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Abstract

Hodes (2021) “looked under the hood” of the familiar versions of the classical propo-
sitional modal logic K and its intuitionistic counterpart (see Plotkin & Sterling 1986).
This paper continues that project, addressing some familiar classical strengthenings
of K (D, T, K4, KB, K5, Dio (the Diodorian strengthening of K) and GL), and
their intuitionistic counterparts (see Plotkin & Sterling 1986 for some of these coun-
terparts). Section 9 associates two intuitionistic one-step proof-theoretic systems to
each of the just mentioned intuitionistic logics, this by adding for each a new rule to
those which generated IK in Hodes (2021). For the systems associated with the intu-
itionistic counterparts of D and T, these rules are “pure one-step”: their schematic
formulations does not use [J or ¢. For the systems associated with the intuition-
istic counterparts of K4, etc., these rules meet these conditions: neither [J nor ¢ is
iterated; none use both [J and . The join of the two systems associated with each
of these familiar logics is the full one-step system for that intuitionistic logic. And
further “blended” intuitionistic systems arise from joining these systems in various
ways. Adding the 0-version of Excluded Middle to their intuitionistic counterparts
yields the one-step systems corresponding to the familiar classical logics. Each proof-
theoretic system defines a consequence relation in the obvious way. Section 10
examines inclusions between these consequence relations. Section 11 associates each
of the above consequence relations with an appropriate class of models, and proves
them sound with respect to their appropriate class. This allows proofs of some failures
of inclusion between consequence relations. (Sections 10 and 11 provide an exhaus-
tive study of a variety of intuitionistic modal logics.) Section 12 proves that the each
consequence relation is complete or (for those corresponding to GL) weakly com-
plete, that relative to its appropriate class of models. The Appendix presents three
further results about some of the intuitionistic consequence relations discussed in the
body of the paper.

Thanks to Philip Sink, and to the referee, for reading several drafts of this paper and catching errors.
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874 H.T. Hodes

9 Additional Rules and Further Proof-theoretic Systems
9.1 Rules

What follows is a continuation of Hodes (2021).

In what follows, ‘X’ will be schematic for names of proof-theoretic systems.
First, we have four “pure step-rules”. The first is a “thickening” (or if you prefer, a
strengthening) rule.!

1T Thickening If C,v:1T =x Dy:00 then C = x D:06 for D as pictured below.

[v:1T]
Dy
00 y77p
00"
Let dpd(D) = dpd(Dy).
Strengthened 1.LE If C,v:1T =x Dp:1L, and x € MFml, then C =x D:x
for D as pictured below.
[v:1T]
Do
AL g1k
X %
Let dpd(D) = {[0]"s | s € dpd(Dy) and Dy(s) # v:1T}.
0 Elimination If C; =x D; :0¢p, Co,v:lp =x Dy:00, Dy has a barrier with
exception for v:1¢, and {Cy, C1} is coherent, then Co U C; =x D:06 for D as
pictured.

[v:1e]
D Do
Op 06,
06"V

Letdpd(D) = {[0]"s | s € dpd (D)} U{[1]"s | s € dpd(Dy) and Dy(s) # v:1¢}.
0 Introduction If C,v:1T =y Dy:1¢ and Dy has a barrier with exception for
v:1T, then C =x D:0¢ for D as pictured.
[vAT]
Dy
LY,
Op "V
Let dpd(D) = {[0]"s | s € dpd(Dy), Do # v:1T}.

The next six rules concern a single occurrence of a modal operator. The
asterisks on the names of the next first four rules below indicate that they are
quasi-introduction and quasi-elimination rules; see §13 for a bit more on this.?

Y0EM and 1E M are also thickening rules.

2The “quasi-ness” of these rules consists in this: 10E* and 10 E*, respectively, do not Prawitz-invert
107* and 10T,
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10 Introduction® If C; =x D1:0¢, Co =x Do:1v, and {Cy, C;} is coherent,
then Co U Cy = x D:10¢ for this D.

Dy Dy
ulol*
10¢

Let dpd(D) = ;o {li1°s | s € dpd(D1-)}.
100 Elimination™ If C = x D:10¢, then C =x D:0¢ for this D.

Do
100,55+
0¢

Let dpd (D) = {[0]"s | s € dpd(Dy)}.

10 Elimination™ If Cg, v:1¢9 = x Dg:00, Dy has a barrier with exception for v:1¢,
Ci =x Di:10¢, and {Cy, C1} is coherent, then Co U C; =x D:00, for D as
pictured.

[v:1g]
D1 Dy
100 00
06"

Let dpd(D) = {[0]"s | s € dpd (D)} U {[1]"s | s € dpd(Dy), Do(s) # v:1p}.

10 Introduction™ If Cy = x Dy:1v, C1, v:1T =x Dj:1¢, D; has a barrier with
exception for v:1T, and {Cp, C} is coherent, then Co U C; = x D:10g for D as
pictured.

10E*

[v:1T]
D1 Dy
lo 4.
10¢ Y
Letdpd(D) = {[0]"s | s € dpd(Dy), D1(s) #v:AIT}U{[1]'s | s € dpd(Dy)}.

The next two rules each concern two occurrences of a single modal operator.

0/1$ Switching If Co = x Do:1Y, C; =x D1:00¢ then Co U C| = x D:1)¢ for
D as pictured.

Dy Dy
W—wo/lo

10¢

Let dpd(D) = U;{liT's | s € dpd(D1_1)).

1/000 Switching If C = x Dy:10¢ then C = x D:00¢ for D as pictured.

Dy
ID_‘pl/oD
000g

Let dpd(D) = {[0]"s | s € dpd(Dy)}.
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876 H.T. Hodes

Note: an instance of 1/0[] need not also be an instance of 07, this because the
latter rule requires the existence of a barrier.

The next two rules are semi-thickening rules in that the relevant logical constants
occur only in discharged assumptions.

1-{ Thickening If Cy = x Do:le, Ci, vo:1p, v1:1-0¢ =x D1:00, {Cy, C1} is
coherent, and D; contains a barrier with exception for {vy:1¢, vi:1-0¢}, then
Co U C| =x D:00 for D as pictured.

[vo:1@][v1:1=0p]
Dy Dy
00 lgolﬁQT
09 vo-v1

dpd(D) = {[1I's | s € dpd(Do)} U{[0]'s | s € dpd(D1),Di(s) ¢
{vo:1p, v1:1=0p}}.3
10 Thickening If Co =x Do:1y, C1, v:10p =x Di:1¢, {Co, C1} is coherent,
and D contains a barrier with exception for v:10¢}, then Co U C; = x D:1¢ for
D as pictured.
[v:10¢]
D1 Do
lo Wiy
1pV
dpd(D) ={[1I's | s € dpd(Do)} U{[0]"s | s € dpd(D1), Di(s) # v:1le}.

Up to now, all of the rules we have considered were schematically represented
using at most one occurrence of one modal operator. The following particularly hairy
additions to our menagerie of rules involve more than one such occurrence.

Diodoriangy  If Co, vo:1gg, v1:10¢1 =x Do:00, C1, v2:10¢0, v3:1e; =x D;:06,
fori € 2 Coyi =x D24i:00¢;, {Cica} is coherent, and there are barriers in
Dy and in D; with exceptions for {vg:1¢g, v; :10¢1} and for {v2:10¢p, v3:1e¢;}
respectively, then | ;.4 Ci = x D:00 for D as pictured.

[vo:1eo] [vi:10@1]  [v2:10¢0] [v3:1¢1]
D, Ds Dy D,
0000 009 06 00

00 V0-V1:V2.V3

Dioyg

dpd(D) = ;o {(i) s | s € dpd(D24)} U Ag U Ay, for
Ao ={(2)"s | s € dpd(Dy), Do(s) ¢ {vo:lgo, vi:10¢1}},
Ap ={(3)"s | s edpd(Dy), Di(s) ¢ {v2:1090, v3:1¢1}}.

Diodoriany If fori € 2 C;, vi:0U—¢; =x D;:00, Co, va:1py =x Dr:100—¢y,
C3,v3 191 =x Dy:10-¢y, {Cica} is coherent, and there are barriers in D;

31 confess some unhappiness with this rule, because its indicated occurrence of ¢ is embedded, and (even
worse) is in the scope of — ; using =¢ instead of [1— was “arbitrary”, a strained effort to put this rule “on
the ¢ side”. But I haven’t found more pleasing rule.
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One-Step Modal Logics, Intuitionistic and Classical, Part 2 877

and in D3 with exceptions for vo:10J—¢g and for vi:10]—¢; respectively, then
Uies Ci =x D:00 for D as pictured.

[v2:dgo]l [vs:ler] [vo:000—gp] [vi:00—¢]
D, D3 Do Dy
10-¢; 10-¢g 06 00

00 Vo-V1,v2,V3

Dion

dpd(D) = J;cp{(2+i)"s | s € dpd(D;) | Di(s) # vi:00—-¢;} U Ag U Ay, for

Ao = {(0)7s | s € dpd(D2), Da(s) # v2:1go},
Ay ={(1)7s | s € dpd(D3), Ds(s) # v3:1g1}.

These Diodorian rules* combine an aspect of Vv Elimination with an aspect
of Strengthening rules (since both have a modal operator occurring in discharged
assumptions).

9.2 Definitions
In what follows, I will modify the nomenclature used in [4] for modal logics that are

stronger than K. Define the following proof-theoretic systems =7y by adding rules
to those generating = x as follows.

X rules X rules X rules
Dy, S11E ID 1TT
IT, OF 1T 07 IT OFE and 0/

By 10I* IBo 100E* IB 107* and 1OE*
4o 10FE* 4 107 14 10FE*and 10J7*
I5¢ 0/1¢ IS 17000 I5 0/10and 1/000
IGLy 1-0T IGLo 1T IGL 1-0T and 1007
IDio¢ Diog IDiog Dion IDio Dio¢ and Diog

Form =, by removing Q E™ from the rules generating =y .

4Named after Diodorus Cronus, died c. 284 B.C.E.; according to Alexander of Aphrodisias, Diodorus
taught that there was only one possible future, i.e. the future was non-branching. Being an IDio-frame
and being an IDio-frame will both defined by conditions with non-branching flavors.

SExceptions: (1) Since all of these systems are normal, i.e. (in this case) they include =k | have omitted
‘K> where Popkorn uses it. (2) Popkorn did not use ‘GL’, which abbreviates ‘Godel and Lob’; see the
article “Provability Logics” in the online Stanford Encyclopedia of Philosophy. In [1], the classical “no
step” version is called G, for ‘Godel’.
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878 H.T. Hodes

9.3 Definitions

The above proof-theoretic systems can be combined in obvious ways. The following
blends are of obvious interest, using traditional names where possible.®

X rules

ITB OE, 0/, 1OI* and 100E*

1S4 OE, 07, 10E* and 1007*

ITS OE, 0/, 0/1¢ and 1/007

IS5 OE, 07, 1$7*, 10OE*, 1Q0E* and 1031*
I1S43 O0E, 01, 10E*, 10I*, Diog and Diog

For other blends, I leave it to the reader to infer the rules from the names.
Form the classical correlates =>cy and =, by adding 0EM to the rules

generating =>yy and =, respectively.
In the obvious way, define -y and - from =y and = respectively.

10 Proof-theoretic Observations
10.1 Observations

(1) Fip 1T soifbpC by, Fy=Fx.
For any ¢ € Fml, the following are true.
(2) 00¢ F7p 009.
(3) 00Lk;, OL.
@ 0¢ =y, 000.
) 0Oe I—I_TD 0p.
©) 0¢ g, 000¢;
7 000¢ l_I_BD 0p.
®) 0009 F 1y 009.
9 00p -y, 000
(10) 00¢ '_750 000 .
(1) 000¢ 5 00¢.
(12) 009 5., 00(p&—0g).
(13) 000¢ > ¢) Frg., 00¢.
(14) 0090, 0091 =/, 0(O(P0&OP1) V O(Opo&er)).
(15) 000 D U=¢1), 00(p1 D U—¢o) ;1 p;0 00—¢0 v L—gy).

ST have honored tradition in this use of ‘S’ for = ;g4 and =gs, recognizing that calling them = ;74
and =7 p4would be more “logical”. Ditto for =>¢cs4 and =¢gs5. And for their associated consequence
relations.

TThis is the proof-theoretic correlate to the fact that for any ID-model M, wM C dom(RM). 17T could
serve as an axiom for ID.
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One-Step Modal Logics, Intuitionistic and Classical, Part 2 879

(16) +pp="Fipand -, =k, -

Proof (1), (2) and (3) are witnessed by the following, respectively.
[v:lT]OI w:00e [v:lT]DE

w000 L [v:lT]DE

00T 1TT 1y Q1
— 11
00T Y g+ 009 1p 0L bt
1T 00 Y

(4) and (5) are witnessed by the following, respectively.

[v:lgp]OI w:00e [v:lT]DE

,uO(p 0<>§00E l(p 0/
0Q¢ 0p ”

In the deduction on the right, the barrier for the use of 0/ is {}. I leave proofs (6) and
(7) as exercises. Hints: for (6) use 1) 1* followed by O7; for (7) use 1D E™* followed
by OE. (8) and (9) are witnessed as follows.

[Voilfﬂ]O, p:00¢ [vo:1T],

[vpl()go]v 0<><p1<>E* 1¢ 1)[v] :IT]IDI*
10009 009 ™, . 10p ™ -,
00 " 000
(10) and (11) are witnessed by the following.
w009 [v:lT]O/1<> [v:lD(p]l/oD
109 Or w:000¢ OD(pQE
000w ¥ 00 ¥

In the deduction on the left [right], the barrier for the use of (17 [Q E] is empty with
vacuous exception for v:1T (for any v € Var — {u}) [for v:10g].
(12) is witnessed by the following.

