense that the
disproof procedure does not refute all formulas. But for Hilbert deductive
consistency was not an end but a means. It was a step in his attempted proof
of model-theoretical consistency. For this purpose, we would have to prove
not only the soundness but also the model-theoretical completeness (usually
known as semantical completeness) of our disproof procedure. We would
have to prove that if a sentence of our number theory is not disprovable, it
has a model, Moreover, and crucially, such a proof must be conducted in
our elementary number theory itself. ’

Now it is immediately obvious that such a proof cannot possibly be
carried out in an elementary number theory based on conventional first-
order logic. For can a completeness proof be carried out there? A typical
proof, for instance a proof using the tree method, relies essentially on Konig's
lemma. Now what does Konig's lemma say? It says that if a tree branches
finitely, then it is either finite or has an infinite branch. Or, to put the same
theorem differently, either there is an infinitely branching node or there is an
upper bound to the length of branches or there is an infinite branch. Now the
notion of infinity cannot be expressed in the received first-order logic, and
accordingly Konig's lemma cannot be expressed in an elementary number
theory based on such a logic. Indeed, appeals to Konig's lemma are often
thought of as being the source of the infinitary character of completeness
proofs for first-order logic. But infinity can be expressed in IF logic. For
instance, an infinite number of individuals satisfies a non-empty predicate
A(x) if and only if the following is true:

(5)  (¥x)(Vy) ((A(x) A Aly)) D (Fz/VY)(Bu/¥x) (x # z Ay #u A
Alz) A A A ((x=y) & (z=u)))).
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By way of explanation, it may be pointed out that in (5), zis 2 function of
+ alone and u of y. Furthermore, if x =y, then z = u. Hence z is the same

function f of x as u is of y, where f satisfies

(6) (V)Y (x # ) A (A(X) D A(Fx))A ((x =y) & (f(x) =fu)))).
Hence for any a satisfying A(a), a,f(a), f(f(a)),... are all different individ-
uals.

Since the existence of an upper bound on the lengths of branches is
easily expressible in IF first-order logic, the entire Konig’s lemma can be so
expressed. 1t is a known truth of IF logic, and can be assumed to be one
of the deductive axioms of our elementary number theory. And if so, the
completeness of the disproof procedure that IF logic yields can be proved in
our elementary number theory.

In order to show in what a palpable sense this shows the existence of
models for sentences that cannot be disproved, the following observations
can be made. What Konig’s lemma implies when applied to the attempted
model set construction that the tree method is, is that if the procedure does
not yield a disproof, there exists an infinite branch which is a model set
containing the sentence under scrutiny. By using the clever idea of Henkin’s
(1949), we can interpret model sets (as sets of symbol combinations) as
being their own models in the most concrete sense possible, of course modulo

isomorphism.'”

Thus we can prove by means of IF logic that proof-theoretical consis-
tency of a sentence S implies the existence of a model in which S is not
false. Applied to our modified Gédel formula (1), we can conclude that it
has a model in which it is not false. And an argument to this effect can
be carried out in our IF elementary number theory, which can therefore be
proved model-theoretically consistent. The proof actually gives a recipe for
constructing a concrete model for the specific sentence (1) albeit only as a
limit of an infinite construction. This model consists of Hilbert's preferred
building-blocks for such models, symbolic expressions. This completes a
significant part of the task that Hilbert took on in his project.

In a sufficiently broad sense of Hilbert’s second problem in his 1900 list
of important open mathematical problems, what has been found amounts
to a solution of this problem. What needs to be argued for is that this sense
of solution is one that he would have (or at least should have) approved of.

4. Is non-falsity enough for Hilbertian consistency?

In trying to do so, we are still faced with several problems. For one
thing, elementary number theory based on IF logic is likely to be considered
by many philosophers and logicians far too strong to be elementary. Even
an elementary number theory based on the received first-order logic might
at first sight seem dangerously strong to sundry intuitionists and construc-
tivists. And a switch to IF logic as the foundation of number theory might
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ven be considered first-order logic
ly seem to be far too strong
logic in a philosophically

seem even more dubious. Can IF logic e
in the last analysis? Indeed, IF logic might easi
to have any claim to the status of an elementary
respectable sense. Quine has been suspicious of higher-order logic, including
second-order logic, calling it ‘set theory in sheep’s clothing’. Several logi-
cians have in effect tried to brand IF logic a second-order logic in disguise
undeterred that it cannot be that by the only clear criterion of first-order
logic, namely, the categorial status of the entities quantified over.*® Indeed,
IF first-order logic is equivalent with the L]-fragment of second-order logic.®

These objections can be dealt with, even though a fully adequate dis-
cussion would have to be too extensive to be carried out in one paper.?0 It
will have to suffice here to point out the most important indications of the
elementary character of IF logic. First and foremost, IF first-order logic is
a first-order logic in the crucial sense that all quantification is over indi-
viduals. It is hence independent of all problems concerning the existence of
higher-order entities, including sets. This means that one important desider-
atum of Hilbert's is satisfied (cf. Hilbert 1922).

