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Abstract
Hodes (2021) “looked under the hood” of the familiar versions of the classical propo-
sitional modal logic K and its intuitionistic counterpart (see Plotkin & Sterling 1986).
This paper continues that project, addressing some familiar classical strengthenings
of K (D, T, K4, KB, K5, Dio (the Diodorian strengthening of K) and GL), and
their intuitionistic counterparts (see Plotkin & Sterling 1986 for some of these coun-
terparts). Section 9 associates two intuitionistic one-step proof-theoretic systems to
each of the just mentioned intuitionistic logics, this by adding for each a new rule to
those which generated IK in Hodes (2021). For the systems associated with the intu-
itionistic counterparts of D and T, these rules are “pure one-step”: their schematic
formulations does not use or . For the systems associated with the intuition-
istic counterparts of K4, etc., these rules meet these conditions: neither nor is
iterated; none use both and . The join of the two systems associated with each
of these familiar logics is the full one-step system for that intuitionistic logic. And
further “blended” intuitionistic systems arise from joining these systems in various
ways. Adding the 0-version of Excluded Middle to their intuitionistic counterparts
yields the one-step systems corresponding to the familiar classical logics. Each proof-
theoretic system defines a consequence relation in the obvious way. Section 10
examines inclusions between these consequence relations. Section 11 associates each
of the above consequence relations with an appropriate class of models, and proves
them sound with respect to their appropriate class. This allows proofs of some failures
of inclusion between consequence relations. (Sections 10 and 11 provide an exhaus-
tive study of a variety of intuitionistic modal logics.) Section 12 proves that the each
consequence relation is complete or (for those corresponding to GL) weakly com-
plete, that relative to its appropriate class of models. The Appendix presents three
further results about some of the intuitionistic consequence relations discussed in the
body of the paper.
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9 Additional Rules and Further Proof-theoretic Systems

9.1 Rules

What follows is a continuation of Hodes (2021).
In what follows, ‘ ’ will be schematic for names of proof-theoretic systems.

First, we have four “pure step-rules”. The first is a “thickening” (or if you prefer, a
strengthening) rule.1

1 Thickening If :1 0:0 then :0 for as pictured below.

:1
0

0 1
0

Let 0 .
Strengthened 1 If :1 0:1 and then :

for as pictured below.
:1
0

1 1

Let 0 ˆ 0 and 0 :1 .
0 Elimination If 1 1 :0 0 :1 0:0 0 has a barrier with

exception for :1 and 0 1 is coherent, then 0 1 :0 for as
pictured.

:1
1 0

0 0
0

0
Let 0 ˆ 1 1 ˆ 0 and 0 :1 .

0 Introduction If :1 0:1 and 0 has a barrier with exception for
:1 , then :0 for as pictured.

:1
0

1
0

0

Let 0 ˆ 0 0 :1 .

The next six rules concern a single occurrence of a modal operator. The
asterisks on the names of the next first four rules below indicate that they are
quasi-introduction and quasi-elimination rules; see §13 for a bit more on this.2

10 and 1 are also thickening rules.
2The “quasi-ness” of these rules consists in this: 1 and 1 respectively, do not Prawitz-invert
1 and 1 .
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1 Introduction If 1 1:0 0 0:1 and 0 1 is coherent,
then 0 1 :1 for this .

1 0
0 1

1
1

Let 2 ˆ 1 .
1 Elimination If :1 then :0 for this .

0
1

1
0

Let 0 ˆ 0 .
1 Elimination If 0 :1 0:0 0 has a barrier with exception for :1

1 1:1 and 0 1 is coherent, then 0 1 :0 for as
pictured.

:1
1 0

1 0
1

0

Let 0 ˆ 1 1 ˆ 0 0 :1 .
1 Introduction If 0 0:1 1 :1 1:1 1 has a barrier with

exception for :1 and 0 1 is coherent, then 0 1 :1 for as
pictured.

:1
1 0

1 1
1

1

Let 0 ˆ 1 1 :1 1 ˆ 0 .

The next two rules each concern two occurrences of a single modal operator.

0/1 Switching If 0 0:1 1 1:0 then 0 1 :1 for
as pictured.

1 0
0 1

0 1
1

Let 2 ˆ 1 .
1/0 Switching If 0:1 then :0 for as pictured.

0
1

1 0
0

Let 0 ˆ 0 .

875One-Step Modal Logics, Intuitionistic and Classical, Part 2



Note: an instance of 1/0 need not also be an instance of 0 this because the
latter rule requires the existence of a barrier.

The next two rules are semi-thickening rules in that the relevant logical constants
occur only in discharged assumptions.

1 Thickening If 0 0:1 1 0:1 1:1 1:0 0 1 is
coherent, and 1 contains a barrier with exception for 0:1 1:1 then
0 1 :0 for as pictured.

0:1 1:1
1 0

0 1
1

0 0 1

1 ˆ 0 0 ˆ 1 1

0:1 1:1 .3

1 Thickening If 0 0:1 1 :1 1:1 0 1 is coherent,
and 1 contains a barrier with exception for :1 then 0 1 :1 for

as pictured.
:1

1 0
1 1

1
1

1 ˆ 0 0 ˆ 1 1 :1 .

Up to now, all of the rules we have considered were schematically represented
using at most one occurrence of one modal operator. The following particularly hairy
additions to our menagerie of rules involve more than one such occurrence.

Diodorian If 0 0:1 0 1:1 1 0:0 1 2:1 0 3:1 1 1:0
for 2 2 2 :0 4 is coherent, and there are barriers in

0 and in 1 with exceptions for 0:1 0 1 :1 1 and for 2:1 0 3:1 1
respectively, then 4 :0 for as pictured.

0:1 0 1:1 1 2:1 0 3:1 1

2 3 0 1
0 0 0 1 0 0

0 0 1 2 3

2 ˆ 2 0 1 for

0 2 ˆ 0 0 0:1 0 1:1 1

1 3 ˆ 1 1 2:1 0 3:1 1 .

Diodorian If for 2 :0 :0 2 2:1 0 2:1 1

3 3 :1 1 2:1 0 4 is coherent, and there are barriers in 2

3I confess some unhappiness with this rule, because its indicated occurrence of is embedded, and (even
worse) is in the scope of ; using instead of was “arbitrary”, a strained effort to put this rule “on
the side”. But I haven’t found more pleasing rule.
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and in 3 with exceptions for 0:1 0 and for 1:1 1 respectively, then

4 :0 for as pictured.

2:1 0 3:1 1 0:0 0 1:0 1

2 3 0 1
1 1 1 0 0 0

0 0 1 2 3

2 2 ˆ :0 0 1 for

0 0 ˆ 2 2 2:1 0

1 1 ˆ 3 3 3:1 1 .

These Diodorian rules4 combine an aspect of Elimination with an aspect
of Strengthening rules (since both have a modal operator occurring in discharged
assumptions).

9.2 Definitions

In what follows, I will modify the nomenclature used in [4] for modal logics that are
stronger than K.5 Define the following proof-theoretic systems by adding rules
to those generating as follows.

X rules X rules X rules
IDw 1 ID 1
IT 0 IT 0 IT 0 and 0
IB 1 IB 1 IB 1 and 1
I4 1 I4 1 I4 1 and 1
I5 0 1 I5 1 0 I5 0 1 and 1 0
IGL 1 IGL 1 IGL 1 and 1
IDio IDio IDio and

Form by removing from the rules generating .

4Named after Diodorus Cronus, died c. 284 B.C.E.; according to Alexander of Aphrodisias, Diodorus
taught that there was only one possible future, i.e. the future was non-branching. Being an IDio -frame
and being an IDio -frame will both defined by conditions with non-branching flavors.
5Exceptions: (1) Since all of these systems are normal, i.e. (in this case) they include I have omitted
‘K’ where Popkorn uses it. (2) Popkorn did not use ‘GL’, which abbreviates ‘Gödel and Löb’; see the
article “Provability Logics” in the online Stanford Encyclopedia of Philosophy. In [1], the classical “no
step” version is called G, for ‘Gödel’.
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9.3 Definitions

The above proof-theoretic systems can be combined in obvious ways. The following
blends are of obvious interest, using traditional names where possible.6

X rules
ITB 0 0 1 and 1
IS4 0 0 1 and 1
IT5 0 0 0 1 and 1 0
IS5 0 0 1 1 1 and 1
IS4.3 0 0 1 1 and

For other blends, I leave it to the reader to infer the rules from the names.
Form the classical correlates and by adding 0 to the rules

generating and respectively.
In the obvious way, define and from and respectively.

10 Proof-theoretic Observations

10.1 Observations

(1) 1 7 so if .
For any the following are true.

(2) 0 0 .
(3) 0

w
0 .

(4) 0 0 .

(5) 0 0 .

(6) 0 0

(7) 0 0 .

(8) 0 4 0 .

(9) 0 4 0 .

(10) 0 5 0 .

(11) 0 5 0 .

(12) 0 0 & .

(13) 0 0 .

(14) 0 0 0 1 0 0& 1 0& 1 .

(15) 0 0 1 0 1 0 0 0 1 .