[vo:1e] vi:1=0¢], ( ,

Lp&=09) ,

00(p&—=0p)  [va:lgl_ .,
pr:00p  00(p&—0p) "M

00 (p&—0gp) 2

I leave proofs of (13)-(16) as exercises. ]

For X € {ID, IDy, IT¢, ITq, 1By, 1B, 144, 140, 154, 150, IGLy, IGLO,
IDiog, IDio}, form =, by transforming the scheme given by each of 10.1(2)-(16)
into a rule, and adding that rule to those defining = ; ¢ . Define I—/X from :>/X as usual.

10.2 Observations

Hy=Fx. Similarly with = in place of =
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880 H.T. Hodes

Proof By 10.1(2)-(16), 5 C . To prove that ~xC I—’X we must show that the
characteristic rule used to define = yx is admissible (i.e. a derived rule) under :>/X

For X = 1D, we show that 1T7 is admissible in =, ,,. Assume that C, v:1T =/,
Dy:06. Assume that for some u and ¥, u:1y € C; fix Dj such that w:1y =g
Dy:1T (one use of Trng), and let Dy = [v := D1]Do; C =, D:00, as required.
Assume that there is no such p and y; so Dy has a barrier with exception for v:1T,
and C =, , D:06 for D as pictured below.

0T [v:1T]
——Nec
00T 0102 Do
00T 00,
06"

For X = IDy, we show that S11E is admissible in :>/I Dy Assume that
C,v1T :>/IDW Do:1L, Dy has a barrier with exception for v:1T, and x € M Fml.
Then C = p,, D:x for D as pictured below.

[v:1T]
Do

For X =IT, we prove that 0E is admissible in :>’IT<>. Assume that Cy =7, D;:0¢,
Co, v:lp =71, Do:00, Dy has a barrier with exception for v:1p, and {Cy, C1} is
coherent. C =>/1T<> D:00 for D as pictured below.

D [v:1g]
0_‘/’10.1(4) Do
009 OQOE

09"V

For X = IT, we prove that 0/ is admissible in =>/ITD. If C,v:1T :>/1T|:1 Do:1¢

and Dy has a barrier with exception for v:1T, then C :>’ITD D:0¢ for D as pictured
below.
[v:AT]
Do
o g
009 " 19165
%

For the remaining cases, the proofs are exercises. O

10.3 Observations

D Fip,€+ip. 2) Fep,=rcep- B) Fip, S Firy-
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Proof For (1), we must prove that S1LE is admissible in =;p. Assume that
C,v:1T =p Do:1L and 0 € Fml. Fix D; from the proof of 10.1(1) such that
=p D1:1T; let Dy= [v := D1]Dyp. So C =p D:1L. One use of 1.L E,, yields a
D so that C =p D:m0, as required.

By (1), F=cp, € Fcp. For (2) it suffices to show that -cp < Fcp, For that, we
show that 1TT is admissible in =cp, , i.e. that =cp, 1T. This is witnessed by the
following.

[v():lT]OI
[12:0=0T] 00T
0Ly g

1L gup
[v1:00T] 00T ”OnE

00T "2
1T

0DFE

M

QE*

Note: although S1LE and 0E M do not involve ¢ or [, the use of ¢ in a witness for
the above seems unavoidable.

To prove (3) we must show that S1LE is admissible in ;7. Assume that
C,v:1T =715 Do:1L, Dy has a barrier with exception for v:1T, and x € M Fml.
So C =7, D:x for D as pictured.

[v:1T]
Dy
_LL o
_0L%,k
X
O]
10.4 Observation
Fip< i,
Proof 1t suffices to show that I, T 00T, an easy exercise. O

10.5 Remark

The inclusion relations between the consequence relations generated by the pure one-
step rules can be pictured as follows (with inclusion going from left to right).

Feck —— Fep —— Fer
/ / /
Fik —tip, —Fip—- Fir, —tiIr
N N /

Fimm — Fipmh
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882 H.T. Hodes

10.6 Observations

(DS i, - (2 FipS Firgs, -
Proofs are good exercises.

10.7 Observations

(1) Frry © FipBeay- 2) Frmm S Fipppag. G) FirS Fippsa - (4) Firy © Frmgsg-
S) Frn S Firy B, -

Proof For (1), we show that OF is admissible under I—,DB<>4<>. Assume that
C1 =1DBy4, D1:0p, Co, v:lep = IDBy4, Dp:06, Dy has a barrier with exception
for v:1¢, and {Cy, C1} is coherent. Co U C = IDBy4, D:06 for D as pictured.

Dy [v:1g]
—10.1.(1)

0 IT .. Do

10¢ 091<>E*
06"

For (2), we show that 0/ is admissible under F;ppq4. Assume that
C,v:1T =1pprag Do:lg and Dy has a barrier with exception for v:1T. Then
C =1pBnap D:0g is witnessed as follows.

[vo:1T]
Dy
—10.1.(2)
lp 1T 4.
10¢ Yo

0

10E*

(3) follows from (1) and (2).
For (5), assume that C, v:1T = ITy By Do:1¢ and Dy has a barrier with exception
for v:1T. Then ran(C) '_1T<>Bo 0¢ is witnessed as follows.

[v:1T]
Dy
lo o, elbelq,.
00 "o 0¢0E
0p V!
Ileave (4), (6) and (7) as exercises. O]

10.8 Observations
(D 1By S Firysy- (2) i S Frogsg- B) Fis< Firs.

Proof For (1), we show that 1$1* is admissible in =7, 5,, . Assume that C1 = /7,5,
D1:0p, Cy = ITy5, Do:1¢, and {Cp, C1} is coherent. For D as pictured below, Co U
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Ci =1To5¢ D 10¢.
Dy M(}I
0p  00¢,, Do
0We" Wy,
10¢
Proof of (2) is a good exercise. (3) follows from (1) and (2). O

10.9 Observations

(1) Fray € Frpose- (2) FragS Frpgsg. Suprisingly, (3) FrayC Frpsy and (4)
Fr1a5C Frpsy. S0 (5) FaC Frpsqand (6) F14C s, -

Proof For (1), we show that 1Q0E* is admissible in =>;p-5,. Assume that
Ci1 =805, D1:10¢, Co, v:lg =15, Do:06, Dy contains a barrier with excep-
tion for v:1¢, and {Cp, C} is coherent. For D as pictured below, Co U C} =1Bo5,
D:06.

MIO.I.(IO)
0000 109 [v:1g]
Trng
Vy
1009 ™ Do
009 06

OE

00"

For (2), we show that 10J7* is admissible in =g, 5-. Assume that Co =557
Do:1yr, C, v:1T = 1B50 D1:1¢, D; contains a barrier with exception for v:1T,
and {Cy, C1} is coherent. For D as pictured below, Co U Cy =1By50 D:10¢.

[v:1T]
D
0 v 1
[v0:00 90]10.1‘(11) @ Vior
0Op 100¢
Trng
100¢™

For (3), we show that 10 E™ is admissible in = 5. Assume that C1 =;p55
D1:10¢, Co, v:lp =55 Do:00, Dy contains a barrier with exception for v:1¢p,
and {Cp, C1} is coherent. Let D, be as pictured.

:0
M10.1.(6)
000 [vi:1¢]
Tr
Y,
1D<>_(p01/0|]
[(»2:009] 0009, Di
0000p 109
100¢ 2

ni

Trng
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884 H.T. Hodes

For D as pictured below, Co U C; =5 D:06.

D, [v:1g]
100945+ Do
000 00, ,
00"V

For (4), we show that 1007* is admissible in =;p5,. Assume that C; =35,
Do:1yr, C, v:1T =1B5, D1:1¢, D contains a barrier with exception for v:1T, and
{Cp, C1} is coherent. So Co U Cy =1B5, D,:1000e for D, as pictured below.

[v:AT]

LS,
o:0000] oy 022 W
0O000e 100¢
1000¢p Yo
CoU C1 =13s, D:10¢ for D as pictured below.

[v1:0<>Dg0]10.1.(7) [v2:0000¢] .

% 100y
Trng
1p ™ D,
000 1000¢
rny
10¢ 2
(5) follows from (2) and (3). (6) follows from (1) and (4). O]

10.10 Observations

(1) F15,< FiBoay- (2) Fisp S Fipgag- B) FisS Frpa. (4) Fis, S Fipysy- (5)
F150C Fisgse -

Proof For (1), we show that 0/1¢ is admissible in =>IBy4,, Assume that Cy = 1Bo4¢
Do:1y and C1 = Bya,, D1 :00¢. Then CoUC1=1By4,, D:1$¢ for the following D.

Dy Doy
MIO.L(S) 0<>(p—lwlol*
00 IOO¢T
rn
109"

For (2), we show that 1/00] is admissible in =7 p 4. Assume that C =;p-4
Do:10¢. Then C = pag D:00¢ for the following D.

[v:00gp] Dy
——10.1.(9)
000e 10¢
Trng
v
1009 * .
0y
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(3) follows from (1) and (2).
For (4), we show that 0/1¢ is admissible in =1By55- Assume that Co = p,5n
Do:1y and Cy = py55 D1:00¢. Co U Cy =B,,55 D:10¢ for the following D.

[v0:0¢]
=—=—210.1.(6)
000¢ [v1 :lgo]Tr
D Ml/ou
009 009¢,, Do
10¢

I leave (5) as an exercise. L]

ni

10.11 Observations

(D) FiryBoao= FiDByay- () Fiag= tFips,. B) FimgBoan= FipBoan.
F1Ban=Fi1Bsg. (5) Frrps=Fiss=Fippa.

Proof For (1): the inclusion from left to right uses 10.8(1); the inclusion from right
to left uses 10.4 For (2): the inclusion from left to right uses 10.9(1); the inclusion
from right to left uses 10.10(1). For (3): the inclusion from left to right uses 10.8(2);
the inclusion from right to left uses 10.7(1). For (4): the inclusion from left to right
uses 10.10(2). For (5), the leftmost identity uses (1) and (3); the rightmost uses (2)
and (4). O]

10.12 Observations
(D FragStierg- @) Fray S EiGLy-

Proof For (1), we show that 1017/* is admissible under =;G;. Assume that
Co =161y Do:1y, C1,v:1T =615 Di:1¢, D has a barrier with exception for
v:1T, and {Cy, C1} is coherent. Fix D, so that vo:10(p&UOp) =;x D2:1T. Let
D) = [v := D;]Dy; so Cy, vo:10(p&0p) =615 Dj:1g. So Co U C1 =614
D:10¢ for D as pictured.

[vo:10(p&Lp)] [v1:00(p&llp)]

D [vo:10(p&e)] 00¢

Trng
v
1¢ 10¢ " Do
1(p&0y) W,
1 vo
(p&p) &k
10¢

For (2), we show that 10E™ is admissible under =;GL,. Assume that
Ci,vlgp =IGL, D1:00, D; has a barrier with exception for v:1¢, Co =IGL,
Do:10¢, and {C,, C1} is coherent. Let ¢ be (¢ V O@), vg, v1, v2 € Var be fresh and
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distinct. Let D, be as pictured.

vp:10¢

vi:1=0y 10y
1L, ¢
g

Let D = [v := D,]Dx; so C1, vo:109, vi:1=0¢ =161, D}: 06. CoU C1 = 6L,
D:06 for D as pictured.

1DE

[v:lp] [vi:1=0¢][vo:10¢]

Dy D Do
[va:1y] 06 091vE 1<><plvl
PR
00 V"o 1y =0T
06 V"1

10.13 Observation
Taking “Z’ so that ‘IZ5’ and ‘IZ¢’ are schematic for the names used above, ¢ Z,=

|_C Z0-
This follows from the following: each characteristic rule used to define = ¢z o is

admissible under => ¢z ; each characteristic rule used to define = ¢ Z is admissible
undrr = ¢z, . [ leave the details to the reader.

10.14 Observations

10.3 - 10.14 remain true with ‘—’ superscripting ‘+x’.

Proof Check that ¢ E* was not used in their proofs. O

11 Appropriate Frames and More Soundness Theorems

We assign the logics introduced in §9 to classes of IK-frames as follows. In what
follows, let F = (W, R, C) be an IK-frame.

11.1 Definitions
F is an ID-frame [IDy,-frame] iff for every u € W there is a v so that u Rv [uRTv].8

In [3], Plotkin and Sterling define the classes of frames corresponding to a variety
of intuitionistic modal logics. Most of the following definitions follow them.

81n the terminology of [4], p. 63, F is an ID frame iff it is serial .
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F is an IT-frame [ITg-frame] iff for every u € W there is a 4’ 3 u such that
uRu' [u'Ru].’ F is an IT-frame iff it is both an IT- and an IT-frame.

F is an IBg-frame [IBg-frame] iff for every u, v € W if uRv then for some
u' Ju vRu' [then vRTu]. F is an IB-frame iff it is both an IB- and an IB-frame.

F is an I4¢-frame [I45-frame] iff for every u, v, w, if uRvRw then for some
w’ 3w uRw' [then u R w]. F is an [4-frame iff it is both an 14 - and an [4-frame.

F is an I5¢-frame [I5-frame] iff for every u, v, w, if #uRv and uRw then for
some w’ 3 w vRw’ [vRTw]. F is an I5-frame iff it is both an I5¢- and an I5g-frame.

