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Kurt Godel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question:
“the question of the objective existence of the objects of mathematical intuition (which, incidentally, is
an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings
to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical
objects in perception. What is it like to experience a mathematical proving process? What is the onto-
logical status of a mathematical proof? Can computer assisted provers output a proof? Taking a naturalized
world account, I will assess the relationship between mathematics, the physical world and consciousness
by introducing a significant conceptual distinction between proving and proof. I will propose that proving
is a phenomenological conscious experience. This experience involves a combination of what Kurt Godel
called intuition, and what Husserl called intentionality. In contrast, proof is a function of that process —
the mathematical phenomenon — that objectively self-presents a property in the world, and that results
from a spatiotemporal unity being subject to the exact laws of nature. In this essay, I apply phenome-
nology to mathematical proving as a performance of consciousness, that is, a lived experience expressed
and formalized in language, in which there is the possibility of formulating intersubjectively shareable
meanings.

© 2015 Published by Elsevier Ltd.

If you will stay close to nature, to its simplicity, to the small
things hardly noticeable, those things can unexpectedly become

great and immeasurable.

—Rainer Maria Rilke, Letters to a Young Poet.

1. Naturalizing mathematics

more and more” (Husserl, 1965, p. 79). Husserl was not opposed to
natural scientific explanation; rather, he considered that an extreme
naturalism in formal logic, mathematics, and ideal essences might
lead to their reduction to psychological processes of the knowing
subject. In his perspective, regarding an extreme version of natu-
ralism, if our brain processes evolve over time (which they do), then
the laws of nature may be different in the future. In other words,
both psychological processes and laws of nature are subject to
biological evolution. Nevertheless, Husserl considered that the re-
sults of transcendental phenomenology should not be ignored by
science, as “every analysis of theory of transcendental phenomen-

Husserl wanted to ensure that basic categories employed by
natural science were not thought to be products of some merely
such contingent features. In fact, he tried to define the limits of what
science, or naturalism could inform us of (Gallagher, 2012). He
considered that “naturalism is a phenomenon consequent upon the
discovery of nature ... considered as a unity of spatiotemporal being
subject to exact laws of nature. With the gradual realization of this
idea in constantly new natural sciences that guarantee strict
knowledge regarding many matters, naturalism proceeds to expand
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ology—including ... the theory of the transcendental constitution of
an objective world—can be developed in the natural realm, by
giving up the transcendental attitude” (1970, §57).

Certain authors such as De Preester (2002) and Lawlor (2009)
consider that naturalizing phenomenology is a contradiction in
terms, since phenomenology is, by definition, non-naturalistic.
Nevertheless, Merleau-Ponty's work (1942; 1945) seems to
contain direct suggestions for naturalizing phenomenology. As re-
ported by Merleau-Ponty, with science, one is expressive in relation
to nature (1945, p. 391). This fundamentally changes Husserl's
transcendental conception and shifts the focus from the transcen-
dental ego to the body.
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Cognitive Science has grounded this view of the body as a
decisive instance in bringing about behavioural and mental ca-
pacities (De Preester, 2002, p. 654). The introduction of phenom-
enology in cognitive science has challenged its basic assumptions
and has brought a view that is more consistent with the views of
Husserl and Merleau-Ponty concerning intentionality, intersub-
jectivity action, and embodiment.! Contemporary embodied
cognitive science—contrary to its previous orthodox view—is
grounded in the ecological-enactive approach (Bermudez et al.,
1995; Clark, 1997; Varela et al., 1991). This perspective claims that
cognition is best characterized as belonging to embodied, situated
agents, i.e. agents who are in the world (Gallagher and Varela,
2003). In this approach, researchers in artificial intelligence and
robotics, phenomenologists and philosophers of mind work
together to advance an understanding of the embodied, ecologi-
cally situated and enactive mind.

For many authors the difficult question is how naturalized phe-
nomenology can be accomplished without losing the specificity of
phenomenology. In this regard, it is of great importance to consider
what one means by naturalization. Naturalization can be defined as
to “integrate into an explanatory framework where every accept-
able property is made continuous with the properties admitted by
the natural science” (Roy et al., 1999, pp. 1—2). Naturalization
means, “not being committed to a dualistic kind of ontology” (1999,
p.19). Roy et al. (1999) propose a recategorization of phenomena at
a level of abstraction necessary to acknowledge the common
properties between phenomenological data and objective data
developed in the sciences. As reported by this interdisciplinary
group of researchers at the Centre de Recerche en Epistémologie
Appliquée (CREA), “It is our general contention ... that phenome-
nological descriptions of any kind can only be naturalized, in the
sense of being integrated into the general framework of natural
sciences, if they can be mathematized.” (1999, p. 42). Accordingly,
this idea involves a mathematical interpretation, i.e. a trans-
formation of concepts into algorithms similar to transformations of
this kind found in the physical sciences, through a formal language
that expresses phenomenological findings. This appeal to mathe-
matics demands formalization and intersubjective meaning veri-
fiable within a common language that is clearly understood by
science, namely, mathematics.