6I have honored tradition in this use of ‘S’ for 4 and 5 recognizing that calling them 4
and 4would be more “logical”. Ditto for 4 and 5. And for their associated consequence
relations.
7This is the proof-theoretic correlate to the fact that for any ID-model . 1 could
serve as an axiom for ID.
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(16) and .

Proof (1), (2) and (3) are witnessed by the following, respectively.

:1
0 1
0
1

:0 :1
1
0

1
0

:0 :1
1 1
0

(4) and (5) are witnessed by the following, respectively.

:1
:0 0

0
0

:0 :1
1

0
0

In the deduction on the right, the barrier for the use of 0 is . I leave proofs (6) and
(7) as exercises. Hints: for (6) use 1 followed by for (7) use 1 followed
by . (8) and (9) are witnessed as follows.

0:1

1:1 0
1

:0 0 0

0 1

:0 0:1
1 1:1 1

1 0

0 1

(10) and (11) are witnessed by the following.

:0 :1
0 1

1
0

:1
1 0

:0 0
0

In the deduction on the left [right], the barrier for the use of [ is empty with
vacuous exception for :1 (for any [for :1 .

(12) is witnessed by the following.

0:1 1:1 1&
1 &
0 & 2:1 1

:0 0 & 0 1

0 & 2

I leave proofs of (13)-(16) as exercises.

For X ID, IDw IT IT IB IB I4 I4 I5 I5 IGL IGL
IDio IDio form by transforming the scheme given by each of 10.1(2)-(16)
into a rule, and adding that rule to those defining . Define from as usual.

10.2 Observations

. Similarly with in place of .
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Proof By 10.1(2)-(16), . To prove that we must show that the
characteristic rule used to define is admissible (i.e. a derived rule) under .

For X = ID, we show that 1 is admissible in . Assume that :1
0:0 . Assume that for some and :1 fix 1 such that :1
1:1 (one use of 0 and let 0 1 0 0:0 as required.

Assume that there is no such and so 0 has a barrier with exception for :1
and :0 for as pictured below.

0 :1
0 10.1 2 0

0 0
0

For X = IDw, we show that 1 is admissible in
w
. Assume that

:1
w 0:1 0 has a barrier with exception for :1 and .

Then
w

: for as pictured below.

:1
0

1
0 10.1 3
0 0

For X = IT we prove that 0 is admissible in . Assume that 1 1:0

0 :1 0:0 0 has a barrier with exception for :1 and 0 1 is
coherent. :0 for as pictured below.

1 :1
0

10.1 4 0

0 0
0

For X = IT we prove that 0 is admissible in . If :1 0:1

and 0 has a barrier with exception for :1 then :0 for as pictured
below.

:1
0

1
0

10.1 5
0

For the remaining cases, the proofs are exercises.

10.3 Observations

(1) w . (2) w . (3) w .
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Proof For (1), we must prove that 1 is admissible in . Assume that
:1 0:1 and . Fix 1 from the proof of 10.1(1) such that

1:1 let 2 1 0. So 2:1 . One use of 1 yields a
so that : as required.
By (1), w . For (2) it suffices to show that w For that, we

show that 1 is admissible in w i.e. that w 1 . This is witnessed by the
following.

0:1

2:0 0 0
0 0
1 1

1:0 0 0
0

0 1 2

1

Note: although 1 and 0 do not involve or the use of in a witness for
the above seems unavoidable.

To prove (3) we must show that 1 is admissible in . Assume that
:1 0:1 0 has a barrier with exception for :1 and .

So : for as pictured.

:1
0

1 0
0 0

10.4 Observation

.

Proof It suffices to show that 0 an easy exercise.

10.5 Remark

The inclusion relations between the consequence relations generated by the pure one-
step rules can be pictured as follows (with inclusion going from left to right).

—— ——

– w – – –

–
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10.6 Observations

(1) . (2) 5 .
Proofs are good exercises.

10.7 Observations

(1) 4 . (2) 4 . (3) 4 . (4) .
(5) .

Proof For (1), we show that 0 is admissible under 4 . Assume that
1 4 1:0 0 :1 4 0:0 0 has a barrier with exception

for :1 and 0 1 is coherent. 0 1 4 :0 for as pictured.

1 :1

0 1
10.1. 1

1 0

1 0
1

0

For (2), we show that 0 is admissible under 4 . Assume that
:1 4 0:1 and 0 has a barrier with exception for :1 . Then

4 :0 is witnessed as follows.

0:1
0

1 1
10.1. 2

1
1 0

1
0

(3) follows from (1) and (2).
For (5), assume that :1 0:1 and 0 has a barrier with exception

for :1 . Then 0 is witnessed as follows.

:1
0

1 1:1 1
0 0 0

0
0 1

I leave (4), (6) and (7) as exercises.

10.8 Observations

(1) 5 . (2) 5 . (3) 5.

Proof For (1), we show that 1 is admissible in 5 . Assume that 1 5

1:0 0 5 0:1 and 0 1 is coherent. For as pictured below, 0
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1 5 :1 .

1 :1
0 0

0 0

0 1
0 1

1

Proof of (2) is a good exercise. (3) follows from (1) and (2).

10.9 Observations

(1) 4 5 . (2) 4 5 . Suprisingly, (3) 4 5 and (4)
4 5 . So (5) 4 5 and (6) 4 5 .

Proof For (1), we show that 1 is admissible in 5 . Assume that
1 5 1:1 0 :1 5 0:0 0 contains a barrier with excep-

tion for :1 and 0 1 is coherent. For as pictured below, 0 1 5
:0 .

0:0
10.1. 10

1

0 1
1

:1

1 0
1 0

0 0
0

For (2), we show that 1 is admissible in 5 . Assume that 0 5

0:1 1 :1 5 1:1 1 contains a barrier with exception for :1
and 0 1 is coherent. For as pictured below, 0 1 5 :1 .

:1
1

1 0

0:0
10.1. 11

0 1
1

0 1
1

1 0

For (3), we show that 1 is admissible in 5 . Assume that 1 5

1:1 0 :1 5 0:0 0 contains a barrier with exception for :1
and 0 1 is coherent. Let 2 be as pictured.

0:0
10.1. 6

0 1:1
1

1 0
1 0

2:0 0 1

0 1 1
1

1 2
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For as pictured below, 0 1 5 :0 .

2 :1
1

1 0

0 0
0

For (4), we show that 1 is admissible in 5 . Assume that 1 5

0:1 1 :1 5 1:1 1 contains a barrier with exception for :1 and
0 1 is coherent. So 0 1 5 2:1 for 2 as pictured below.

:1
1

1

0:0
10.1. 10

0 1
1

0 1
2

1 0

0 1 5 :1 for as pictured below.

1:0
10.1. 7

2:0

0 1
1

1 1 2

0 1
1

1 2

(5) follows from (2) and (3). (6) follows from (1) and (4).

10.10 Observations

(1) 5 4 . (2) 5 4 . (3) 5 4. (4) 5 5 . (5)
5 5 .

Proof For (1), we show that 0 1 is admissible in 4 Assume that 0 4

0:1 and 1 4 1 :0 . Then 0 1 4 :1 for the following .

1 0
:0

10.1. 8
0 1

1

0 1
1

1

For (2), we show that 1 0 is admissible in 4 . Assume that 4

0:1 . Then 4 :0 for the following .

:0
10.1. 9

0

0 1
1

1
1

0
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(3) follows from (1) and (2).
For (4), we show that 0 1 is admissible in 5 . Assume that 0 5

0:1 and 1 5 1:0 . 0 1 5 :1 for the following .

0:0
10.1. 6

0 1:1
1

1 1 0
1 0

0 0 0

0 1 1
1

I leave (5) as an exercise.

10.11 Observations

(1) 4 4 . (2) 4 5 . (3) 4 4 . (4)
4 5 . (5) 5 5 4.

Proof For (1): the inclusion from left to right uses 10.8(1); the inclusion from right
to left uses 10.4 For (2): the inclusion from left to right uses 10.9(1); the inclusion
from right to left uses 10.10(1). For (3): the inclusion from left to right uses 10.8(2);
the inclusion from right to left uses 10.7(1). For (4): the inclusion from left to right
uses 10.10(2). For (5), the leftmost identity uses (1) and (3); the rightmost uses (2)
and (4).

10.12 Observations

(1) 4 . (2) 4 .

Proof For (1), we show that 1 is admissible under . Assume that
0 0:1 1 :1 1:1 1 has a barrier with exception for
:1 and 0 1 is coherent. Fix 2 so that 0:1 & 2:1 . Let

1 2 1 so 1 0:1 & 1:1 . So 0 1
:1 for as pictured.

0:1 & 1:0 &

1 0:1 & 0
1

1 1 1

1&
0

1 & 1
1

1 & 0

1&
1

For (2), we show that 1 is admissible under . Assume that
1 :1 1:0 1 has a barrier with exception for :1 0

0:1 and 0 1 is coherent. Let be 0 1 2 be fresh and
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distinct. Let 2 be as pictured.

0:1

1:1 1
1

1 1
1

Let 1 2 1 so 1 0:1 1:1 1: 0 . 0 1
:0 for as pictured.

