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A connection between higher-order logics and the concept of cardinality has
been long recognized; but (as far as I know) it has not been a subject of
model-theoretic investigation. This paper begins such an investigation, which is
continued in [3]. The philosophical motivation for this project may be culled from
[2] and [4]; it seems related to ideas in [1].

To avoid reliance on the Axiom of Choice, we will take cardinals to be
Scott-cardinals; that is,

card(x) ={y:y = V, and x is equinumerous with y},

where « is the least ordinal such that the above set is non-empty. k is a cardinal
iff for some x k = card(x); Card is the class of cardinals. Card is partially ordered
by the injective ordering: for n,m € Card, n < m iff for some x € n and y € m there
is a one—one function from x into y. Let x € Card be infinite iff some (thus every)
x € k is infinite. For k, k' € Card, let:

[x, k)={neCard: k<n<k'},
(k, k)Y={neCard: k<n<k'},
[k, k']={neCard: k =n <K'}

Let x be an aleph iff x is infinite and some (thus every) x € k is well-orderable.
Recall these facts: '

(1) If ' <k and k is an aleph, then k’ is either finite or an aleph.

(2) These are equivalent: Choice; all infinite cardinals are alephs; < linearly
orders Card.

(3) These are equivalent: all Dedekind-finite sets are finite; for any infinite
Kk € Card, Kk = X,.

For more on Scott-cardinals, see [5].

For k eCard, let & = {n € Card:n <k}, ncb(x)=card(k)=the Number of
Cardinals Below k. As usual, an ordinal is the set of its predecessors; so
ncb(Rg) = card(& U w).
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Remarks on notation. Where convenient, I will ignore the use/mention distinc-
tion. Let x *y be the concatination of x and y in that order. Where ¢ is a formula,
v a variable, and 7 a term of the same type as v, @(v/1) is the result of replacing
all free occurrences of v in @ by 7, relettering bound variables in g if necessary to
insure substitutibility. Distinct Greek letters ranging over variables in our
object-languages are always assumed to take distinct values: when I say
“Consider variables o, ..., hpy~1, Mo, - - ., Ng—1, v it is understood that these
p +q + 1 variables are all distinct.

1. Cardinality languages and their semantics

Fix the basic logical lexicon {‘L’, ‘=’ ‘3", ‘="} and foreach ie {1} U{2n:n <
w} fix a countable set Var(i) of type-i variables, all sets mutually disjoint. Let
Pred and Funct be given disjoint sets of predicate-constants and function-
constants respectively, both disjoint from the other lexical categories; for each
n < Pred(n) and Funct(n) are, respectively, the set of n-place members of Pred
and Funct. The set of terms based on Funct, Term(Funct), is generated from
Funct and Var(0) as usual. The class of models for Pred, Funct, is defined as
usual. For 7 € Term(Funct), den(t) is defined as usual, relative to such a model.

1.1. To form £“(exactly, <, Pred, Funct) add ‘exactly’ and ‘<’ to the basic
logical lexicon, with ‘<’ ¢ Pred. Hereafter we will omit explicit mention of Pred
and Funct. The formulae of £"“(exactly, <) are defined by the usual formation
rules together with the following:

(a) If T € Term(Funct) and Y € Var(1), then Y7 is a formula.

(b) If (and only if) p, u € Var(2i) for i >0, then p < p is a formula.

(c) If @ is a formula, p € Var(2i) and p € Var(2i + 2), then (exactly u p)@ is a
formula.

Note. Any free occurrence of p in ¢ is bound in (exactly u p)e by the
indicated occurrence of p; the indicated occurrence of p is free and binds
nothing. Let Fml(£"“(exactly, <)) and Sent(£"“(exactly, <)) be respectively
the set of formulae and sentences of £ “(exactly, <). Standard abbreviations are
in effect, e.g. 7@ for (@ > L).

For each »n e Card, fix a distinct constant n not belonging to any of our lexical
classes. Given a model « for Pred, Funct, form the language &4, (exactly, <) by
introducing:

— a new individual constant a for each a € ||,

— a new 1-place predicate-constant A for each 4 c ||,
and counting m as a constant of type 2j+2 if n<ncb/(k). For @e
Sent(FL%(exactly, <)), we define ok, @ as usual, with these novel clauses:

Ade.nsn’ iff n=<n',
AE, (exactlyn v} iff card(¥p)=n,
oAk, (Au)p iff for some n <ncb/(x) Ak, @(u/n),
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where u € Var(2j +2) and:

if veVar(0), vp={ac|d|: k. p(v/a)},

if veVar(2j+2), ¢ ={n<ncb/(x): Lk, p(v/m)}.
Let o F @ iff AFoara) @-

Where the free variables in @ of type-0 are among vg, ..., V1, the free
variables in @ of type =2 are among o, - . . , i1, d € |&|™ and 7 € &', we will
write @[d, 7i] for @(vo/ag, ..., Vim—1/8m—1, Ho/Mo, ..., #—1/m_;) provided that

for y; e Var(2k +2), n; <ncb*(x), for all j <l

For k < w, let #"*(exactly, <) be the sublanguage of £"“(exactly, <) result-
ing from dropping all variables of type-2j for j > k. Let £*“(exactly, <) be the
sublanguage of £" “(exactly, <) formed by dropping use of type-1 variables. For
i<2 and k<w, let £*%*(exactly, <) be the sublanguage of ¥ “(exactly, <)
formed by dropping use of all variables of type >2k. Since ‘exactly’ and ‘<’ do
not occur in formulae of #"%(exactly, <), let that language be £".

1.2, The model-theoretic semantics just presented may be thought of as a
fragment of higher-order logic in which, for a given model, variables of type =2
range over certain quantifiers over that model. More precisely, we could have
introduced languages in which formulae of the form (exactly u p)@ were replaced
by (1 p)®, and defined satisfaction so that in &, variables of type 2i + 2 ranged
over **’EXACTLY(k), letting:

2Q(n)~={A c|s{|: card(A) = n},
EXACTLY(x)= {*Q(n):n<x and *Q(n)~is non-empty},
#*20(n)* = {Q =« *EXACT(x): card(Q) = n},
¥EXACT(x) = {**°Q(n)*: n <ncb'(x) and **?Q(n)~
is non-empty},
SAEXQMm) <2VQM) iff n=<n',
AECTQp)p iff po Q.

(Here if i =1 then pp = {¥Q: A F p(p/*Q)}.)

If card(f)=k, then for every j>w the map n—>%*2Q(n)~ is a 1-1
correspondence between ncb’(x) and “*?EXACT(k); therefore truth in s under
k. for sentences of £*“(exactly, <) is an alternative representation of truth in &/
under the semantics just sketched. The semantics just presented carries a
type-structure, since if 0<i<j, and #Q(n)~ and YQ(n)" are both non-empty,
#Q(n)<#%Q(n)~; this semantic typing is erased in the semantics for
" “(exactly, <), under which variables of type 2i are assigned simply to
n <ncb*"!(x), rather than to ¥*Q(n)*. The semantic type-structure in the former
semantics does no work; so it is more convenient to work with £" “(exactly, <).

1.3. We will now consider another hierarchy of languages in which final parts of
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the syntactic type-structure of £ “(exactly, <) are collapsed. For 0 < k < w, the
categories of variables for £"***(exactly, <) shall be Var(1) and Var(2j) for j <k.
The formation-rules for ¥***(exactly, <) are like those for £"%*(exactly, <),
with this addition:
—if u, p € Var(2k) and @ is a formula, then (exactly u p)@ is a formula.

Given « and k € Card, form £525"(exactly, <) as before.

The definition of A, ¢ for @ e Sent(ZL,’"(exactly, <)) proceeds as before.
Notice that for u € Var(2k), (exactly u u)g is well-formed; the semantics makes
the two indicated occurrences of  function as if they were occurrences of distinct
variables; the left-most occurrence of u is free in ( xactlzuu)q); the second

occurrence lb not ucc dIlU UlIth dll OCCUIICnCeS Ul u llCC lll @.

We form £%?**(exactly, <) from £"**(exactly, <) by dropping Var(1).

1.4. For languages ¥, £’ as above and ¢ € Sent(¥), vy € Sent(£’), we adopt
these deﬁnitionS'

_amiiva lant tn aly iFF fare
\d} l’/ ID N b\.{ulvalblll AV} l’l jsvh 1uvl

card(f)=k: Ak, @ iff AF, .
(b) @ is equivalent to v iff for all infinite models  for Pred, Funct: Ak iff
ArEy.
(c) @ is equivalent, to vy iff for all models & for Pred, Funct of cardinality
s Abo iff oﬂ:mh

K. ¥E N A 3

d) @is super-equivalent to y iff for all infinite k, @ is k-equivalent to .
We now define these inclusion relations:

PX P iff for each ¢ € Sent(¥) there is a k-equivalent y € Sent(Z£’);
o cpr cer Al OV abe oot nn aiinlact als = Qantd P
P~ % iff for each @ € Sent(Z) there is an equivalent y € Sent{L);
L~ % iff foreach ¢ eSent(Z) there is an equivalent , ¥ € Sent(Z");
F ¥ iff for each @ € Sent(¥) there is a super-equivalent ¢ € Sent(£');
Py iff XL and ¥ XY,
similarly for >« %', £>< %', and ¥>< ¥'. Then:

K-equivaient

super-equivalent “ equivalent,;
h . /"

equivalent =

and so:
i
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2. The basic inclusions
2.1. For i <2, clearly:

(1) £ % F?(exactly, <) X F*(exactly, <) < - - - < £ “(exactly, <).

This hierarchy of order-type @ + 1 continues with order-type of converse(w) =

w*.

(2) £ “(exactly, <) X - - - < F*(exactly, <) X - - - X £ (exactly, <).

To see this, for 0 < k < w we adopt these abbreviations:
ncb* =p: (exactlypn) L,

ncb*=pu: (Vp)(ncb*=p o u<p),

for u, n, p € Var(2k). If k =1, we will omit the superscript. Clearly ncb* = u is a
formula of ¥°?**(exactly, <), and for every n<ncb* '(x) and any model
o: Ak ncb* = n iff n < ncb*(x). Claim: for 1 <k < w:

P+ (exactly, <) X L% (exactly, <).
exactly cxacty

Given ¢ € Sent(Z"%**+*(exactly, <)), for each u e Var(2k +2) occurring in ¢
introduce a distinct u' € Var(2k) not occurring in @; form @’ as follows: first
replace all occurrences of each p as above by u'; then restrict all prefexes binding
u' by (ncb*=p’), i.e. replace subformulae of the form (Ju’)y and
exactly pu')y by (3p')(ncb*=p’ & ) and (exactlyppu’) (ncb*=p’ & o)
respectively. This establishes our claim. If @ e Sent(£"“(exactly, <)), fix k so
that @ eSent(¥"***(exactly,<)). If 1<j<k we have 1y eSent(£**>
(exactly, <)); also:

P+ (exactly, <) < - - - < L ¥*(exactly, <).

So @ is expressible in £"#*(exactly, <), yielding the desired inclusion hierarchy.

Form ¥"*(exactly) from #"*(exactly, <) by dropping ‘<’ from the logical
lexicon. Form %"*(exactly, =) from #"*(exactly) by changing the formation-
rule for formulae by permitting ‘=" to occur between all variables of type-2i for
i=k, giving such atomic formulae the obvious satisfaction conditions. Form
£ “(exactly), £>***(exactly), £"“(exactly, =), and £"**(exactly, =) in the same
way.

It should be obvious that an inclusion-hierarchy like (1) also holds for
languages of -the form #>*(exactly, =) and £"**(exactly). It seems that one like
(2) does not hold for languages of the form £***(exactly, =) and £"***(exactly).
The rub is that ‘<’ is needed in ncb* = u. However it should be clear that for any
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k < w: if ncb*(x) = ncb**'(k), then:
Fe(exactly, =) X - - - X L (exactly, =) < F-* 2 (exactly, =),

Fh(exactly) X - - - X L2 (exactly) < L2 (exactly).
These observations will be strengthened in §4.6 and §4.7.

