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HAROLD T. HODES

AXIOMS FORACTUALITY

The semantics of modal languages augmented by the operator “actually”
have been understood for the last ten years; see, for example, [3] for a
discussion of “now” — the analogue of “actually” in tense logic. Here I
present a simple axiomatization of the logic of such languages, with an eye
to determining their expressive power. For example, “There could be some-
thing which actually doesn’t exist” is easily expressed with the actuality
operator, though by results of [2], it cannot be expressed without it; how-
ever, I show that other interesting conditions, e.g., that for every possible
world there could be something not existing in that world, are not express-
ible even with the actuality operator. If unexplained, all terminology and
notation are as in [2].

We introduce the operator “@” and extend a modal language L(C) to
L®(C) by addition of this formation rule: if ¢ is a formula of L®(C), so is
@¢. We work only in S5; the notions of a frame and a structure for L&(C)
are as in [2]. Where U is a structure for L®(C), w and w' are from ¥ and
d is an assignment for A, we define (A, w, w') E ¢[a], “a satisfies ¢ at
(w, w")in A", as follows.

(U, w, w') i 1[a];
(A, w, w') E P[a] iff V(w', P)=tfor PO-place;

(QLW’ wl)'—__Pol' .. O’)‘l[a—] iff (ah- .. ,an)EV(W,,P)
where ¢; = den (¥, @, ;) fori =1, ..., n and P n-place,
nzl;

(A, w, w") E 0=0'[a] iff den (X, a, 0)=den(¥,a, d);

(A, w, w) (¢ DY) [a] iff (A, w, w) kK ¢[a] or
o, w, W) E ylal;
U, w, W) E (Vv)¢[a] iff foreverya € A(W'), (A, w, w') E

#[ag], where a, is the variant of @ assigning v to a;
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28 HAROLD T. HODES

(A, w, w') | 0g[a] iff forevery u € W, (U, w, u) k= ¢[a];
A, w, W) E @p[a] iff (A, w,w) E ¢a].

Where T is a set of formulae, (%, w, w') k= T'[@] iff forall €T (A, w,
w') E ¢[a]. Let (A, w) k ¢[a] iff (A, w, w) E ¢[a]. In determining
whether (¥, w) E ¢[a], we unpack ¢; w remains our “starting world”’;
modal operators send us to consider questions of the form (¥, w, w') k=
y[a]; w' is then the “focus” world; “@” sends us back to our starting
world.

In L®(C) we may express, for example, “There could be something
which doesn’t actually exist” by “0(3x)@—Ex"". So L®(C) is more expres-
sive than L (C).

Where I' U {$} is a set of formulae of L®(C), " implies ¢ iff for all struc-
tures U for L(C), w from A and 7 an assignment for U, if (A, w) k I'[a]
then (A, w) k= ¢[a]. T strongly implies ¢ iff for all such A, @ and w, w'’
from U, if (A, w, w') |z T[] then (A, w, w') k= ¢[a]. ¢ is valid iff the
empty set implies ¢; ¢ is strongly valid iff the empty set strongly implies ¢.
Strong implication implies implication, but not conversely; for example,
“P=@P” is valid, but not strongly valid. Furthermore, the class of valid
formulae is not closed under necessitation; for example, P O @P is valid,
but o(P O @P) is not. The class of strongly valid formulae is closed under
necessitation.

Let &= {O@p D ¢|¢ a formula of L8(C)}. To axiomatize the class of
strongly valid formulae, augment and axiomatization of quantified S5 pre-
sented in [1] by adding all formulae of the following forms to our list of
axioms:

(@1) 0(¢1&&¢n) f0r¢1,...,¢,, EM,
(@) (@D @y)D>@(¢DV);
(@3) @1>D 1.

Theoremhood is defined by closing these axioms under Modus Ponens,
Universal Generalization and Necessitation. Let I' | ¢ iff either |- ¢ or for
some Yy,..., Vo, €ENFWH1 &...&Y,)D¢.

We point out several sorts of theorems of this axiomatization.