:1 1:1 0:1
1 1 0

2:1 0 0
1

1
1

0 0 1
1

0 2 1

10.13 Observation

Taking ‘Z’ so that ‘IZ ’ and ‘IZ ’ are schematic for the names used above,
.

This follows from the following: each characteristic rule used to define is
admissible under each characteristic rule used to define is admissible
undrr . I leave the details to the reader.

10.14 Observations

10.3 - 10.14 remain true with ‘ ’ superscripting ‘ ’.

Proof Check that was not used in their proofs.

11 Appropriate Frames andMore Soundness Theorems

We assign the logics introduced in §9 to classes of IK-frames as follows. In what
follows, let be an IK-frame.

11.1 Definitions

is an ID-frame [IDw-frame] iff for every there is a so that .8

In [3], Plotkin and Sterling define the classes of frames corresponding to a variety
of intuitionistic modal logics. Most of the following definitions follow them.

8In the terminology of [4], p. 63, is an ID frame iff it is serial .
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is an IT -frame [IT -frame] iff for every there is a such that
[ .9 is an IT-frame iff it is both an IT - and an IT -frame.
is an IB -frame [IB -frame] iff for every if then for some

[then . is an IB-frame iff it is both an IB - and an IB -frame.
is an I4 -frame [I4 -frame] iff for every if then for some

[then . is an I4-frame iff it is both an I4 - and an I4 -frame.
is an I5 -frame [I5 -frame] iff for every if and then for

some [ . is an I5-frame iff it is both an I5 - and an I5 -frame.
is a super I4 -frame iff for every if then for some

For any let be well-capped (in iff there is no infinite -chain
in starting from . For well-capped members of define the norm . thus:

sup 1 . Note: 0 iff is a dead-end (i.e. a dead-end for
. is well-capped iff every is.
is an IGL -frame [IGL -frame] iff it is a well-capped super I4 -frame [well-

capped I4 -frame]. is an IGL frame iff it is both an IGL - and an IGL -frame.
is an IDio -frame iff for any and 2 if 0 and 1 then there are

0 0 and 1 1 and either 0 1 or 1 0.
10 is an IDio -frame iff for

any 2 2 if and for both 2 then either 0 1 or 1 0.
is an IDio-frame iff it is both an IDio -frame and an IDio -frame,

is an ITB-frame iff it is both an IT- and an IB-frame.
is an IS4-frame iff it is both an IT- and an I4-frame.
is an IS5-frame iff it is an IT- and IB- and I4-frame.
is a CD- [CT-, CB-, C4-, C5, CB-, CS4, CS5, CGB, CDio] frame iff it is a CK-

and an ID- [IT-, IB-, I4-, I5, IB-, IS4, IS5, IGL, IDio] frame.
Taking ‘X’ to be schematic for any of the above names, an X-model is an IK-model

whose frame is an X-frame.
An inference is X-valid iff it is -valid for every X-model .

11.2 Soundness Theorems

Taking ‘Y’ so that ‘IY’ is schematic for any of the names of intuitionistic systems
introduced in Section 9.2, is sound with respect to -validity for IY-models .
Furthermore is sound with respect to -validity for IY-models.

Proof Consider any IY-model with frame . We must prove this:
for any and if : [ : then is -valid
[ -valid . I leave the details for the square-bracket case to the reader.

We use induction on the stages of (i.e. on the depth of . The base case is
trivial. Given assume the obvious Induction Hypothesis. Consider
assume that 1. The only cases that need discussion are those in which
the root of that is [ ], is entered by the distinctive rule (or one of the distinctive
rules) that generate .

9So is an IT -frame iff for every .
10See p. 405 of [3].
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For these arguments, consider a . We will show that (!) is -
valid at . Recall (V1) and (V2) from 2.5: (V1) if is a dead-end and
then (V2) for every if then . Also, recall
these abbreviations from the proof of 6.1: (A) is a dead-end and
(B) given .

For Y = Dw assume that [ ] was entered into by a use of 1 as pictured in
Section 9.1. By the IH, (*) 0 1 is -valid. Assume (A). So 0
and 0 1 . Since is an IDw-model, we may fix so that
and then fix so that . By the Persistence Lemma, 0 1 .
Since 0 . By (*), 1 a contradiction. (V1)
vacuously follows. Assume (B). So 0 by (*) 1 a
contradiction. (V2) vacuously follows, yielding (!).

For Y = D, assume that [ ] was entered into by a use of 1 as pictured in
Section 9.1; so is 0 . Since is not a dead-end, (V1) follows vacuously. Assume
(B). By the IH, (*) 0 0 is -valid. Trivially 1 so

0 . By (*) 0 . (V2) follows, yielding (!).
For Y = T assume that [ ] was entered into by a use of 0 as pictured in

Section 9.1; so is 0 . Since is a T -frame, is not a dead-end, and so (A) is false.
Assume (B). Fix to be a barrier in 0 with exception for :1 . By the IH, (*)

1 1 and (**) 0 0 are -valid. For distinct 1 ... none
occurring in 0 let $

0 the result of surgery on 0 at 1 ... using 1 ... .
Fix and as we have done several times in Section 6.1. As in previous

arguments, 0 is -valid at . By choice of and $
0

$
0 0 0 0 1 .

Since is an IT -model, we may fix a so that and . By the right-
completeness of wemay fix a so that and . Since 0

0 1
0 and 1 1

0 by the Persistence Lemma,
0 1

0 and 1 1
0 so 1 . By (**) 0 .

So . As in those previous arguments, for we have that
. So 0 . So 0 1 $

0 . So $
0 . Since

$
0 0 by the IH $

0 0 is -valid. So 0 so

so 0 . (V2) follows, yielding (!).
For Y = T assume that [ ] was entered into by a use of 0 as pictured in

Section 9.1; so is 0 . By the IH, (*) 0 1 is -valid. Since is an
IT -model, we may fix a so that and . Assume (A). So
0 . Since 0 1 by the Persistence Lemma . So

0 . By (*), 1 so so 0 . (V1)
follows. Assume (B). Fix to be a barrier in 0 with exception for :1 .
Fix distinct 1 ... as above, and let $

0 the result of surgery on 0 at
1 ... using 1 ... . Fix and as usual. For any

and (by the IH) 0 is -valid at . So 0 . So
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0 1 $
0 . As usual,

$
0 0 0 0 1 .

By the Persistence Lemma 0 1 $
0 . So $

1 . Since
$
1 by the IH $

0 1 is -valid; so 1 . So .

(V2) follows, yielding (!).
For Y = B assume that [ ] was entered into by a use of 1 as pictured in

Section 9.1; so is 1 . By the IH, (*) 0 1 and (**) 0 0 are -
valid. Assume (A). So 0 by (*) 1 a contradiction. (V1)
vacuously follows. Assume (B). So 1 . By (**) 0 so

. Since is an IB -frame, we may fix a so that . By the
Persistence Lemma . So . So . (V2) follows,
yielding (!).

For Y = B assume that [ ] was entered into by a use of 1 as pictured in
Section 9.1; so is 0 and 0 . By the IH, (*) 1 is -valid.
Assume (A). By (*) 1 a contradiction. (V1) vacuously follows. Assume
(B). By (*) 1 so . Since is an IB -frame we may fix a

so that and . By the Persistence Lemma, . Since
. So 0 . (V2) follows, yielding (!).

For Y = 4 assume that [ ] was entered into by a use of 1 as pictured
in Section 9.1; so is 0 . By the IH, (*) 1 1 is -valid. Assume (A).
Since 1 by (*) 1 a contradiction. (V1) vacuously fol-
lows. Assume (B). Fix to be a barrier in 0 with exception for :1 . For
distinct 1 ... none occurring in let $

0 the result of surgery on
0 at 1 ... using 1 ... . Fix and as in previous arguments. Since

1 by (*) 1 so . Fix so that and
. Since is an I4 -frame, we may fix a so that and . By

the Persistence Lemma . Again, for any and
(by the IH) 0 is -valid at . So 0 . As in the argument under

the case for Y=T (!!) follows. So 0 1 $
0 . So $

0 .

Since $
0 by the IH $

0 0 is -valid. So 0 so

so 0 . (V2) follows, yielding (!).
For Y = 4 assume that [ ] was entered into by a use of 1 as pictured in

Section 9.1; so is 1 . Assume (A). Since 0 by (*) 1
a contradiction. (V1) vacuously follows. Assume (B). Fix to be a barrier in

1 with exception for :1 . Fix 1 ... as above and let $
1 the result

of surgery on 1 at 1 ... using 1 ... . For each fix and as
above (except cut out of 1 rather than 0 . By the IH, (*) 0 1 is -valid.
Since 1 1 . Claim: . Given assume
that . Fix so that . Since and satisfies left-completeness,
we may fix so that since is an I4 -frame we may fix so that

. Consider any . As before, and (by the IH)
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0 is -valid at . So 0 . Since

$
1 1 0 0 1

0 1 $
1 . By the Persistence Lemma 0 1 $

1 . By the con-

struction of $
1

$
1 . Since $

1 by the IH $
1 1 is

-valid. So 1 . So . Thus 1 . (V2) follows,
yielding (!).