2.2. There is no fragment of the semantics for higher-order logic related to the
semantics given in §1.3 as that from §1.1 is related to that sketched in §1.2. But
the Axiom of Choice makes the semantics from both §1.1 and §1.3 into fragments
of the semantics of second-order logic. Fix a countable set Var((0, 0)) of
type-(0,0) variables. For xe{2k:k<w}U{w}U{2k*:k>w}, we form
FO9x(exactly, <) by adding Var((0, 0)) to the lexicon #"*(exactly, <) with the
obvious new formation rules and the obvious semantics in which, relative to &,
type-(0, 0) variables range over ?(|#|*). As in §2.1, all the languages from §1.1
and §1.3 are super-included in (i.e. bear % to) L% *(exactly, <). In fact, these
languages are no stronger than £ in the following sense.

Observation. For @ e Sent(£*"?*(exactly, <)) there is a ¢' € Fml(£%%)
containing exactly one free type-1 variable so that for any model % and A c ||
with card(A) = k:

AE. @ iff Arg'(A).

Thus £ >*(exactly, <) < L9, since where Y is the type-1 variable free in
@', we may replace each subformula of @' of the form Yv by 1"

Let a k-standard for & have the form (R, a,) where Rc ||, ao€ |,
a, ¢ RightFld(R), and:

for each nek — {0} there is a unique a,c|s| so that
card{a: {a, a,) e R} =n.

By choice, if card(#)=k, then there is a k-standard for &f. For Y'e
Var(0,0), voe Var(0) and Y € Var(1) there is a Std(Y’, vo, Y) € Fml(£*?) so
that for any & and A c || with card(4) = k:

AEStd(R,a,A) iff (R, a) is a k-standard for .

Given @ e Sent(F©>(exactly, <)) not containing Y’, v, or Y, it is not hard to
form ¢ € Fml(L®?) in which Y’, v, and Y are free and so that for any model s/:

if (R, ao) is a x-standard for o:
Ar @ iff AEP(R,ay).
Let @' be QY ) Avy)(Std(Y', vy, Y) & §).
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As is well known, adding variables of type (0, 0) gives the expressive power of
full second-order logic: any variables of type (0, . . . , 0), with 1 <n occurrences of
‘0", can be replaced by variables of type 1 applied to n-tuples formed
set-theoretically; then the ‘€’ used in specifying n-tuples can be quantified out by
a type (0,0) variable restricted by the axioms of pairs and extensionality; this
preserves equivalence.

2.3. Type-1 variables can render ‘<’ superfluous.

Observation. (i) #"*(exactly, <)>% £"?(exactly),

(i) LV (exactly, <)>% L1 *(exactly).
Furthermore, if k is an aleph, then for 1 <k < w:

(i) L %*(exactly, <) ¥ L' *(exactly),

(iv) FV***(exactly, <) >~ £'*(exactly).

Proof. For u, p € Var(2), replace (u < p) by:

(3Y,)@Y5)((exactly 4 v) Yov & (exactly p v) Yiv & (Vv)(Yov > Yiv)),
where Y, Y; € Var(1) are distinct. This suffices for (i) and (ii). For u, pe
Var(2j +2), 0<j<w, let (u <,p) abbreviate:

(Fu)3p Y(exactly un) n<p' & (exactlypn)n=p'&pu'<p’).

If x is an aleph for any model & and n, m < ncb/(k):
dE.nsm ifnsm.

Given ¢ € Sent(£"**?(exactly, <)) for 0 < k, replace all subformulae of ¢ of the
form (u=<p) for u, p e Var(2k +2) by (u=<,p). If 1<k, then replace subfor-
mulae of the form (u < p) for u, p € Var(2k) by (u=<,_, p); repeat until this for
all subformulae of the form (1 <p), u, p € Var(2); replace these as we did for
(i). This establishes (iii); the same construction also yields (iv). O

This procedure is independent of x; so the axiom of choice entails that for
1<k <w:

(v) Fh*(exactly, <)% £"%*(exactly),

(vi) "+ (exactly, <)>% L' **(exactly).
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2.4. For variables y and pu' of type =2 let u=pu' and y <p' abbreviate the
obvious formulae. For k < it is easy to construct formulae Lim*(u), Gy(u),
E(u) and Fin(u) meeting these conditions for any model /. For any aleph k and
n <Kk:

Ak, Lim*(n) iff either n =0 or for some « and f3,
n=X, and «o=o0"-B;

Ak, Gy(m) iff Xy=n (iff n is Dedekind-infinite);
and if X, <k, then:

Ak Eom) iff R,=n;

At Fin(n) iff n is finite.

For k <X, we want a contextually defined quantifier-expression exactly k and a

‘predicate’ k = so that:

Ak, (exactly k v)e iff card(ve)=k;

foranyn <k, Ak k=n iff k=n
Here is one way to do this. Where v, v’ € Var(2j) and v’ does not occur free in
@, adopt these abbreviations:

(exactly 0 v)q: =1(3v)e;

(exactly k + 1 v)p: (3v' ) (@(v/v') & (exactly k v)(¢ & v #v")).
For u € Var(2) and distinct v, v, € Var(0):

0=p: (exactly pv) L ;

k+1=u: (Vvg):-- (Vvk)(< /\k v # vj> > (exactly p v)(i\s/k v= v,~)>.

i<j=s
For u € Var(2j +2), p € Var(2j) with 0 <j < w:
0=p (exactly pp) L

k+1=u: (exactlzup)(.\/ki_=p>.

Notice: if @ is a formula of £"%(exactly, <), then (1) so is (exactly k v)@; but as
just defined, (2) it uses ‘=" between variables of type =2 when v is of type =2.
Using these definitions, for p € Var(2j) with j>0, and 1=k <@, adopt this
abbreviation:

Ei(u): (3n)(Go(n) & (exactly k p)(n<p & p <p)).

Thus for k =Ry and n <k: AF, E/(n) iff n =N,.
Feature (2) of our definition of (exactly k v)¢ may be avoided, provided we
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consider only infinite k, by adopting this abbreviation:
(exactly k v)@: (Au)(k=pu & (exactly u v)p).

But for v € Var(2j), the right-hand side either requires u € Var(2j +2), making
(exactly k v)(p ¢ Fml(&£> 2"(exactly, <)) or else it requires u € Var(2j), making

S 4 T 1 COLWL bl Tha carnr A Liwd AFf chheagiatinm  tal-in
\cxm,uy K ‘u)(p tr_[‘llll\nL \C)&a\.u_y \)} 1€ SE€CoNa KinG OI avorcviation, Lal\llls

u € Var(2j + 2) [var(2j)] will be used in §4.1 [§4.2].

2.5. Observation. If x is finite, then £"**(exactly, <) < %"

Proof is left to the reader; the important thing to see is that if p is a variable of
type =2 and k < k, then (exactly k p)y is replaced by \/ {6(b): b c k, card(b) =

Nnse

k}, where 8(b) is:

NA{@(p/k): keb} & N\ {m¢(p/k): k € k — b}.

Hereafter x shall always be an infinite cardinal.

' iq gcactinn concarne ageartinn af idantity acrace tvnag Far N <o
oUe 1o VL LIVIL VULIMVALLILLD AdOWl LIVIL UL 1uUvriLiL avi oo lyl.}\to PRV S VoS S Wy
p e Var(2i), u e Var(2i +2) let
0=, 1" (pvar'flv 7 u\ v< 0
F T (FASLU ] s

where v € Var(2i) is distinct from p. If ncb~'(x) = X, and either n or m is finite:
dEn=,,m iff n=m.
This idea will now be pushed a little further. For k < w let p =, , u abbreviate:
((Fin(p) v Fin(u)) > p =2 1)

Thus: if ncb~!(x) = R, and either n or m < ¥y:
AEn=y,m iff n=m.

Note that p =,; o u is just p=,; u.

Where o <w®, let the Cantor-coefficient sequence for X, be (ny, ..., nq),
where a=w7-n,+---+w-n+n,. For 0<j<w p € Var(2j) and
Koy - - - » g1 € Var(2j+2), there is a Ccé(p, po, ..., fy-1) € FMI(L>H12
(exactly , <)) so that for any n <N, «<x and ny, ..., n,o; <Xo:

A= &

P J CUR. - AN+ S 22 \ otk
S OO, ¥ 8

R0y + - -, 0g_1) ML \Ag,...,He-1/ 18

Cantor-coefficient sequence for n.

For p, p’ € Var(2j) and 0 <k < w iet M*“(p, p’) say “p’ is the maximum cardinai
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of the form R« that is <p”. Let Cc?(p, po, . - . , ftq—1) be:
@)+ @pg)( N Mo, p0)

0<k<q

& (exactly py—y v)(Lim* ' (v) & 0<v&v<p,_,)

& (exactly u, _» v)(Lim? 3 (v)& p, 1 <V &V<p, )
& - & (exactly u, v)(Lim'(v) & p,<v & v<p,)

& (exactly po V)(p1<v&VSp)>,

where v, pg, ..., p,—1 € Var(2j). It is easy to see that Cc? is as required. For
p € Var(2j) and u € Var(2j +2), let p =5 , u abbreviate:

(3po) - - (Apg-1)3po) - - - Fug-1)
(/\ Fin(o & \ pi =218 Ce"(p, 5) & Ce'(u, 1),

i<q

for po, ..., Pg-1€ Var(2j +2), yo, ..., ty—1 € Var(2j + 4). Then for any x, any
n, m <ncb’~'(x) and any model &, if either n or m <R,

Ar =5 ,m iff n=m.
2.7. This section describes cases in which final segments of the inclusion-
hierarchy described in §2.1 collapse (with respect to expressive power) to a lower
language.
Collapsing Theorem. Suppose k € Card is an aleph, i€e2 and 1sk < w.

(i) If ncb (k) <R, then £***(exactly, <) % L% *(exactly, <).

(ii) If ncb*(k) <R, then L-**(exactly, <) < £>***(exactly, <).

So, for example, if k¥ <X,, then hierarchy of type w +1+ w* going from
FVS(exactly, <) through #"“(exactly, <) up to £"*(exactly, <) collapses down
to ¥"4(exactly, <): under k, these languages have equal expressive power.

Proof. We will consider the case of kK = 1. Suppose ncb(kx) =R, for g < w. Given
@ € Sent(¥"?*(exactly, <)) form @' by replacing each subformula of ¢ of the
form (exactly u p)y for u, p € Var(2) by:

(Fu')((exactly p' p)y' & pp=24+14'),

where u’ € Var(4) does not occur free in 1’. To see that ¢’ is as required, note
the following. For (exactly u p)y € Fml(#"*(exactly, <)) with u the only free
variable, and for any & and n <k:

Ak, (exactlynp)y iff Sk (3u’)((exactly p’ p)y &n=24.11'));
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this is because the left-hand side implies that n < ncb(x), since py c &k, and so
A F . m=y .10, yielding the right-hand side; to go from right to left, notice that
for any n, n' <xk:if dF, m=y .0, thenn=n"<X,.

Now suppose ncb(k) = R, for o« <@ ®; let g < w be least so that &« < w?. Given
@ € Sent(¥"**(exactly, <)), form ¢’ by replacing each subformula of ¢ of the
form (exactly u p)y for u, p € Var(2) by:

(3u')((exactly ' p)y' &p =}, 1),

where u' € Var(4) and does not occur free in y'. The reason why ¢’ works is as
above, using the fact that for any n, n' e k: if k. n=;,n’, then n =n' <R,

For 1 <k < w, replace types 2 and 4 by types 2k and 2k + 2 respectively in the
preceding argument. O

3. The hierarchy problem

3.1. A proof of the following conjecture would be the best possible complement
to the Collapsing Theorem of §2.7.

Conjecture. For any i € 2 and 1 <k < @ there are Pred and Funct so that:
(la) For every infinite x € Card,

L4 (exactly) % £?(exactly, <).

(1b) If k >1, for every k with R, < ncb*"!(x),
L exactly) 16 £ (exactly, <).

(2) For every k with X,. < ncb*(x),

L (exactly) 1« £+ (exactly, <).

We will prove (1a) for i = 0. Fix Pred = {R,, R}, with R, and R; both 2-place,
and let Funct be empty. Let @, , be:

(Vu)((exactly p p)(3vo)(exactly p v)Ro(vo, )
= (exactly u p)(Avy)(exactly p v)R (v,, v)).
Clearly @, , € Sent(¥£**(exactly)).