(1) F—~@¢p D @—¢;since L D@L, |} ~@p D (@p D @1); our claim
follows from the axiom (@¢p D @1) D @—¢.
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AXIOMS FOR ACTUALITY 29

(2) F@(¢ DY) D (@p D @y); we need these facts:

F(@($DY)& @& ~@)) DO(@($ DY) & @p & @),
using fact (1);

FO(@(¢ DY) & @p & @) DO(0@(¢ D Y) & 0@ &
0@—y);

using axiom (@1),
FoO@¢Dy) & 0@ & 0@-Y)DO((9 DY) & ¢ & ~Y);

but clearly | ~0((¢ D ¢) & ¢ & ), proving (2);

(3) F@—¢=-@¢, putting together (1), (2), and (@3).

Clearly all axioms are strongly valid, and our rules preserve strong val-
idity. Thus our axiomatization is sound with respect to strong validity: if
|- ¢ then ¢ is strongly valid. As usual, I is consistent iff [} L To prove
completeness, we turn to the appropriate version of Henkin’s lemma.

HENKIN’S LEMMA 1. If I'is a consistent set of sentences of L®(C,) then
there is a structure ¥ = (W, A, V) for L®(C,) and wo, w, € W so that
(U, wo, w)) ET.

We use a version of the method of diagrams from [1].

Let k = max {R,, card(Pred), card (C,)}. Fix sets Wand C 2 C,,
card(W) = card(C — Cy) = k; fix wg, w,, distinct members of W. A diagram
is a set of ordered pairs (w, ¢), w € W and ¢ a sentence of L®(C). A diagram
D is consistent iff 0D = U {OD(w)|w € W} is consistent, where D(w) =
910w, 8) € D}and 0D(W) = {0($1 & . .. & 8)16s, . .. , By € D(W)}. We
review three familiar facts:

(1) if D is consistent then either D U {(w, $)} or D U {(w, =¢)}is con-
sistent;

(2) if D is consistent, (Iv)¢ € D(w) and ¢ € C does not occur in D then
D U {(w, ¢(v/c)), (w, Ec)}is consistent;

(3) if D is consistent, O¢ € D(w) and w' € W does not occur in D then
DU {(w', ¢)}is consistent.

Furthermore, if &7 C D(w,), @p € D(w) and D is consistent then —¢ &
D(wy); for in this case, OD | 0@¢, so OD | 00@¢; if ¢ € D(w,), since
0@¢ O ¢ €E D(wy), OD | O(—¢ & 0@p & (0@9 D ¢)); so D is inconsistent.

Suppose I'is consistent. Let Do = ({wo} x.&) U ({w} x I'}. Since all
members of OA4 are axioms and I is consistent, Dy is consistent. As in [1],
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30 HAROLD T. HODES

we construct a sequence {Dg}¢ < of consistent diagrams over W, C,

D¢ € Dy, if £ <, so that D, is ~-complete, 3-complete and O-complete.
D, may be converted into a structure ¥ = (W, A, V) for L®(C) so that for
all w € Wand ¢ a sentence of L%(C):

(U, wo, w) E ¢ iff pE€D,(w).

This follows as usual; we sketch the one novel case: ¢ is @J. Suppose
(A, wy, w) E @Y ; then (A, wo, wo) E ¥; 50 ¥ €D, (wy). By a previous
remark, @y & D(w); thus ~@y & D(w);so @y € D(w). Suppose @y €
D(w); since ~y & D(wo), ¥ € D(wo); 50 (U, wo, wo) = ¥; thus (U, w,
w) E @Y.
Therefore (U, wo, w,) k T; so the reduct of A to L®(C,) is as desired.
Q.E.D.

COROLLARY. If ¢ is strongly valid then |- ¢.

To axiomatize the class of valid formulae, we show that ¢ is valid iff
| ¢. Members of & are axioms whose status differs from that of our
other axioms. We don’t have: if o |- ¢ then &/ |- 0¢. The soundness of this
axiomatization is obvious. We show completeness.