For Y = 5 , assume that [ ] was entered into by a use of 0/1 as pictured in
Section 9.1; so is 1 . By the IH, (*) 0 1 and (**) 1 0 are

-valid. Assume (A). As usual, (*) yields a contradiction; (V1) vacuously follows.
Assume (B). By (**) 0 so . Fix a so that and

. Since is an I5 -frame, we may fix a so that and
By the Persistence Lemma, so so 1 . (V2)
follows, yielding (!).

For Y = 5 assume that [ ] was entered into by a use of 1/0 as pictured
in Section 9.1; so is 0 . By the IH, (*) 1 is -valid. Assuming
(A), 1 0 for a contradiction; (V1) vacuously follows. Assume (B). By (*)

1 so . Given any assume that fix so
that . By right-completeness we may fix a so that . Since is an
I5 -frame, so so . So so 0 .
(V2) follows, yielding (!).

For Y = GL assume that [ ] was entered into by a use of 1 as pictured in
Section 9.1. So is 0 . By the IH, (*) 0 1 is -valid. Assume (A). Since

0 by (*) 1 for a contradiction. (V1) vacuously follows.
Assume (B). Fix to be a barrier in 1 with exception for 0:1 1: .
Construct $

1 from 1 using and fresh variables in the usual way; fix
as in previous such arguments. By now familiar arguments,

$
1 1 0 0 1

and 0 1 $
1 . Claim: for every if and then for

some and . Proof is by induction on . If
0 so is as needed. Assume the obvious IH. Given assume
the if-clause. If again is as needed. Assume that .
So we may fix a so that and . Since the inner IH
applies to yielding the existence of a as needed. The Claim follows. Since
and we may fix a so that and . So

$
1 . Since $

1 by the IH , $
1 0 is -valid. So

0 . So so 0 . (V2) follows, yielding (!).
For Y = IGL assume that [ ] was entered into by a use of 1 as pictured

in Section 9.1. So is 1 . By the IH, (*) 0 1 is -valid. Assume (A).
Since 0 by (*) 1 a contradiction. (V1) vacuously follows.
Assume (B). Fix to be a barrier in 1 with exception for :1 . Construct

$
1 from 1 using and fresh variables in the usual way; fix as in
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previous such arguments. As usual,

$
1 1 0 0 1

0 1 $
1 and $

1 . By the IH, (**) $
1 1 is -valid.

We now prove that for every if then using induction

on . Given a dead-end since $
1 by (**)

1 . Given with 0 consider any so that . Since
is an I4 -frame, is transitive; so . Since by the inner IH

. So . So $
1 by (**) 1 . The

claim follows. Since . (V2) follows, yielding (!).
For Y = IDio assume that [ ] was entered into by a use of as pictured

in Section 9.1. By the IH, for both 2 (* ) 2 0 is -valid. Assume
(A). Since 2 by (* ) 0 so is not a dead-end, a
contradiction, which yields (V1). Assume (B). Fix to be a barrier in with

exception for 2 :1 2 1:1 1 for both 2. Construct $ from using
and fresh variables in the usual way; For both 2 by (*

so we may fix such that and . Fix 0 1 and 2 so that
for both 2 and 1 . So for both 2 so 1 .
So 1 and 1 1 . By familiar reasoning,

$ . I leave the rest to the reader.
For Y = IDio , assume that [ ] was entered into by a use of as pictured

in Section 9.1; so is 0 . By the IH, for both 2 (* 0 is -valid.
Assume (B). For each 2 fix and the barrier in 2 with exception

for 2:1 . Then fix and amputate to construct $
2 from 2 in the

usual way. So

$
2 2 0 0 1 .

Claim: for some 2 . Assume otherwise. Fix such that
and and then fix so that this for both 2. Fix
so that and then fix so that again for both 2.
So 0 and 1. Since is an IDio -model, we may fix a 2 so that

1 . Consider either 2. By a familiar argument (using (B), and in particular

. By the Persistence Lemma, 0 1 $
2 and

so $
2 . By the IH applied to $

2,
$

2 1 1 is -

valid. So 1 1 so 1 . Since 1

1 1 a contradiction. The Claim follows. Fixing such a
. By (* 0 is -valid. So 0 proving (V2). Now

assume (A). The argument under the (B)-case applies, with this simplification: since

2 1 0 and so $
2 2. So

(V1), and thus (!).
For the “blended” systems (T, B, etc.), use the arguments for their “ingredient”

systems.
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For each of the above choices of X, the “furthermore” follows by straightforward
revisions to the above proof.

We will now consider some non-inclusions. In the following specifications of
will be reflexive on whatever we take as our and transitive, and

might be specified in part just by giving positive -facts.

11.3 Corollaries

(1)
w 45. (2) w 45. (3) 45 .

Proof For (1) let 1 and check that is a CB45-frame.
For any valuation function on 0 0 is not -valid at 0; by 11.2
0 45 0 . Then use 10.1(3).

For (2) let 2 0 1 and 1 1. Check that is an IDwB45-frame. For any
valuation function on 0 is not -valid at 0; by 11.2, w 45 0 .
Then use 10.1(2).

For (3) let 2 0 1 1 0 and 1 1. Check that is an IT B 45 -frame.
For any valuation function 0 is not -valid at 0. By 11.2, 45
0 . Then use 10.1(2).

For the remaining corollaries, assume that fix .

11.4 Corollaries

(1) 45. (2) 45.

Proof Proof of (1) takes some effort. Let 2 2 1
and . Fix an 0 0 so that for 0
0 and 0 0 is infinite. 11 Let 1 0 such

that for 0 1 0 1. For each let

2 2 1 2 1 2 2 2 1
2 1 2 2 1 2 1

and let 2 0 2 0 2 2 . Set 0 1 2
0 1 1 1 and . Claim: is an IDT B 45-frame. Clearly it is

an ID-frame. 0 insures that for each there is an such that 2
insures that for each there is an such that . So is an IT -frame.
0 insures that for each if then there is a such that 2

insures that for each if then there is a such that . Also,
for any and is infinite; so if 2 1 then for some

2 1 . Also, for any and if then . So is an
IB -frame. I will leave the tedious verification of the I45-frame conditions, and of
left- and right-completeness, to the reader. (A picture, say with even numbers 2 in

11For example, let 0 2 2 for the greatest triangular number . (A triangular number
is one of the form 2 2 or 2 2 3 1.
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a column on the left, and odd numbers 2 1 on the right, e.g. for 8 counting
upward, and arrows to indicate restricted to these numbers, will be helpful. Also
note that if and then 2 and 2 and so

. Let 1 iff 0 so 0 0 is not -valid at 0. By 11.2,
0 45 0 . Now use 10.1(4).

In contrast to (1), (2)’s proof is almost trivial. Let 2 0 1 0 1 and 1 1
check that is an IT B 45-frame. Let 1 iff 1. 0 0 is not

-valid at 0. By 11.2, 0 45 0 . Then use 10.1(5).

No finite model will be a counter-model witnessing that 0 45 0 .
Remarkably, no finite IT 5 -model even witnesses that 0 5 0 . To see
this, assume that is a finite IT 5 -frame and so that
and . Since is finite and is an IT -frame, there is an and

0 ... so that for each 1 1 and there is no
so that . Since there is an and a so that . Let

be the least such; fix the corresponding . If 0 by the Persistence Lemma
and so a contradiction. So 0. So 1

and . Since is a finite I5 -frame, for some 1 . Since
this contradicts choice of . So there is no such .

11.5 Corollaries

(1) 45 . (2) 45 . (3) 45. (4) 45.

Proof For (1) let 4 2 0 3 1 0 1 2 2 3 2

0 1 2 3 . Check that is an ITB 45 -frame. Let 1 iff
0. 0 0 is not -valid at 0; by 11.2 0 45 0 . Then use
10.1(6).

For (2), let 4 0 2 1 3 2 3 2 0 1 0
1 2 3 1 2 1 3 . Check that is an ITB 45 -frame. Let 1 iff

1 2 3 . 0 0 is not -valid at 0; by 11.2 0 45 0 .
Then use 10.1(7).12

(3) and (4) are easy exercises. Hint: take 2.

11.6 Corollaries

(1) 4 4 5. (2) 4 4 5 . (3) 4 4 5 . (4) 4

4 5. (5) 4 4 5 . (6) 4 4 5 .

Proof For (1)-(3) let 4 0 3 and for any 4 1 iff 2. At
the end, use 10.1.8.

For (1), let 1 2 3 2 0 1 0 3 check that is an IT B 4 5-frame.
0 0 is not not -valid at 0; by 11.2, 1 4 5 0 .

12These examples are due to Philip Sink.

893One-Step Modal Logics, Intuitionistic and Classical, Part 2



For (2), let 1 2 3 2 0 0 0 1 check that is an ITB 4 5 -frame.
0 0 is not not -valid at 0; by 11.2, 1 4 5 0 .
For (3), let 0 1 3 2 1 2 3 2 check that is an ITB 4 5 -frame.
0 0 is not not -valid at 0; by 11.2, 1 4 5 0 .
(4)-(6) are good exercises.

11.7 Corollaries

(1) 5 45 . (2) 5 45 .