F is a super 14 -frame iff for every u, v, w, if uRvR*w then for some w’ J w
uRw’

For any u € W let u be well-capped (in F) iff there is no infinite R*-chain
in W starting from u. For well-capped members of W, define the norm |.| thus:
lu| = sup{|v| + 1 | uRTv}. Note: |u| = 0 iff u is a dead-end™ (i.e. a dead-end for
R™). F is well-capped iff every u € W is.

F is an IGL¢-frame [IGL-frame] iff it is a well-capped super 14 -frame [well-
capped 14 -frame]. F is an IGL frame iff it is both an IGL- and an IGL-frame.

F is an IDio¢-frame iff for any u and v;c2, if #Rvg and uRv; then there are
vy 2 vo and v{ 3 vy and either u Rvy RV} or u Rv| Ry, 10 F is an IDiop-frame iff for
any u, uje2, Viez, if u C u; and u; Rv; for both i € 2 then either vgR* vy or vy R vy.
F is an IDio-frame iff it is both an IDio-frame and an IDio-frame,

F is an ITB-frame iff it is both an IT- and an IB-frame.

F is an IS4-frame iff it is both an IT- and an I4-frame.

F is an IS5-frame iff it is an I'T- and IB- and I4-frame.

F is a CD- [CT-, CB-, C4-, C5, CB-, CS4, CS5, CGB, CDio] frame iff it is a CK-
and an ID- [IT-, IB-, 14-, I5, IB-, IS4, IS5, IGL, IDio] frame.

Taking ‘X’ to be schematic for any of the above names, an X-model is an IK-model
whose frame is an X-frame.

An inference is X-valid iff it is M-valid for every X-model M.

11.2 Soundness Theorems

Taking ‘Y’ so that ‘TY’ is schematic for any of the names of intuitionistic systems
introduced in Section 9.2, by is sound with respect to M-validity for I'Y-models M.
Furthermore 7, is sound with respect to M-validity™ for I'Y-models.

Proof Consider any I'Y-model M with frame F = (W, R, C). We must prove this:
for any C,D and x, if C =y D:x [C =}, D:x] then (A(D), x) is M-valid
[M-valid™]. I leave the details for the square-bracket case to the reader.

We use induction on the stages of =y (i.e. on the depth of D). The base case is
trivial. Given n € w, assume the obvious Induction Hypothesis. Consider C, D, x;
assume that 7 (D) < n + 1. The only cases that need discussion are those in which
the root of D, that is [ ], is entered by the distinctive rule (or one of the distinctive
rules) that generate =y.

9So F is an IT-frame iff for every u € W uR*u.
108ee p. 405 of [3].
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For these arguments, consider a u € W. We will show that (!) (A(D), x) is M-
valid at u. Recall (V1) and (V2) from 2.5: (V1) if u is a dead-end and M, u I T,
then M, u I x; (V2) for every v, if M,u,v = I then M, u,v = x. Also, recall
these abbreviations from the proof of 6.1: (A) u is a dead-end and M, u I- A(D);
(B) given v, M, u, v IF A(D).

For Y = Dy, assume that [ | was entered into D by a use of S1.LFE as pictured in
Section 9.1. By the IH, (*) (A(Dg), 1.L) is M-valid. Assume (A). So A(D) € 0Fml
and M,u = O_IA(D). Since M is an IDy-model, we may fix v so that uRT v,
and then fix u’ so that u = u’Rv. By the Persistence Lemma, M, u’ = 0 'A(D).
Since M,v = T, M,u’, v IF A(Dy). By (*), M, u’, v I 1L, a contradiction. (V1)
vacuously follows. Assume (B). So M, u,v IF A(Dy); by (*) M,u,v IF 1L, a
contradiction. (V2) vacuously follows, yielding (!).

For Y = D, assume that [ ] was entered into D by a use of 1TT as pictured in
Section 9.1; so x is 06. Since u is not a dead-end, (V1) follows vacuously. Assume
(B). By the TH, (*) (A(Dy), 00) is M-valid. Trivially M, u, v IF 1T; so M, u, v IF
A(Dy). By (*) M, u, v - 06. (V2) follows, yielding (!).

For Y = Ty, assume that [ ] was entered into D by a use of 0E as pictured in
Section 9.1; so x is 00. Since T is a Ty -frame, u is not a dead-end, and so (A) is false.
Assume (B). Fix {s;c(n)} to be a barrier in Dy with exception for v:1¢. By the IH, (¥)
(A(Dy), 1¢) and (*¥*) (A(Dy), 00) are M-valid. For distinct vy, ..., v, € Var, none
occurring in Dy, let D;j = the result of surgery on Dy at sy, ..., 5y, USIng vy, ..., V.
Fix fien) and D], as we have done several times in Section 6.1. As in previous

arguments, <A(le), 09i> is M-valid at u. By choice of {s;c(»)} and Dg,
A <D§> C (A(Do) NOFml) U {06;cimy} U {1¢}.

Since M is an IT¢-model, we may fix a u’ so that u © u’ and uRu’. By the right-
completeness of F we may fix a v’ sothatv C v" and u’ Rv'. Since M, u, v |- A(Dy),
M, u = 0"'A(Dp) and M, v = 171A(Dy); by the Persistence Lemma, M, u’ =
0~'A(Dp) and M, v = 171A(Dy); so M, u/, v/ I+ A(Dy). By (%) M, u/, v/ IF 0g.
So M, u’ = ¢. As in those previous arguments, for i € (m) we have that M, u, v |-
A(D)). So M, u,v IF 06;. So M, u = 0~ A(D}). So M, u,u’ I+ A(D). Since
ht(ng) < ht(Dg) < n, by the IH <A(Dg), 09> is M-valid. So M, u, u’ I+ 08; so
M, u l=6; s0o M, u, v Ik 00. (V2) follows, yielding (!).

For Y = T, assume that [ ] was entered into D by a use of 0/ as pictured in
Section 9.1; so x is 0p. By the IH, (*) (A(Dp), 1¢) is M-valid. Since M is an
IT-model, we may fix a u’ so that u C u’ and u’Ru. Assume (A). So A(D) C
0Fml. Since M,u = 0~'A(D), by the Persistence Lemma M, u’ I+ A(D). So
M,u',u - A(Dgy). By (), M,u',u I+ 1¢; so M,u = ¢; so M,u I+ 0¢p. (V1)
follows. Assume (B). Fix {s;};cn) to be a barrier in Dy with exception for v:1T.
Fix distinct vy, ..., v,, € Var as above, and let Dg = the result of surgery on Dy at
S1, we, S USING V1, ..., V. FiX 0;¢ () and lee<m) asusual. Foranyi € (m), M, u, v I+

A(D}), and (by the IH) (A(D}), 06;) is M -valid at u. So M, u, v I 06;. So M, u |=
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0_1A(Dg). As usual,
A(D5) < (ADo) N OFmi) U (06;cm)} U (1T},

By the Persistence Lemma M, u’ = O_IA(’Dg). So M,u',u - A(Df). Since
ht(D$) < n, by the IH <A(D§;), 1(p> is M-valid: so M, ', u IF 1¢. So M, u = .
(V2) follows, yielding (!).

For Y = By, assume that [ ] was entered into D by a use of 101* as pictured in
Section 9.1; so x is 1Q¢. By the IH, (*) (A(Dyp), 1¢) and (**) (A(Dy), 0¢) are M-
valid. Assume (A). So M, u I A(Dy); by (¥*) M, u IF 1y, a contradiction. (V1)
vacuously follows. Assume (B). So M, u, v IF A(Dy). By (**) M, u, v I+ 0p; so
M, u = ¢. Since F is an IB-frame, we may fix a ¥’ J u so that vRu’. By the
Persistence Lemma M, u’ &= ¢. So M, v E Q¢. So M, u,v Ik x. (V2) follows,
yielding (!).

For Y = B, assume that [ ] was entered into D by a use of 1LJE™ as pictured in
Section 9.1; so x is 0p and A(D) = A(Dy). By the IH, (*) (A(D), 10¢p) is M-valid.
Assume (A). By (*) M, u IF 10¢, a contradiction. (V1) vacuously follows. Assume
(B). By (*) M, u, v I 10¢; so M, v = Ogp. Since F is an IB -frame we may fix a
v’ so that v C v’ and v’ Ru. By the Persistence Lemma, M, v’ = . Since v' R u,
M,u = ¢.So M, u, v I 0p. (V2) follows, yielding (!).

For Y = 4, assume that [ | was entered into D by a use of 10E* as pictured
in Section 9.1; so yx is 00. By the IH, (¥*) (A(Dy), 10¢) is M-valid. Assume (A).
Since M, u I+ A(Dy), by (*) M, u I 1)@, a contradiction. (V1) vacuously fol-
lows. Assume (B). Fix {s;e(n)} to be a barrier in Dy with exception for v:1¢. For
distinct vy, ..., v, € Var, none occurring in D, let Dg = the result of surgery on
Dy at 1, ..., Sy using vy, ..., V. Fix 6;¢(ny and D; as in previous arguments. Since
M, u,v I A(Dy), by (*) M, u, v IF 10¢; so M, v = Q. Fix w so that vRw and
M, w = ¢. Since F is an 14 -frame, we may fix a w’ so that u Rw’ and w C w’. By
the Persistence Lemma M, w’ |= ¢. Again, for any i € (m), M, u, v I- A(D}), and
(by the IH) (A(D)), 06;) is M-valid at u. So M, u, v I 06;. As in the argument under

the case for Y=T, (!!) follows. So M, u = 0 'A (Dg) So M, u,w IF A(DS).

Since ht(Dg) < n, by the IH <A(D§),00> is M-valid. So M, u,w’ |- 08; so
M, u = 6;50 M, u, v I 006. (V2) follows, yielding (!).

For Y = 4, assume that [ ] was entered into D by a use of 10J7* as pictured in
Section 9.1; so x is 100p. Assume (A). Since M, u I+ A(Dy), by (*) M, u I 1y,
a contradiction. (V1) vacuously follows. Assume (B). Fix {s;c(n)} to be a barrier in
D, with exception for v:1T. Fix vy, ..., v, € Var as above and let Df = the result
of surgery on Dj at sy, ..., Sy, using vy, ..., v,,. For each i € (m) fix 6; and le as
above (except cut out of D rather than Dy). By the ITH, (*) (A(Dy), 1) is M-valid.
Since M, u,v IF 1T, M,u,v It A(D;). Claim: M, v = Og. Given w, assume
that vRTw. Fix v’ so that v © v/ Rw. Since uRv and F satisfies left-completeness,
we may fix u’ so that u T u'Rv’; since F is an I4-frame we may fix u” so that
u'" E u”Rw. Consider any i € (m). As before, M, u,v |- A(D}), and (by the IH)
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(A(D)), 06;) is M-valid at u. So M, u, v I 06;. Since
A (D) €A@Y N O0FmI) U (06;cn} U (1T},

M, u = 0_1A(Df]5). By the Persistence Lemma M, u” = 0_1A(D?). By the con-
struction of Df, M, u”, w I A(D). Since ht(D}) < n, by the IH (A(D}), 1) is

M-valid. So M, u”, w I+ 1p. So M, w = ¢. Thus M, u, v IF 10¢. (V2) follows,
yielding (!).

For Y = 5, assume that [ ] was entered into D by a use of 0/1{ as pictured in
Section 9.1; so x is 10¢. By the IH, (*) (A(Dy), 1) and (¥*) (A(D1), 0Q¢) are
M-valid. Assume (A). As usual, (*) yields a contradiction; (V1) vacuously follows.
Assume (B). By (**) M, u, v IF 00¢; so M,u = O¢. Fix a w so that uRw and
M, w = ¢. Since F is an I54-frame, we may fix a w’ so that w C w’ and vRw’
By the Persistence Lemma, M, w’ = ¢; so M, v & Qp; so M, u,v IF 10¢. (V2)
follows, yielding (!).

For Y = 50, assume that [ ] was entered into D by a use of 1/00J as pictured
in Section 9.1; so x is 00¢. By the IH, (*) (A(D), 10¢) is M -valid. Assuming
(A), 10¢p € 0Fml for a contradiction; (V1) vacuously follows. Assume (B). By (*)
M, u,v IF 10¢; so M, v = Og. Given any w, assume that uRTw; fix #’ 3 u so
that u’ Rw. By right-completeness we may fix a v/ 3 v so that u’ Rv’. Since F is an
150-frame, v RTw; so vRTw; so M, w = ¢. So M, u = Og; so M, u, v IF 00ep.
(V2) follows, yielding (!).

For Y = GL, assume that [ ] was entered into D by a use of 1-0T as pictured in
Section 9.1. So x is 06. By the IH, (*) (A(Dy), 1¢) is M-valid. Assume (A). Since
M,u IF A(Dy), by (*) M,u IF 1¢ for a contradiction. (V1) vacuously follows.
Assume (B). Fix {sic(n)} to be a barrier in D; with exception for {vp:1—0gp, v1:¢}.
Construct fo from D; using {s;ec(n)} and fresh variables in the usual way; fix 0;¢(n)
as in previous such arguments. By now familiar arguments,

A (Df) C (A(D1) NOFml) U {00;cimy} U {1-0¢}

and M,u = 0714 (D?) Claim: for every x, if uRx and M, x = ¢, then for
some y, uRy, M,y = ¢ and M, y = =0¢. Proof is by induction on |x|. If |x| =
0, M,x E —Qg; so x is as needed. Assume the obvious IH. Given x, assume
the if-clause. If M, x = —Qg; again x is as needed. Assume that M, x £ —p.
So we may fix a z so that xRTz and M,z = ¢. Since |z| < |x|, the inner IH
applies to z, yielding the existence of a y as needed. The Claim follows. Since u Rv
and M,v E ¢, we may fix a y so that uRy, M,y = ¢ and M,y E —=0¢. So
M. u,y Ik A (D). Since hr (D}) < n, by the IH, (4 (DY), 06) is M-valid. So
M,u,yIF00.So M, u = 6; so M, u,v Ik 06.(V2) follows, yielding (!).