Theorem. For any infinite k € Card, @, is equivalent, to no sentence of
F*?(exactly, <).

Before the proof, some conjectures deserve mention.
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Fix Pred = (Ry, R, R;, R3}, all 2-place. Let ¢ 4 be:

(Yu)[(exactly u p)(3v,)(exactly p n)(Ivo)(Ri(v1, vo) & (exactly n v)Ro(vo, v))
= (exactly u p)(3vi)(exactly p 7)(3vo)(Rs(v1, vo) & (exactly n v)Ra(vo, ¥))].
(Here u € Var(6), p € Var(4), n € Var(2), v, vy, v, € Var(0).)

Conjecture (A). This choice of ¢, meets the conditions required in (1b) for
i=0, k=2

The sequence @5, @o4, extends, following the obvious pattern, to include
likely candidates for (1b) when i =0 and &k > 2.
Where Pred = {P, R}, P 1-place and R 2-place, let ¢; , be:

(Yu)((exactly u p)(Ivo)(exactly p v)R(v, v) = (exactly u v)Pv),
for u, p € Var(2), v,,v € Var(0) and distinct.

Conjecture (B). This choice of @, meets the conditions required by (2) for
i=0, k=1

Similarly, let @g 4 be:
(Vu)[(exactlyu p)(3v,)(exactly p n)(Ry(v, vo) & (exactly 7 VIR(Vg, V)
= (exactly u p)(Ivo)(exactly p v)Ry(vo, v)];

it seems likely that this is as required by (2) for i =0, k=2. This pattern also
extends to yield likely candidates for (2) when i =0 and k > 2.
The @, , above is expressible in £"*(exactly). To see this, let y,(Y) be:

(Vp)((exactly 1 vo)(Yvo & (exactly p v)R;(vo, v))
= (Jvy)(exactly p v)R,(vo, v)).

where Y € Var(1): then for any infinite k, n <k and any model & for {Ro, R},
AEAY)y(Y); furthermore, if

A E, (exactly n p)(Ive)(exactly p vIR;(vo, v),
then for any B c ||: o k. y,[B] iff card(B) = n. Thus

(AY0)AY)(¥o(Yo) & ¥1(Y1)

& (Vu)((exactly u v) Yov = (exactly u v) Y1v))

is super-equivalent to @, ,. But the idea behind the construction of @, suggests
the following. Fix (R, R;, Rz, R}, all 2-place; let @, , be:

(Vu)[(exactly u p)(3vo)(Avi)(exactly p v)(Ro(vo, V) & Ry(v1, v))
= (exactly p p)(Ivo)(3vy)(exactly p v)(Ry(vo, v) & Ry(v1, v))].
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Conjecture (C). This @, , meet the requirements of (1a) for i = 1.

The idea behind this suggestion extends to yield likely candidates to meet the
requirements of (1) and (2) when i > 1.

3.2. To prove Theorem 3.1, we will use Ehrenfeucht-games for languages of the
form £*?(exactly, <, Pred, Funct). Given models &{,, 54, for Pred, Funct, ¢ < w
and keCard, we consider the game G =Gy?*(exactly, <, Pred, Funct,
Ao, Ay, q). A position p in G is a finite sequence of ‘exchanges, between players
I and II with |p|=<gq; each such p is associated with a ‘situation’ A(p)=
(ho(p), hi(p)), where for i € 2:

h{p)={(d, #;) ford e|A|"?, i, e &P, {pl =1(0) + 1(2).

Play of G begins at ( ), with A,({ ))=(( ), {( )). Suppose that play of G has
reached p, with |p|=q'<gq. Fix vy, ..., vo-1€Var(0), o, ..., tz-1€
Var(2). If q' =q, play is over; II wins iff for every atomic formula ¢ of
P**(exactly, <) with free variables among those listed:

Aok @lho(p)] iff ik @lhi(p)].

Now suppose q’' <g. I initiates an exchange of one of three sorts. In what
follows, p’ shall be the position reached at the end of the exchange.

(1) I selects i €2 and a; ;) € |;|; II must select an a,_; ;) € |#;;; then for
J €2, hi(p") = (d;*a;,), 7ij).

(2) I selects i €2 and n; ;€ k; II must select an Ri_;i2) € K; then for je2,
hip") = (G, iy * n;y2)).

(3) I selects i €2, w<I(2) and B, c || with card(B;) =n,,; 1l must select
B, ;c || with card(B,_;) =n,_;,. I then selects an a,_; ;) € |, _,|; II selects
a; 10y € | ;| s0 that ag ) € By iff a, ) € By; if II can’t do this, she loses; for j €2,
hi(p') = (d;*a; ) 7).

Lemma 1. If 11 has a winning strategy for G, then for every ¢e
Sent(£”*(exactly, <)), if quantifier-depth(¢) <q, Lok, @ iff £, E, @.

Before proving this, we will consider another sort of game.

Let o be a model for Pred, Funct and ¢ € Fml(¥"*(exactly, <)) with free
variables among v, ..., Vig-1 € Var(0), U, ..., tyz-1 € Var(2). For con-
venience, suppose that each variable p occurring in @ is bound at at most one
occurrence, i.e. occurs at most once in a prefex of the form (3p) or (exactly u p).
Fix de|oA|"?, riek"®. We describe the game SAT.(p, &, @, /i) inductively.
There are two players, I and II, and two hats, TRUE and FALSE. At any
position, each player wears one hat, and the other the other; at a position, the
players shall be referred to by the hats they wear.

If @ is atomic, play is over; TRUE wins iff &k, @[d, A]. If @ is (o> ¢,),
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TRUE picks i <2; if i =1 they go on to play SAT,(¢,, ¥, d, #) with hats as they
are; if i =0 they switch hats and go on to play SAT.(¢,, o, d, A). If @ is
(vy0))@o, TRUE picks ayq) € |#£|; with hats as they are, they go on to play
SAT (@0, &, d*ay), /). If @ is (Jue))®o TRUE picks n, € &; they go on to
play SAT, (o, &, @, fi * ). If @ is (exactly p,, vi))@o, TRUE selects B < ||
with card(B) = n,,; FALSE selects a € |#|; they exchange hats iff a ¢ B, and go
on to play SAT,(@o, &, d *ayq,, #). Since this game is finite, it is determined.

Lemma 2. ok, ¢[d, #i] iff TRUE has a winning strategy for SAT (o, A, @, 7).

Proof is straightforward. Where ¢ is (exactly u,, v;0))@o, think of TRUE’s
choice of B as a claim that B = ¥,,@[d, #]; so if FALSE takes a, € B, TRUE
must defend the claim that a,, € ¥,0y@o[d, 7i]; otherwise TRUE must refute that
claim—and so must put on the FALSE hat for SAT, (p,, 4, &, #).

We now describe I's strategy for G. Until I wins, I associates each position p in
G with a formula @,, depth (¢,) <g —|p|, so that for A(p) as above:

'ﬂotxq?p[‘-io: fig] iff sy #K(pp[al)ﬁll'

Let @(y= @. Suppose p has been reached, |[p|=gq'. If ¢, is truth-functionally
compound [ first finds a non-truth-functionally compound truth-functional com-
ponent of @,, ¢, so that:

ﬂO I:K ‘P,'z[ao: ﬁO] lff ‘Ri #K (p;[ali ﬁl]

Otherwise let @, = @,,.

Suppose that no p* with @,. of the form (exactly u v)y has yet been reached; I
selects i <2 so that &k, @,ld;, ii,]. If @, is (Fv,e)y I selects a;q, so that
A FePld; *a; 0y, A;] and sets ¢, =1y. No matter what a,_;; II takes,
A e YA * a1 10y A)- If @) is () y, 1 again plays a witnessing n; ;); n0
matter what n,_;,; II takes, o, $ YA, Ai_i*niz) I @, is
(exactly p,, vi))¥, 1 plays B; = ¥,y[d;, Ai,]* and w;card(B;) =n,,; no matter
what B;_; II picks, if card(B,_;)=n;_;, then B,_;# ¥ qy[d;—;, A1_|*"; so I
may select a,_; 0, in their symmetric difference. No matter what a; ;0 II now
takes, since II must have ag,q € By iff ay ;)€ By: Aok, yldo*ao ), Ho) iff
Ay ¥ Yldr* ay 1), Fia). Let @, = .

As soon as the above sort of exchange takes place, I changes his approach: he
pretends to be playing both:

SAT, = SAT. (v, o, do* a0y, flo);

SATI = SATK(U), éﬂl, 61 *ay,10) ﬁl)
For je2, let TRUE; and FALSE; be the hats from SAT;. Fix je2 so that
A;FeYld; *a; ), ;). 1 begins SAT; wearing TRUE; and SAT,_; wearing the

FALSE,_;. By Lemma 2, I has winning strategies for SAT, and SAT;. At all
subsequent positions, 1 wears TRUE, iff I wears FALSE,. Suppose play has
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approach. Suppose that I is wearing TRUEkO and FALSE, ;. If @, is not a
conditional, in G I plays k, and lets @, = @,. If @, is ¥, > vy, in his pretend play
of SAT,,, I chooses i €2 according to his strategy for SAT, . In the pretended
play of SAT,_,,, I pretends that TRUE,_,, also plays i;. Let 6, = v,,. Let k; be
such that after these moves, I wears TRUE, and FALSE,_, . Iterate this until a

0. is reached which is not a conditional; I is, of course, wearing TRUE,  and
FALSE, . I plays i=k, in G and lets ¢,=6,. Thus k. ¢, [d, f;] and
A1_; b [d1-i, 7i;_;]- | now moves in the pretended play of SAT; as dictated by his
strategy in that game; he makes the same move in G. 11 responds in G; then I
pretends that this response is TRUE,_,’s move in SAT,_;. If @, was of the form
(exactly u,, v)y, we are not yet done; I responds in SAT,_; according to his
strategy there, and makes that move in G; II responds in G; I regards this as

AT T s

FALSE,’s response in SAT,. Thus we preserve the following at each such p:

an
sV g

I wears TRUE, and Ak, @,d,, 7i];
I wears FALSE,_; and o, ¥, @,[d1_;, Ai1—,].

_._- o1V in wlns, ~F 77
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he last @, to be defined is ator

It is important to notice that in the proof of Lemma 2 nothing would be lost by
requiring that in exchanges of the third sort, I select B; of the form ¥;,¢[d;, 7;]*
for some ¢ with depth(p)<gq —q’'. Hereafter we take G%*(s4,, o, q) to
involve this constraint on I's moves.

[¢]
o

QOne other sort of same needs to be mentioned., Where &, cw &=
ther sort of game needs (¢ e menuened. Wiere «, ul € w, g
(o, s @), let (&, a;) be 0-congruent iff for all w, u <Il: ay,, < ay, iff

@< a, Let M(&, &, q) be the Ehrenfeucht game on (w, <[w) with
‘situation’ function g, played as follows. Play starts at ( ), with g({ ))=
(&, @,). Let p be a position with g(p)= (B(,, B.). If |Bol =1 + g, play is over;
II wins if g(p) is O-congruent. If m—!ﬁ‘,!<l+n I chooses ie€2 and

n with 0<n<qg—(+m), and B, ..., Bimsn—1€w; 1I selects By, ,., ...,
Bi—im+n—1 € ®; where p' is the resulting position, let:

g(p,)'__ <3* <ﬁ0,m’ LR ﬁ(l,m+n—l>’ Bl* <ﬁ1,M) ey ﬁl,m+n—l>>'

Foro B new le
Fora, B,new,le

o+

>

a~,B iff either a=B<n or « f=n.