Proof For (1), let and be as they were for 11.5(1). Check that 0 0
is not -valid at 0; so by 11.2, 0 45 0 . Then use 10.1(10). For
(2), let and be as they were for 11.5(2); a similar argument applies.

I leave non-inclusions involving the IGL and IDio systems to another occasion, or
another logician.

11.8 Theorems

Taking ‘Y’ so that ‘CY’ is schematic for any of the names for classical systems
introduced in Section 9.2, is sound with respect to CY-models.

Proofs are straightforward.

11.9 Corollaries

For ‘Y’ replaceable as above, the restriction of to 0 is just the result of
prefixing 0 to all formulas in the familiar no-step classical consequence relation .

Proof Consider any and . Assume that fix a deduc-
tion witness this in the no-step (Prawitz-format) Natural Deduction proof-theoretic
system formalizing . Prefixing 0 to every formula-label in yields a deduc-
tion witnessing that 0 0 . Assume that 0 0 . By 11.8, 0 0 is
CY-valid. It is easy to see that then is a Y-consequence of according to the
standard Kripkean model-theoretic semantics for the no-step classical logic Y. So

.13

11.10 Definition

Consider an IK-frame and a formula let the set formula-constants occurring
in . Let iff for every valuation on is -valid. defines the
class of IK-frames such that .

13If one defines model-theoretically in terms of Kripke-models, this is immediate; if one defines it
proof-theoretically, use the completeness of that proof-theoretic system with respect to Kripke-models.
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11.11 Appropriateness Observations

We will now show that the classes of IK-frames assigned in Section 11.1 to the logics
under consideration are “appropriate” (in the sense of [1], pp 80-81).

(1) defines the class of ID-frames. (2) defines the class of IDw-frames.
Fix a formula-constant . (3) defines the class of IT -frames. (4)

defines the class of IT -frames. (5) defines the class of
IB -frames. (6) defines the class of IB -frames. (7)
defines the class of I4 -frames (8) defines the class of I4 -frames.
(9) defines the class of I5 -frames. (10) defines the
class of I5 -frames. (11) defines the class of IGL -frames.
(12) & defines the class of IGL -frames.

Assume that 0 1 are distinct. (13) 0& 1 0& 1

0& 1 defines the class of IDio -frames. (14) 0 1 & 1

0 0 1 defines the class of IDio -frames. (15) defines
the class of CK-frames.

Proof Consider any IK-frame .
(1) If is an ID-frame, . Assume that . Let be the valuation on

assigning every to 0. For any so is not a
dead-end. So is an ID-frame.

(2) If is an IDw-frame, . Assume that . For as above and
any so is not a dead-end . So is an IDw -frame.

For what follows, set .
(3) By 10.1(4) and 11.2, 0 is IT -valid. So if is an IT -frame then

. Assume that . Given let be the valuation
on so that for any 1 iff . Clearly is persistent (with
respect to . Thus . So so for some and

. So is an IT -frame.
(4) By 10.1(5) and 11.2, 0 is IT -valid. So if is an IT -frame then

. Assume that . Given let be the valuation
on so that for any 1 iff . Claim: is persistent.
Assume that 1 and . Since we may fix so that
by the left-completeness of we may fix so that thus so

1. The claim follows. Since . So .
So is an IT -frame.

(5) By 10.1(6) and 11.2, 0 is IB -valid. So if is an IB -frame then
. Assume that . Given let be the

valuation on as in the proof of (3). So . So .
Given assume that . Since . Fix so that and

so . So is an IB -frame.
(6) By 10.1(7) and 11.2, 0 is IB -valid. So if is an IB -frame then

. Assume that . Given assume that .
Let be the valuation on so that for any 1 iff . As in
the argument for (4), is persistent. So so . So

. So . So is an IB -frame.
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(7) Using 10.1(8) and 11.2 as above, if is an I4 -frame then .
Assume that . Given assume that . Let
be the valuation on so that for any 1 iff . is
persistent. Also so . Fix a so that and

. So . So is an I4 -frame.
(8) Using 10.1(9) and 11.2 as above, if is an I4 -frame then

is easy. Assume that . Given assume that .
Let be the valuation on as in the proof of (4); as in the argument for (4),
is persistent. Since . So so

. So is an I4 -frame.
(9) Using 10.1(10) and 11.2 as above, if is an I5 -frame then

. Assume that . Given assume that and
. Let be the valuation on as in the proof of (7). Since

. So fix so that and
so . So is an I5 -frame.

(10) Using 10.1(11) and 11.2 as above, if is an I5 -frame then
. Assume that . Given assume that and
. Let be the valuation on so that for any 1 iff .

Since . So . So .
So . So is an I5 -frame.

(11) Using 10.1(13) and 11.2 as above, if is an IGL -frame then
. Assume that . The proof that is an IGL -

frame recapitulates the argument for classical GL given in [1], pp. 82-83, using
in place of . Given assume that to prove that let

1 Iff and for every if then . It suffices to show
that since then . Details are left to the
reader. Given to show that is well-capped let 1 iff for every

is well-capped. Check that is persistent. Check that for any
. Given it follows that so

. So for every if then is well-capped. So is well-capped.
(12) Using 10.1(12) and 11.2 as above, if is an IGL -frame then
& . Assume that & . Claim 1: is a super I4 -

frame. Given assume that fix so that . Let be the
valuation on such that 1 iff either (i) for some or
(ii) . Check that is persistent. Since so

so & . Fix an so that and & .
Assume (i), for a contradiction. Fix so that . So so

. Since we have a contradiction. (ii) follows.
Claim 1 follows. Claim 2: there is no infinite -chain. Assume that is an -
chain. Let be the valuation on so that for any 1 iff for
some . So is persistent. Since 1 0 so

0 & . Fix an so that and & . Fix
so that . Since is right-complete, we may fix a so that and

1. So so contrary to . Claim
2 follows. Claim 3: if there is an infinite -chain then there is an infinite -chain.
Assume that is an -chain. For each fix so that . Since
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2 1 2 2 by the left-completeness of there is a 2 1 so that 2 2
so 2 1 2 2. Using claim 1, for each we may fix a 2 2 2 2 so that

2 2 2. Let 0 0 and 2 2 . With 2 2 defined so that 2 2 2 2
since 2 2 2 4 the right-completeness of lets us fix a 2 4 2 4 so that

2 2 2 4. So 2 is an -chain, proving claim 3. By claims 2 and 3, is
well-capped.

(13) Using 10.1(14) and 11.2 as above, if is an IDio -frame then

(*) 0& 1 0& 1 0& 1 .

Assume (*). Given 2 assume that for both 2 . Fix so that
1 iff for some 2 is and . is persistent and

0& 1 . Thus 0& 1 0& 1 . Assume
that 0& 1 . Fix 0 so that 0 and 0 0& 1 .
So 0 0 and 0 1. Fix 1 so that 0 1 and 1 1.
So 1 1. So is an IDio -frame. If 0& 1 then a similar
argument applies.

(14) Using 10.1(15) and 11.2 as above, is an IDio -frame then

(**) 0 1 & 1 0 0 1 .

Assume (**). Given 2 and 2 assume that 0 1 and . Fix so that
1 iff for some 2 is and there is no so that

1 . Check that is persistent. Consider either 2. Claim: 0

1 . It suffices to show that for any if 0 and
then 1 . Given assume the if-clause. So . Given
assume that . So . Assume for a contradiction that 1 .
Fix a so that 1 . So there is no so that .
But since is left-complete, we may fix a so that so a
contradiction. So 1 . The claim follows. By (**), 0

0 1 . Fix 2 so that . So so
. Since there is an so that 1 . So is an

IDio -frame.
(15) Proof is an exercise.

12 More Canonical Frames andMore Completeness Theorems

12.1 Canonical Model Theorems

For ‘X’ replaceable by the names of the logics introduced above other than ‘IGL ’,
‘IGL ’ and ‘CGL’, the canonical frame for is an X-frame, and so the canonical
model for is an X-model.

Proof X = ID: Let . Since 0 . By the Diamond Lemma
7.13, there is a such that .

X = IDw: To avoid clutter let = w. Consider any . Claim:
0 0 0 . Assume that 0 0 0 fix and 0. so that
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:0 w 0:0 and 0 . Let 1 look thus for 1
.

1:1
0

Let 2 1 0. So 2 looks thus.

1:1
0

0
0

Construct as pictured.

1:1
2

0 0
1 1
0 1

Since w :0 0 0 a contradiction that proves the claim. By Linden-
baum’s Lemma for we may fix a so that and . By the
argument above for X=ID, there is a so that .

X = IT : . If then for some
and .

For clutter-control, set = . Let 0 1 . Redo
the definition of and from the proof of 7.13. Claim 1: for every (i)

(ii) 1 is 0-closed under (iii) for every &
and (iv) if 0 and is even, the bad case for does not obtain. Proof is by
induction. For the base step, only (ii) deserves our attention. Given assume
that 0 . Since is closed under conjunction we may fix a so that
0 1 0 . Since 0 0 using 0 yields 0 0 0 i.e. 0 0 .
Since it is 0-closed under so 0 0 . So 0 satisfies (ii). The rest
of the proof of Claim 1, and then the rest of the argument, imitates that used to prove
7.13.