For Y = IGL, assume that [ ] was entered into D by a use of 10T as pictured
in Section 9.1. So yx is 1g. By the IH, (*) (A(Dy), 1¥) is M-valid. Assume (A).
Since M, u I+ A(Dy), by (*) M, u I- 14, a contradiction. (V1) vacuously follows.
Assume (B). Fix {s;c(m)} to be a barrier in Dy with exception for v:10¢p. Construct
Df from D using {s;cm)} and fresh variables in the usual way; fix 6;¢(,) as in
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previous such arguments. As usual,

A (D’f) C (A(D)) NOFml) U {06;e(m} U {100},

Moul=0""A (Df) and ht (Df) < n. By the IH, (*%) <A (Df) , 1(p> is M-valid.
We now prove that for every x € W, if uRTx then M, x = ¢, using induction
on |x|. Given a dead-end™ x, since M,x = Ogp, M,u,x = A ('D?); by (*%*)

M, u,v IF 1¢. Given x € W with |x| > 0, consider any y so that xR*y. Since
F is an I4-frame, R is transitive; so uR™y. Since |y| < |x|, by the inner IH
M,y E¢.SoM,x =0Op.So M,u,x I A (D?); by (**) M, u, x I+ 1¢. The
claim follows. Since u Rv, M, v = ¢. (V2) follows, yielding (!).

For Y = IDiog, assume that [ ] was entered into D by a use of Diog as pictured
in Section 9.1. By the IH, for both i € 2, (*;) (A(D;+2), 00¢;) is M-valid. Assume
(A). Since M, u I+ A(Djy2), by (*;) M,u IF 00¢;; so u is not a dead-end, a
contradiction, which yields (V1). Assume (B). Fix {s; je(n)} to be a barrier in D; with
exception for {vo;:1¢;, v2i+1:10¢1—;} for both i € 2. Construct Df from D; using
{8, je(m)} and fresh variables in the usual way; For both i € 2, by (*;) M, u |= O¢;;
so we may fix v; such that M, v; = ¢; and u Rv;. Fix v, v} and k € 2 so that v; £ v;
for both i € 2, and uRv; Rv|_,. So M, v} |= ¢; for both i € 2; so M, v; = Op1_;.
So M, u,v; IF 1¢; and M, u,v; I+ 10¢;_x. By familiar reasoning, M, u, v, I+
A(D;f). I leave the rest to the reader.

For Y = IDio, assume that [ ] was entered into D by a use of Dio as pictured
in Section 9.1; so x is 06. By the IH, for both i € 2, (*;) (A(D;), 00) is M-valid.
Assume (B). For each i € 2, fix m; and the barrier {si, je(m ,.)} in D; with exception
for v;47:1¢;. Then fix { 0;, je(m,-)} and amputate to construct ’D? ) from D; 4, in the
usual way. So

A (DfF

[+2) C (A (Diy2) NOFmI) U {06, jeim} U {1g:}.

Claim: for some i € 2, M, u = O—¢;. Assume otherwise. Fix v; such that u R"v;
and M, v; ¥ —¢;, and then fix u; 3 u so that u; Rv;, this for both i € 2. Fix vlf v
so that M, v} }= ¢;, and then fix u; 3 u; so that u;Rv/, again for both i € 2.
So uR"uj and uR"u). Since M is an IDio-model, we may fix a k € 2 so that
v R +vi_ ¢~ Consider eitheri € 2. By a familiar argument (using (B), and in particular

v), M,u = {Gi,je(m,-)}- By the Persistence Lemma, M, u; = 0*1A(D?+2), and

so M, u;, v |- A (Dfﬂ). By the IH applied to Df+2, <A(Dl.$+2), llj—-ggl,l-> is M-

valid. So M, u}, v IF 10-¢;_;; so M, v} = O—¢;_;. Since M, v, = O—¢1 4,
M, va E —¢1—k, a contradiction. The Claim follows. Fixing such a i, M, u, v I+
A(D;). By (*), (A(Dy), 00) is M-valid. So M, u,v I+ 06, proving (V2). Now
assume (A). The argument under the (B)-case applies, with this simplification: since
M, u l- A('Di_;,_z) — {1|:|—'(pi}, m; = 0 and {Si,je(mi)} = {}, SO 'D?+2 = 'D,'_;,_z. So
(V1), and thus (!).

For the “blended” systems (T, B, etc.), use the arguments for their “ingredient”
systems. O
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For each of the above choices of X, the “furthermore” follows by straightforward
revisions to the above proof.

We will now consider some non-inclusions. In the following specifications of F' =
(W, R,C), C will be reflexive on whatever we take as our W and transitive, and R
might be specified in part just by giving positive R-facts.

11.3 Corollaries

(D '—I_DWQ Fepas. Qb pE FipyBas- 3) b pEL FitBoass-

Proof For (1)let W = 1 and R = {}; check that F = (W, R, C) is a CB45-frame.
For any valuation function V on W x §, (00J_L, 0_L) is not (F, V)-valid at 0; by 11.2
0L ¥cpas 0L. Then use 10.1(3).

For 2)let W = 2, 0 C 1, and 1R1. Check that F is an ID,,B45-frame. For any
valuation function V on W x S, 00T is not (F, V)-valid at 0; by 11.2,¥;p_ pa5 00T.
Then use 10.1(2).

For(3)let W =2,0C 1, 1RO and 1R1. Check that F' is an IT 0B453-frame.
For any valuation function V, 00T is not (F, V)-valid at 0. By 11.2, ¥ ;755455
0O T. Then use 10.1(2). O

For the remaining corollaries, assume that S #= {}; fix 7 € S.
11.4 Corollaries

(D) by € FipmeBrss- () B, € FigBoas-

Proof Proof of (1) takes some effort. Let E = 2n |[n € w}, O = 2n+ 1| n € w},
and C = (< |[E)U (< |0). Fixan Ry : E — {0} — E so that forn € E — {0}
Ro(n) > nand {n’ € E | Ro(n’) = Ro(n)} is infinite. '! Let Ry : E — {0} — O such
that forn € E — {0} Ri(n) = Ro(n) + 1. Foreachm,n,n’ e wlet Ty , v =

{2m,2n+1), 2n+1,2m), (2m, 2n' + 1),
<2n’ + 1, Zm), (2n +1,2n + 1)},

and let Ry = {Tnnw | Ro(2n) = Ro(2n') = 2m}. Set R = Ry U R U Ry U
{0, 1), (1, 1)} and F = (w, R, C). Claim: F is an IDTpBp45-frame. Clearly it is
an ID-frame. R insures that for each n € E there is an m € E such that mRn; R,
insures that for each n € O there is an m € O such that m Rn. So F is an ITg-frame.
Ry insures that for each n, m € E, if nRm then there is a p € E such that pRm; R,
insures that for each n, m € O, if nRm then there is a p € O such that pRm. Also,
foranyn € E, {m € O | nRm and m Rn} is infinite; so if n R2k + 1 then for some
j > k2j+ 1Rn. Also, foranyn € O and m € E, if nRm then mRn. So F is an
IB-frame. I will leave the tedious verification of the 145-frame conditions, and of
left- and right-completeness, to the reader. (A picture, say with even numbers 27 in

HEor example, let Ry(2n) = 2(n — m) for m = the greatest triangular number < n. (A triangular number
is one of the form 2k? 4 k or 2k% 4 3k + 1.)

@ Springer



One-Step Modal Logics, Intuitionistic and Classical, Part 2 893

a column on the left, and odd numbers 2n 4 1 on the right, e.g. for n < 8, counting
upward, and arrows to indicate R restricted to these numbers, will be helpful. Also
note that if m € O, n,n’ € E, mRn and mRn’ then mRon and mRyn’, and so
n=n'.)LetV(u, ) = 1iffu = 0; so ({0x}, 007) is not (F, V)-valid at 0. By 11.2,
07 ¥ ;78545 007. Now use 10.1(4).

In contrast to (1), (2)’s proof is almost trivial. Let W =2, 0 C 1, OR1 and 1R1;
check that F is an IT¢B¢ 45-frame. Let V(x, 7) = 1 iff x = 1. ({0Ox}, Oxr) is not
(F,V)-valid at 0. By 11.2, 0Oz }%1703045 07. Then use 10.1(5). O

No finite model will be a counter-model witnessing that O ¥ 7 pq45 00T.
Remarkably, no finite IT5¢-model even witnesses that 07 ¥ 75 o 00m. To see
this, assume that F' is a finite IT5¢-frame and u < W¥F so that (F, V), u =
and (F, V), u ¥ On. Since W¥ is finite and F is an IT-frame, there is an n and
u = uo, ..., U, so that foreach i < n u; C u;y1, u;jy+1Ru;, and there is no v 3 u,
so that v # u,. Since u, Ru,,, there isan m < n and a u’ 3 u,, so that u,, Ru’. Let
m be the least such; fix the corresponding u’. If m = 0, by the Persistence Lemma
(F,V),u' =m, and so (F, V), u = Om, a contradiction. So m > 0. S0 u,;, Rut;,—1
and u,, Ru’. Since F is a finite I5¢-frame, for some v 3 u’, u,,—1 Rv. Since u,, T v
this contradicts choice of m. So there is no such F.

11.5 Corollaries

(D '—]BQ% Fr7Bo4s5- (2) F;BD,@ F17Bo45,- (3) '—]BOQ Fr1q4s. (4D FZBDSZ F11,45.

Proof For (1) let W = 4,2 E 0,3 C 1, R = {0, 12U {2,3)2U{(i,j) | i €
{0, 1}, j € {2, 3}}. Check that F is an ITBg45g-frame. Let V(x, 7)) = 1 iff x =
0. {({0r}, 0000m) is not (F, V)-valid at 0; by 11.2 0 ¥ ;7455 000Om. Then use
10.1(6).

For 2),let W = 4,0C 2,1 C 3, R = {2,3)2Uid|{0, 1} U {{0,i) | i €
{1,2,3}} U {(1, 2), (1, 3)}. Check that F is an ITBy45¢-frame. Let V(x, w) = 1 iff
x € {1,2,3}. {({00Ux}, 0rr) is not (F, V)-valid at 0; by 11.2 00Ur ¥ 7p,45, Or.
Then use 10.1(7).!2

(3) and (4) are easy exercises. Hint: take W = 2. O

11.6 Corollaries

(1) l—;4<>sz Fi1Bodns- (2) F;40% Fi1TBy4nss- (3) |—f40g FirBoansn- A F g
F110B0405- (5) ";45@ F17B4055- (6) ",]D% F1TBy4y5,-
Proof For (1)-(3)let W =4,0C 3, and foranyu € 4, V(u, ) = 1l iff u = 2. At
the end, use 10.1.8.

For (1),let R = {1, 2, 3}2 U{(0, 1), (0, 3)}; check that F is an ITBy4n5-frame.
({000}, 00Q) is not not (F, V)-valid at 0; by 11.2, 1$m }‘170304[]5 00m.

12These examples are due to Philip Sink.

@ Springer



894 H.T. Hodes

For 2),let R = {1, 2, 3}2 U{(0,0), (0, 1)}; check that F is an ITBy45¢-frame.
({0007}, 007) is not not (F, V)-valid at 0; by 11.2, 107 ¥ 7, Baps5 007.

For (3), let R = {0, 1, 3}> U {1, 2, 3}%; check that F is an ITB4550-frame.
({000}, 00m) is not not (F, V)-valid at 0; by 11.2, 107 ¥ 17 p14055 007.

(4)-(6) are good exercises. O]

11.7 Corollaries
(D) |_1_5<>»¢— |—[TBD45D. 2) l_I_SD"Q— |_1TB<>45<>-

Proof For (1), let F and V be as they were for 11.5(1). Check that ({007}, 00I0)
is not (F, V)-valid at 0; so by 11.2, 007 ¥ 71455 00O, Then use 10.1(10). For
(2), let F and V be as they were for 11.5(2); a similar argument applies. [

I leave non-inclusions involving the IGL and IDio systems to another occasion, or
another logician.

11.8 Theorems

Taking ‘Y’ so that ‘CY’ is schematic for any of the names for classical systems
introduced in Section 9.2, l-cy is sound with respect to CY-models.
Proofs are straightforward.

11.9 Corollaries

For Y’ replaceable as above, the restriction of Fcy to 0Fml is just the result of
prefixing 0 to all formulas in the familiar no-step classical consequence relation Fy .

Proof Consider any ¥ C Fml and ¢ € Fml. Assume that ¥ Fy ¢; fix a deduc-
tion D witness this in the no-step (Prawitz-format) Natural Deduction proof-theoretic
system formalizing Fy. Prefixing 0 to every formula-label in D yields a deduc-
tion witnessing that 0X Fcy 0g. Assume that 0X Fcy 0p. By 11.8, (0%, 0¢) is
CY-valid. It is easy to see that then ¢ is a Y-consequence of X according to the
standard IS(ripkean model-theoretic semantics for the no-step classical logic Y. So
by }—y (p.l O]

11.10 Definition
Consider an IK-frame F and a formula ¢; let S = the set formula-constants occurring

in ¢. Let F E ¢ iff for every valuation V on W x S, ¢ is (F, V)-valid. ¢ defines the
class of IK-frames F such that F F ¢.