Let (dp, &) be n-congruent iff it is 0-congruent and for any w, u <I:{aq,—
&, | ~2n |1, — 1., The following is easy to prove:

II has a winning strategy for M(d,, &, q) iff (&, @) is g-congruent.
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W = (to, t1, (¥j)j<tg+s,), an array for W has the form:
((Ya,j>afel,j<to+t11 <Zaf,j>ae1,j<to+t1>

where any two sets in these sequences are disjoint in every possible way, i.e.:
—foralla, a’'elandj,j <ty +t;: Y, ;,NZ, ;is empty;
—for all distinct @&, &’ €l and distinct j, j' <to+t;: Y, ;NY,;, Yo;,NYsy
YoiO Yo o, ZojNZoj, ZojNZy ), Zo;N Z, ; ate empty; and
—for all weland j<t,+t: card(Y, ;) =k, card(Z, ;) = y;.
Such an array determines the sequence (A, Ry, Ry, Ey, E;, F, F, f) where:
A=Y, ;UZ, ;ael,j<ty+t},
RO = U{Ya,] X Za,,]‘: o € I,j<t0},
Ri=U{Y,,XZ,ael, ty<j<ty+t},
Eo=U{Y,; X Yo  ael, j<ty},
E1 = U{Ya,} X Yar,]': o € I, tog] <t0+ tl}’
F=U{Z,;X Z,j o€l j<tp},
F={Z,;XZ,; ael, tgy<j<ty+t},
fla)=j foraeY,;UZ,;for any a € A.
& is a W-model if o is a model for {Ry, Ry, Ey, E,, Fy, Fy}, all 2-place, where an
array for W determines the sequence:
<|‘9¢|’ R(‘?y R‘lﬂ, EOM, E‘lﬁa F(";d, Fﬁafyi)
Clearly for [ € 2:

Ak, (exactly n p)(Iv,)(exactly p vo)R,(vy, vo) iff n=1.
Thus &k, @, iff t,=¢t;. Our approach to Theorem 3.1 will be: given g < w, find
W, and W, where W, = {to, to+ 1, {¥;)j<2+1) and Wy = (to, to, (¥;)j<2s,) SO that
where o, is a W-model for / € 2, II has a winning strategy for G = G2*(exactly, <,
Ay, A1, q). Then Aok o2, A1 e P2, and for every @ e Sent(£**(exactly, <))
with depth(@)<gq Aok, @ iff ok, @. Thus @q, cannot be equivalent, to any
such @.

Lemma 1. Let &4 be a W-model for W=ty t;, (¥j)jctorr,). L€t @€
Fml(£**(exactly, <)) with free variables among v, vq, ..., Vi-1€ Var(0),
Uos - -+ » thzy-1 € Var(2), and d e ||, 7i e '®, and B = ¥¢[d, Ai]”. Let B' =
B - {ao, ey al(o)_l}. Forj<t0+ t let:
V; = {a: for some w <l(0), a,, € Y, ;U Z, ;}.
For any o€l and j < w:
- lfBl N Ya,j * { }, then Ya,j - {ao, ey a1(0)~1} < B;
—ifw¢V,and B'NZ,;#{}, then forany Bel—-V,
Zg;— {ag, . - -, 01(0)—1} cB.
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Proof. Consider permutations: in the first case permute members of Y, ;-
{ao, ..., a—1}; in the second case switch Z,;—{ao, ..., dio-1} Wwith
Zﬁ,j - {ao, ceay a[(o)_l}.

Fix ¢ < w. Let:

Sw={vew’°+": 2 v(j)Sq};

J<to+t1

Qw={<_ >, U(j)-yj)+ezueSw, —qsesq}.

<top+4

Lemma 2. For o, @, B, etc. as in Lemma 1 and [(0) <gq: if card(B) <k, then
card(B) € Q.

Proof. For j <t,+1t,, let:
vi(j) = card{a € V;: B' N Z, ; is non-empty}.

Since Lj<iur, Va(j) <U(0) <gq, vz e Sy. Suppose that card(B) <k. By Lemma 1,
for all el and j<t,+t, B'NY,; is empty; furthermore, if a ¢V, then
B'NZ,; is empty. If B'NZ,; is non-empty, then aeV, and Z,;—
{ao, . . ., ayp)—1} < B; this follows by a permutation argument in which members
of Z,;—{aqg, ..., ayp-1} are permuted. There are <I(0) many (a,j)’s with
a € V}; thus:

| 3wt |- 10<ca @)= 3wl

J<to+ty J<to+t;

SO:

| 3 vl |- 1@ =cad®) = 3 vl)-y+10)
j<to+t; J<totf
since {(0) < g, card(B) € Q.

Suppose that y,=(2*?+q*+2qy*" for all j<t,+t; then given
[Ej<tgtr, V(J) - ;] + € € Qw, we may uniquely recover v and e. This will make the
cardinality of B when card(B) < k carry information about membership in B.

Let 1,=29+1, ty=to+1, Wo=(to, to, Widi<zds Wi={to, t1, (Vi) j<anger)s
for i<2let f,=fy, S;=Sw, Qi=Qw,. A gap in Q, is an interval (n;, n;) with
n;, n; € Q; and (n;, n;) N Q; empty. 0 e Q;; so if n ¢ Q; and n belongs to no gap in
Q;, for all n' € Q;: n’ <n. We have chosen (y;);<z,+1 50 that if (n;, n}) is a gap in
Qi ni—n;=2% 1f [n,m]c Q, with n — 1, m+1¢ Q,, call [n, m] a block in Q;;
we have made sure that if [n, m] is a block in Q;, then n —m = 2g. As II plays G,
she will ‘match up’ blocks of Qg with blocks of Q,, and gaps in Q, with gaps in
Q;. As II plays G, she will pretend to also be playing:

My=M({0,...,t0—1,2t—1),(0, ..., 80— 1, 2t5), 4°).

II has a winning strategy for M,, by choice of #,. The playing of members of &
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in G shall be controlled by the pretended play of M,, and may be viewed as
involving play of:

Mé= M(<y0) s yto—lx y2t0—1>) <y07 s ey yto—l’ ,V2:0>, 361)

within which the ‘matching up’ of blocks and gaps occurs. Of course II also has a
winning strategy for M.

Where i €2, d; € ||"®, let {d,, ;) be a matched pair iff for every @ belonging
to:

(R(Vw, V), Ei(va, V), Fi(Va, W), v = vt j €2, w, u <l(0)}

Aok pldo] iff o, F @[d]- ‘

Suppose n € Q;; fix v e §; and e so that —g <e<g and n =[L;<, 4, V() - 3] +
e;letn*=(ko, ..., k,_,) where kg<---<k,_, is a list of exactly those j <t,+ ¢
with v(j) >0. Since v € §;, z <q. Given /i, e K'® fori €2, let wy<---<w._;be a
list of those w <[(2) so that n;,, € Q;; let (7,)* =nf, *---*nl, .

We may now describe II’s strategy for G. each position p of G shall be
associated with a position p, of M,. Suppose play of G has reached p with
lpl=q'<gq, h(p)=1{a, ;) for ie2, (d,, d,) is a matched pair, and ((7)**
fo(@,), (A)*=*fi(d,)) is a situation in II’s winning subgame for M,. (Here
£(@) = (fi(ao), - - . , f(@y0)-1).) Suppose that for w <I(2), n,,,, € Qo iff ny,,, € 0.
If n; ,, € (n;, n;) where (n,;, n;) is a gap in Q,, then n;_;,, € (n,_;, n;_;), where that
is a gap in Q,_;; we will say that as of p the gaps (n, 7o) and (n;, n;) have been
matched. Similarly if », ,, € [n,, n/], where [n;, n/] is a block in Q;, we will have
ny_iw € [n1_;, ni_], a block in Q;_; with which as of p, [n;, n/] has been matched.
Suppose that (7, 7i,) is a situation in II's winning subgame for M; (i.e. it is
g’'-congruent).

Suppose that ¢’ <g, and I picks i € 2. If I now selects a; ) € |#,|, 1 pretends
that I plays i and f(a; ;0)) in M,; in the pretend-play of M,, II follows her strategy
and plays n; since n<to+t,_;, II must find a,_;,0 €|s_;] so that (dg*
o,10), 1 *01,1(0)> is a matched-pair and fi_;(a,_; o)) = n. This is easy to do.

Suppose 1 selects 7, ;) € k. Letting n, =max(Q;) for i’ €2, suppose that
N >n; 11 plays ny_j0y=ni—; + (ni1) — ;). Suppose n; 0 € Qi Riuy =
[Xj<isr, v:(7) - ;] + e 1I pretends that I plays i and ng) = (kio, - - -, k;._1) in
M,; 11 follows her strategy for M,, playing (ky_;o, ..., k1_;,-1); clearly for all
w<z, ki_;,<tg+t_; Let:

Vi—iki—iw) = Vi(k;y) forw<z;
vi_(j)=0 forje(to+t)—{kizio,---, ki_iz-1};
> vi-d)) 'y,-] +e;

J<to+t1—;

Ri_i12)= [

II plays Ri-i12)- Notice that (ﬁo*ﬂo)](z), ﬁl *n1,1(2)> IS now ql - 1'C0ngruent.
Suppose that n; ;) € (m;, m;), a gap in Q;. Where mi; = [Cj<trs Vi) - ¥ —q, 1
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computes (k;q, ..., k;,_;) as above, pretends that I plays i and it in M,, and
obtains (k, ;o ..., ki_;,_,) and then wv,_; as above; let m|_,=
[Zj<tore; V1-i(J) - ¥;] —q; fix my_; so that (m,_;, mi_) is a gap in Q,_;. II
matches (mo, my) with (m,, m;) by playing n,_; -, € (m,_;, m;_,) so as to keep
(Fio* {mo, o 12y, Mo), iy * {My, Ry 42y, my)) q' — l-congruent. Since m; —m; >
2%, this may be done.

Suppose I initiates the third sort of exchange, selecting w </(2) and B;=
v@la;, Ai;]** with card(B;)=n;,,. Letting k; =f.(a;,) for i' €2, u <1(0), and
4, €Y a1, UZ oy let U, =(B;—d;)NZ, o By Lemma 1 either U, , is empty
or Z; ,x,— G; c B;. Let:

U _{Zl—i,a/,kl_i—al—i 1f (]i,w:'ﬁ{ })
) otherwise.
II plays:
B_i={a-iuai,€B;, u<l0)} UU{U_;.: u<I(0)}.

By Lemma 2, n;,, € Q;. 1l has played so that n,_,, € Q,_;, and card(B,_;) =
ni—.. Whatever a; ;o) II now picks, I can find g, so that (do* ag 10y, d1 *
a1,10)) is a matched-pair, and Ao, 10y € By iff a; o) € By. Clearly when p with |p|=¢
is reached, II wins G.

3.4. Where P is a one-place predicate and Pred = {P}, there is a @y€
Sent(¥#**(exactly, <)) so that for any model s for {P}:

AE, @y iff card(P¥) is finite and even.

Theorem. For any infinite k € Card, @, is not equivalent. to any sentence
F**(exactly, <).

This is weaker than the previous result, since @, contains ‘<’; but its proof is
much easier and is left to the reader.

We can also construct a @, e Sent(£*%(exactly, <)) so that for any & as
above:

AF @, iff for some even g <w ncb(card(P¥))=R,.

Let P*(u) be (Vp)((exactly p v)Pv o u <p), for u, p e Var(2); PX(u) pins the
value of u to ncb(card(P*)); construction of ¢,, using P?(u), is left to the reader.
Let k =R, for & =X,,. The previous result suggests that ¢, is not equivalent,
to a sentence of ¥**(exactly, <). This turns out to be false! Since this shows
something of the expressive power of £*(exactly, <), I will give details.
For n <k let:

code(n) = {q < w: for some m <n, R, = card[m, n)}.

For any finite A c w there is an n <k with A = code(n). Clearly, if ncb(n) =R,,



218 H. Hodes

then g = max(code(n)). The key to expressing @, is that /F, @ iff for some
n<k:

(i) ncb(card(P*¥)) = ncb(n);

(ii) 0 € code(n);

(iii) if ncb(n) =X, and r + 1 <g, then:
recode(n) iff r+1¢code(n).

Let ¢’ be:
(exactly p, p")P?p’ & (exactly pop') p' < p
& (3p")Fp)Eop) & (exactly p v)(u' s v&v<p)
& (Vp)(Vp' )[p<p'&(Fp")(p <p"& p"<p') & Go(p) & p' < po]
S (3w exactly p v)(u' < v & v <p)
=-(Ju')(exactly p’ v)(u' <v& v <u))).