Husserl considered mathematical formula as incapable of
capturing phenomenological results, as “one cannot define in phi-
losophy as in mathematics; any imitation of mathematical proce-
dure in this respect is not only unfruitful but wrong, and has most
injurious consequences” (Husserl, 1976, p. 9). According to Roy et al.
(1999), this may have been accurate in mathematics in Husserl's
time; however, the development of dynamic systems theory
offered new possibilities in this regard (p. 43). In fact, the opposi-
tion Husserl introduces between mathematics and phenomenology
is “the result of having mistaken certain contingent limitations of
the mathematical and material sciences of his time for absolute
ones. In our opinion, it is indeed arguable that scientific progress
has made Husserl's position on this point largely obsolete and that
this factum rationis puts into question the properly scientific
foundations of his anti-naturalism” (pp. 42—43). In other words,
most of Husserl's scientific reasons for opposing naturalism have
been invalidated by the progress of science (p. 54). In fact, as
illustrated bellow, the editors claim that a genuine mathematical
description of experiential consciousness is possible in the con-
struction of a mathematical proof. Therefore one of the major im-
pediments to the naturalization of phenomenology has been
removed (pp. 55—56). The essential property in mathematical

1 See Gallagher and Varela (2003); Thompson (2007); Varela et al. (1991).

formalism is its exactness regardless of neurobiological or
phenomenological facts (pp. 51, 68). The moment we are in the
possession of a mathematical reconstruction of phenomenological
descriptions, the only remaining problem is to articulate those re-
constructions with the tools of relevant lower-level natural sci-
ences (pp. 48, 63).

This proposal inspired by Marbach's work (1993 ) who, following
Husserl's own proposal® for formal notation, suggested a formal
symbolic language for phenomenology which developed a
formalized notation, and assessed the question of whether it is
possible for mathematics to capture the lived experience described
by phenomenology. Marbach (1993, 2010) proposed that formal-
izing language can improve the possibility of formulating inter-
subjective shareable meanings.

2. Proving as a mathematical description of experiential
consciousness

Part of Husserl's work was to provide an adequate phenome-
nological description of consciousness not contained within any
well-established materialistic or naturalistic framework. Moreover,
Husserl believed that a proper understanding of the conscious
appropriation of the world would provide not only an under-
standing about consciousness but also about the world. Con-
sciousness is, in his perspective, a place where the world can reveal
and articulate itself. Phenomenology is concerned with transcen-
dental subjectivity and not with empirical consciousness. Merleau-
Ponty called for a redefinition of transcendental philosophy (1942,
p. 241) that does not make us choose between either an external
scientific explanation, or an internal phenomenological reflection:
one does not unravel the relation between consciousness and na-
ture (Zahavi, 2004). A redefinition that is beyond both objectivism
and subjectivism. As reported by Merleau Ponty, “the ultimate task
of phenomenology as philosophy of consciousness is to understand
its relationship to non-phenomenology. What resists phenome-
nology within us—natural being, the ‘barbarous’ source Schelling
spoke of—cannot remain outside phenomenology and should have
its place within it” (1964, p. 178). In fact, Merleau-Ponty goes a step
further since he considers that phenomenology can be changed and
modified through its dialogue with the empirical disciplines. The
theory of mind and cognition must begin with categories of things
in the everyday common sense world—what Husserl called the life-
world, that world which lies between quarks and the cosmos. This
life-world is a horizon of all our experiences. In fact, it is that
background on which all things appear as themselves and are
meaningful. This life-world cannot, however, be understood in a
purely static manner; but rather a dynamic horizon in which we
live, and which “lives with us” in the sense that nothing can appear
in our life-world except as lived.

A phenomenology of consciousness cannot begin the ontology
of the world-around-us by dealing with bosons and black holes, or
neurons and the neural nets, abstracting so far from our familiar
concerns that we no longer know where we fit in.