Second, even though IF first-order logic has a much greater expressive
capacity than the received first-order logic, it is weaker deductively when
the negation-sign is taken to express contradictory negation. This sense
can be explained by considering the extended IF logic obtained by adding
a contradictory negation — to IF logic over and above its regular (strong)
negation ~. Then a true sentence may become false when — is replaced in it
by ~. The simplest case is constituted by sentences of the form (SV —S).

This is highly significant, for the crucial source of nonelementarity for
Hilbert as for Brouwer was the principle of tertium non datur. This prin-
ciple is not assumed in IF logic.?! As a result, IF first-order logic is closely
related to intuitionistic logic, even though their precise relation remains to
be examined. This relationship becomes especially close when we allow the
primitive nonlogical predicates of an IF first-order language to have truth-

value gaps.? It will not be studied here, however.

Here another important question will be discussed instead. Would our
proof have really satisfied Hilbert substantially? It might be objected that
all that has been done is to show that in our IF elementary number theory
there are sentences which have models in which they are not false. We have
not shown how to find sentences true in some models. Would this have
satisfied Hilbert? The answer is fairly clearly yes. Hilbert wanted an axiom
system to have models which a mathematician can explore. Does this not
require that there must be true sentences about them? Yet all that has been
strictly proved here is that there are sentences with models in which they
are not false. In order to see whether this makes any difference we have to
go back to the nature of game—theoretical semantics. What does the truth of
a quantificational sentence S mean? It means that the initial verifier has a
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winning strategy in the correlated game G{S). This is a concrete combinato-
rial (some people would misleadingly say, set-theoretical)?® property of the
model W in which S is being evaluated and on which G(S) is supposed to
be played. This combinatorial fact is tantamount to the existence of certain
functions on W. Likewise, the fact that S is false means that the initial
falsifier has a winning strategy in G(S), and is an objective fact about W,
in other words, it amounts to another combinatorial fact about W.

By the same token, knowing that S is not false amounts to knowledge
about the combinatorial structure of W. It is tantamount to knowing that
certain kinds of functions do not exist on W. There is no reason whatsoever
why Hilbert or anybody else should not consider establishing such a fact
about W as a part of the axiomatic exploration of the model in question.
Hence the fact that the result reached above only shows that the critical
sentence is not false in the model that a failed attempt at a disproof yields
(in the limit) does not cast any shadow on the concrete meaning of the con-
sistency proof envisaged here. An example is offered by the logical study of
the foundations of quantum theory where it turns out that this substantial
(informative) role of the third (‘indefinite’) truth-value has important inter-
pretational consequences.?® Perhaps it would be wisest not to call the third
truth-value ‘indefinite’ but to call it instead the intermediate truth-value.

Hence the consistency proof that has been carried out here for IF elemen-
tary number theory shows that this theory is model-theoretically consistent
in the relevant sense, namely in the sense that there exists a model for it
about which substantial facts can be discovered. The robustness of such a
model can be seen for instance from the tree method in which a logician
ostensively trying to disprove in fact literally constructs for it a model (or at
least an isomorphic replica of a model) & la Henkin step by step (cf. Henkin
1949). This fulfills Hilbert’s aims concerning arithmetic in spirit and in let-
ter as fully as anyone can hope. The crucial objective for him was all along
the existence of models to be examined, not what we initially know about
them,?%

One can also relate the result reached here to later developments. The
notion of ‘not false’ which has been used and in the sense of which the ex-
istence of a model in which a specific proposition is not false has another
name. It is what is called truth on the no-counterexample interpretation.28
The important role which this interpretation plays in logicians’ theorizing is
a testimony to the significance of this notion of ‘not true’ for actual mathe-
matical practice.

Hence there are good reasons to consider the argument given above
as a solution to Hilbert’s second problem. This does not suffice to carry
out Hilbert’s overall program, however, which included a consistency: proof
for analysis. It turns out that a much stronger logic than first-order IF
logic is needed for the whole of analysis and that the kind of consistency
proof presented in this paper does not work there. It remains to be studied




"“—'1 WILUULIOL ) QIitth 11 00 211 W AIGy wOm U] SRUE U D UL UL UL O e e

entirety.