Then (3u)(3po)@’ expresses @,. (Help: the value of u will be the above-
mentioned n.)
Proving the following may be easier than proving (A).

Conjecture (D). For P, Q 1-place, and k = Xy, , no sentence of P4 (exactly, <)
is equivalent, to the easily constructed sentence of F(exactly, <) expressing
the following:

for some g <, ncb(card(P“))=R, and ncb(card(Q*)) =X,
3.5. Let a weak language be one introduced in §1 without type-1 variables and
without ‘<’ in its logical lexicon. We will now show that such languages really are

weak, i.e. cannot express ‘<’. Let P, Q be 1-place, Pred = {P, Q} and Funct be
empty.

Observation. For 0 <k < w and any infinite k € Card:

(i) F**exactly, <) & L>*(exactly, =),

(i) F*?(exactly, <)« L***(exactly, =).

Indeed, the following sentence witnesses both (i) and (ii) for all choices of k
and k:
)3 (p < u’ & (exactly u v)Pv & (exactly u’ v)Qv).
To prove (ii) it suffices to show that for every g < w there are models %/, and o,
of cardinality k with card(P*) < card(Q*), card(Q*') < card(P*"'), and such that
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for all y € Sent(F***(exactly)):
if depth(y)<gq, then ok, v iff k..

A similar sufficient condition applies to (i).

We will discuss the case in which k = 1; generalizing the argument to k>1 is
straightforward. For vy, . .., vjg-1 € Var(0), o, . . ., yzy-1 € Var(2), let @ be a
0O-profile for v, ji iff @ is a minimal consistent set so that:

—for any j<j' <l(0): vi=vy e Porv,#v; € D;

— for any j <I(0): Pv; € @ or 7Pv; € ®; and similarly for Qv;;

—for any j <j' <I(2): u;=p; € @ or w; # u; € Y;
if ncb(kx) < x we also require:

— for any j <I(2): (ncb = ;) € ® or (ncb # ;) € .

For po, ..., Pi—1, Vo, - - -, Va—1 € Var(0) and n<w let O(P,m, po, ..., p1_1)
abbreviate:

(HVO" 'HV,,_I)< /\ V]¢Vl'&/\ Vj#_-p]'&/\ PVI)'
J<j'<n j<n j<n

j<

We will also use these abbreviations, for u € Var(2):

cardP)+n=pu: (Avy--- E]v,,_l)<_ N vi#Ev, & \ Py,
j<n

Jj<j'<n

& (exactly pu v)(Pv vVv= v,—)),
e j<n

card(P)—n=pu: vy - Bv,,_l)(' N vi#Fv, & N\ Py
j<n

J<j'<n

& (exactly u v)(Pv &N\ v+ v,-));
j<n

card(P) + n = card(Q): (Ju)(card(P) + n = p & (exactly u v)Qv).

Similar abbreviations are in force with ‘Q’ and ‘P’ switched.

Where B c N, is finite, let @ be a 1-profile for ¥, ji relative to B iff @ is a
minimal set so that for any n € B and j <I(2):

either n=pe® or n#yu e P;

either O(P,m, vy, ..., v-1)eP or 10,0, v, ..., V-1 € D;
either cardP)+n=p,e @ or card(P)+n#u;e @;

either cardP)—n=p,e ® or card(P)—n#u; e P;

either card(P) +n =card(Q)e @ or card(P)+ n #card(Q) € D;

and similarly with ‘Q’ and ‘P’ switched. Let & be a nice model iff P* N Q¥ is
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empty and card(P¥), card(Q¥) <k. Let a B-profile for ¥, ji be a union of a
O-profile and a 1-profile for ¥, {i relative to B which is k-satisfiable in a nice
model. Let ¥ be k-equivalent* to v’ iff they are x-equivalent restricted to nice
models.

Lemma. For any formula ¢ of F***(exactly, =) with free variables among ¥, ji
there is a finite B, = X, so that y is x-equivalent* to a disjunction of B,,-profiles
for ¥, fi.
Proof is by induction on the construction of 1. Details are left to the reader.
Let B, = {B,: depth(y) <g}; B, is finite; suppose n = max(B,). Let #, and
4, be nice models with:
n <card(P*),  card(P*) + n <card(Q*),
n <card(Q*), card(Q*)+ n <card(P*).

A, and &, are then as required; details are left to the reader.

4. Inclusions between weak languages

Even in weak languages we may define a prefex (2p) so that for any model
oA, Ak, (2p)@ iff pp* is Dedekind-infinite. Let (2p)@ be:
if p, p' € Var(0), p’ not occurring in ¢: (Ip’)@(p/p’)
& (Vu)[(exactly u p) = (exactly u p)(¢ & p # p')]);
if p ¢ Var(0):
(@(p/0)* > (Yu)[(exactly u p)@ = (exactly u p)(¢ &0 = p)])
& (@(p/0)* > (Vu)[(exactly u p)g = (exactly u p)(¢ v 0= p)]),

where @(p/0)* is formed from ¢(p/0) by replacing all subformulae of the forms
(exactly0v)y, 0=v, v=0 and 0=0 by =(3v)y, 0=v, 0=v and L’
respectively. In this section we assume that all Dedekind-finite sets are finite.

4.1. Observation. £%?(exactly, =) < #**(exactly).

Proof. A profile for uo, ..., #,—, € Var(2) is a consistent formula of the form
N <jer (1 = )*9"D, for a(j', j) € 2. (Notation: for any formula 6, 8°is 6; 8! is
—6.) Suppose ¢ € Fml(#£"?*(exactly, =)) has free variables among v, ..., Vi-1 €
Var(0) and o, - . ., 4,— € Var(2). Call these the ‘distinguished’ variables. For
each profile @ for o, ..., t,—, we will construct @€ Fml(£**(exactly)), so
that for any k € Card, any model &, d € ||, and 7i € k:

(x) it AED[A], Ak @old d] iff Lk, [d il
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For p =0 this yields our observation. Without loss of generality, suppose that no
distinguished variable occurs bound in ¢, and that all conjuncts of ¢ are
inequalities; if the latter is not the case, substitute one equated variable for
another, decreasing the number of type-2 variables free in ¢ until it is the case.
We construct @4 by induction on the construction of @. If ¢ is u; = p;., let:

_ {ﬁ 1 if @ is a conjunct of @,
bo= 4+ if 7¢ is a conjunct of .

The only other case worth discussing is where @ is (3u)@,, for u of type 2, and
Dis /\;<j<pity # 1. For i <p, let &, be:

P&u=p, &N{u#ui’' <l i’ +i}.
Let @, be @¢ o(tt/u;). Clearly for x, &, d, 7 as above and n <k, if Ak, D;[ii, n]

then:
-th:,( (pO,Qi[a, ﬁ, n] iff o ':K (p(),,-[(-i, ﬁ]‘

Let @' be & & /\;, u # ;. For each b cp, let y, be:
A (p0,<1>’(.u/ﬂi)&i€é\_ ,TPo.o (/)

let @, be ¥, & (exactly m p)@y o, Where m = card(b) and where the second
conjunct is expressed in £%*(exactly, <) without use of ‘=" between variables of
type 2, as described at the end of §2.4; this clause introduces the variables of type
4. Note that if ok, y,[d, Ai] then:

Agold, Al — {n:i<p}#{} iff card(Agoq(d, A]7)#m.

Furthermore for a unique b c p, Sk, y,d, i]. Let @o be \/ic, @0,V Vbcp @
This proves (i).

4.2. Observation. £%**(exactly, =) > £**(exactly).

Proof. Given @ € Fml(¥**(exactly, =)), with free variables among
Yo, -« - Vi—1, Hos - - -, My @s in §4.1, and given a profile @ for u,, . .., p,_, we
will construct @4 € Fml(L>*(exactly)) so that for any &, d, /i, (*) of §4.1 holds.
We use induction on the structure of @ as in the proof from §4.1; the notation
and assumptions of §4.1 are in force. The cases worth discussing are where @ is
() o or (exactly p,; )@, for u of type 2, with & as above. The former case is
handled as in §4.1, except that in forming @, (exactly m p)@, o is expressed in
F%*(exactly), as described at the end of §2.4.
Suppose @ is (exactly pu; u)@,. Given a model o, d € ||, i € &?, let

A= jga, i]*, B={n;:n;e A and j<p},
AI=ﬁ¢O,¢’[a’ fi]&q’ B'={nj:nj€A’ andj<p},
r =card(B — B') — card(B' — B).
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By our induction hypothesis, foranyn ek —{ny, ..., n,_1}:neAiffne A'. go
must say that the value of u; is card(A), using card(A’) and r. In two cases
card(A) = card(A'), making this easy:

Case 1: r=0.

Case 2: A’ is infinite.
If A’ is finite and r # 0, we will want a formula that looks at sets D of cardinality r
so that:

—if r <0, then D c A’; so card(A) = card(A’ — D);
—if r>0, then D c k — A’; so card(A) = card(A' N D).

Forje2let

X, ={(6, p): (exactlyn p)8 is a subformula of @g, ¢
and p € Var(2j), ue VarQ)}U{{( L, p)},

where p is a selected new variable of type 2j. Let:

Ny(oA, d, i) ={n<k: AF, ?l(exactlxn p)6|a, it] for some (6, p) € Xy},
where ‘3’ binds all non-distinguished variables free in its scope. Let:
N2j=N2j(&4, d, ﬁ), X=X0UX2, N=NOUN2,

N,={n<k: for some (0, p) € X, and assignments @°, 7° for
non-distinguished variables other than p free in
6, po[a, @, i, i°]* = N and has cardinality n}.

N is important because its members can be defined by formulae from a finite set;
so members of k can be distinguished from members of N without use of ‘=’".
Notice that 0 € N. Further facts: (1) Foranyn,n' ek —N:ne A’ iff n' € A'. This
follows by induction on the construction of @, . (2) For any n € N, either n € N,
or card(k — N)<n. For n e N,, fix (6, p) € X and @°, /i’ so that

Ak, (exactly m p)0[d, @°, n, i’;

by fact (1) either pO[d, @ 7, i’]“ = N, putting n into N,, or else kR —Ng
po[d, @, i, ri°]¥, yielding card(k — N) <n.

If r#0 and A’ is finite, we consider these cases:

Case3: A'cN, r<o.

Case4: A'c N, r>0, N in finite.

Case 5. A'c N, r>0, N is infinite.

Case 6: not A'c N, r>0.

Case7: notA'cN, r<Q.
Some further facts: (3) In case 6 and 7, N is infinite, since by fact (1) k —Nc A’,
making & — N finite. (4) In case 4, RoN N, < Ny; for if n € N, — N,, then by fact
(2) card(k — N) <n; since in this case N is finite, kK — N is infinite.
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For any b, b’ cp let ¢, , be:
A @o.oulu) & N @0 o(pt/n)& N\ Qoo (/)& N\ @o,o(ulm).
jeb jep—b jeb’ jep—b

Thus: Sk, @44 (4, 7] iff
B={n;:jeb} and B'={nm:jeb’}.
We will construct ¢ ,- € Fml(#%**(exactly)) so that if o F, @, ,[d, ] then:

Ak @pp[d, A] iff n;=card(A).

We will then let @4 be
VA{psp:bUb =p, bNb' is empty}.

Let r =card(b — b') — card(b’ — b). If r =0, then we are in case 1; so let @} ,.
be (exactly p; )@, o Suppose r #0; we will let ¢, be:

VA{g&prje{2,3,7))  ifr<o,
Vi{g&et:je{2,4,5 6} ifr>0,

where each a; says that case j holds and @] fixes the value of y; in case j.

Let a, be (xu)@q o and @3 be (exactly u; ) @o, o For n € Var(2) let Def(n) be
\/ {3(exactly n p)6: (8, p) € X}, where 8, p are formed from 6, p by replacing
any free occurrences of n by some new variable. Since X is finite, this is
well-defined. Clearly for any n <k, sk Def(n)[d,#] iff neN. Thus the
construction of «; for j € {3, 4, 5, 6, 7} is easy. For example, let a, be:

0, & (V) (@0, o 2 Def(n)) & 7(xn)Def(n).