From a phenomenological perspective, mathematics is a per-
formance of consciousness, a mathematical experiential con-
sciousness that involves the notion of intentionality. Brentano
considered that every mental phenomenon contains the “inten-
tional inexistence” of an object toward which the mental phe-
nomenon is directed. From his perspective, identifying
intentionality opens up the possibility of comprehending the mind

2 See Husserl (2001), 5th Investigation, §39, and Husserl (2005). Text No. 14
(1911-1912), pp. 323—377; Marbach (2010). Marbach (2010) also notes the
connection with Frege's Begriffsschrift.
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in its relatedness level. Husserl studied Brentano and, in fact,
intentionality is the core of his work on the phenomenology of
consciousness. By intentionality, Husserl meant the directionality
of acts of consciousness. Consciousness is constituted by directional
acts, not things. Each act of consciousness is directed toward
something (1982). In this respect, to be conscious is to be conscious
of something, even if the object of consciousness does not exist
anywhere outside that particular act of consciousness, which seems
to be the case for the process of proving a mathematical proof.

In the light of our considerations, mathematical proving is a
directedness of experience toward things in the world. This process
is deeply grounded in consciousness as intentionality without
reducing consciousness or its intentionality to a causal or compu-
tational process along the lines envisioned by cognitive science.
This is a process that is an intentional act, and that can be distin-
guished from its object in the world. In other words, it is a
phenomenological conscious experience as experienced from the
subjective first person point of view, that is, an epistemological act
that uses valid reasoning to achieve knowledge. This process of
reasoning implies situated cognition, in other words, an act of
knowing that is embedded in the natural context.

Mathematical experience appeals to directedness and attention
to actively process specific information present in our environment.
According to William James, an attentive process requires
“possession of the mind, in clear and vivid form” (1890). Further-
more, this process implies attention on the immediate experience
and a state of current awareness, in Godel's words, “directing our
attention in a certain way, namely, onto our own acts in the use of
these concepts” (1981).

The experience of mathematical proving is a brain-body-world
coupling: cognitive agents bring forth a world by means of the ac-
tivity of their situated living bodies. In this cognitive experience,
knowledge emerges through the primary agent's bodily engagement
with the environment, rather than being simply determined by and
dependent upon either pre-existent situations or personal con-
struals. Varela et al. (1991) describe this experienced world as por-
trayed and determined by mutual interactions between the
physiology of the organism, and its sensory-body-world constituents.

From Merleau-Ponty's perspective the process of a mathemat-
ical proof presupposes an embodied subject, since he considers
“the subject of geometry is a motor subject” (1964). Moreover, in
his The Prose of the World (1973), Merleau-Ponty argues that alge-
braic proof presupposes the corporeal vectors of temporality such
as “next”, “succession”, and “progression”. This means that the
body in its perspectival relations with things in the world opens up
the con-fusing of spatial meaning-possibilities. Indeed, it is because
[ am not a transcendental subject, that I find myself having to “make
sense” of it through expression (Hass, 2008, p. 158).

Furthermore, the process of mathematical proving implies a
purpose or intention in action and a linguistic activity. This is an
activity which Husserl called ‘presentation’. For Husserl, the con-
tent of an act includes only what is in the act that makes the act the
intentional experience it is; indeed he states that “the object is,
properly speaking, nothing at all ‘in’ a presentation” (2001, §25).

In the light of the discussion so far, it seems accurate to
acknowledge that the act of proving in mathematics seems to
capture the lived intentional experience described by

3 This problem was introduced by Joseph Levine (1983), indicating our incom-
plete understanding of how consciousness might depend upon a nonconscious
substrate, especially a physical substrate. There are many variations in strength. Its
weakest form asserts a practical limit to our present explanatory abilities. A
stronger version makes an in principle claim about tour human capacities and thus
asserts that given human cognitive limits we will never be able to bridge the gap.

phenomenology. As reported by Merleau-Ponty (1971), the
important thing is to fully understand the nature of a proof as an
act. Proving truth is only possible when “one enjoys an absolute
self-possession in active thought” (p. 447), which enables further
operations to produce a valid result. Mutual exchange between
phenomenology and cognitive sciences could result in a closure of
the explanatory gap,’ and that a mathematical reconstruction
would be of any profitable sense at all or that there might be a way
to explain how experiences could be properties of the brain.

2.1. Proving as Husserl's Wesensschau, and Godel's intuition

The core of phenomenology studies involves the concept of
intuition in knowledge, or, as Husserl called it, of categorical intu-
ition. Categorical intuition is the way in which higher order objects
are intuited, such as states of affairs. Indeed, in these higher forms
of knowledge is what Husserl called apodictic evidence, and it is
closely related to the eidetic method, the so-called Wesensschatu.