HENKIN’S LEMMA 2. Let I be a set of sentences of L&(C,). If I' U.s”
is consistent then there is a structure ¥ for L#(C,) and wo € W so that
(A, wo) E T
Fix k, W and C as before. Select wy € W and let Dy = {w,} x (I' UX).
Construct {D;};< as before. Again we have for all w € W and sentences ¢
of L2(C):
(U, wo, w) E ¢ iff €D, (w).

Thus (U, wy, wo) E T Q.E.D.

COROLLARY. If ¢ is valid then & | ¢.
Let T, be the set of universal closures of all formulae of L®(C,) of the

form:
¢ D D(VXI)D e D(Vx")0(¢&Ex1 &. .. &Ex”),

where x4, . . ., X, are not free in ¢.

THEOREM 1. Let T be a set of sentences of L&(Cy).
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AXIOMS FOR ACTUALITY 31

@) TUT, U {(3x) @ ~Ex}is consistent iff there is a structure
A= (W, A, V) for L®(Co) and wg, w, € W so that (U, we,
wy) k Tand A(w,) ¢ A(w,) = 4.

(ii) TU KU (T, U {(3x) @-Ex}) is consistent iff there is a
structure A = (W, 4, V) for L8(C,) and wo, w; € W so that
(A, wo) E T and A(w,) G A(w,) = 4.

Proof. For the “if” direction, observe that if A = (W, 4, V) s a struc-
ture for L®(C,) and A(wo) G A(w,) = 4, then (A, wo, wy) E To U
{(3x) @ =Ex}.

For the “only if” direction, we use the technique of Theorem 1 of [2].
Fix k, W and C as before. Select wo, w; € W, wy # w;. To prove (i), sup-
pose that TU Ty U {(3x) @ -Ex}is consistent. Let Dy = ({wo} x &) U
(w1} x (TU Ty U {(3x) @ ~Ex})). D, is consistent. We define the usual
sequence of consistent diagrams {D}; <, over W, Cas in the proof of
Henkin’s Lemma 1, except that we ensure that for every ¢ € C occurring
in Dy, Ec € D (w,). The fact that Ty € Do(w,) makes it possible to do this
without losing consistency. For details, see the proof of Theorem 1 in [1].
D, yields the desired structure.

To prove (ii), suppose that 7U % U (T, U {(3x) @ Ex}) is consistent.
Let

Do = ({wo} x (TUH)) U ({w1} x (To U {(Ix) @Ex})).
Dy is consistent. We define the usual sequence of diagrams {D;}¢<, meeting

the previously mentioned constraint; D, yields the desired structure.
Q.E.D.

We now construct a structure A= (W, A, V) for L®(C,) so that for some
woEWand any wE W, w# w,,

(?I’ Wo, W) #= TO U {(ax) @"EX},
A(wo) is not a subset of A(w).

Let Z be the set of integers, wo ¢ Z; let W = {wo} U Z. Select A(w) for
w € W so that:

for all w € W, A(w) is countably infinite;

A@D S AG+1) foriez;

A(wo) SV{ADINIi€Z};

as i varies card (A(wo) N (A + 1) —A(F))) and
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32 HAROLD T. HODES

card ((A( + 1) — A(i)) — A(wy)) are constant and non-zero.

Let V"Co € N {A(})|i €Z}, and V(w, P) = f or be empty, for P € Pred.
Clearly A(wo) ¢ A(i) for i € Z. We show that for such i, (U, we, i) = T,.
Foray,...,a, €A() select an automorphism o on 4 so that ¢"4(w,) =
A(wo), 6"A()) = A(i + 1) for all i EZ and 0 is constant on V"'Co U {ay, .. .,
@y, }. Our constraints on 4 and ¥ ensure that such a ¢ exists. We easily show
that for any b,, . . . , by, € A and ¢ a formula of L®(C,) with  free vari-

ables,
(%[) Wo, l) i': ¢[bl’ cee bn] iff

(%, Wo, i+ l) P ¢[0(bl), ey O(bk)]

Suppose (A, wo, ip) = lay, . .., a,]. Given ap,, . . . , @m.n €A select
jEwsothat a,,, ..., amen EA(ip +7). Then

(A, wo,lo +1) k #[0(@y), . .., 0'(@z)]  and

A, wo, o +))EEx 1 &. .. &Exy) [@mars - - - 5 Tmanl.
Since o’(a;) =a; fork =1, ..., m, we have shown that

(A, wo, ip) E O(Vxy)o. .. 0(Vx,)0(p & Ex & ... & Ex,)

[al, ... ,am].