X = IT . If then for some
and .

For clutter-control set . Let 0 1 . Redo
the definition of and from the proof of 7.11. Claim 1: for every (i)

(ii) 0 is 1 -closed under (iii) for every if 0 0
then (iv) if 0 and is even, the bad case for does not obtain. Proof is by
induction. For the base step, only (ii) and (iii) deserves discussion. Given
assume that 1 . Since is closed under conjunction, we may fix a so
that 0 1 1 . So 0 1 1 . Using 0 0 0 . So
0 0 . Since it is 0-closed under so 0 0 . Thus 0 satisfies
(ii). Given assume that 0 . By Section 10.2(4), 0 . Since 0
satisfies (ii), 0 so . The rest of the proof of Claim 1, and then the rest of
the argument, imitates that used to prove 7.11.
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X = IB : . If then for some
and .

Set . Assume the if-clause. Let 0 1 . Redo
the definition of and from the proof of 7.13. Claim 1: for every (i)

(ii) 1 is 0-closed under (iii) for every & and
(iv) if 0 and is even, the bad case for does not obtain. Proof is by induction.
For the base step, only (ii) deserves our attention. Assume that 0 . Since

is closed under conjunction. So we can fix so that 0 1 0 . Using
once, 0 0 0 . Since 0 1 0 and using 1 once

yields that 0 1 1 . Since 0 1 avoids 0 under by the 0 -
Avoidance Lemma for so 0 1 is closed under so . Cutting 0
yields 0 0 . Since 0 0 . Thus 0 satisfies (ii). The rest of the
proof of Claim 1, and then the rest of the argument, imitates that used to prove 7.13.

X = IB : . If then for some
and .

Set . Assume the if-clause. Let 0 1 . Redo
the definition of and from the proof of 7.11. Claim 1: for every (i)

(ii) 0 is 1-closed under (iii) for every if 0 0
then (iv) if 0 and is even, the bad case for does not obtain. Proof is
by induction. For the base step, only (ii) and (iii) deserves discussion. Assume that

1 . Since is closed under conjunction; so we may fix so that
0 1 1 . So 0 1 1 so 0 0 . Since
it is 0-closed under so . So 0 1 1 . Using 1
once yields that 0 1 0 . Since 0 0 0 1 0 . Since

the 0 -Avoidance Lemma for implies that 0 1 avoids 0 under
and so is closed under ; so . So 1 . Thus 0 satisfies (ii). Assume that

0 . As above we may fix so that 0 1 0 . using once,
0 0 0 so 0 0 . Using 4.2.(4), 0 0 .
Since is 0-closed under , . So 0 1 1 . Using
1 0 1 0 . Since 0 0 0 1 0 . So . Thus
0 satisfies (iii). The rest of the proof of Claim 1, and then the rest of the argument,
imitates that used to prove 7.11.

X = I4 : 4 . If 0 4 1 4 then
for some 0 4 and .

Set 4 . Assume the if-clause. Let 0 0 1 . Redo
the definition of and from the proof of 7.13. Claim 1: for every (i)

(ii) 1 is 0-closed under (iii) for every & and
(iv) if 0 and is even, the bad case for does not obtain. Proof is by induction.
For the base step, only (ii) merits attention. Assume that 0 . Since is
closed under conjunction. So we can fix so that 0 0 1 0 . Using
0 0 0 0 . So 1 0 0 1 1. By one use of 1 0 0 1 1 0 .
Cutting 0 we get 0 0 1 1 0 . Since 0 1 the 0 -Avoidance Theorem
for implies that 0 0 1 1 is I4 -closed under ; so 0 0 0 1 1 so 0
so 0 . Thus 0 satisfies (ii). The rest of the proof of Claim 1, and then the rest of
the argument, imitates that used to prove 7.13.
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X = I4 : 4 . If 4 0 4 1 then for
some 4 1 and .

Set 4 . Assume the if-clause. Let 0 1 1. Redo
the definition of and from the proof of 7.11. Claim 1: for every (i)

(ii) 0 is 1-closed under (iii) for every if 0 0
then 1 (iv) if 0 and is even, the bad case for does not obtain. Proof
is by induction. For the base step, only (ii) and (iii) deserve discussion. Assume that

1 . Since 1 1 is closed under conjunction. So we may fix 1
so that 0 1 1 . So 0 1 1 so 0 0 . Since

it is 0-closed under ; so . By one use of and the fact
that 0 0 1 0 1 . By one use of 1 and the fact that 0
0 1 0 1 . Since 0 7.5 implies that 0 1 0 is closed under

so 0. So 0 0 1 1 0 . Since 1 one use of
yields that 0 0 1 1 1 . Since 1 1 1 0 0 1 1 1 . Since 0 1
0 0 1 1 is I4 -closed under (7.5 again), 1. So 0 satisfies (ii). Assume
that 0 . Fix 1 so that 0 1 0 . So 0 0 0 so
0 0 using 4.2.(4), 0 0 so . As in the
argument just given for (ii), 1. So 0 satifies (iii). The rest of the proof of Claim
1, and then the rest of the argument, imitates that used to prove 7.11.

X = I5 : 5 . If 0 5 1 and 0 5
then for some 1 5 and .

Set = 5 . Let 0 1 1 . Redo the definition of and
from the proof of 7.13 . Claim 1: for every (i) (ii) 1 is 0-

closed under (iii) for every & and (iv) if 0 and is
even, the bad case for does not obtain. Proof is by induction. For the base case, only
(ii) merits attention. Assume that 0 . Since is closed under conjunction, we
may fix a so that 0 1 1 0 . Using 0 1 0 0 . Since 0

0. So using 0 1 0 0 1 . Since 0 1 7.5 implies that 0 0 1 1 is
closed under so 1 0 0 1 1 so 1. Cutting 0 0 1 0 . Since

1 1 is 0-closed under . So 0 0 1 . Thus 0 satisfies (ii). The rest of
the induction, and then the rest of the argument, follows the proof of 7.13.

X = I5 : 5 . If 5 and 5 then
for some 5 and .

Set 5 . Assume the if-clause. Let 0 1 . Redo
the definition of and from the proof of 7.11. Claim 1: for every (i)

(ii) 0 is 1 -closed under (iii) for every if 0 0
then (iv) if 0 and is even, the bad case for does not obtain. Proof
is by induction. For the base step, only (ii) and (iii) deserve discussion. Assume that

1 . Since it is closed under conjunction. So we may fix so
that 0 1 1 . So 0 1 1 so 0 0 . Since
is 0-closed under . So 0 1 1 . Using 1/0
0 1 0 . Since 7.5 implies that 0 1 is closed under so

. Since 7.5 implies that 0 1 is closed under . Also, since
0 1 0 and one use of shows that 0 1 1 .
So 0 1 1 . Since 0 1 is closed under so 1 1 . Thus
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0 satisfies (ii). Assume that 0 . Since 1 using . Because 0
satisfies (ii), 1 so . Thus 0 satisfies (iii). The rest of the proof of Claim
1, and then the rest of the argument, imitates that used to prove 7.11.

X = Dio : . If for both 2

then for each 2 there is a so that for both 2 and either (A)

0 1 or (B) 1 0.
Set = . Assume the if-clause. For both 2 let 0 1 and
1 0 1 1 . By 7.4, 0 . Claim 1: for some 2 1 0 .

Assume otherwise. So we can fix 00 10 0 and 11 01 1 so that
0 00 1 11 0 and 0 01 1 10 0 . Using 0 00 0 11 0 and
0 01 0 10 0 . Since 00& 10 0 11& 01 1 0 and

1 and also 00& 10 11& 01 . By one use of

0 00& 10 0 11& 01
0 00& 10& 11& 01 11& 01& 00& 10 .

Since is closed

00& 10& 11& 01 11& 01& 00& 10 .

o 00& 10& 11& 01 or 11& 01& 00& 10 . Assume the
left disjunct. Since

0 00& 10& 11& 01 0 00& 11

0 00& 11 . But 0 00& 11 0 using 1 1 00& 11 1 so
1 00& 11 0 using 1 1. So 0 00& 11 0 using contrary to

. A similar argument yields a contradiction assuming the right disjunct. Claim
1 follows. We will now assume that 0 1 0 to prove (A). A similar argument
will apply assuming that 1 0 0 to prove (B).

We will construct a 1 and a double sequence and prove
that . For each we will have both finite. For what
follows, let 0 1 be 0 & & 1 & . We will insure that (*)
for every 0 0 and 1 1 0 0 0 1 0 . Claim 2: (*) will insure
that (*1) 0 1 0 and (*2) 0 1 0 1 0 . Assume (*). Assume
that 0 1 0 . We can fix a 0 0 so that 0 1 0& 0 . So
0 1 0 & & 0 . Using

0 0 0 & & 0

contrary to (*). Assume that 0 1 0 1 0 . We can fix
for both 2 so that 0 0 1 1 0 1 0 . Using 0& 1&
and 0 0& & 1& 0 . Using 1 and then 1 1

1 0& & 1& 0 using 0 0 1 0 contrary to
(*). Claim 2 follows.