According to Husserl, “genuine science and its own genuine
freedom from prejudice require, as the foundation of all proof,
immediately valid judgements which derive their validity from
originally presentive intuitions” (1982, p. 36). Genuine sciences are
based on attending to what is immediately given to us in experi-
ence. And for Husserl, intuition is the means by which one can trace
concepts and our knowledge back to their sources, to what is
immediately given to me in my experience. Furthermore, what is
given are not the appearances or other representations of reality,
but an aspect of reality itself (see Hintikka, 2003, p. 58).

In this perspective, it follows that the intuition of essences is a
special case of categorical intuition and this is categorized through
apodictic evidence (Lohmar, 2010, p. 77). Nevertheless, the ques-
tion that one needs to address is how the eidetic method is used in
mathematical proof and how this evidence is obtained in formal
contexts.

Husserl's theory of seeing essences is contained within his
theory of knowledge in the Sixth Logical Investigation. The eidetic
method of seeing essences involves the results not being restricted
to factual empirical matters-of-fact but that they also pertain to
universal structures and a priori, necessary laws which are valid for
all factual and all possible future cases of acts of consciousness. In
fact, phenomenology is the act of achieving a priori insights into
universal structures of consciousness. In other words, the struc-
tures that are independent from matters-of-fact (Lohmar, 2010, p.
78). This Wesensschau method starts with the simple perception of
singular objects such as the elementary forms of knowledge.
However, seeing these essences also demands actively engaging the
mind. These objects are not in a higher “reality”; rather, they belong
to the everyday world. Indeed, mathematical objects are objects of
thought and we gain intuition of them, since they participate in
some way in the only reality. Within this assumption, intuitivity of
my intention is what is common in all cases.

Kurt Godel expressed views on the philosophy of mathematics
similar to those of Husserl. Godel's notion of mathematical intuition
is compared to perception. In his What is Cantor's Continuum
Problem (1964, p. 271), he considers this in a famous passage from
his supplement to the second edition:

“But despite their remoteness from sense experience, we do
have something like a perception of the objects of set theory, as
is seen from the fact that the axioms force themselves upon us
as being true. I don't see any reason why we should have less
confidence in this kind of perception, i.e., in mathematical
intuition, than in sense perception, which induces us to build up
physical theories and to expect that future sense perceptions
will agree with them”.
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Godel suggests the idea of mathematical intuition about math-
ematical reality, which is said to be not purely subjective. The
intuition proceeds from experience, but not necessarily with the
object in a natural world that Godel was sceptical about. Mathe-
matical objects are considered to exist independently of their
construction or individual intuition. Mathematical intuition is
supposed to lead us to new axioms. As reported by Follesdal (1999,
p. 397), Godel outlined four different methods one can use to get
insight into the mathematical realm:

(1) Elementary Consequences: mathematical objects “are in the
same sense necessary to obtain a satisfactory system of
mathematics as physical bodies are necessary for a satisfac-
tory theory or our sense perceptions” (Godel, 1944, p. 128 of
the reprint in Feferman et al., 1990);

(2) Success: fruitful and “verifiable” consequences, i.e. conse-
quences demonstrable without a new axiom, the proofs of
which with the help of the new axiom, however, are
considerably simpler and easier to discover, and make it
possible to contract many different proofs into one proof;

(3) Clarification: Godel remarks that “it may be conjectured that
the continuum problem cannot be solved on the basis of the
axioms set up so far, but, on the other hand, may be solvable
with the help of some new axioms which could state or imply
something about the definability of sets” (Godel, 1990);

(4) Systematicity: “It turns out that in the systematic establish-
ment [Aufstellen] of the axioms of mathematics, new axioms,
which do not follow by formal logic from those previously
established, again and again become evident. It is not at all
excluded by the negative results mentioned earlier [incom-
pleteness] that nevertheless every clearly posed mathemat-
ical yes-or-no question is solvable in this way. For it is just
this becoming evident of more and more new axioms on the
basis of the meaning of the primitive notions that a machine
cannot imitate (Godel, 1990).

As it is well known, Husserl had a “reflective equilibrium” that
attaches great significance to systematization as a way to clarify
concepts. Furthermore, the basic concepts Godel mentions provide
assurance of consistency.