131f one defines Fy model-theoretically in terms of Kripke-models, this is immediate; if one defines it
proof-theoretically, use the completeness of that proof-theoretic system with respect to Kripke-models.
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11.11 Appropriateness Observations

We will now show that the classes of IK-frames assigned in Section 11.1 to the logics
under consideration are “appropriate” (in the sense of [1], pp 80-81).

(1) OT defines the class of ID-frames. (2) —[J_L defines the class of IDy-frames.

Fix a formula-constant 7. (3) (x D ) defines the class of IT¢-frames. (4)
(O D m) defines the class of ITg-frames. (5) (w D OOn) defines the class of
IB¢-frames. (6) (OU0w D ) defines the class of IBg-frames. (7) (007 D Om)
defines the class of I4¢ -frames (8) (Ox D UUm) defines the class of I4g-frames.
(9) (Or D OOm) defines the class of I5¢y-frames. (10) (OUx D On) defines the
class of I5g-frames. (11) (J(Uxr D m) D Ux) defines the class of IGL-frames.
(12) (O D O & —=Om)) defines the class of IGL-frames.

Assume that mg, r; € S are distinct. (13) ((Omp&Om) DO Q(me&dmy) Vv
(O(Omo&emy)) defines the class of IDiog-frames. (14) ((O(wp D O—m)&O(r D
(—mp)) D (O—mgVv—m) defines the class of IDiog-frames. (15) (7 Vv —rr) defines
the class of CK-frames.

Proof Consider any IK-frame F = (W, R, C).

(1) If F is an ID-frame, F = Q'T. Assume that F E {T. Let V be the valuation on
W x § assigning every (x, ) to 0. Foranyu € W, (F,V),u = OT; souisnota
dead-end. So F is an ID-frame.

(2) If F is an IDy-frame, F E —=[J1. Assume that F F —[]_L. For V as above and
anyu € W, (F,V),u =—-0L; souisnota dead-end™. So F is an IDy, -frame.

For what follows, set S = {m}.

(3) By 10.1(4) and 11.2, 0(r D Om) is IT¢-valid. So if F is an IT¢-frame then
F E (r D Qm). Assume that F E (r D Q). Given u € W, let V be the valuation
on W x S sothat forany x € W V(x, ) = 1 iff u C x. Clearly V is persistent (with
respect to C). Thus (F,V),u = 7. So (F,V),u &= Om; so for some u’ uRu’ and
u T u'.So FisanIT -frame.

(4) By 10.1(5) and 11.2, 0(dx D m) is ITg-valid. So if F is an IT-frame then
F F (dx D ). Assume that F F (Oxr D ). Given u € W, let V be the valuation
on W x S so that for any x € W V(x, ) = 1 iff uR"x. Claim: V is persistent.
Assume that V(v, 7) = 1 and v C v’. Since uR™v we may fix u’ so that u = u’Rv;
by the left-completeness of F we may fix u” so that u’ = u” Rv'; thus uRTv'; so
V', w) = 1. The claim follows. Since (F, V), u = O, (F,V),u =m.SouR u.
So F is an IT-frame.

(5) By 10.1(6) and 11.2, 0(r D UOx) is IBg-valid. So if F is an IB-frame then
F E (# D OO0x). Assume that F £ (7 D OOw). Given u € W, let V be the
valuation on W x § as in the proof of (3). So (F, V) ,u = m.So (F,V),u | O0x.
Given v, assume that u Rv. Since uR"v, (F,V),v = On. Fix «’ so that vRu’ and
(F,V),u' =m;sou T u'. So F is an IBy-frame.

(6) By 10.1(7) and 11.2, 0(00g D ¢) is IB-valid. So if F is an IB-frame then
F E (OO D 7). Assume that F E (OOm D 7). Given u, v € W, assume that u Rv.
Let V be the valuation on W x S so that forany x € W V(x, ) = 1 iff vR"x. Asin
the argument for (4), V is persistent. So (F, V), v = On; so (F, V), u | OOx. So
F Em.SovR%u. So F is an IB-frame.
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(7) Using 10.1(8) and 11.2 as above, if F is an 14 -frame then F F (00w D Ox).
Assume that F F (0O D Om). Given u, v, w € W, assume that uRvRw. Let V
be the valuation on W x S so that forany x € W V(x,7) = liff w CE x. V is
persistent. Also (F, V), u = OOm; so (F,V),u | On. Fix a w’ so that uRw’ and
(F,V),w' E=m.Sow C w'. So F is an 4, -frame.

(8) Using 10.1(9) and 11.2 as above, if F is an [4-frame then F F (Ur D O0w)
is easy. Assume that F F (07 D OOx). Given u, v, w € W, assume that u RvRw.
Let V be the valuation on W x § as in the proof of (4); as in the argument for (4),
V is persistent. Since (F, V) ,u = UOn, (F,V),u =0O0x. So (F,V),w E m; so
uRTw. So F is an I4g-frame.

(9) Using 10.1(10) and 11.2 as above, if F is an I5¢y-frame then F F (O D
OOm). Assume that F = (O D OOx). Given u, v, w € W, assume that u Rv and
uRw. Let V be the valuation on W x § as in the proof of (7). Since (F, V), u = O,
(F,V),u |=00m.So (F,V),v = Om; fix w’ so that vRw’ and (F, V), v’ = 7;
sow C w'. So F is an I5,-frame.

(10) Using 10.1(11) and 11.2 as above, if F is an I5g-frame then F F (OOx D
Om). Assume that F F (OOr D Or). Given u, v, w € W, assume that u Rv and
uRw. Let V be the valuation on W x S so that forany x € W V(x, ) = 1 iff vRTx.
Since (F,V),v =E0Qn, (F,V),u E=Q00nr.So(F,V),u =Onr.So(F,V),w 7.
So vR*Tw. So F is an I57-frame.

(11) Using 10.1(13) and 11.2 as above, if F is an IGLg-frame then F F (J(dx D
) D Um). Assume that F F (J(Ur D 7)) D Ur). The proof that F is an IGL7-
frame recapitulates the argument for classical GL given in [1], pp. 82-83, using R™
in place of R. Given u, v, w, assume that uRTvRTw; to prove that uR w, let
V(x,m) = 1 Iff uR"x and for every y if xR*y then uR™y. It suffices to show
that (F,V),u = O0r D m), since then (F, V), u = Ur. Details are left to the
reader. Given u € W, to show that u is well-capped let V(x, 7) = 1 iff for every
xT O x x* is well-capped. Check that V is persistent. Check that for any v € W,
(F,V),v E r D x).Given u € W, it follows that (F, V) ,u &= O(Ox D m); so
(F,V),u = 0Omn.Soforevery v, if u R*v then v is well-capped. So u is well-capped.

(12) Using 10.1(12) and 11.2 as above, if F' is an IGL¢-frame then F F (O D
Q(r&—Om)). Assume that F F (O D O(wr&—Om)). Claim 1: F is a super 14-
frame. Given u, v, w, assume that u RvRTw; fix v/ 3 v so that v Rw. Let V be the
valuation on W x S such that V(x, ) = 1 iff either (i) for some y 3 w xR™y or
(i) x 3 w. Check that V is persistent. Since vRTw, (F, V), v = m;s0 (F,V),u =
Qm; s0(F,V),u = Q(w&—Qm). Fix an x so thatuRx and (F, V), x &= (7&—0m).
Assume (i), for a contradiction. Fix y 3 w so that xRTy. So (F,V),y k&= m; so
(F,V),x E Om. Since (F,V),x = —0m we have a contradiction. (ii) follows.
Claim 1 follows. Claim 2: there is no infinite R-chain. Assume that (u;);., is an R-
chain. Let V be the valuation on W x § so that for any x € W V(x, w) = 1 iff for
some i € wu; C x.So V is persistent. Since (F, V) ,u; = m, (F,V),ug = Om; so
(F,V),ug E O(w&—Om). Fix an x so that uRx and (F,V),x E (#&—{x). Fix
i € wso thatu; £ x. Since F is right-complete, we may fix a y so that xRy and y 3
uit1-So (F,V),y = m; so (F,V),x = Om, contrary to (F, V), x = —=0m. Claim
2 follows. Claim 3: if there is an infinite R™-chain then there is an infinite R-chain.
Assume that (i;);c,, is an RT-chain. For each i € o fix u} 3 u; so that u} Ru;. Since
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’ . _ ; / I
up; 1 Rusiqo, by the left-completeness of F there is a v 3 ”2511 so that vRuy,;  »;
) T . . . . /
S0 uzlth Uy; - Using claim 1, for iach i € wwemay fixauy , 3 uy 5 so that
/ * __ o/ * __ . * . / *
up; Ruy; 5. Let ug = uy and usy = uy . With uj; 5 defined so that w5, , & uj; 5,

. l + : + * +
since uy; o Ruy; 4 the right-completeness of F lets us fix a u3; ,, 3 uy; 4 so that

+4
uy; o Ru3; 4. So (uzi)iew is an R-chain, proving claim 3. By claims 2 and 3, F is
well-capped.

(13) Using 10.1(14) and 11.2 as above, if F' is an IDio¢, -frame then
(*) F E (Omo&Om1) D (O(mo&dm) v (O(Omo&my)).

Assume (*). Given u, vjcr assume that for both i € 2 uRv;. Fix V so that
V(x,m) = 1 iff for some i € 2 mw is m; and v; T x. V is persistent and
(F,V),u = (Omo&my). Thus (F, V), u = (O(mo&dmy) Vv O(Omp&my)). Assume
that (F, V), u = Q(mo&Omy). Fix v so that uRv;, and (F, V), vy = (mo&{my).
So vy C v and (F, V), v, = Omi. Fix v} so that vyRv] and (F,V),v| &= m1.
So v; C vj. So F is an IDiog-frame. If (F, V), u = ¢(Omo&my)) then a similar
argument applies.
(14) Using 10.1(15) and 11.2 as above, F is an IDio-frame then

(**) F E (0@ D U= &y D O=mg)) D (O-mg v H=my)) .

Assume (**). Given u;c» and v;co> assume that ug C wu; and u; Rv;. Fix V so that
V(x,m) = 1iff for some i € 2 w is m;, v; C x, and there is no x* I x so that
v1_; RTxT. Check that V is persistent. Consider either i € 2. Claim: (F, V), ug =
O(r; D O=my_;). It suffices to show that for any x, if ugR*x and (F, V), x = m;
then (F,V),x E O-m—;. Given x, assume the if-clause. So v; T x. Given y
assume that xRTy. So v; R*y. Assume for a contradiction that (F, V), y ¥ —m_;.
Fix ay’ O y so that (F,V),y" = m_;. So there is no y* 3 y’ so that v; RTy™.
But since F is left-complete, we may fix a v, 3 v; so that v/Ry’; so v, RTY, a
contradiction. So (F, V), x = O—m_;. The claim follows. By (¥*), (F, V), ug E
(O=mo v O=my). Fix j € 2so that (F,V),u = UO-n;. So (F,V),v; = —mj; so
(F,V),vj ¥ mj.Since v; C vj, there is an x™ 2 v; so that vj—jR*x™. So F is an
IDio-frame.

(15) Proof is an exercise. O

12 More Canonical Frames and More Completeness Theorems
12.1 Canonical Model Theorems

For ‘X’ replaceable by the names of the logics introduced above other than ‘IGL’,
‘IGL¢’ and ‘CGL, the canonical frame for |-y is an X-frame, and so the canonical
model for Fx is an X-model.

Proof X =1D: Let ® € W, ,,. Since -7p 00T, 0T € &. By the Diamond Lemma
7.13, thereis a W € Wi, such that PR, V.

X = IDy: To avoid clutter let = = F;p . Consider any ® € W. Claim:
0® U {00T} ¥ 0L. Assume that 0 U {00T} + 0L; fix C,v and Dy. so that
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C,vi00T =p, Do:0L and ran(C) < 0. Let D; look thus for vi € Var —
dom(C).

vi:AT ol

00T

Let Dy = [v := D1]Dy. So D5 looks thus.

vlleOI
00T

Dy

0L

Construct D as pictured.
[vi:1T]
D,
OLlgp

AL g1k
0LM

Since C =p,, D:0L, 00 F 0L, a contradiction that proves the claim. By Linden-
baum’s Lemma for |-, we may fix a X € Wi sothat ® C ¥ and § T € X. By the
argument above for X=ID, there is a W € W, so that DR .

X =1IT¢: The Special Diamond Lemma for ITy. If & € Wi, then for some
W, ®Ry1,V and ¢ C V.

For clutter-control, set - = I—ITQ, W =W, R=R-.LetI' =00 U1d. Redo
the definition of ¢ and (\IJ j>j cq from the proof of 7.13. Claim 1: for every j € w, (i)
J € ¢, (i) I' U1W; is O-closed under |, (iii) for every 0 € X, ¢ (a&/\ \IJ]-) € P,
and (iv) if j > O and j is even, the bad case for j does not obtain. Proof is by
induction. For the base step, only (ii) deserves our attention. Given § € Fml, assume
that I' = 06. Since @ is closed under conjunction we may fix a ¢ € & so that
0D U {1p} I 06. Since 0¢p € 0, using OF yields 0 U {0p} F 05, i.e. 0O F 06.
Since ® € W, it is 0-closed under -; so 06 € 0 C I'. So O satisfies (ii). The rest
of the proof of Claim 1, and then the rest of the argument, imitates that used to prove
7.13.

X =ITg The Special Unbox Lemma for ITg. If W € Wy, then for some @,
CDR[TD\IJ and ¥ C &.