Boston University

Notes

1. Hilbert expressed his views in a series of addresses dating 1921 (Hilbert, 1922),
1925 (Hilbert, 1926), 1927 (Hilbert, 1928), 1928 (Hilbert, 1929), among which
Hilbert (1926) is usually taken to be the most comprehensive presentation of what
is known today as Hilbert's program. Yet the origin of Hilbert’s program can be
traced back to Hilbert's earlier work in the axiomatic tradition, especially Grund-
lagen der Geometrie (1899). In 1905 Hilbert gave a series of lectures on the ax-
jomatic method and its application to arithmetic. He developed his ideas through
the 1910s. In 1918 his ‘Axiomatische Denken’ was published. In that paper Hilbert
emphasizes two main topics to be studied further, namely the independence and
consistency of the axioms in an axiomatized mathematical theory. After 1920
Hilbert’s axiomatic project grew as a more extensive research program on these
two topics; especially on the latter.

2. In 1920 Hermann Weyl joined the intuitionists. After the conversion of his
best student, Hilbert's reaction against Brouwerian intuitionism took a more de-
terminate form. In 1922 Hilbert started to arm his program and criticize Brouwer
and Weyl with a stronger voice and motivation: “[Weyl and Brouwer] seek to save
mathematics by throwing overboard all that is troublesome. ... They would chop
up and mangle the science. If we would follow such a reform as the one they sug-
gest, we would run the risk of losing a great part of our most valuable treasures!”
(Reid, 1970, p. 155). In his words, Hilbert’s metamathematics was proposed to
“safeguard [mathematics] by protecting it from the terror of unnecessary prohi-
bitions [arguably Brouwer’s] as well as from the difficulty of paradoxes” (Hilbert,
1922, p. 212). It turns out, however, that a consistency proof for elementary arith-
metic does not amount to a consistency proof for the whole of analysis, only to
significant parts of it. :

3. As Hilbert saw the situation in his 1926 paper, Weierstrass’ arithmetization
freed analysis from all sorts of vague methods and created a firm foundation for it.
However, for Hilbert this did not bring foundational issues to an end. The concept
of the infinite was still in need of clarification. Hilbert hoped to take care of this
problem by means of consistency proofs, among which proof of the consistency
of arithmetical axioms was a major one. The appeal to arithmetic in geometry
created the need for a consistency proof for the arithmetical axioms. This can be
seen as the next big step of Hilbert’s overall axiomatic project first of which is his
Grundlagen der Geometrie where he gave a consistency proof of the axioms of
geometry. Zach (2003) gives a firm presentation of the historical development of
consistency proofs in Hilbert’s program.

4. Brouwer's thesis, as he summarizes it, is that “[the] axiom of solvability of all
problems as formulated by Hilbert in 1900" is equivalent to the logical Principle
of the Excluded Middle; therefore, since there are no sufficient grounds for this
axiom and since logic is based on mathematics—and not vice versa—the use of
the Principle of the Excluded Middle is not permissible as part of a mathematical
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whether, and if so in what sense, Hilbert's program can be carried out in its
entirety.

Boston University

Notes

1. Hilbert expressed his views in a series of addresses dating 1921 (Hilbert, 1922),
1925 (Hilbert, 1926), 1927 (Hilbert, 1928), 1928 (Hilbert, 1929), among which
Hilbert (1926) is usually taken to be the most comprehensive presentation of what
is known today as Hilbert’s program. Yet the origin of Hilbert's program can be
traced back to Hilbert's earlier work in the axiomatic tradition, especially Grund-
lagen der Geometrie (1899). In 1905 Hilbert gave a series of lectures on the ax-
iomatic method and its application to arithmetic. He developed his ideas through
the 1910s. In 1918 his ‘Axiomatische Denken' was published. In that paper Hilbert
emphasizes two main topics to be studied further, namely the independence and
consistency of the axioms in an axiomatized mathematical theory. After 1920
Hilbert’s axiomatic project grew as a more extensive research program on these
two topics; especially on the latter.

2. In 1920 Hermann Weyl joined the intuitionists. After the conversion of his
best student, Hilbert's reaction against Brouwerian intuitionism took a more de-
terminate form. In 1922 Hilbert started to arm his program and criticize Brouwer
and Weyl with a stronger voice and motivation: “{Weyl and Brouwer] seek to save
mathematics by throwing overboard all that is troublesome. ...They would chop
up and mangle the science. If we would follow such a reform as the one they sug-
gest, we would run the risk of losing a great part of our most valuable treasures!”
(Reid, 1970, p. 155). In his words, Hilbert's metamathematics was proposed to
“safeguard [mathematics] by protecting it from the terror of unnecessary prohi-
bitions [arguably Brouwer’s] as well as from the difficulty of paradoxes” (Hilbert,
1922, p. 212). It turns out, however, that a consistency proof for elementary arith-
metic does not amount to a consistency proof for the whole of analysis, only to
significant parts of it.