Kurt Godel's acclaimed first incompleteness theorem proves
that any consistent formal system in which a “moderate amount of
number theory” can be proven will be incomplete, that is, there will
be at least one true mathematical claim that cannot be proven
within the system.* In recent years, there has been an on-going
discussion concerning whether Godel's incompleteness theorems
show that the mind is more than simple machines. These are the
anti-mechanist arguments that claim that there is at least one thing
that the human mind can do that computers cannot, this is, the
human can see that the Godel Sentence is true but a machine could
not have this insight, since the machine must always follow rules as
a formal system. There are a considerable number of articles con-
cerning the mechanist and the non-mechanist discussion.” Authors
of anti-mechanism include J. R. Lucas (1961) and Roger Penrose
(1994), the so-called Lucas—Penrose Argument. It should be noted,
however, that the majority of logicians and experts in this debate

4 First Incompleteness Theorem: “Any effectively generated theory capable of
expressing elementary arithmetic cannot be both consistent and complete. In
particular, for any consistent, effectively generated formal theory that proves
certain basic arithmetic truths, there is an arithmetical statement that is true, but
not provable in the theory”.

5 Such authors include Benacerraf (1967); Bruni (2006); Chalmers (1996, 1995).

consider this argument invalid.®

Be that as may, what did Godel himself think his first incom-
pleteness theorem implied about mechanism and the mind in
general? Godel draws the following inevitable disjunctive conclu-
sion from the incomplete theorems: “either ... the human mind
(even within the realm of pure mathematics) infinitely surpasses
the power of any finite machine, or else there exist absolutely un-
solvable diophantine problems” (1951). This claim shows that
either:

(1) the human mind is not a Turing machine or
(2) there are certain unsolvable mathematical problems.

As reported by Godel, the second alternative undecidable
mathematical problems “seems to disprove the view that mathe-
matics is only our own creation; for the creator necessarily knows
all properties of his creatures ... so this alternative seems to imply
that mathematical objects and facts ... exist objectively and inde-
pendently of our mental acts and decisions” (1951). However, Godel
tended to reject the possibility of absolutely unsolvable problems
(2). For him to support the first alternative, that the human mind
infinitely surpasses any finite machine, would mean the possibility
of humanly unsolvable problems.

Godel's considerations in Gibbs Lecture and in his later con-
versations with Wang, and Turing's Intelligent Machinery are evi-
dences of the attempt to scientifically approach mental
phenomena. Both Turing and Godel were convinced that mental
processes were present in mathematical experience. On the one
hand, Turing noted that for a machine or a brain it is not enough to
be converted into a universal (Turing) Machine in order to be
intelligent. Therefore, the central scientific task is “to discover the
nature of this residue as it occurs in man, and to try and copy it in
machines” (Turing, 1948, p. 125).

On the other hand, Godel considered that there must be a non-
mechanical plan for machines, and stated that, “such a state of af-
fairs would show that there is something non mechanical in the
sense that the overall plan for the historical development of ma-
chines is not mechanical. If the general plan is mechanical, then the
whole race can be summarized in one machine.” (1990). Taking this
in consideration, there is at least one thing that the human mind
can do that no computer system can: to understand the validity of a
proof, an understanding that no computable system seems to be
able to do. Nevertheless, both the human mind and the machines
seem to be able to hypnotise some form of reality. In fact, as sug-
gested by Simeonov et al., “Classical computing, framed today in
third person descriptions, is often based on unambiguous known
algorithmic or rote procedures; it is this lack of ambiguity that
makes it precisely suited to modeling mechanisms. A living system
is impredicative and self-referential: this is what makes it more
than a machine” (2012).

Husserl called his new way “phenomenology”, which Godel
described as a method by which we can “focus more sharply on the
concepts concerned by directing our attention in a certain way,
namely, onto our own acts in the use of these concepts” (1981). If
we are successful, Godel said, we achieve “a new state of con-
sciousness in which we describe in detail the basic concepts we use
in out thought” (1981).

3. Proof and the physical world

Mathematical proof is one of the supreme intellectual

6 See Post (1922).
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accomplishments of humankind. As reported by Gian-Carlo Rota
(1997b, p. 156), “an axiom system is a window through which an
item, be it a group, a topological space or the real line, can be
viewed from a different angle that will reveal heretofore unex-
pected possibilities”.” In this assumption, mathematical proofs are
inseparable from the constitutive open-endedness of phenome-
nological research. The world is not constituted by physical objects
or ideas but by all real possible identities,® since those identities
represent the condition of possibility of any being within-the-world.
From Palombi's perspective (2011, p. 60), the “permanence of
identity” is the essential phenomenon upon which our relationship
with the world is based.