For clutter-control set - = ;7 W = Wi, R = R-. Let ' = 0W U 1V. Redo
the definition of ¢ and <d> j)j cq from the proof of 7.11. Claim 1: for every j € w, (i)
J €q; () T'UO0D; is 1 -closed under -, (iii) for every p € Fml, if ' U0®; - 00p
then p € W; (iv)if j > O and j is even, the bad case for j does not obtain. Proof is by
induction. For the base step, only (ii) and (iii) deserves discussion. Given § € Fml,
assume that I' - 18. Since W is closed under conjunction, we may fix a ¥ € ¥ so
that O U {1y} + 15. So 0OV U {1T} F 1(¢y D 6). Using 01, O + 0(y D §). So
0¥ | 06. Since ¥ € W itis 0-closed under : so 06 € 0 C I'. Thus O satisfies
(i1). Given p € Fml, assume that I' = 0Up. By Section 10.2(4), I' = 0p. Since 0
satisfies (ii), 0p € I'; so p € W. The rest of the proof of Claim 1, and then the rest of
the argument, imitates that used to prove 7.11.
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X =1B¢: The Special Diamond Lemma for IBg. If XRip,® then for some
W, ®R/p, W and T C V.

Sett="Frp,, W = W, R = R-. Assume the if-clause. Let I' = 0 U1X. Redo
the definition of ¢ and (\Ilj)jeq from the proof of 7.13. Claim 1: for every j € w, (i)
Jj € q. (i) TU1¥; is 0-closed under -, (iii) forevery o € £, O (0& A\ V) € ®, and
(iv) if j > O and j is even, the bad case for j does not obtain. Proof is by induction.
For the base step, only (ii) deserves our attention. Assume that I" - 038. Since ¥ € W,
¥ is closed under conjunction. So we can fix o € X so that 0¢ U {1c} I 05. Using
QFE once, 00 U {00c} - 06. Since 0X U 1® - 0o and & # {}, using 1$1* once
yields that 03X U 1® + 100o. Since ZR®, 0% U 1® avoids 0L under -, by the 0.L-
Avoidance Lemma for ; so 0X U 1® is closed under -; so 0o € ®. Cutting 000
yields 00  04. Since ® € W, 06 € 0& C I'. Thus O satisfies (ii). The rest of the
proof of Claim 1, and then the rest of the argument, imitates that used to prove 7.13.

X =1IB: The Special Unbox Lemma for IBn. If ¥ Ryp % then for some ®,
CDRIBD‘I/ and X C .

Sett=t;py W = Wi, R = Ry. Assume the if-clause. Let I' = 0XU1W. Redo
the definition of ¢ and (®;). _, from the proof of 7.11. Claim 1: for every j € o, (i)
J € q; (i) T U0, is 1-closed under -, (iii) for every p € Fml, if ' U0®; - 00p
then p € W, (iv) if j > 0 and j is even, the bad case for j does not obtain. Proof is
by induction. For the base step, only (ii) and (iii) deserves discussion. Assume that
' - 16. Since ¥ € W, W is closed under conjunction; so we may fix ¢y € W so that
0ZU{1y} F18.So0X U{AT}HF 1(¥ D §); so0X F 0O(¢¥ D §). Since ¥ € W,
it is 0-closed under I-; so (¢ D §) € . So 0OV U 1% F 10(¢¥ D §). Using 10E*
once yields that 0OW U 1X F 0(¢» D §). Since 0y € 0¥, 0@ U 1X + 05. Since
WRY, the 0_L-Avoidance Lemma for - implies that 0@ U 1% avoids 0L under I,
and so is closed under ; so 6 € W. So 16 € I'. Thus 0 satisfies (ii). Assume that
I' = 000p. As above we may fix ¥ € W so that 0% U {1¢/} - 00p. using O E once,
02 U {00y} = 00p; so 0 F 0(Oy D Op). Using 4.2.(4), 0X = 0O(¢ D p).
Since X is 0-closed under -, (¥ D p) € ¥. So 0V U1X + 10(¢¥ D p). Using
1O0E*, 0P U1Z F 0y D p). Since 0y € 0¥, O U1X - 0p. So p € W. Thus
0 satisfies (iii). The rest of the proof of Claim 1, and then the rest of the argument,
imitates that used to prove 7.11.

X =I4¢: The Special Diamond Lemma for 14¢. If DoRya, P1R4, X then
for some W, DoRys, W and X C V.

Set = Fra, W= W, R = Ri. Assume the if-clause. Let I' = 0dyU1X. Redo
the definition of ¢ and (¥ j>j€q from the proof of 7.13. Claim 1: for every j € w, (i)
J € g, (i) 'U1Y; is 0-closed under |-, (iii) forevery o € X, { (a& A \Ilj) € &, and
(iv) if j > O and j is even, the bad case for j does not obtain. Proof is by induction.
For the base step, only (ii) merits attention. Assume that I' - 05. Since £ € W, X is
closed under conjunction. So we can fix o € ¥ so that 0®g U {10} F 05. Using OF,
0Dy U {000} F 05. So 100 € 00y U 1d. By one use of 1IOE*, 00g U 1D F 000.
Cutting 000 we get 099 U 1d; F 06. Since ®gRP, the 0L-Avoidance Theorem
for |- implies that 0®¢ U1® is 14, -closed under -; s0 06 € 0Py U1P1; s0 8 € Do;
so0 05 € I'. Thus 0 satisfies (ii). The rest of the proof of Claim 1, and then the rest of
the argument, imitates that used to prove 7.13.
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X =140: The Special Unbox Lemma for I40. If ¥ R4 WoRr4q W then for
some @, ®PR;4 Vi and ¥ C .

Set=tFp W = Wi, R = Ri. Assume the if-clause. Let ' = 0X U1W¥;. Redo
the definition of ¢ and (® j)/. <y from the proof of 7.11. Claim 1: for every j € w, (i)
Je€q, @I'Uod;is 1-closed under |, (iii) for every p € Fml, if I' U 0d; - 000p
then p € Wy, (iv) if j > 0 and j is even, the bad case for j does not obtain. Proof
is by induction. For the base step, only (ii) and (iii) deserve discussion. Assume that
I' - 145. Since ¥ € W, W is closed under conjunction. So we may fix ¢ € ¥
sothat 0X U {1y} = 18. So 0X U {1T} = 1(y D 8); so 0 F 0LI(yy D §). Since
¥ € W, itis 0-closed under +,; so (¢ D §) € X. By one use of LJE and the fact
that Wy # {}, 0X U1W¥y - 1(¢y D §). By one use of 10J7* and the fact that Wy # {},
0X U 1Yy - 10(y D §). Since T R, 7.5 implies that 0X U 1Wy is closed under
F; so (Y D 8) € Wy. So 0o U 1Y = 0LI(yr D §). Since ¥ # {}, one use of JE
yields that 0OWoU1W - 1(y D §). Since 1y € 1¥, 0V U1W| - 16. Since WoR Y,
0wy U 1V is I4g-closed under -, (7.5 again), § € W;. So O satisfies (ii). Assume
that I' - 00p. Fix ¢ € ¥; so that 0X U {1y} = 00p. So 0% U {00y} - 000p; so
02 - 0Oy D Op); using 4.2.(4), 0Z = 0O(¥ D p); so (Y D p) € X. Asin the
argument just given for (ii), p € W;. So 0 satifies (iii). The rest of the proof of Claim
1, and then the rest of the argument, imitates that used to prove 7.11.

X =15¢: The Special Diamond Lemma for 15¢.1f DoRys5, P and DoRy5,Z
then for some W, D R/5,Vand ¥ C V.

Setk=ty5, W= Wy, R=Ry.Letl' = 0d; U1X. Redo the definition of g and
(\Ifj)jeq from the proof of 7.13 . Claim 1: forevery j € w, (i) j € ¢, (i) TU1¥; is 0-

closed under -, (iii) for every 0 € £, O (60& A\ ¥;) € ®, and (iv) if j > 0 and j is
even, the bad case for j does not obtain. Proof is by induction. For the base case, only
(ii) merits attention. Assume that I' - 06. Since X is closed under conjunction, we
may fixao € X sothat0®;Ulo - 08. Using OE, 00 U{00o} F 05. Since DyRX,
Qo € ®g. So using 0/1), 00 - 100 . Since PgRPy, 7.5 implies that 0Py U 1D is
closed under ; so 100 € 0Py U 1d; so Qo € ;. Cutting 000, 00| - 05. Since
O e W, ®is 0-closed under . So 06 € 0d; C I'. Thus O satisfies (ii). The rest of
the induction, and then the rest of the argument, follows the proof of 7.13.

X =15g: The Special Unbox Lemma for I150.If ®R;5, % and © R;5, W then
for some @, PRy5 W and X C .

Setk =50 W = W, R = Ri-. Assume the if-clause. Let I' = 0X U 1W. Redo
the definition of ¢ and (@ j)jeq from the proof of 7.11. Claim 1: for every j € w, (i)
Jj€q, () T"U0D; is 1 -closed under -, (iii) for every p € Fml, it ' U0®; - 00p
then p € W, (iv) if j > 0 and j is even, the bad case for j does not obtain. Proof
is by induction. For the base step, only (ii) and (iii) deserve discussion. Assume that
' F 18. Since ¥ € W, it is closed under conjunction. So we may fix ¥ € ¥ so
that 0X U {1y} F 16. So0XZ U {1 T} - 1(¢¥ D §); so 0X + 00(yy D §). Since X
is 0-closed under -, (¥ D §) € X. So 0® U1X + 10(¢ D §). Using 1/00J,
00U1X F 0O(y D §). Since ®RX, 7.5 implies that 00 U1X is closed under -; so
Uy D §) € ©. Since ® R, 7.5 implies that 00 U1W is closed under . Also, since
0OUIVY F 0Oy D 8) and ¥ # {}, one use of LJE shows that 0@ U1V = 1(y D §).
So 0@ U1V F 16. Since 00 U 1V is closed under -, § € W; so 16 € 1¥ C I'. Thus

@ Springer



One-Step Modal Logics, Intuitionistic and Classical, Part 2 901

0 satisfies (ii). Assume that I' = 0L p. Since ¥ # {}, I' - 1p, using LJE. Because 0
satisfies (ii), 1ps € I'; so p € W. Thus O satisfies (iii). The rest of the proof of Claim
1, and then the rest of the argument, imitates that used to prove 7.11.

X = Diog: The Special Lemma for IDiog. If ERIDiO<> Y; for bothi € 2
then for each i € 2 there is a Elf so that for both i € 2 X; € X/, and either (A)
% R1Dio, EE)RlDio<> X} or (B) X R1Dpio,, ZiRlDio<> ).

Set = = F1pio,,- Assume the if-clause. For bothi € 2 let I'; = 0X U 1X%; and
i =03, U1%,_;. By 74, T; ¥ 0L. Claim 1: for some i € 2 I'; ;—; ¥ 0L.
Assume otherwise. So we can fix ogg, 019 € X and 011,001 € Xp so that
{0000, 1011} = 0L and {001, 1o19} = OL. Using OE, {0oqy, 00011} + 0L and
{0001, 00010} F OL. Since (ogp&oig) € Xo, (o11&001) € Xy, ER[D,'O<> Yo and
XIRIDI-(,<> X1, and also {(opo&o10), O(011&001) € . By one use of Diog,

00 (o00&oi0), 00 (011&001)
0(O(000&010& O (011&001)) V O(011&001&O (000&010))).

Since X is closed}-,
(O(o00&o10& (011 &001)) V O(011&001 &0 (000&010))) € Z.

So $(o9p&o10&O(011&001)) € T or {(o11&001&O(000&0o10)) € X. Assume the
left disjunct. Since

00 (o0o&a10& (011&001)) = 00 (000&Oa11),

00 (o0& Qo11) € 2. But 0(opo&Ooyq1) F 0L; using Trny, 1(cg0&fo11) F 1L; so
1(00p&Qoq1) F 0L using 1.LEy. So 0 (opp&Qoq1) F 0L using OF, contrary to
¥ € W. A similar argument yields a contradiction assuming the right disjunct. Claim
1 follows. We will now assume that I'g ; ¥ 0L, to prove (A). A similar argument
will apply assuming that I'y o ¥ 0_L, to prove (B).

We will construct a ¢ € w + 1 and a double sequence (®;, \Ifj)jeq , and prove
that ¢ = w. For each j € g we will have ®;, ¥; C Fml, both finite. For what
follows, let A(j, 09, 01) be ¢ (00 & A\ @ & O (o1 & /\ ¥;)). We will insure that (*)
for every op € ¥p and o1 € X1, 02 U{0A(], 00, 01)} ¥ 0_L. Claim 2: (*) will insure
that (*1) 'o U1®; ¥ 0L and (¥2) T'p;; U0P; U {1W¥;} ¥ 0_L. Assume (¥). Assume
that T'o U 1®; = 0L. We can fix a og € g so that 0X U {1 (op& A @;)} F 0L. So
02 U {1 (00 & A\ ®j & O A V;)} - 0L. Using OF,

02 U{00 (00 & A\ @; &0 A\ W)} 0L

contrary to (*). Assume that I'g; U 0®; U {1¥;} ~ 0L. We can fix 0; € %;
for both i € 2 so that {0op, 107,0 A ®;,1 A ¥;} F O0L. Using 0&E, 1&E
and QOF, 0((60&/\d>j)&<> (01&/\\Ilj)) F 0L. Using Trn; and then 1L Ey,
1 ((00& A <I>j) &O (01& A \Ilj)) F0L; using OF, 0A(j, 09, 01) - 0L, contrary to
(*). Claim 2 follows.