Thus (?I, Wo, lo) E To.

THEOREM 2. (i) There is no set T of sentences of L®(C,) so that for all
structures A= (W, 4, V) for L®(C,) and all wy, w € W, (A, wo, w) k= T iff
A(wo) G A(w).

(i) There is no set T of sentences of L®(C,) so that for all structures
A= (W, A, V) for L2(C,) and all wy € W, (A, w,) = T iff for some w € W
A(wo) G A(W).

(ii) shows that “There could be something non-actual without there not
being something actual” is not expressible in L®(C,).

Proof of (i). Suppose the for any such A, wo, wif (A, wo, w) [ T then
A(wo) G A(w). Taking the W and w, of our previous example, (A, wy, i) ¥
T for any i € Z. Fix such an i and select ¢ € T so that (U, wy, i) = —¢. Thus
{~¢}U Ty U {(3x) @ ~Ex} is consistent. Theorem 1(i) delivers a structure
B and u,, u; from B so that B(uy) & B(u;) but (B, uy, u;) F ¢, and so
(B, up, u)) ¥ T.
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AXIOMS FOR ACTUALITY 33

Proof of (if). Suppose that for any appropriate A and wy, if (A, wo) E T
then for some w, A(wo) ¢ A(w). Taking the % and wy of our previous
example, (%, wo) K T. Select ¢ € T'so that (A, wo) F —¢. Thus {—¢} UL U
O(To Y {(3x) @—EX}) is consistent. Theorem 1(ii) delivers a structure B
and a uo from B so that (B, ue) ¥ T but for some u,, B(ug) & B(u,).

QE.D.

THEOREM 3. (i) There is no set T of sentences of L&(Cy) so that for all
structures A= (W, A, V) for L8(C,) and all wg, w, EW, (U, wo, w)) E T
iff for every w € W there is a.w' € W so that A(w') is not a subset of A(w).

(ii) There is no set T of sentences of L®(C,) so that for all structures

A= (W, A, V) for L2(C,) and wo € W, (U, w,) k Tiiff for every w € W
there is a w' € W so that A(w') is not a subset of A(w).

(ii) shows that the necessitation of the proposition expressed by
O(3x) @—Ex is unexpressible.

Proof of (i). Suppose that for any such A, wy and w, if for every w € W
there is a w' € W so that A(w") ¢ A(w) then (U, wo, w;) = T. Because the
structure in our previous example has this property, TU T, U {(3x) @
—Ex}is consistent. Theorem 1(i) yields a structure A = (W, 4, V) and
Wo, w1 € W with (U, wo, w,) E T although there is no w' so that A(w') ¢
A(wy).

Proof of (ii). Suppose that for any such U and wy, if for every w € W
there is a w' € W so that A(w') §$ A(w) then (A, wy) k= T. Our previous
example then shows the consistency of TU .U O(Ty U {(3x) @—EX}).
Theorem 1(ii) then yields a structure %, wo and wy so that (W, we) E T
but there is no w' from A so that A(w') ¢ A(w,). Q.E.D.

Similar arguments extend other inexpressibility results from [2] con-
cerning L (Cy) to L&(Cy).

One final observation on the expressive power of L®(C,). Suppose we
extend L®(C,) to L®Y (Cy) by introducing the “possibilist’’ universal
quantifier V; we define satisfaction with this additional clause:

A, w, w) E (W)g[a] iff foreverya€A, (U, w,w)E
¢[a,]-

Suppose ¢ is a formula of Lev (Co) in which no occurrence of V is in the
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34 HAROLD T. HODES

scope of an occurrence of O. Then there is a formula ¢’ of L®(C,) equi-
valent to ¢. To obtain ¢', use this equivalence:

(Wv)y is equivalent to O(Vv) @ .

Notice that the above constraint on occurrences of V is essential for this
result, and that no similar result holds for strong equivalence.
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