As reported by Rota (1997a, p. 1), a proof of a mathematical
theorem is a sequence of steps, which leads to the desired
conclusion. It can be widely acknowledged that a proof is apodictic
evidence, which entails that the state of affairs given in this evi-
dence is true and that it cannot be otherwise. A proof is a chain of
valid operation that may be repeated infinitely. Furthermore, a
proof is important to us since it brings clarity, rigor, and order to our
thought. Even under the lens of a simple metaphysical conjecture
that survived, until today, the falsifiability test.

As discussed in the previous section, proving is a phenomeno-
logical reflection from the first person that leads to the proof. The
proof is a function of the proving process; it is, the mathematical
object that self-presents a property in the world. In this sense, the
proof results from the unity of a spatio-temporal being subject to
exact laws in nature. It is itself an idea that comes into physical
being, belonging to the unified totality of physical nature, and
therefore, a mathematical proof must be acknowledged as an en-
tity, an object that can be assessed through natural experience.

Consider proving a x b = b x a in the natural numbers. To prove
the identity, for instance, between 3 x 2 and 2 x 3, one needs to
match two groups of three with three groups of two. Such that,

k%

k¥

k%
versus
Kok

EETY

This intuitive necessity is an epistemological ability to deduct
mathematics from entities spatiotemporally or causally connected
to us. The ability to prove the argument is possible since the human
inquiry is rooted in a first person perspective of a scientific natu-
ralism to reveal what is the case. This is the temporal nature of the
experience as experienced. In fact, the object of enquiry is the
phenomenal appearing itself, considered as a natural process.
Other examples of this natural experience are the Lorenzen dia-
logue games: a pragmatic approach to meaning that is learned in a
non axiomatic form, but in a rule following method. Lorenzen's
philosophical programme was to show how as much of mathe-
matics and the natural sciences as possible could be produced by
the process of construction and abstraction.

Christian Thiel discusses Lorenzen's construction and abstrac-
tion process on his Philosophie und Mathematik (1995). Thiel gives
an example of the concept of structure by giving a model of a
natural sequence (pp. 114—121) in terms of tallies (1) and a model in
terms of circles (in which zero is blank, one is two horizontally
adjacent circles, and to form the successor of a number one adds a

7 See Rota (1997b), p. 156. In this regard, see Section 4.2 and Cellucci (2002), pp.
195-196.
8 Rota (1997c), p. 112; see (1997), pp. 185—186.

circle in front of the number and one above it). The tallies and the
circles, which form a “number”, can be put into one-to-one corre-
spondence, and the successor function for tallies corresponds to the
successor function for circles (Powell, 1997). The natural number
structure is then the equivalence relation between such models of
the natural numbers.

Certainly, what a mathematician needs depend on the level and
language of the desired proof. Category theory, for example, deals
with systems of structures in a conceptual framework, allowing us
to see the universal components of a family of structures of a given
kind, and how structures of a different kind are interrelated.
Category theory is an interesting object to phenomenology studies
since it is a tool for investigations of concepts such as space, system
and even truth.

There are different definitions of a category. The fundamental
notion of category theory is, according with Mac Lane's (1971), that
of a monoid—*“a set with a binary operation of multiplication that is
associative and that has a unit; a category itself can be regarded as a
sort of generalized monoid ... its close connection to pairs of
adjoint functors illuminates the ideas of universal algebra and
culminates in Beck's theorem characterizing categories of algebras;
on the other hand, categories with a monoidal structure (given by a
tensor product) lead inter alia to the study of more convenient
categories of topological spaces”.

Category theory starts with the observation that many proper-
ties of mathematical systems can be unified and simplified by a
presentation with diagrams of arrows, such that:

Y

Each arrow f: X — Y represents a function; that is, a set X, a setY,
and arule x — f x which assigns to each element x € X an element
f x € Y; whenever possible we write f x and not f (x), omitting
unnecessary parenthesis. This typical diagram of sets and functions
is commutative when his h = g ° f, where g ° f is the usual com-
posite function g ° f: X — Z, defined by x — g (f x).

This theory is of great interest to phenomenology since it (1)
proceeds in terms of mappings and objects; (2) unifies mathe-
matical structures; (3) almost every set theoretically defined
mathematical structure with the appropriate notion of homomor-
phism, yields a category; and (4) once a type structure has been
defined, it is imperative to determine how new structures can be
constructed out of a given one. Thus, category theory allows
revealing certain objects as having a “universal property” and how
different kinds of structures are related to one another, via mor-
phisms between categories.