Cases 3, 5 and 6 are easy, since we may then take D c N. Fix 1y, ..., 1,1 €
Var(2) and not occurring free in left-components of members of X.
Sl{ppOSC YEXS) Y= <<90’ p0>’ et <6s—1: ps—l))- Form Y= <<90) p0>’ R ]
(6,1, ps—1)) by replacing the free variables in the 6;’s by new free variables
as needed to insure that for all j' <j<(s all non-distinguished free variables in
éj do not occur free in 9]-,, and vice-versa, are not u, and where if p; is replaced
in 6 it is replaced by p; which is not among 7,..., Ny, #. Let
Distincty(nq, . . ., ,_1) be

/\ (exactly n; p;)6; & /\ —(exactly 7, p;)6;.
j<s jr<j<s —

Let y¢3 be

A(Distincty (1o, - . . , M,-1) & A “@o. o (/7))
J<r

& (exactly p; ) (@o, o v \</ (exactly u p;)6))),
j<s
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where ‘3’ binds all non-distinguished variables free in its scope. Suppose r > 0.
Let ¢¥ and @f be \/ {y3$: Y € X"}. This formula looks for D c k — A’ and says
that the value of y; is card(A’ U D). Using fact (3), in cases 5 and 6 N — A’ is
infinite; so such a D exists.

Similarly, for Y € X* let yy be:

§<Distincty(no, o Ne) &N o0
1<s

& (exactly y; [,l,)((po’qy & N\ (exactly p p;) 9;))-
—_— j<s -

Where r<0 and s=|r| let @3 be \/{yy: YeX*}. This formula looks for
D c A' N N and says that the value of y; is card(A' — D). Cases 4 and 7 require
more work.

Let a filling be a set {{po, qo), - - - » {Px—1, Gx-1)} such that for any j <k,
g;e NNRX; and { } #(p;, ;) = Ro— N. Where F is a filling, let:

UF:J_LJC(P,',‘I;'): F=<Q0_p0'_1:‘--:qk—l_pk—1_1>;

the ordering does not matter, but we do not just want a set because we want to
have card((JF)=XF Let t=max(R,NN); since 0eN, texists. F is the
maximum filling iff {_ F =¢— N.

Suppose case 4 holds. Consider S = (s, . . ., s,_1) € (Ro — {0})* and r, <R,. If
r=ry+ X S, let subcase (r,, S) hold iff:

ro=min{r, card(N — 4")}, D 8 =min{r — r,, card(t — N)}.

Let =Y S; r,=r—(ro+ ). For each such (r,, S) we will construct ¢, s so that
if o, d, 7 fall under case 4 then:

Ak, @, sld, i] iff (r, S) holds and n; = card(A") + r.

This formula will look for D=D,UD,UD,c k —A’, with Dy, D;, D, pairwise
disjoint and card(D;) =, for j € 3, and say that the value of u, is card(A’ U D).
More precisely, we will have:

DycsN—A'";thus Dy=N—-A" iff r=p;

if 7, #0, then D, =|J F for some filling F with F = §;
so F is the maximum filling iff » > 7, + card(zt — N) > 0;
Dy=(t, t+1,+1).

This fact will permit us to describe D, if it is non-empty: (5) if F is the maximum
filling, then (R " N)U{_J F =t + 1. Thus:

card(Rg NNYUUJF)=t+1¢NUUF.
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®,.(, is easy to construct. For Y € X° form Y as before and let yy(7j) be:

Distincty(no, - - ., Ns-1) & /\ @0, o (12/ 7).
J<s
For s =r, let By be:

§(yy & (exactly y; u)((paa v \/ (exactly u [),-)9,))
J<r

where ‘3’ binds all non-distinguished variables free in its scope. Let ¢, , be
VA{By:YeX}.

Now suppose that ry# r but r =7, + r,. We must ‘pin down’ N — A’ and | F for
a filling F. We must first describe how to ‘pin down’ a block (p, g) = X, — N for
geN. For (6, p) € X and variables u*, n,, ..., n,€ Var(2) and v{, ..., v of
the same type as p, we will construct a formula Blockg ,(1*, 7, v') that will
describe such a block. Change 6, p to 0, p to make sure that none of the
non-distinguished variables in 6 are among those we have fixed. Suppose that
p € Var(0). For j<slet 6 be 0 & /\;-;p #v}. Let Blockg ,, ¢ y(u*, 7, V') be:

—(xp)6 &j/<\s 0(p/v))& N vi#v, &]L\s Def(1;)

Ji<j<s
& (exactly u* p)6 &/(\s (exactly ; p)6;.

s

For p € Var(2) we would like to do the same thing; but there is a problem: ‘=
was used in the above formula. Here we rely on fact (4). For Z € X*, form Z as
before; let 6 be 8 & /\; -, (exactly p p;)6;.. Let Blocks, , ,(u*, 7, ¥') be:

(2p)6 & /\ 6(p/v}) & Distinct ,(¥') & /\ —Def(n;)
J<s J<s
& (exactly u* p)6 & /\ (exactly n; p)6;.
J=<s -

Now fix variables 7o, ..., U,—1, U3, ..., ui_1€Var(2), Y=({6¢, p¢), ...,
(Or_1, Pr1)) e X®, U={(60, pPo), - - -, {Ox-1, P_1)) € X*, and for each jek
fix 70, - - ., M5, € Var(2) and:

—if p; € Var(0), then Z;=( ) and vj,, ..., v, € Var(0);

—if p;e Var(2), then Z;= (6,0, pj0), - --» (05, 0;5,)) €X' and v, . . .,

Vs, € Var(2).
Transform Y, U, Z,, ..., Z,_,to Y, U, Z,, ..., Z,_, so that no two formulae in
any of the latter sequences have a non-distinguished variable in common, and so
that all variables in such formulae are distinct from those fixed so far. We will use
fi* to ‘pin down’ RFId(F) and then variables of the form 7, for j <k and j' <s;
wil ‘pin down’ the elements of (JF for a filling F. Let
Filling, 5(ii*, %o, - - ., fa—1, Vop - - ., Vie—q) be:

Distinct (i *) &]_/<\k Blocke, . z(14]5 M0, - - - Misp Vi0s =« +» Vis,)-
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Let By y z be:

3( vy & (900,85 V/ (exactly u p})6; )

j<r

&FillingU,i(?’*) ?’0, R ﬁk—lr VO: revy T’k—l)

& (exactly p; y)[(po,@, vV (exactly u p 67

i<rn

vV {(exactly u p,)6/:j <k and j' <s,-}]),

where ‘3’ binds as usual. This formula looks at D,=N — A’ and D, =(JF for a
filling F with F =S and then says that the value of y; is card(A' U DU D;). Let
@n.s be \/ {By.v,3: Y, U, Z as above}.

Now suppose that r > ry and r, # 0. We must ‘pin down’ ¢ + 1. First we must pin
down the maximum filling. For U, Z as above, a new 1*, Tix = Mo Mey and
Vi = Vio, Vi1, let MaxFillingg, 3(2%, 7o, . - - » flk—1, Vo, - - - » Vi—1) be:

FllhngU,Z(ﬁ*y ﬁO’ c -y ﬁk—l; i;0’ veey i;k—l)gl‘ /\kDef(nj,sj)
<

& N\ (7@ P @V)Fllingy o, o0y, 202, (B "5 ks Tos - - - 5 Tk—1,
Tir Yoy« » Vi1, Vi) <9k; Pk> €X, Z €X2}~
The second conjunct shows the reason for including the variables 7;, for j <k:
that clause ‘stretches’ each j-th block down to p; + 1 for p; € N; such blocks exist,

since 0 € N; 1, and v, , do no work in the third conjunct, but are included for
the notational convenience of the second. Let FinDef(n) be:

V {3((exactly 1 p)6 &(2p)0): (6, v) € X},

where ‘3’ binds as usual and 7 is as in our definition of Def(n); this formula says
that the value of n is in Rg N N. Let 8y 2 0(. .., u) be:

(exactly u n)(FinDef(n) v \/ {(exactly n p; ;)61 j <k, J' <s;});
forg<wlet 6y 3 ,( .., u) be:
(exactly u n)(FinDef(n) v \V/ {(exactly # Pi)8; 1 <k, ' <s;)
VOyzoV - 0uzg)

Then 843 (. . ., ) ‘pins down’ the value of u to be t +q + 1, using fact (5) for
g =0 and iterating. Let By  z be:

§<Yy & (VN)<(P0,4>' > \/ (exactly u p;')6} )
J<r
&MaXFillingU,z(ﬁ*, ﬁo, ey ﬁk—l) VO) PRF Vk—l)

& (exactly y; M)[(po,qy vV (exactly p phHo;
J<rg

v\ 6uz,; vV {(exactly up,-)@,fj,:j<k and j’ <s,-}]>.

j<n
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This formula looks at Dy=N —~ A’, D, ={_ F where F is the maximum filling, and
at D, =(t, t + r,+ 1), and says that the value of y; is card(A' U D, U D, U D,). Let
@, sbe \/ {Byuz Y, U, Z as above}. We let g, be:

V A{@,.s: (ro, S) is a subcase of case 4}.

We now tackle case 7. Let ¢ =card(k — N). Since A’ ~N =k —N and r <0,
t>0. Let ' <t be the greatest such that t' € N. By fact (2), '€ NJUN,. For
o, U <Ry let subcase {ry, u) hold iff ry=min{|r|, card(4’'NN)} and u=
min{|r| —ry, t —t' — 1}. We will construct @, , so that if &, 4, 7 fall under case 7,
then:

AE, @,dd, 7] iff (7, u) holds and n; = card(A") — |r|.

If subcase (|r|, 0) holds, then we can look at D c A’ with card(D) = |r| and pin
u; to card(A’ — D). For Y = ({8q, pq), - - -, (Bpr1—1, Piri—1) ) € X" let By be:

Distincty (o, - - - , N,-1) & ‘4|\| ®o, 0 (/1)
j<lr

& (exactly u;u) (¢’0,¢' & N\ ~(exactly ﬂf’f)éf)?
=T

let @0 be \/ {3By: Y € X1,

Suppose that subcase (ry, u) holds for ry=card(A' N N)<|r| and u =[r| —rp.
Then R, — N contains an interval with at least ¥ members; since N is cofinite,
there then is a filling F = {{po, o)} With u =qo—po—1; @, ., Will say that the
value of y; is card(A’—(NUI|JF)) for such an F. For (8,p)eX, Y=

<<60; PO); LR <0r0—1) pr0—1>> €X' and Hos - -« r]ro—l) H*, 7”6, L 77:4—1 €
Var(2) and vy, . . ., v,_, of the same type as p, let By g, be:

Distincty(#) & Block ,(u*, 7', ¥') & (exactly u; u)
(‘Po,cp' & A\ ~(exactly u p,)6; & /\ (exactly u pf)BP));
j<u

J<ro

this looks for D = (A’ N N) U F for a filling F as described above, and pins y;
to card(A’ — D). Let o, , be:

V {3Byv.6,:{6,p)eX and YeX"}.