We now imitate the proof of 7.7. Let 0 € g and &9 = ¥y = {}. Given j € o,
assume that j € g and for some n € w, j € [4n,4n + 3]. Fix thatn. Let4n + 1 € g
and Wa, 41 = Wy, f ToUL1Dy, ¥ 18, and o1 U0Dy4, UL Wy, ¥ 04, letdn+2 € g,
Dapyo = Papt1 = Pay and Va4 = Way41. Assume that either [gU1 Py, F 14, or
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[o,1 U0Dy, UTWy, = 0g,. Let @y = Py, U{Ln}. If £, is not a disjunction let 4n 4
2eq, Paygr = Pay41 and Way 40 = Way41. Assume that &, is (o VvV ¢1). If for some
i €2, foreveryog € ¥pand o] € £; we have 0XU{0A(4n+1, (oo&yi), 01)} ¥ 0L,
fix such an i and let 4n + 2 € g, @apt2 = Pyt U {g;}, and Va0 = Wap41.
Otherwise (the bad case for 4n + 2) let ¢ = 4n + 2, and we are done. Now assume
that 4n + 2 € ¢ (and so the bad case for 4n + 2 did not obtain). Let 4n + 3 € ¢ and
@up3 = Papt2. I To1 UO0Psapi0 UlWayin ¥ 18y, let Papy3 = Papya = Papyo.
Assume that 'g 1 U040 U1Wa, 10 F 18, Let Wap43 = Way40 U{E,}. If ¢, is not
a disjunction let 4n + 4 € g, Way44 = W41 3 and Pygyq4 = Day43. Assume that ¢,
is (o V ¢1). If for some i € 2 9.1 U 0Py, 2 U1Wy, o U {1e;} ¥ 0L, fix such an
i;letdn +4 € q, Vapya = Va1 U{pi} and @gyqq4 = Pyjq3. Otherwise (the bad
case for 4n 4+ 4) let ¢ = 4n + 4, and we are finished.

Claim 3: for every j € w, (i) j € ¢, (i) (*) is true, and (iii) if j > 0 and j
is even then the bad case for j does not obtain. Proof by induction on j. The base-
step. O satisfies (i) by stipulation and (iii) vacuously. Consider any o; € X; for both
i € 2. Assume that 03 U {0 (0p & Qo))+ 0L. Using $I, 0% U {1 (09 & Qop)}
0L; so 0X U{1T} F 1= (o9 & Qoy); using I, 0X + 00— (09 & Qoq); so
O= (o9 & Qo) € X. So = (09 & Qo) € Xp. Since oy € Xy, =Qo1 € Xp. So
0—001 € To.1; so g1 F 00—0o7; so g1 F 1—0oy. Since 01 € Xy, 101 € T'p.1. So
o1 F 0L, contrary to assumption. So for j = 0, (ii) follows.

The induction step. Given j, assume the obvious IH. Fixn € wsothat4n < j <
4n + 3.

Case 1: j = 4n. By stipulation 4n + 1 € ¢, i.e. 4n + 1 satisfies (i) and vacuously
satisfies (iii). If I'o U 1Py, ¥ 1&, and g1 U 0Dy, U 1Wy, ¥ 0f,, the IH implies that
Jj+1 satisifes (ii). Assume that either (a) ['gU1®4, F 1¢, or (b) I'g 1 U0D4, U1 Wy,
0¢,, Given g; € X; for both i € 2, assume that 0X U {0A(4n + 1, 09, 01)} F OL.
Assuming (a), fix T € g so that 0Z U {11, 1 A\ @4, } F 1£,, Let o be (t&op). So
0% U {1(0p& A\ Pan)} - 1(00&Pan11); S0

0% U {1(03& /\ ®4,&0(1& /\ Wa)) | - 100&®1,4180(@1& /\ Wan1)).

Using ¢I followed by OFE, 0X U {0A(4n,06,01)} F 0Adn + 1,00,01). So
0X U {0A(4n,o09,01)} F O0L. Assuming (b), fix 7; € X; for both i € 2 so that
{070, 171, 0 A\ P4y, 1 A\ Wap } 0, Let o be (t;&0;) for both i € 2; so o] € %;.
So the following follow:

00, 10],0 A\ 4y, 1 \ Wy, - 0(00& N\ Pani1&O(01& N\ Wany1)).
00y & N\ Pan), (0] & A\ Wap) F 0(00& /\ Pap1&O(01& N\ Vant1)).
0(cp& /\ Pan), 00(01& A\ Wan) - 0(00& N\ Papy1&O(01& N\ Wapni1)).
1(0)& N\ @an), 00 (0 & A\ Wap) F 1(00& A\ Pant1&0(01& A\ Wans1)),

the last using Trny. So using QI followed by OE, 0A(4n, o), 0() F 0A(4n +
1,00, 01). So 0X U {0A(4n, 0g, 01)} = 0_L. In both cases we have contradicted (ii)
of the IH. So 4n + 1 satisfies (ii).

Case 2: j = 4n + 1. If ¢, is not a disjunction, clearly 4n + 2 satisfies (i)-
(iii). Assume that &, is (¢o V ¢1). Claim: either for every op € Xp and 01 € X
0X U {0A@n + 1, (c0&¢o), 01)} ¥ 0L, or for every o € Xg and 07 € X
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0X U {0A(dn + 1, (op&e1),01)} ¥ 0L. Assume otherwise. Fix opg, 001 € Xo
and 019,011 € X so that 0X U {0A(4n + 1, (opo&eo), 010)} +— 0L and 0X U
{0A(4n + 1, (601&¢1), 011)} F 0L. Let og be (0po&o91) and o1 be (o19&0o11); so
oo € Yo and o1 € Xj. Let B be O(01& /\ ¥;). By some deductive work,

0A(4n + 1, 00, 01) - 00 (((po&ao& /\ ®;&B) V (p1&00& /\ q>,-&B)) )
Using 4.2.(5),

00 ((po&oo& N\ ®;&B) V (p1&oo& \ @& B)) +
0(A(j. (c0&po), 01) Vv A((00&g1), 01)).

For each i € 2 alittle work shows that
0A@4n + 1, (co&e;), 01) F 0A@4n + 1, (00i&e;), 01;),

and so 0X U{0A(4n + 1, (00&yi), o)} FO0L.So0XZ U{0A4n + 1, 00,01)} F 0L.
But we have shown that 4n 4 1 satisfies (ii), for a contradiction. The claim follows.
Thus 4n + 2 satisfies (ii), and with that, (i) and (iii) as well.

Case 3: j = 4n + 2. By stipulation 4n + 3 satisfies (i), and vacuously satis-
fies (iii). If o1 U 0®4y40 U 1W4y0, ¥ 1&,, the IH implies that j + 1 satisifes
(i1). Assume that I'g 1 U 0Pgy42 U 1Wy,4o F 1¢,. Given 0; € X; for both i € 2,
assume that 0X U {0A(4n + 3, 09, 01)} - 0L. Fix 7; € X; for both i € 2 so that
{010, 17,0 A\ Pupo, 1/\\ll4n+2} F 1¢,, Let o] be (t;&0;) for both i € 2; so
o/ € %;. So the following follow:

00, 10{,0 A\ ®api2, 1 A\ Wapg2 F 1(01& N\ Wany3).

00, 10{,0 A\ ®api2. 1\ Wang2 - 0(00& N\ Puny3&0(01& A Wang3)).
0(0p& N\ Pany2), 107 & N\ Wani2) F 0(00& A\ Pant3&O(01& A\ Wani3)).
0(0p& /\ Pani2), 00(0[& A\ Wany2) - 0(00& N\ Papy3&0(01& /\ Wang3)).
1(0p& N\ Pan12), 00(0]& N\ Wapi2) F (o0& A\ Pant3&O(01& A\ Van13)),

Using (I followed by OE, 0A(4n + 2,0, 0() = 0A(4n + 3,00, 01). So 0Z U
{0A(4n 42, 0g, 01)} F 0L, contrary to 4n + 2 satisfying (ii). So 4n + 3 satisfies (ii).

Case 4: j = 4n + 3. If ¢, is not a disjunction, clearly 4n + 4 satisfies (i)-
(iii). Assume that ¢, is (¢g V ¢1). Claim: either for every o9 € X and o1 € X
0X U {0A4n + 3, 00, (01&¢0))} ¥ 0L or for every o9 € Xp and 07 € X
0 U {0A(4n + 3, 0p, (01&¢p1))} ¥ 0L. Assume otherwise; I leave details to the
reader. The crucial points: for appropriately defined oo and oy, taking B; to be
(pi&o1& N\ Wap43) fori € 2,

0A(4n + 3, 00, 1) = 00 (00& /\ Pans3&0O(Bo V BY)).
00 (o0& /\ Punt3&0O(By V Bi)) F
0(A(4n + 2, 09, (po&or)) V A(dn + 2, ag, (p1&01)).
The second of these uses 4.2.(5) twice. Thus 4n + 4 satisfies (ii), and with that (i) and
(iii) as well. Claim 3 follows. Thus g = w.

Let X = Ujew ®;, X = Ujew Vv;,.I'y =02 U1X), and F6,1 =03, U1x].
Check that for each n € w, if ¢, € ¥¢ then ¢, € ®yy41, and if ¢, € Xy then
{n € W4u43. We have insured that T and F6,1 avoid 0L. So X and X| are as
required.

@ Springer



904 H.T. Hodes

After all the work for the previous lemma, the next is surprisingly easy.

X = Dio: The Special Lemma for IDion. If forbothi € 2 ¥ C %; and
% R pioy ©; then for both i € 2 there is a ®l+ D O; so that either @a'RIDi,,D @T or
O Ripioy O -

Set b = F1pioy. Assume the if-clause. For i € 2 let I'; = 00y U 10;. Claim 1:
either 'y ¥ 0L or I'; ¥ 0_L. Assume otherwise. There are oy;, o; € ©®; for both
i € 2 so that 0ogg, 1o71 F 0L and 0oy, 1lojg F 0_L. So 0(cgo&oi9), 1(o11&001) +
0L and 0(011&0’()1), 1(000&0’10) F 0L. So 0(0()0&010), 1T + 1—'(011&001) and
0(011&0’01), 1T - 1—'(000&0‘10). Using |:|I, 0(000&0’10) = OD—'(U“&G()l) and
0(o11&001) F 00—(ogo&o10). Using Trny, 1(opp&orp) + 10—(o11&001) and
1(011&001) F 10=(ogo&0o10); fix Dy and D3 to witness these, respectively. Let v
be (—(o11&001) vV O—=(090&010)). Consider the following deduction.

[v2:1(o00&0o10)] [v3:1(011&001)]
D, D3 [v0:00—=(000&010)],,,, [V1:00=(011&001)]
10—(011&091) 10—(0gp&010) ¥ ¥

w vo,V1,V2,V3

ovI

Dion

Since X is closed, ¥ € X. Since X is V-complete, either [1—(o(;&00p1) € X or
O—(ogo&o19) € X. Assume that [(1—(o11&0p1) € X. So O—(o11&001) € Z1; SO
—(011&001) € O1; since op1, 011 € O] € W we have a contradiction. Similarly
assuming that [J—(ogp&o10) € X. Claim 1 follows. Fix j € 2 so that I'; ¥ 0L. By
7.7 (the Avoidance Theorem for F) there are @;2 as desired.

For the blended intuitionistic logics (most prominently IT, IB, 14, I5, IB, 1S4, IS5,
1S4.3), the proofs just combine that proofs for their ingredient logics. Similarly for
the classical logics CD, CT, CKB, CK4, CKS5, CB, CS4, CS5, CS4.3. O

12.2 Completeness Theorems

For ‘X’ schematic for the above names, -y is complete (i.e. inference-complete) with
respect to X-models.

Proof Replace ‘IK’ by "X’ in the proof of 7.18 and use 12.1. O
12.3 Observations

Let X € {IGL, IGL, CGL}, and F%= {(T, x) | (T, x) is X-valid}. (1) For any
signature S, I—}} is not finitary. (2) For a class C of frames, let M be a C-model iff
M is an IK-model and FM e C. Let €= {(T", x) |for every C-model M, (T, x)
is M-valid}. If S # {} then -y is not complete (i.e. inference-complete) with respect
to C -models, i.e. Fx# FC.

Proof For (1), it suffices to consider § = {}. Let  be O(JL, and ¥ = {0"(® D
00) | n € w}. The well-cappedness of X-frames insures that no pointed X-model
that makes X true; so 02 l—}‘( 0_L. But for any finite ¥’ C ¥, it is easy to construct a
pointed X-model that makes X’ true; so 0% ¥% 0L, proving the claim.
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For (2), fix ¥ € S. Given a class C of frames, assume that (*) Fyx= FC.
Claim: every ' € C is an X-frame. Consider an F € C. For X=IGL: since
Figry 000Or > ) D On), by (%) FC€ 0@00r > 7)) D On); so F F
007 > w) D Om); by 11.14, F is an IGLg-frame. A similar argument applies
for X=IGL using 0(0nr O (7w &—Ox)). For X=CGL, conjoin (;r VvV =) to either of
the above formulas to show that F is a CGL-frame. Thus 3 C H¢.So0% € 0L. By
(*) 0T Fx 0_L. Since Fy is finitary, we may fix a finite ¥’ € ¥ so that 0Z' Fyx 0.L.
By the Soundness Theorem for X, 0%’ 3 0_L. But again, this is false. O

12.4 Theorem

Fcgr is weakly (i.e. formula-) complete (with respect to CGL-models).
The proof of the weak completeness of no-step classical GL given in [1] can be
modified to prove this.