In this respect, Humberto Eco, in The Name of the Rose, inter-
estingly seems to well apprehend this connection between phe-
nomenology and category theory, “I have no doubt about the truth
of signs, (... ) they are the only things man has with which to orient
himself in the world” (Eco, 2006). Category theory sheds light on
how to understand this relation among signs; it organizes and
unifies much of mathematics and the nature of mathematical ob-
jects. From a phenomenological perspective, on the one hand,
category theory's mathematical object exists in and depends upon
an ambient category, and on the other hand, objects are always
characterized up to isomorphism. This is a categorical intuition
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present where there is a simple apprehension of the categorical
that seems to be above all the demonstration since it is invested in
the most everyday of perceptions and in everyday experience.

The theory of mind and cognition must begin with categories of
things in the everyday common sense world—what Husserl called
the life-world, that is, a horizon of all our experiences. In Husserl's
work, a mathematical object is to be understood in terms of the
‘invariants’ or ‘identities’ in our experience. These physical objects
are identities that emerge for us through various sensory experi-
ences or observations. Mathematical objects express axioms and
theorems that constitute invariants across our experience with
these objects.” Invariants may emerge through conscious and sys-
tematic efforts of embodied methods of sciences.

According with Roger Shepard's work (1999), through natural
selection, the mind has come to reflect long-enduring properties of
the world. Perception, contrary to intuitions, involves many in-
ferences that go beyond the “sense data”. Such inferences must
track the way the world is, so they reflect properties of the physical
world. This means that fundamental invariances of physics emerge
in pure mathematically expressible form (1978). Moreover, he
claims that some features of the environment, such as universal
principles, in which animals (including human beings) live will
have been ‘internalized’ (Shepard, 2001).

Mathematical proof, being a function or a result of a conscious
experience, can no longer be objects of sense experience—as in
their proving process. The proof is an ideal entity because it is no
longer subject to space or time. On the other hand, it can no longer
be mental in nature since what is mental occurs and changes in
time. Would a mathematical proof be subject to changeability,
there would be no stability or constancy in mathematics. Moreover,
as we discussed in the previous section about the nature of the
phenomenological experience of proving, if proving is a first person
perspective (an act of the inner), its result, the proof, is the third
person perspective, object of the inner.

A mathematical proof is an object that surpasses variability, and
such property is the condition to shareable meanings. Since it is
constructed in a neutral language of natural science, the properties
that are delivered by the proof are available for further use. This
further use by another phenomenological mind is possible by vir-
tue of the intrinsic features of the proof, which enhances inter-
subjectively sharable meanings. However, proving to a colleague, in
a third person sharable language, is handled only by []p. It is
incompleteness which assures that the logic of []p & p is different
from the logic of []p.

This is possible because although mathematical proofs start
from an act of subjective intention; they arrive at a public, objective
language with meaning. This meaning is intersubjectively share-
able, and, indeed, this intersubjective meaning is taken as a purpose
to which scientific knowledge should aspire, since intersubjective
agreement is certainly an outcome of the objectivity of knowledge.

3.1. Phenomenology meets artificial intelligence

The great enterprise of Artificial Intelligence is to find out what
sort of rules could possibly capture intelligent reasoning. A
computer-assisted proof is a proof in which every logical inference
has been checked all the way back to the fundamental axioms of
mathematics (Hales, 2008). Furthermore, it is written in a precise
artificial language that admits only a fixed repertoire of stylized
steps (Harrison, 2008). A part of mathematics can be presented
through algorithm.

9 In this regard, see Tieszen (2009). Phenomenology, Logic, and the Philosophy of
Mathematics. Chapter 1 Reason Science and Mathematics, pp. 21-69.

Proof assistants or computer theorem provers are artificial intel-
ligent agents that mechanically verify, in a formal language, the
correctness of a proof. In fact, with this artificial system, the user is
allowed to set up a mathematical theory, define properties and
undertake logical reasoning (Geuvers, 2009).

A computer-assisted proof implies that a programmed intelli-
gent agent with symbolic language is able to demonstrate a proof: a
computer-assisted proof which uses strings of symbols produced
by typographical rules. From a symbolic language, an inanimate,
inflexible, and mind-independent agent accomplishes a proof that
is not subject to spatio-temporal causality. The phenomenological
consequence is an objective, non-intuitive proof that is so trivial
that it is beyond reproach.