3. As Hilbert saw the situation in his 1926 paper, Weierstrass’ arithmetization
freed analysis from all sorts of vague methods and created a firm foundation for it.
However, for Hilbert this did not bring foundational issues to an end. The concept
of the infinite was still in need of clarification. Hilbert hoped to take care of this
problem by means of consistency proofs, among which proof of the consistency
of arithmetical axioms was a major one. The appeal to arithmetic in geometry
created the need for a consistency proof for the arithmetical axioms. This can be
seen as the next big step of Hilbert's overall axiomatic project first of which is his
Grundlagen der Geometrie where he gave a consistency proof of the axioms of
geometry. Zach (2003) gives a firm presentation of the historical development of
consistency proofs in Hilbert's program.

4. Brouwer’s thesis, as he summarizes it, is that “[the] axiom of solvability of all
problems as formulated by Hilbert in 1900 is equivalent to the logical Principle
of the Excluded Middle; therefore, since there are no sufficient grounds for this
axiom and since logic is based on mathematics—and not vice versa—the use of
the Principle of the Excluded Middle is not permissible as part of a mathematical
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proof. The Principle of the Excluded Middle has only a scholastic and heuristic
value, so that theorems that in their proof cannot avoid the use of this principle
lack all mathematical content” (Brouwer, 1921, p. 23). He adds in a footnote (n. 4):
«In my opinion both the axiom of solvability and the Principle of the Excluded
Middle are incorrect, they are dogmas that have their origin in the practice of
first abstracting the system of classical logic from the mathematics of subsets of a
definite set, and then attributing to this system an a priori existence independent of
mathematics, and finally applying it wrongly—on the basis of its reputed a priori
nature—to the mathematics of the infinite sets” (Brouwer, 1921, p. 27). These
formulations by Brouwer show that the logic he had in mind was an epistemic logic
of mathematics. However, quite apart from the epistemic angle, the use of tertium
non datur turns out to be an important watershed in the logical foundations of
mathematics, as emerges particularly clearly from (Hintikka, forthcoming, b).

5. For a perceptive discussion of Hilbert’s project that is free from the false
attribution of formalism to him, see Kreisel (1983).

6. In particular, Brouwer’s criticism of Hilbert’s alleged ‘formalism’ is misleading
in that Hilbert never claims that mathematical activity is (or can be interpreted
as being) restricted to the manipulation of formal symbols. What Hilbertian ‘for-
malization’ amounts to is a reduction of all derivation of theorems from axioms to
purely logical deduction. Such deduction is formal only in the innocent sense of
being independent of the interpretation of the basic concepts of the axiom system.
(Cf. Hilbert & Bernays 1934, pp. 1-5.) By the same token, all the proofs are inde-
pendent of the domain of objects (universe of discourse) that is being considered,
which implies that we might for instance think in terms of domains consistency
of formal sign uses and other expressions. This is eminently compatible with
Hilbert's insistence that the choice of axioms is guided by the intuitive content
of the concepts involved. Thus in Hilbert & Bernays (1934), Vol. 1, two kinds of
axiomatics are discussed: (i) formal axiomatics, and (ii) contentual axiomatics. As
Hilbert and Bernays observe, “Formal axiomatics requires contentual axiomatics
as a supplement, because only in terms of this supplement can one give instruction
in the choice of formalisms and, moreover, in the case of a given formal theory, give
an instruction of its applicability to some domain of reality. On the other hand we

cannot just stay at the level of contentual axiomatics, since in science we are if not_

always, so nevertheless predominantly concerned with such theories that get their
significance from a simplifying idealization of an actual state of affairs rather than
from a complete reproduction of it”. Hilbert (1922, p. 212) describes the practice
of his metamathematics as follows: “In contrast to the purely formal modes of
inference in mathematics proper—we apply contentual inference; in particular, to
the proof of the consistency of axioms”.

7. Hilbert had the idea of using the combinatorial properties of a completely formal
language as the basis of his foundational approach. Arguably, this supports a real-
istic conception of truth and is not formalistic in any anti-realistic sense. Yet the
sense of ‘combinatorial’ comes close to first-order reasoning, which involves quan-
tification only over individuals; hence sets and general concepts are excluded from
the logic of mathematics. (For more on this point, see Hintikka (1996, Chapter 9;
esp. pp. 199-202). Also see Hintikka (1997b).)