We now imitate the proof of 7.7. Let 0 and 0 0 . Given
assume that and for some 4 4 3 . Fix that . Let 4 1
and 4 1 4 . If 0 1 4 1 and 0 1 0 4 1 4 0 let 4 2

4 2 4 1 4 and 4 2 4 1. Assume that either 0 1 4 1 or
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0 1 0 4 1 4 0 . Let 4 1 4 . If is not a disjunction let 4
2 4 2 4 1 and 4 2 4 1. Assume that is 0 1 . If for some

2 for every 0 0 and 1 1 we have 0 0 4 1 0& 1 0
fix such an and let 4 2 4 2 4 1 and 4 2 4 1.
Otherwise (the bad case for 4 2 let 4 2 and we are done. Now assume
that 4 2 (and so the bad case for 4 2 did not obtain). Let 4 3 and

4 3 4 2. If 0 1 0 4 2 1 4 2 1 let 4 3 4 4 4 2.
Assume that 0 1 0 4 2 1 4 2 1 . Let 4 3 4 2 . If is not
a disjunction let 4 4 4 4 4 3 and 4 4 4 3. Assume that
is 0 1 . If for some 2 0 1 0 4 2 1 4 2 1 0 fix such an

let 4 4 4 4 4 1 and 4 4 4 3. Otherwise (the bad
case for 4 4) let 4 4 and we are finished.

Claim 3: for every (i) (ii) (*) is true, and (iii) if 0 and
is even then the bad case for does not obtain. Proof by induction on . The base-
step. 0 satisfies (i) by stipulation and (iii) vacuously. Consider any for both

2. Assume that 0 0 0 & 1 0 . Using 0 1 0 & 1
0 so 0 1 1 0 & 1 using 0 0 0 & 1 so

0 & 1 . So 0 & 1 0. Since 0 0 1 0. So
0 1 0 1 so 0 1 0 1 so 0 1 1 1. Since 1 1 1 1 0 1. So
0 1 0 contrary to assumption. So for 0 (ii) follows.
The induction step. Given assume the obvious IH. Fix so that 4

4 3.
Case 1: 4 . By stipulation 4 1 i.e. 4 1 satisfies (i) and vacuously

satisfies (iii). If 0 1 4 1 and 0 1 0 4 1 4 0 the IH implies that
1 satisifes (ii). Assume that either (a) 0 1 4 1 or (b) 0 1 0 4 1 4

0 Given for both 2 assume that 0 0 4 1 0 1 0 .
Assuming (a), fix 0 so that 0 1 1 4 1 Let 0 be & 0 . So
0 1 0& 4 1 0& 4 1 so

0 1 0& 4 & 1& 4 1 0& 4 1& 1& 4 1 .

Using followed by 0 0 4 0 1 0 4 1 0 1 . So
0 0 4 0 1 0 . Assuming (b), fix for both 2 so that
0 0 1 1 0 4 1 4 0 Let be & for both 2 so .
So the following follow:

0 0 1 1 0 4 1 4 0 0& 4 1& 1& 4 1 .
0 0& 4 1 1& 4 0 0& 4 1& 1& 4 1 .
0 0& 4 0 1& 4 0 0& 4 1& 1& 4 1 .
1 0& 4 0 1& 4 1 0& 4 1& 1& 4 1

the last using 1. So using followed by 0 4 0 1 0 4
1 0 1 . So 0 0 4 0 1 0 . In both cases we have contradicted (ii)
of the IH. So 4 1 satisfies (ii).

Case 2: 4 1. If is not a disjunction, clearly 4 2 satisfies (i)-
(iii). Assume that is 0 1 . Claim: either for every 0 0 and 1 1
0 0 4 1 0& 0 1 0 or for every 0 0 and 1 1
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0 0 4 1 0& 1 1 0 . Assume otherwise. Fix 00 01 0
and 10 11 1 so that 0 0 4 1 00& 0 10 0 and 0
0 4 1 01& 1 11 0 . Let 0 be 00& 01 and 1 be 10& 11 so
0 0 and 1 1. Let be 1& . By some deductive work,

0 4 1 0 1 0 0& 0& & 1& 0& & .

Using 4.2.(5),

0 0& 0& & 1& 0& &
0 0& 0 1 0& 1 1 .

For each 2 a little work shows that

0 4 1 0& 1 0 4 1 0 & 1

and so 0 0 4 1 0& 1 0 . So 0 0 4 1 0 1 0 .
But we have shown that 4 1 satisfies (ii), for a contradiction. The claim follows.
Thus 4 2 satisfies (ii), and with that, (i) and (iii) as well.

Case 3: 4 2. By stipulation 4 3 satisfies (i), and vacuously satis-
fies (iii). If 0 1 0 4 2 1 4 2 1 the IH implies that 1 satisifes
(ii). Assume that 0 1 0 4 2 1 4 2 1 . Given for both 2
assume that 0 0 4 3 0 1 0 . Fix for both 2 so that
0 0 1 1 0 4 2 1 4 2 1 Let be & for both 2 so

. So the following follow:

0 0 1 1 0 4 2 1 4 2 1 1& 4 3 .
0 0 1 1 0 4 2 1 4 2 0 0& 4 3& 1& 4 3 .
0 0& 4 2 1 1& 4 2 0 0& 4 3& 1& 4 3 .
0 0& 4 2 0 1& 4 2 0 0& 4 3& 1& 4 3 .
1 0& 4 2 0 1& 4 2 1 0& 4 3& 1& 4 3

Using followed by 0 4 2 0 1 0 4 3 0 1 . So 0
0 4 2 0 1 0 contrary to 4 2 satisfying (ii). So 4 3 satisfies (ii).
Case 4: 4 3. If is not a disjunction, clearly 4 4 satisfies (i)-

(iii). Assume that is 0 1 . Claim: either for every 0 0 and 1 1
0 0 4 3 0 1& 0 0 or for every 0 0 and 1 1
0 0 4 3 0 1& 1 0 . Assume otherwise; I leave details to the
reader. The crucial points: for appropriately defined 0 and 1 taking to be

& 1& 4 3 for 2

0 4 3 0 1 0 0& 4 3& 0 1 .
0 0& 4 3& 0 1

0 4 2 0 0& 1 4 2 0 1& 1 .

The second of these uses 4.2.(5) twice. Thus 4 4 satisfies (ii), and with that (i) and
(iii) as well. Claim 3 follows. Thus .

Let 0 1 . 0 0 1 0 and 0 1 0 0 1 1.
Check that for each if 0 then 4 1 and if 1 then

4 3. We have insured that 0 and 0 1 avoid 0 . So 0 and 1 are as
required.
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After all the work for the previous lemma, the next is surprisingly easy.
X = Dio : . If for both 2 and

then for both 2 there is a so that either 0 1 or

1 0 .
Set = . Assume the if-clause. For 2 let 0 0 1 1. Claim 1:

either 0 0 or 1 0 . Assume otherwise. There are 0 1 for both
2 so that 0 00 1 11 0 and 0 01 1 10 0 . So 0 00& 10 1 11& 01

0 and 0 11& 01 1 00& 10 0 . So 0 00& 10 1 1 11& 01 and
0 11& 01 1 1 00& 10 . Using 0 00& 10 0 11& 01 and
0 11& 01 0 00& 10 . Using 1 1 00& 10 1 11& 01 and
1 11& 01 1 00& 10 fix 2 and 3 to witness these, respectively. Let
be 11& 01 00& 10 . Consider the following deduction.

2:1 00& 10 3:1 11& 01

2 3 0:0 00& 10 0 1:0 11& 01 0
1 11& 01 1 00& 10

0 1 2 3

Since is closed . Since is -complete, either 11& 01 or
00& 10 . Assume that 11& 01 . So 11& 01 1 so

11& 01 1 since 01 11 1 we have a contradiction. Similarly
assuming that 00& 10 . Claim 1 follows. Fix 2 so that 0 . By
7.7 (the Avoidance Theorem for there are 2 as desired.

For the blended intuitionistic logics (most prominently IT, IB, I4, I5, IB, IS4, IS5,
IS4.3), the proofs just combine that proofs for their ingredient logics. Similarly for
the classical logics CD, CT, CKB, CK4, CK5, CB, CS4, CS5, CS4.3.

12.2 Completeness Theorems

For ‘X’ schematic for the above names, is complete (i.e. inference-complete) with
respect to X-models.

Proof Replace ‘IK’ by ’X’ in the proof of 7.18 and use 12.1.

12.3 Observations

Let X IGL IGL CGL and is X-valid . (1) For any
signature is not finitary. (2) For a class of frames, let be a -model iff

is an IK-model and . Let for every -model
is -valid . If then is not complete (i.e. inference-complete) with respect
to -models, i.e. .

Proof For (1), it suffices to consider . Let be and
. The well-cappedness of X-frames insures that no pointed X-model

that makes true; so 0 0 . But for any finite it is easy to construct a
pointed X-model that makes true; so 0 0 proving the claim.
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For (2), fix . Given a class of frames, assume that (*) .
Claim: every is an X-frame. Consider an . For X=IGL : since

0 by (*) 0 so
0 by 11.14, is an IGL -frame. A similar argument applies
for X=IGL using 0 & . For X=CGL, conjoin to either of
the above formulas to show that is a CGL-frame. Thus . So 0 0 . By
(*) 0 0 . Since is finitary, we may fix a finite so that 0 0 .
By the Soundness Theorem for X, 0 0 . But again, this is false.