Nonetheless, in this artificial proving system, what seems to be
absent and lost is the proving process—the phenomenological
experience—since the computer-assisted proof is far too extensive
for a human mind to follow, although its results are of such accu-
racy and sometimes surpass human ability to obtain a proof. In this
computer-assisted mathematical endeavour, the embodied cogni-
tive act required to grasp the proof is somehow obsolete, and the
proof comes to a halt without having had intentional or linguistic
activity. In other words, the result of a computer-assisted proof
involves the absence of the brain-body-world coupling that utilises
the eidetic method of seeing essences. Moreover, what is lost is the
mathematical intuition, to use Godel's words, which is supposed to
lead us to new axioms.

The deep problem underlying the philosophical and mathe-
matical reflection on the computer-assisted proof does not only
concern the fact that the proof is produced by a machine and the
means by which the proof is computed; rather, that the human
mind is not able to attribute consistency to that computer-assisted
proof. The modes by which a mathematician interprets a computer-
assisted proof could be seen as a tacit disposition to accept the
validity of the proof in Carnap's epistemological terms.'®

What makes this issue even more challenging to the phenom-
enology of mathematics is the fact that these artificial intelligent
agents are able to prove previously unprovable theorems, and,
consequently, to compute an ideal entity. The philosophical im-
plications of this reality seem to lead us to the Church-Turing thesis,
which claims that any computer as powerful as a Turing machine
can, in principle, calculate anything that a human can calculate,
given enough time. According with Marchal (2015) “since Godel,
we know that Truth, even just the Arithmetical Truth, is vastly
bigger than what the machine can rationally justify, yet, with
Church’s thesis, and the mechanizability of the diagonalizations
involved, machines can apprehend this and can justify their limi-
tations, and get some sense of what might be true beyond what
they can prove or justify rationally”. Lobian Universal Machine is an
example of higher cognitive ability.!!

Also, nowadays there are unique ontological identifiers for
associated sets of items in areas of formalized knowledge and
intelligent systems that perceive and act in an environment, such as
machine-learning, which is a learning system that uses prior
knowledge, handles complex environments, forms new concepts,
active explores, and so on. The well-known basic problem in ma-
chine learning has been inducing a representation of a function from

10 Carnap questions, in his Philosophy and Logical Syntax, about how can we
become certain as to the truth or falsehood of a proposition. He considers that “the
function of logical analysis is to analyse all knowledge, all assertions of science and
everyday life, in order to make clear the sense of each such assertion and the
connections between them”. In the absence of the possibility of a logical analysis,
one needs to tacitly accept the truth of a proposition.

11" See Marchal, The Universal Numbers. From Biology to Physics, in this Special
Issue; and Calculabilité, Physique et Cognition, 1998.
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examples. Hypothesis might be represented in four basic categories,
such as (1) attribute-based representations, which includes Boolean
functions, decision trees. This could also include neural networks
and belief networks. (2) First-order logic; (3) neural networks,
continuous, nonlinear functions represented by a parameterized
network of simple computing elements; and (4) probabilistic
functions, which involves belief networks. Furthermore, the task of
determining a scientific hypothesis on the basis of current evidence
is similar to the task of determining a model on the basis of a given
data, this is, the model selection in machine learning. In the hy-
pothesis construction, also known as inductive reasoning, conclu-
sions made are based on current knowledge and predictions. The
availability heuristic causes the reasoned to depend primarily upon
information that is readily available to him/her.

Learning, whether in artificial or in natural agents, is essential
both as a construction process and as a way to deal with unknown
environments. With minimal inductive inference ability, machines
can be aware of much more than they can justify. Nevertheless,
machines cannot believe rationally, or justify that they are ma-
chines: in fact, this requires Husserl's Wesensschau, and Godel's
intuition. If we can naturalize consciousness and phenomenology,
then machines have no phenomenological consciousness.

4. Conclusions

It was my concern in this paper to understand the conditions of
possibility within the eidetic domain that is called mathematics. I
applied phenomenology to mathematical proving as a performance
of consciousness, a lived experience expressed and formalized in
language.

Mathematics is the means by which an individual phenome-
nological act of consciousness reveals itself and gives birth to an
ideal entity. In fact, we are certain of this phenomenological
experience of consciousness by “these acts of experience ... within
which we live as human beings” (Weyl, 1994). It is through this
mathematical experience that consciousness proposes descriptions
and deductions, not randomly, but as a function of a plurality and
variability of experiences from a subjectivity that is subject to time
and space. Subjectivity gives birth to objectivity in a neutral lan-
guage and spatial formalizations, in virtue of a phenomenological
act that captures a form in the world, and consequently enhances
our original intuitions.
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