Now suppose that r,<|r| and u<|r|—ry; so t=t'+u+1. Set r,=|r|—r.
Fixing fj =1y, ..., n,-1and ¥v'=v;, ..., v, _4, let & be:

_'\/ {éBIOCk&p (ﬂ*’ ﬁ’ i;,): <0’ p) GX};

« entails that t — ¢’ < r;. We will construct a ¢,, ) to look for sets C and D c C,

with card(C) =1t and card(D)=r,—u—1, and to say that the value of y; is

card(C— D). Lets=r,—u — 1. Fix u*, 1o, ..., n, € Var(2). For (6, p) € X:
~ifpeVar) fix vy, ..., vi, vy, ..., vi_1eVar(Q)and Z=U=( );
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-if peVar(2) fix v§,...,vi, vy ...,vi,€Var(2) and Z=
<<90’ pO) <6u’ pu>>EXu+1 U= <<90’ P0> <6s b Ps 1>>€Xs

Form 6, p, Z, U as usual to avoid collisions of non- dlstlngmshed variables. Say
peVar(0). Forj<ulet 6y be 8 v \/;;p=v};let &, Au*, 7, V*) be:

(xp)6 & (exactly u* p)8 & /\ (exactly ;)6
E— Jjsue
& A —Def(n;) & (exactly 1, n)7Def(n).
j<u -

If p € Var(2) for j<u let 6 be 8 v \/,, (exactly p p;)8); let &g, A(u*, 7, v*)
be:
—(p) 0 & (exactly u* p)6 & Distinct,(v*)

{ o antles 22 YO A
{€xacuy 1)Uy &/
]Su ]<

In both situations, &
Bo.p.( ».¢ ) be:
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&
& (exactly y,; p) ( N\ p#Fv )
If p € Var(2) let By, z v be:

Eo,p.z(1*, T, V¥) &j/<\s 8(p/v}) & Distinct,(¥')

{ \
& (exactly W p ( —I(exact]y pp; )9;‘);

a&\/ {3Bo.pz.v: {0, p), Z, U as described above}.
Let @, be:

V { @ (ro, u) is a subcase of case 7}.
4.3. Theorems 4.1 and 4.2 suggest the following:

Conjecture (E). For any k € Card:

(1) F%exactly, =) < F*S(exactly),

(2) ¥ *(exactly, =) < £**(exactly).
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Given @ € Sent(£%*((exactly, =)) [Sent(£** (exactly, =))], we may apply the
procedures used in §4.1 [§4.2] to eliminate all equations between variables of type
4; but I can’t see how to eliminate equations between variables of type 2 the
scope of a prefex of the form (exactly u, u) for pe Var(2) and p; € Var(4).
However for k <X, this obstacle can be avoided, even improving on (E.1).

Theorem. For k <X, and 1 sk < w:

(i) F***(exactly, =) < £ (exactly),

(ii) L>**(exactly, =) < F£»**(exactly).

In this section we will prove (i) for k£ = 1; in the next section we will consider (i)
and (ii) with &> 1.

Let ¢ € Fml(£**(exactly, =)) with free variables among vy, . . . , v,_; € Var(0),
Hos - - - 5 Up—1 € Var(2), the ‘distinguished’ variables. Let @ be a profile for
Mos - - ., Up—y. We will construct @4 meeting the conditions met in §4.1 and 4.2.

Only the case in which @ is (3u)@,, u € Var(2), needs discussion. As in §4.1 we
may suppose that @ is /\;;, u; # y;, and that no distinguished variable occurs
bound in @ or in @y e. Let @ be @y o(u/y;) for j<p. We will construct
@' € Fml(£**(exactly)) so that for any model o, de||' and 7 e&® with
Ak, P[A]:

At QA n#u & oo )la il it v gl il
[<p

Then we will take @4 to be \/,c, ;v @',

Let X, and Ny=Ny(, d,r) be as in §4.2, C={ny,...,n,_1} —N,. Let
Defy(n) be V {3(exactly n #)8: (6, v) € X,}, for n € Var(2) as in §4.2 and ‘F’
binding all non-distinguished variables other than 7 free in its scope: clearly Def,
defines N,. Let ¢* be:

\/{fl((exactly 1 )0 & & ~(exactly u,; ¥)6 & (po,(p,): (6,v)e Xo},
j<p T

where 6, v are transformed into 8, ¥ as usual to avoid collisions of variables, and
where ‘3’ binds all non-distinguished variables in its scope, including u. Thus for
oA, a, A as above:

Ak @*[a, i) iff forsomeneNy—{ny, ..., n,_} Ak, @ old, 7l
For o, d, fi and N, as above and n, n' € k — Ny
AE o old, i, n] iff Ak, @ old, 7, n'.

This follows by induction on the construction of ¢, &. Thus for some n € & —
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(MU C)
‘Sﬂ l:K (PO,q&'[a, n, n‘] lff
Ak, (Ap)("Defo(1) & @o,4)[d, 7] and card(k — N) > card(C).
For ¢ — p let Def, be
/\—lDef(u,)& /\ Def(u,).
jec
Thus ok, Def [4, #li = In c. We will construct a formula . savine that
14, Al1 1. We will construct a formula ¢, saying that

j €
card(k — Ny) > card(c ) Lettmg @** be:

(@)Dl & 0.0) & (V. (Def &),

we may then let ¢’ be @* v @**,

Suppose k =R, z<w. If y = card(No N (k — X)), then card(k — Np) > card(c)
iff card(Xo — Np) > card(c) ~ (z — y). For each y <z we will construct 6, and v, so
that:

AE b,[d, ] iff y=card(NyN (k — Ry)),
Ak, y,[d /] iff card(R,— Np) > card(c) — (z ~ y).

Then we may let y, be \/,<, (6, &v,). The construction of &, relies on ideas
used in §4.2, and so is left to the reader. The construction of y, uses a modified
notion of a filling. Let F _be an upward- ﬁlhng iff F= {{po> 90, -

(px 1> Gic— 1>>} where p] € N, R 0> <n] and (pp Mj + )(; N" for all '<k
Let:
UF=U{(p;, g +1):j<k},  F={(qo=Pos-- -, Qxe1~Pr-1);

again order is unimportant; we only need that card((JF)=YX F. For each
S € (R — {0})* with ¥ S =card(c) +y + 1 — z we construct ys saying that there is
an upward-filling F with F=S. We then take y, to be \/ {ys:S as above}.
Construction of yg resembles constructions in §4.2 and is left to the reader.

But the following deserves mention. In this construction we could not use
fillings; fillings would be formed by counting downward from elements of No N Ro:
but if N, is finite, there might not be enough elements of N,N R, to yield an F
with | F sufficiently large. On the other hand, in case 4 of §4.2 we could not use

upward-fillings; for in counting upward from an element of N, R, we must

‘count with’ members of N gince in case 4 N is fin fp we micht not be able to

ASAT LA L SRR S O g $ 4 L0 w3 Oy ) 111 LQad v 4iY 15 1id gy B Ve alie ¢

count high enough.

4.4. We will now prove Theorem 4.3 for k=2. Suppose that ¢e¢
Fml(£**(exactly, =)) [Fml(£>* (exactly, =))] with free variables among vy,

, Vi1 € Var(0), po, ..., dp—1€Var(2), Lo, ..., ;-1 € Var(4); these are the
distinguished variables. As indicated at the start of §4.3, it suffices to trans-
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form ¢ to a k-equivalent ¢ € Sent(£>*(exactly, =)) [Sent(£**(exactly, =))]
with the same free variables such that ¢ contains no equations between
variables of type 2. As usual, let distinctly bound variables be distinct from each
other and from the distinguished variables. Let & be a profile for u,, ..., u,_;.
We will construct @4 € Sent (F**(exactly)) [Sent(£>*(exactly))] so that for any
model o, d € ||, i € kP, m e R, if of F D[ii] then:

AF @qld, i, m] iff AF old, i, m)].

The only cases worth discussing are where ¢ is ()@, or (exactly {; u)@, for
u € Var(2). The first case in handled as in §4.1; thus the assumption that xk <X, is
not used. Suppose that ¢ has the second form. We will try to mimic the
construction from §4.2, with X, and N playing the role that X and N played in
§4.2. In cases 1 through 6 the construction is straightforward, not requiring use of
the assumption that x <X,,. But case 7 poses a problem. Suppose subcase (ry, u)
obtains for r,<|r| and u <|r| —r,=r,, and for (6, v) € X, and appropriate @°,
A% m° we have C=496[d, d°, i, i’ m, m°]* c || with card(C)=¢". For any
u' € Var(2) we can produce a formula that pins the value of y’' to t' — (r —u —
1) =card(C— D) for any D ¢ C with card(D)=r —u—1. But this will not
enable us to produce a formula pinning ; to ¢’ — (r, —u — 1), since &; € Var(4)!
This is the obstacle to the naive approach to proving conjecture (E).

The hypothesis that k¥ =X, for z < @ makes possible a different approach to
case 7. Under case 7 one of the following subcases holds:

(1) card(Ro— Np) =7,
(2) card(A' NNy) =,
(3) card(A’) =card(A' N Ny) + card(k — Np) <z +2r.

For each S such that S € (X, — {0})* for some k and Y. § =, we may construct
a formula a; asserting the existence of a filling F with F =S and such that the
value of y; is card(A’ — U F). In subcase (1) there is such an S and F. It is easy to
construct a y that ‘looks for’ D ¢ A’ N N, with card(D) = r and says that the value
of u; is card(A’'— D); in subcase (2) such a D exists. For each u with
r<u<z+2ritis easy to construct a formula y, saying that card(A’) = u and the
value of y; is u — r. Let the disjunction of all of these formulae be ¢,; details are
left to the reader.

This construction easily generalizes for k > 2.

4.5. We now show Theorem 4.3(i) is best-possible for £ =1. Let R be 2-place,
Pred = {R}, Funct={ }. For p € Var(2) let 8(u) be (Iv,)(exactly u v)R(vy, v);
let @ be:

Qo) Fp)(0(po) &0(uy) & o # 1)

Observation. For k =R, @ is not k-equivalent to any sentence of £**(exactly).
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Proof. We construct models &/, and of, as follows. For each n <ncb(k) fix sets
X, and Y, with card(X,) =k and card(Y,) =n, all these sets pairwise disjoint.
Let:

R%=J{X,xY,: n#RXy},
R =(J{X, XY, n¢{R, N}}.

The members of | X, are X-objects, and the members of | Y, are Y-objects.
Forae X, UY, let f(a) =n. For n, n’ <k let n match n’ iff:

if n or n’ is finite or =X, then n=n';

n=RxR,,.; iff n'=K,,., forall:<w;

n=R, iff n' e{N, X}

For d, € |A,|,7i € k? let (d,, Aio) match {d,, i,) iff:
forallj<j'<l: ag;=a0; iff a;=a;;
flao)=flaoy) iff flai;)=f(ar;);

for all j<I: aq;is an X-object iff a, ; is an X-object;
aq; is a Y-object iff a,;is a Y-object;
f(ao,;) matches f(ay,);

for all j<p: no; matches n, ;.

Then for any formula v of %%(exactly) with free variables among
Yoy -+« Vio € Var(0), po, . . ., t,_1 € Var(2): if (d,, fiy) matches (d,, #,), then:

Aok Yldg, fig] iff sy ke (dy, Ay]
This is easy to show. So for any vy € Sent(¥£**(exactly)), ok, ¥ iff o F, vy,

proving the observation.

4.6. We will now slightly improve the last remarks of §2.1.

Observation. For 1<k < w and k an aleph, if either ncb*(k) <¥,. or ncb*(x) is
a limit cardinal, then:

D) PO2%k+2(exactl , =) X Lo (exactl , =),
y exactly

(it) £L*****(exactly) < F***(exactly).

To prove this, we will introduce another satisfaction relation. For a model &
and x € Card, we define s/F2*¢@ so that variables of type =2k +2 range over
nch* (k) rather than over nch*(x). That is, let Sent™ (£ +?*(exactly, =)) be
the set of sentences formed from formulae of #%?%**(exactly, =) by replacing
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variables of type-2j by terms of the form n, where:
if1<j<k, then n<nct/~'(x);
if j=k +1, then n<ncb* (k).

For @ e Sent®™(#%***(exactly, =)) define #/F¥ @ as in §1.1 except that for
u e Var(2k +2):

A% (3Au)y iff for some n <ncb* (k) AEX y(u/n);
AF¥ (exactlymp)y iff card({n <ncb*"'(x): L y(u/n)})=m.

(The reader might wonder why this paper investigates F, rather than EZ. The
remarks of §1.2 only apply to the latter satisfaction relation if ncb(x) = x (when
the relations coincide); also Theorem 2.7 fails for the latter relation.)

Given k and ¢ eSent(¥*****(exactly, =)), we will construct ¢'e
Sent(£%%**>(exactly, =)) so that for any model &f: #F, ¢ iff S+ ¢@’'. Form
@" € Sent(£***(exactly, =)) from ¢’ by replacing all variables of type 2k + 2 by
new variables of type 2k; for any model &, A F¥ ¢’ iff AFX ¢"; but clearly
AEF @" iff sk, @"; so @" is as required by (i). If @ € Sent(F£******(exactly)), we
will make sure that @' € Sent(£%****(exactly)); ¢" will be as required by (ii).