Proof Sett =tcgr. Given x € M Fml, assume that ¥ x. If x € 0Fml, by Lin-
denbaum’s Lemma for - we may fix a ® € Wi with 0~y ¢ ®. We can “carve
out” a finite W C Wy so that ® € W, the restriction of Fi- to W, call it F, is an
CK4-frame, and the restriction of My to F, call it M, is such that M, ® ¥ 0~! x. If
X € 1Fml, by the Unbox Lemma &, ¥ € W with 1_1)( ¢ U and ®R-V. We can
“carve out” a finite W C Wi so that ®, ¥ € W, the restriction of Fi- to W, call it F,
is an CK4-frame. In both cases, classicality makes the left- and right-completeness
of W is trivial. Since W is finite, R is well-capped. The restriction of M to F, call
it M, is such that M, W £ 17! x . Details are left to the reader. O

12.5 Conjecture

For X € {IGL, IGLy}, Fx is weakly (i.e. formula-) complete (with respect to X-
models).

Note that the technique used for 12.4 cannot be straightforwardly applied to .
The sticking-point: getting a finite W for which the restriction of Fi-, to W is left-
and right-complete.

13 Looking Ahead

Assign modal depth to a rule in an obvious way — the maximum depth of modal
operators in the schematic presentation of that rule. So the first four rules introduced
in Section 9.1 have modal depth 0, while the “no step” rules considered in the first
four cases from Section 10.3 have modal depth 1. The remaining rules introduced in
Section 9.1 have modal depth 1, while the “no step” rules considered in the remaining
cases from Section 10.3 have modal depth 2. So using the step-marker 1 in addition
to 0 allows us to formulate “one step” rules that decrease by 1 the modal depth of
the “no step” rules considered above. Similarly for “no step” rules that we have not
considered.
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In this paper, we have not fully “lifted the hood” on the rules of depth greater
that 0. Doing that will involve adding another step-marker 2, which would allow us
to lower modal depth by 2. Carrying this idea to its obvious extreme will lead us to
consider languages which have a step-marker n for each n € w. We could then extend
= x for replacements for ‘X’ considered above, to such languages. Work to be done!

Appendix: More About Intuitionistic Modal Logics
For A.1 and A.2, let =y for '_IGLQ;(_ ;v and |_IGL|:],¢_ Fry.
A.1 Observation

F has the disjunction property, i.e. for any ¢p;co € Fml, if = 0(¢o V ¢1) then F O¢g
or - 0¢;.

Proof Assume the if-clause. Assume that for both i € 2 /¥ 0¢;. By Completeness
for IY we may fix an I'Y-model M; and u; so that M;,u; ¥ ¢;. Let FMi =
(Wi, R;, ;). Without loss of generality we may assume that Wy N W; = {} and
0¢ WoUWj.Let W ={0}UWyUW;, R=RyUR; U ({{0,0)}, and

E ={(0,u)lugCouoru; SoutU SoU L.

Check that F = (W, R, C) is an ['Y-frame. 4 Forve Wandr €8, let

_ Vi, ) ifve W, ie2,
V(”’”)_{o if v = 0.
Let M = (F,V). Forbothi € 2 and any u € W; and v, uRv iff uR;v, and also
u Cviffu C; v. So M, u; ¥ ¢;. By the if-clause and the soundness of - with
respect to [Y-models, M, u = (¢oV ¢1). Fix i so that M, u = ¢;. By the Persistence
Lemma M, u; = ¢;, a contradiction. The then-clause follows. O

If 12.5 is true, the previous argument applies for Y = GL¢ and Y= GL.
A.2 Observation

Consider any ¢ € Fml. (1) If ¥ 00T, then 0—-C¢ + 00—¢ iff = 0—~=Og. (2)
Assume that the replacement for ‘Y’ is constructed using ‘T¢,” and any of the above
names. Then 0—Cg = 0Q—¢ iff 0—Cgp = 0—¢. (3) Assume that the replacement for
‘Y’ is constructed using ‘D’, ‘Ty’, ‘T, ‘4¢’°, ‘4g’, ‘4’ or ‘Dio’. Then 0—U¢ F
00— iff either - 00— or - 0——=g.

Proof For (1), assume that ¥ 0QT; so I'Y-frames can have dead-ends. Right to left

is trivial. Assume the left-side. Assume that ¥ 0——=[lp, By Completeness for IY
we may fix an IY-model M and u so that M, u ¥ ——=[lg. Let FM = (W,R,C)

141f 2 0T we didn’t need to have ORO. If Y contains Diog, to show that F is an IDio-frame we use this
fact: if u; R;v fori € 2, then OR " v.
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and V = VM. So we may fix a '’ 3 u so that M, u’ | —g. Without loss of
generality assume that 0 ¢ W.Let W = {0} U W, C'=C U{(0, v) | ' C v}, and
F' = (W/, R, E/>. Forve Wandm € S, let

/ VY, ) itveWw,
V(”’”)—{o if v = 0.

Let M" = (F’, V). By an easy induction, (*) for every v € W and every ¢ €
Fml, M',v E ¢ iff M,v = ¢. If M’,0 &= Op then M’, v’ = Op, and then
by (*) M,u’ | O, a contradiction. So M’,0 ¥ Cp. Assume that 0 T’ v and
M’ v = Og; sov # 0, and so v I u'; so by (¥) M, v = Oy, a contradiction. So
M, 0 = —=0Oe. Since 0 is a dead-end in F’, M’, 0 ¥ O—¢, contrary to the left-side.
(1) follows.

For (2) going right to left, use 10.1(4). Assume the left-side. Assume that 0—Clp ¥
0—¢. By Completeness for I'Y we may fix an IY-model M and u so that M, u =
=g but M, u ¥ —¢. For W, R,C and V as above, let R = R U {(0, u)} and
let W/,£’ and V' be as above; let Let M’ = (F’, V). (*) carries over from the
previous paragraph. As above, M’, 0 = —[g. For any v, if OR'v then v = u; so
M, u ¥ O—g, contrary to the left-side. (2) follows.

For (3), assume that ‘Y’ is replaced appropriately. Right to left is trivial. Assume
the left side. By (1) we lose no generality by assuming that = 0 T. Assume that
¥ 0——=Og and ¥ 00—¢. By Completeness for IY we may fix IY-models M,
and u;cp so that Mg, ug ¥ O—¢ and My, u; ¥ ——=Op. Let FMi = (W;, R, ;)
and V; = YMi for both i € 2. Without loss of generality let Wo N Wy = {} and
0,1 ¢ Wo U Wj. As above we may fix a u} 3y u so that My, u| = —Oe; fix vy
so that u’] Rfvl and M1, v; ¥ ¢. Since - 00T, we may fix a v so that ugRov. Since
Mo, v ¥ =@, we may fix a vg Jg v so that Mg, vg = ¢. Let W = {0, 1}U Wy U Wy,

E ={(0,0),{0,1),{1, )}U EoU Ly,
R* = {{0, vo), (1, vo), (1, v1)} U Ry U Ry,
Ry = {{0, w) | voRow} U {{j, w) | v;R;w, j €2},

R = R*URU{(1,0)},5 F = (F, R,C),V = WUV}, and M = (F, V). Check that
F is an I'Y-frame.'® By easy inductions, (*) for both i € 2 for every v € W; and every
Ve Fml, M,v =y iff M;, v = ¢."7 If M, 1 = Oy then M, v; k= ¢, and by (¥)
M1, v1 = ¢, acontradiction. So M, 1 ¥ Og. If M, 0 |= Oy then by the Persistence
Lemma M, 1 &= O, a contradiction. So M, 0 ¥ Og; so M, 0 &= —Og. For any

I5We could have kept R a little smaller for certain choices of Y, as follows:

R* if Y=D or Y=Diop,
R = R*UR, if Y contains 4¢, but not Ty,
) R*U{(1,0)} if Y contains T but not 4,

R* U {(1,0)} U R, if Y contains Ty and 4.

(Above replace ‘%’ by ‘()’, ‘(]’ or make it blank.)
16We need 1 Rvy for right-completeness.

17Were we to define F so as to make it a Bo-, Bg -, 5¢-, 5O-, or Diog-frame, it isn’t clear how we could
insure (*).
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v, if ORv then v = vp.!® So since M, vy = ¢, M,0 ¥ O—¢. This contradicts the
left-side. (3) follows. ]

A.3 Observation

A formula is non-modal iff it contains no occurrences of [J or . Let ; = non-modal
intuitionistic consequence.

For any choice of Y asin §11, I-;y is conservative over ;. In other words, for any
set I' of non-modal formulas and a non-modal formula ¢, OT" F;y 0 iff T F; ¢.

Proof Consider I' and ¢ as described. Right to left is trivial. Assume that I" ¥; ¢.
By the completeness of (non-modal) intuitionist logic with respect to intuitionistic
Kripke models, we may fix an intutionistic Kripke-model M = (W,C,V) with
signature S and au € W such that M, u =T but M, u ¥ ¢.

Consider Y = B, 5, GL or Dio.'? Set Ry = {} and My = (W, Ry, C, V). My is

an I'Y-model, and Mg, u = T" but Mg, u ¥ ¢; so My, u I 0" but Mg, u ¥ 0¢. So

or J?‘]y O(p.
Consider Y = S5.29 Set R = id|W and M, = (W, R|,C, V). M, is an IS5-
model, and as above My, u IF O but M, u ¥ 0p. So OT F;y 0. O

Thus the modal apparatus in IY has not surreptitiously strengthened the “back-
ground” (i.e. non-modal) logic from intutionistic logic to classical logic or an
intermediate logic.

A.4 Observation

We can push this idea further. Consider Y = S4, GL or Dio,%! a set A of formulas
such that foreach § € A 05 ¥y 0L, and a set ® of formulas such that 00 ¥;y 0L.
For any I' and ¢ as in A.3,if O(T' U QA UO®) F;y 0p then I - ¢.

Proof Given I' and ¢ as described, assume that I" ¥; ¢. Let M, u and M; fori € 2
be as in A.3; set uM = yand M’ = M. Without loss of generality, assume that uM
is the unique initial element of (WM, EM). By our model-existence theorems, for
each 8 € A fix an IY-model M and a us € WM such that M, us = §. Also fix an
IY-model My andaur € WM such that Mr, ur | I'. Without loss of generality,
we can make sure that WM, WMr and the WM for § € A are all disjoint from one
another. Let

W = WMUJgen WM U (WM x wMr);

Ws = {v | us 2M v}

Wr = {v | uMr EMF v}.

I81f the replacement for ‘Y’ contained ‘T’ we would need to have OR0 or OR1, which would block this
point.

19Recall that -7y € Frgr if Y = K or 4; so those choices of Y are also covered by this case.

20This case covers those Y such that 11y, S1vEC Frss for % € {O, O}

21y = GL covers the Y = 4 case, since F74C ;1 ; but since )—134,@ 161 we need to list S4 separately.
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Assume that Y = T or Dio. Let
[ M
R =, ;WM x W) UL (o) x (@0} x Wr)).

Note: for each v € WM and w € Wr, vR’ (v, w). We will construct an I'Y-model
M* = (W*, R*, C* V*) by “sewing” each Msea and copies of M onto M/,
with R’ as the “seam”. For each v € WM form Mr, from Mr by replacing each
we wMr by (v, w). Let

x _ pM’ ’ Ms Mr,
RE=rRMUrR U, R Ul . R

Forv, w € W*letv C* w iff either (i) v EM w, or (ii) forsome § € A v EM5 w, or
(iii) for some x € WM and y,y' € WMr_ v = (x,y), w = {x,y")and y cMr
Claim 1: the frame (W*, R*, C*) is left-and right-complete. Given v, w, assume that
vR*w. The only interesting case: v € WM and w € Usea Ws U (WM X WMF).
If v/ O v then v'R'w 3 w; this suffices for right-completeness. If w’ 3 w then
v C vR'w’; this suffices for left-completeness.

Foreachv € W*and y € S, let

VM@, y) ifvewM,
Vi, y) = VMo, y) ifve WMsfors e A,
VMF(w,y) ifv=(x,w) forx € WM, we wMr,

Check that M* is an I'Y-model.
Assume that Y = S4 or GL. It will be convenient to have a transitive frame, which
requires “sewing a wider seam”. Let

"no_ M Ms Mr
R" = | aeA(W x W )Ul IUEWM (v} x ({v} x W7y,
x _ pM " Ms l | Mr,y
R* =R UR"U IaeAR U veWMR .

Note: for each v € WM and w € WMW, vR’ (v, w). Define C* as in the previous
case. Claim 2: (W*, R*, C*) is left-and right-complete, and also transitive. Left- and
right-completeness follow much as claim 1 did. Given x, y, z, assume that x R*y R*z.
If xRM/y then Y =S4 and x = y (since i = 1), yielding x R*z. In the other interest-
ing case, xRy and y ((Uscp RM U Jycym RM0) 23 then x R'z; so x R*z. Define
V* as in the previous case. Check that M* = (W*, R*, C°*, V*) is an IY-model.

Claim under both cases: for any formula o andu € W*: (i) ifu € WM, M* u =
o iff M u k= o; (i) ifforsd € Au € WM, M* u = o iff Ms,u = o; (iii)
if for x € WM and y € WMr oy = (x, y), these are equivalent: M*, u = o;
Mr.,u |Eo; Mr,y = o. Proof: induction on the construction of o.

Thus M*, uM = (I'U OA UOO), but M*, u™M ¥ ¢. So (I U QA UDO) ¥y
0¢. O

A.5 Observation

The observation in A.4 does not extend to Y = Bj.
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Example. Considerany w € S.LetI’' = 0 = {}, ¢ = (w v =), A = {Ugp}.
Recall that 00Ce F;p5 0¢. So for any IB-model M and u € WM if M, u =
OO then M, u |= ¢. But¥; ¢.

Question: Does the observation in A.4 extend to Y =B, ?
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