8. For an account of what happened when Godel first announced his first incom-
pleteness theorem, see Dawson (1997, pp. 69-71).
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9. Although Godel's incompleteness results led some logicians (such as von Neu-
mann) to give up hope about Hilbert's program, Godel himself thought that his
proof did not contradict Hilbert's metamathematics. His remarks on the impli-
cations of his theorem are worth noting here. Reid quotes him: “Viewing the
situation from a purely mathematical point of view, consistency proofs on the
basis of suitably chosen stronger metamathematical presuppositions ... are just
as interesting, and they lead to highly important insights into the proof theoretic
structure of mathematics. Moreover, the question remains open, whether, or to
what extent, it is possible, on the basis of the formalistic approach, to prove ‘con-
structively’ the consistency of classical mathematics” (Reid, 1970, p. 199). Here
note also that suitably chosen metamathematical presuppositions possibly bring
in stronger semantic presuppositions, which may translate what Godel refers as
“purely mathematical point of view” to the semantical plane. This is, for example,
the case in game-theoretical semantics and IF logic.

10. The separation and development of first-order logic under Hilbert's influence
finds its definitive shape in Hilbert & Ackermann (1928), Grundzige der theo-
retischen Logik.

11. See Hintikka (1996, Chapter 9), for further discussion.

12. Hintikka (1997a) gives a brief overview of this revolution. For a comprehensive
study of the different aspects of it, see Hintikka (1996).

13. IF logic is semantically incomplete in the sense that it does not admit a com-
plete axiomatization of all its truths. See Hintikka (1996, pp. 65-68 and Chapters 5
and 7), for a discussion of the reasons and implications of such incompleteness.
14. Contradictory negation expresses the non-existence of a winning strategy for
the verifier in a semantic game. In the unextended IF logic, it is used only in
front of an entire formula, and is not used inside any formula, i.e. there are no
game rules for the contradictory negation. See Hintikka (1996, Chapter 7), and
Hintikka, forthcoming (b) for further investigation of the issue.

15. The existence of a complete disproof procedure is seen from the fact that in
the tree construction of a model set we do not need the law of excluded middle.
16. By the same token, we can have a complete proof procedure for the contra-
dictorily negated sentences of the extended IF logic—extended, that is to say, by
adding the basic IF logic a sentence-initial contradictory negation.

17. See note 6 above. In his completeness proof for first-order logic, Leon Henkin
used as models for certain kinds of formulas (symbol combinations) those very same
sets of symbols themselves. Later Hintikka and Smullyan generalized Henkin's
argument. Henkin'’s idea obviously belongs to the same ballpark as the idea of
Godel numbering and indeed Hilbert's formalization of metamathematics. The
leading idea is that a correct symbolism constitutes an isomorphic replica of what
it represents. Hilbert was maintaining that the only thing that matters in an axiom
system is the structure it imposes on its models. When this idea is combined
with the assumption of an isomorphim between language (symbolism) and what it
represents, there cannot be any objection to using the expressions of a language as
their own models, any more than there according to Hilbert can be any objection
to imagining that the models of the axioms of geometry consists of tables, chairs
and beermugs.

18. Admittedly, other criteria have been proposed and presupposed in the litera-
ture. See the illuminating paper by Vaaninen (2001).

19. See Hintikka (1996, pp. 61-63).
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90. More has to be said—and even to be figured out—concerning the relation of
IF first-order logic to higher-order logics. The basic new perspective is sketched

in Hintikka, forthcoming (b). |
91. This point is easily understandable from the point of view of game-theoretical

semantics. There tertium non datur amounts to the requirement that semantical
games be determinate. HEven though that happens to be the case with games
associated with the sentences of the received first-order logic, determinacy cannot
be expected to hold in general. See Hintikka (1996, Chapter 7), for more discussion.
92. Cf. Hintikka, forthcoming (a). .

23. See here Hintikka, forthcoming (b).

4. See here Hintikka, forthcoming (b).
25. Here Brouwer'’s rather epistemic approach seems to fit into an objective which

is interested in and gives the priority to what we initially know about the models
to be examined (or, whatever content of mathematics is considered).

26. Kreisel introduced the no-counterexample interpretation in his 1951 and 1952
papers, and developed the idea in Kreisel (1958). For a brief discussion of the
crucial aspects of Kreisel's interpretation see Feferman (1996).
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