Suppose that k = 1. Suppose @ € Fml(¥**(exactly)) with free variables among
Vor - -« » Vioy-1 € Var(0), po, . .., Pizy—1 € Var(2), uo, - - . , Wyay—1 € Var(4), these
to be called ‘distinguished’. We will construct ¢’ € Fml(£**(exactly)) with free
variables among the distinguished ones, and so that for any model &, @ € |¢|'?,
€ k'@, 7 e ncb(x)'®:

Ak @ld, m, i) iff AE2@'[d m, ]

@' is constructed by induction on the contraction of ¢; the only case worth
discussing is where ¢ is (Iu)p, for u a non-distinguished type-4 variable.
Suppose that @, has been constructed as desired.

We will transform the apparatus of §4.2 to use with k5. For i €2 and a fixed
p' € Var(2i) let

X, ={(6, p): for some n € Var(2i +2), (exactly n p)6
is a subformula of @} U{{ L, p")};
Noy(d, @, 1, i) = {n: A2 I(exactlyn p)6 for some (6, p) € Xy},
ek binding all non-distinguished variables in its scope. Where &, &, /i1, and # are
fixed, let N,; = Ny (4, @, m, ). Notice these facts. (1) If n, n’ € k — N, then:
AL o[, d@, m, i, n] iff AEZ@i[, d m, i, n']
(2) For any n € N, either n =<card(N,) or card(k — Ny)<n. For suppose that

(6, p) € X, and A FZ(exactlym p)0[d, @°, m, m°, i, i°), @, m° and A° assigning
values to the non-distinguished variables other than p free in 6; then for any m,
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m' ek — Ny

A2 0(d, @, m, m°, m, i, 7% iff 2 60[d, a° m, m°, m', i, A%,
so either 2p0[- - -]* = N, or k — Ny ?p6[- - -]¥. (Here 2p0[- - -] = {m < k: AF2
6[...,m,...]1}.) (3) If neN,, then n < ncb(x).

It is easy to construct a formula Def,(p) for p € Var(2i +2) so that for any
oA, d@, m, 7 as above and n < k:

A EiDefy(n)[d, m, fi] iff neNy.
Suppose we can construct a formula @ of ¥£**(exactly) so that for any &, d, m, i
as usual:
o B2 @[d, m, ii] iff ncb(x)— N, is non-empty.
Then we may take @' to be:
(Fu)(@o& ncb = pu & (Defy(u) v D).
Clearly if Ak, @od, m, A, n] for n <ncb(x), LFZ@'[ - -]. Suppose that
A2 (@(u/m) & ncb = n & (Def,(n) v ))[- - -].
If n € N,, then by fact (3) n <ncb(x), yielding £, ¢[- - -]. Otherwise there is an
n' encb(x) — N,; by fact (1) S EZ py(u/n’)[- - -], again yielding £, @[ - -]. So it
suffices to construct @.
First we construct @, saying that Ro— N, #{ }. For (6, p) e X,and {8', v') €

X, form 0, p, 8’, ¥' as usual to avoid collisions of non-distinguished free
variables; let B¢ , ¢, bE:

(exactly u p)8 & 6(p/p*) & (exactly p* ¥')8"

& (exactly n* 5)(8 v (exactly p 7')8")

& (exactly n* p)8 & “Defy(n*),
where n, n* € Var(4), p* € Yar(Z), all new. This will fix the values of n and n* to
beannandn+1withneX,NN,and n+1¢N,. Let @, be:

V {3Bop.00v: (6, p) € X;, (6, v') € Xo} v (p)Defo(p),

where ‘3’ binds all non-distinguished variables in its scope. If N, is infinite, then
— N, #{ } iff the first disjunct holds. The second disjunct says that N, is finite,
in which case by fact (2) card(Ny) + 1 € Ry — N, and @, is satisfied.
Case 1: ncb(k) =R,. Let @ be P,
Case 2: ncb(x) =N,. If N, is finite, Ro— Ny # { };
otherwise card(N,) = Xy € N, iff Ri—N,#{ }. Let @ be:

D, v (Fu)((exactly u n)Def,(n) & Def,(1)).

This says “Either Rg~ N, # { } or card(N,) ¢ N,”.
Case 3: ncb(kx) =Rs,; for 1 <6 < w®. Suppose we can construct ¥q, ¥, ¥, SO
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that:
A ':2 1/)0[' . '] iff Card(NO - Ro) < Na,
A2y -] iff for some n ¢ N,, n <R, and n < card(N, — Ry);
AEZy,[- -] iff card(N,— R) ¢ N, and card(N, — Ro) # Rs 1.
Th‘]c

AEL(Y, v y)[---] iff forsomeneN,, n<R¥;
and n < card(N, — R,).
We may let 9,V ¢, v ¢, be @. For, if of $Zyq[- - -], then card(N, — Ro) = Rs;
and if SA¥Z(yw,v y,)[---], then for any n<R; neN,; so N5,y —N,={ }.

Clearly, if AFZ(y;v )| -], then Ry —N,#{ }. If AE2yq[ -], then
card(N, — R0)<K5, since 0 >0, card(Ny)<Ns; so Ns¢N,, since otherwise

_ Lond (M
£\,5+1 = wuuu( IVO) = (\5 Uy Ldact {4).

Since x is assumed to be an aleph, it is convenient to identify cardinals with
initial ordinals let {az)s<¢, be the listing of N, — R, in increasing order; clearly
card(N, — Rg) < &,. Let:

M = {a;: & <card(N, — Ro)}, M = {ncb(a): & € M}.
We will use these facts to construct y, and ;:

card(N, — Rg) <R iff order-type(M)=|M <o + §;

forsome n ¢ N,: n<RXN; and n<card(N,—Ry) iff

for some ¢ e M — N, ncb(a)=w + 6.

_ For non-distinguished p, p’ € Var(2) and (6, v), (0',v') € X,, form 8, v,
0', ¥' as usual to avoid collisions of non-distinguished free variables. Let
P <g,e,p abbreviate:

(exactly p ¥)0 & (exactly p’ ¥)8" & (27)0 & («2v')8’

& (exactly p’ v')(8' v 6(¥/¥")).
Let p<*p’ be:

\/{E(P\eno vP"): (6, v), (0", v') e X,},

where ‘3’ binds non-distinguished free variables other than p and p'. Then for
any m, m' <k:

SAEEm<*m'[d, m,A] iff m,m eN,—R, and m<m'
Let M(p) be:

p=<*p&(Ju)((exactly u p')(p' <* p) & (exactly u p")(p' <* p"));
Thus &£ E2ZM(m)[- - -] iff m € M. For ug, u, € Var(4) let uo<** u, abbreviate:

(Ao MAn Mo < &M HN& Mo
\=FON=FINF U‘ Pi1X BE\Po) K 2Py

& (exactly po p)(p <* po) & (exactly s p)(p <* p1)),
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where p<* p;is p<*p; & (p,<*p). For n, n' <k:
AE2n<*n'[---] iff n<n' and n,n' eM.

Using cardinality coefficients and the apparatus of §2.6 with ‘<**’ replacing ‘<’
we can construct 9, saying “the order-type of M < + 8”. Similarly we can
construct ¥, saying “for some o € M ~ N,, ncb(a) < w + §”. Details are left to
the reader. Let vy, be:

(3u)((exactly u p)(p <* p) & (Defy(p) v ncb = p)).

Case 4: ncb(x) is an uncountable limit cardinal. If card(N,)+# ncb(k), then
ncb(x) — N, is non-empty. For suppose that card(N,)# ncb(x); by the case
assumption and fact (3) fix an n with card(Np) <n <ncb(x); by fact (2) if n € N,
then card(k — Ny) < n; but card(k — N) = ncb(k), a contradiction; so n ¢ N,. Let
Y3 be:

(3u)(ncb = u & (exactly u p)Defo(p)).
On the other-hand, if card(N,) = ncb(x), then ncb(x) = card(N, — Ro). Let
¥(p) be:
(3p)(M(p) & (exactly u p")(p" <* p));
then & E2 y(n)[- - -] iff n <ncb(x). Let P be:
¥s v (3u)(¥(u) & TDefy(u)).

By the preceding remarks, this works.

It is easy to modify this construction to handle @ € Sent(¥£"*(exactly, =)). For
k > 1 simply replace types 2 and 4 by types 2k + 2 and 2k.

For k as above, part (i) of this Theorem with Theorem 4.2 yields the surprising
inclusion:

P4 (exactly, =) < L (exactly).
4.7. Here is another slight improvement on the concluding remarks of §2.1.
Observation. For 1 <k <, if ncb* (k) <N, then:

FO2%+2* (exactly) X £ (exactly).

Suppose k =1. Let k =R, for z <w. If z=0, then kx = ncb(x), and the above
inclusion holds trivially. Suppose that z = 1. Let @ be a formula of £**(exactly)
with free variables among vy, ..., Vio-1 € Var(0), po, ..., Pi2y-1€ Var(2),
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Hos - - - » Myay-1 € Var(4), the ‘distinguished’ variables. We will construct a for-
mula @’ of #** (exactly) meeting the conditions on @' from §4.6; as there, this
suffices to prove the observation. ¢’ is constructed by induction on the
construction of ¢. If ¢ is (Ju) @, for u € Var(4), @' is constructed as in §4.6. Let
@ be (exactly u; )@y, for i <I(4), u € Var(4). Suppose @, has been constructed,
and no distinguished variables occur bound in ¢ or @, Define X, and
N(«A, d, m, i) as in §4.6. Let Def,(1) and FinDef,(u) be the natural analogues of
Def(x) and FinDef(u) from §4.2. For &, 4, m, A, let A={n<k: AF.
@old, m, i, n]}; we will pin g; to card(A NX,). Let y be (Vu)(@,> Def,(u))
and ' be (u)(ncb' = pu & @;); Y’ says “Roe A”. We will take ¢’ to be:

(P&o) vy &Y & @) vy &Y' & @3).
To handle the case in which A ¢ N, = R, let @, be:
(Yu)(po > Defr(u)) & (exactly p;, p)(@o & FinDefy(p)).

As usual, if n, n"ek—N,: neA iff n'e A. So if A— N, is non-empty, then
E—N,cA; since N, Ry, Xy,...,N,_,€A. For je2, if card(A NRy) =z —},
then we want a formula @,.,,_, that looks for D = A N R, such that card(D) =
z —j and ‘pins’ the value of u; to card(A — D). For each u <z —j we construct
@24, saying that card(4 N Ro) = u and the value of y; is u. These constructions
use easy ideas from §4.2; details are left to the reader. We let ¢,,; be

VA@arjwusz=j}.

4.8. Here are some further questions, stated as conjectures in order of decreasing
confidence.

Conjecture (F). For 0 <k < w, if ncb*(x) =R, then:

L exactly, =) < £%?(exactly).

Conjecture (G). If K =X,.,,, then :.Sf“"‘(exactly)f: F*>*(exactly).

The following sentence is a possible witness:

(Fu) 1 (3v)(exactly u p)(Ivy)(S(vy, vo) & (exactly p v)R(vg, v)),

with u € Var(4), p € Var(2), and v, v,, v, € Var(0).

Conjecture (H). For k =X,,, ¥%%(exactly) ~ PO (exactly).
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The following sentence is a possible witness:

(37)((exactly n u)(3va)(exactly 1 p)(Avo)
(So(v1, vo) & (91%0_ﬂz P v)Ro(vo, v))
& (exactly n u)(3v,)(exactly p p)(Ivo)
(81(v1, vo) & (exactly p v)Ry(vo, v))),
where 1 € Var(6), u € Var(4), p € Var(2), v, vy, v, € Var(0).

References

[1] D. Bostock, Logic and Arithmetic, Vol. I (Oxford University Press, 1974).

(2] H. Hodes, Logicism and the ontological commitments of arithmetic, J. Philosophy 81 (3) (1984)
123-149.

[3] H. Hodes, Cardinality Logics, part II: Definability, J. Symbolic Logic, to appear.

[4] H. Hodes, Where do the Natural Numbers come from?, Synthése, to appear.

[5] A. Levy, Basic Set Theory (Springer, Berlin, 1979).