12.4 Theorem

is weakly (i.e. formula-) complete (with respect to CGL-models).
The proof of the weak completeness of no-step classical GL given in [1] can be

modified to prove this.

Proof Set = . Given assume that . If 0 by Lin-
denbaum’s Lemma for we may fix a with 0 1 . We can “carve
out” a finite so that the restriction of to call it is an
CK4-frame, and the restriction of to call it is such that 0 1 . If

1 by the Unbox Lemma with 1 1 and . We can
“carve out” a finite so that the restriction of to call it
is an CK4-frame. In both cases, classicality makes the left- and right-completeness
of is trivial. Since is finite, is well-capped. The restriction of to call
it is such that 1 1 . Details are left to the reader.

12.5 Conjecture

For X IGL IGL is weakly (i.e. formula-) complete (with respect to X-
models).

Note that the technique used for 12.4 cannot be straightforwardly applied to .
The sticking-point: getting a finite for which the restriction of to is left-
and right-complete.

13 Looking Ahead

Assign modal depth to a rule in an obvious way – the maximum depth of modal
operators in the schematic presentation of that rule. So the first four rules introduced
in Section 9.1 have modal depth 0, while the “no step” rules considered in the first
four cases from Section 10.3 have modal depth 1. The remaining rules introduced in
Section 9.1 have modal depth 1, while the “no step” rules considered in the remaining
cases from Section 10.3 have modal depth 2. So using the step-marker 1 in addition
to 0 allows us to formulate “one step” rules that decrease by 1 the modal depth of
the “no step” rules considered above. Similarly for “no step” rules that we have not
considered.
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In this paper, we have not fully “lifted the hood” on the rules of depth greater
that 0. Doing that will involve adding another step-marker 2, which would allow us
to lower modal depth by 2. Carrying this idea to its obvious extreme will lead us to
consider languages which have a step-marker for each . We could then extend

for replacements for ‘X’ considered above, to such languages. Work to be done!

Appendix: More About Intuitionistic Modal Logics

For A.1 and A.2, let = for and .

A.1 Observation

has the disjunction property, i.e. for any 2 if 0 0 1 then 0 0
or 0 1.

Proof Assume the if-clause. Assume that for both 2 0 . By Completeness
for IY we may fix an IY-model and so that . Let

. Without loss of generality we may assume that 0 1 and
0 0 1. Let 0 0 1 0 1 0 0 and

0 0 0 or 1 0 0 1 .

Check that is an IY-frame. 14 For and let

if 2
0 if 0.

Let . For both 2 and any and iff and also
iff . So . By the if-clause and the soundness of with

respect to IY-models, 0 1 . Fix so that . By the Persistence
Lemma a contradiction. The then-clause follows.

If 12.5 is true, the previous argument applies for Y = GL and Y= GL .

A.2 Observation

Consider any . (1) If 0 then 0 0 iff 0 . (2)
Assume that the replacement for ‘Y’ is constructed using ‘T ’ and any of the above
names. Then 0 0 iff 0 0 . (3) Assume that the replacement for
‘Y’ is constructed using ‘D’, ‘T ’, ‘T’, ‘4 ’, ‘4 ’, ‘4’ or ‘Dio ’. Then 0
0 iff either 0 or 0 .

Proof For (1), assume that 0 so IY-frames can have dead-ends. Right to left
is trivial. Assume the left-side. Assume that 0 By Completeness for IY
we may fix an IY-model and so that . Let

14If 0 we didn’t need to have 0 0. If Y contains Dio to show that is an IDio -frame we use this
fact: if for 2 then 0 .

906 H.T. Hodes



and . So we may fix a so that . Without loss of
generality assume that 0 . Let 0 0 and

. For and let

if
0 if 0.

Let . By an easy induction, (*) for every and every
iff . If 0 then and then

by (*) a contradiction. So 0 . Assume that 0 and
so 0 and so so by (*) a contradiction. So

0 . Since 0 is a dead-end in 0 contrary to the left-side.
(1) follows.

For (2) going right to left, use 10.1(4). Assume the left-side. Assume that 0
0 . By Completeness for IY we may fix an IY-model and so that

but . For and as above, let 0 and
let and be as above; let Let . (*) carries over from the
previous paragraph. As above, 0 . For any if 0 then so

contrary to the left-side. (2) follows.
For (3), assume that ‘Y’ is replaced appropriately. Right to left is trivial. Assume

the left side. By (1) we lose no generality by assuming that 0 . Assume that
0 and 0 . By Completeness for IY we may fix IY-models 2

and 2 so that 0 0 and 1 1 . Let
and for both 2. Without loss of generality let 0 1 and
0 1 0 1. As above we may fix a 1 1 1 so that 1 1 fix 1

so that 1 1 1 and 1 1 . Since 0 we may fix a so that 0 0 . Since
0 we may fix a 0 0 so that 0 0 . Let 0 1 0 1

0 0 0 1 1 1 0 1
0 0 1 0 1 1 0 1

2 0 0 0 2

2 1 0 15
0 1 and . Check that

is an IY-frame.16 By easy inductions, (*) for both 2 for every and every
iff .17 If 1 then 1 and by (*)

1 1 a contradiction. So 1 . If 0 then by the Persistence
Lemma 1 a contradiction. So 0 so 0 . For any

15We could have kept a little smaller for certain choices of Y, as follows:

if Y=D or Y=Dio
2 if Y contains 4% but not T
1 0 if Y contains T but not 4%
1 0 2 if Y contains T and 4%.

(Above replace ‘%’ by ‘ ’, ‘ ’ or make it blank.)
16We need 1 0 for right-completeness.
17Were we to define so as to make it a B -, B -, 5 -, 5 -, or Dio -frame, it isn’t clear how we could
insure (*).
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if 0 then 0.18 So since 0 0 . This contradicts the
left-side. (3) follows.

A.3 Observation

A formula is non-modal iff it contains no occurrences of or . Let = non-modal
intuitionistic consequence.

For any choice of Y as in §11, is conservative over . In other words, for any
set of non-modal formulas and a non-modal formula 0 0 iff .

Proof Consider and as described. Right to left is trivial. Assume that .
By the completeness of (non-modal) intuitionist logic with respect to intuitionistic
Kripke models, we may fix an intutionistic Kripke-model with
signature and a such that but .

Consider Y = B, 5, GL or Dio.19 Set 0 and 0 0 . 0 is
an IY-model, and 0 but 0 so 0 0 but 0 0 . So
0 0 .

Consider Y = S5.20 Set 1 and 1 1 . 1 is an IS5-
model, and as above 1 0 but 1 0 . So 0 0 .

Thus the modal apparatus in IY has not surreptitiously strengthened the “back-
ground” (i.e. non-modal) logic from intutionistic logic to classical logic or an
intermediate logic.

A.4 Observation

We can push this idea further. Consider Y = S4, GL or Dio,21 a set of formulas
such that for each 0 0 and a set of formulas such that 0 0 .

For any and as in A.3, if 0 0 then .

Proof Given and as described, assume that . Let and for 2
be as in A.3; set and . Without loss of generality, assume that
is the unique initial element of . By our model-existence theorems, for
each fix an IY-model and a such that . Also fix an
IY-model and a such that . Without loss of generality,
we can make sure that and the for are all disjoint from one
another. Let

.

18If the replacement for ‘Y’ contained ‘T ’ we would need to have 0 0 or 0 1 which would block this
point.
19Recall that if Y = K or 4; so those choices of Y are also covered by this case.
20This case covers those Y such that % 5 for % .
21Y = GL covers the Y = 4 case, since 4 but since 4 we need to list S4 separately.
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Assume that Y = T or Dio. Let

.

Note: for each and . We will construct an IY-model
by “sewing” each and copies of onto

with as the “seam”. For each form from by replacing each
by . Let

.

For let iff either (i) or (ii) for some or
(iii) for some and and .
Claim 1: the frame is left-and right-complete. Given assume that

. The only interesting case: and .
If then this suffices for right-completeness. If then

this suffices for left-completeness.
For each and let

if
if for
if for .

Check that is an IY-model.
Assume that Y = S4 or GL. It will be convenient to have a transitive frame, which

requires “sewing a wider seam”. Let

.

Note: for each and . Define as in the previous
case. Claim 2: is left-and right-complete, and also transitive. Left- and
right-completeness follow much as claim 1 did. Given assume that .
If then Y = S4 and (since 1 yielding . In the other interest-
ing case, and then so . Define

as in the previous case. Check that is an IY-model.
Claim under both cases: for any formula and : (i) if
iff (ii) if for iff (iii)

if for and these are equivalent:
. Proof: induction on the construction of .

Thus but . So 0
0 .

A.5 Observation

The observation in A.4 does not extend to Y = B .
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. Consider any . Let .
Recall that 0 0 . So for any IB -model and if

then . But .
: Does the observation in A.4 extend to Y = B ?
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