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 THE JOURNAL OF SYMBOLIC LoGic

 Volume 49, Number 4, Dec. 1984

 WELL-BEHAVED MODAL LOGICS

 HAROLD T. HODES

 ?1. Introduction. Much of the literature on the model theory of modal logics

 suffers from two weaknesses. Firstly, there is a lack of generality; theorems are
 proved piecemeal about this or that modal logic, or at best small classes of logics.

 Much of the literature, e.g. [1], [2], and [3], confines attention to structures with the
 expanding domain property (i.e., if wRu then A(w) c A(u)); the syntactic counter-
 part of this restriction is assumption of the converse Barcan scheme, a move which
 offers (in Russell's phrase) "all the advantages of theft over honest toil". Secondly, I
 think there has been a failure to hit on the best ways of extending classical model
 theoretic notions to modal contexts. This weakness makes the literature boring,

 since a large part of the interest of modal model theory resides in the way in which
 classical model theoretic notions extend, and in some cases divide, in the modal

 setting. (The relation between a-recursion theory and classical recursion theory is
 analogous to that between modal model theory and classical model theory. Much of
 the work in a-recursion theory involved finding the right definitions (e.g., of
 recursive-in) and separating concepts which collapse in the classical case (e.g. of
 finiteness and boundedness).)

 The notion of a well-behaved modal logic is introduced in ?3 to make possible
 rather general results; of course our attention will not be restricted to structures with
 the expanding domain property. Rather than prove piecemeal that familiar modal
 logics are well-behaved, in ?4 we shall consider a class of "special" modal logics,

 which obviously includes many familiar logics and which is included in the class of
 well-behaved modal logics. The notion of specialness, though at first glance ad-hoc,

 does seem to isolate one reason for the peculiar tractability of the most familiar
 modal logics. The second above-mentioned weakness will be addressed elsewhere.

 Fix the logical lexion "I", " ", "v", "V", '"D", and a countable set Var of
 variables. A modal language Y = ?(C, Pred) is determined by a set C of individual
 constants and a set Pred of predicate-constants, each of a definite finite number of
 places. (If all members of Pred are 0-place, we may drop "V", "~" and Var, and we
 have a propositional modal language.) Standard abbreviations are in force (for "]",

 "&", "K", etc.)" X", "i 4" and "E(a)" abbreviate: (I v I), (4 v I) and (]v)(v ~ 6)
 respectively, where v e Var, v $ a, a e Var u C. We shall also have reason to
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 1394 HAROLD T. HODES

 consider St, formed by enriching Y with "V", whose syntactic role is like "V". The

 sets Fml(M), Sent (Y), Fml(Y?) and Sent(^~) of formulae and sentences of Y and
 St are defined as usual. An extended formula of V is a formula of $ on the result of
 prefixing to such a formula a string of the form "(v 1)... (Vvn)"; an extended sentence
 of Y is an extended formula with no free variables, ExFml(Y) and ExSent(Y) are

 the sets of extended formulae and sentences of Y respectively. Let V4 and ]0 be the
 closures of 0 under "V" and "3" respectively. Let D *((00) = 0 *(00) = 00 and

 LI*Q . *. Ok + 1k) = (c0 :D C*Q75.* *,S Ok))A

 0 *00, *** Ok + 1 ) = (00 & to(t *00 * k))-

 When F is a set of formulae, DF = {ID4: e F } and AF = the conjunction of all
 members of F if F is finite; otherwise AF = {AFO: F0 c F, F0 finite}

 A frame is a binary structure (W, R), W a nonempty set, R C W2. Let wR'u iff
 either n = O and w = u or u > O and there arew1 w, w2, . . ., wn = u so that for all i,
 if 0 < i < n then wiRwi,1. For w E W, let (W,R)W = (W',R'), W' = {u E W:for
 some n < cl, wRnu}, R' = R P W', For our purposes, a modal logic L is a class of
 frames which is closed under order-isomorphism, and such that, if (W, R) E L and
 we W,then(W,R) eL.

 An extended frame has the form (W, R, A,A), where (W, R) is a frame, A is a
 nonempty set and A maps W into Power(A). (We could introduce a finer notion of a
 modal logic, taking one to be a class of extended frames meeting certain conditions;
 but in this paper we shall have no need for such refinements.)

 A structure for Y has the form (W,R,A,A, V), where 9 = (W,RA,A) is an
 extended frame and V is a function on C u Pred:

 V(c)eA force-C;

 V( P) c W x A' for P an n-place member of Pred.

 A model for Y has the form X = (S, w), for W as above, w E W. Frame (W) = Frame

 (X) = (W,R), I1 = 1X1 = A. (Where ? is propositional, A and A may be
 dropped.) An W-assignment (or an X-assignment) is a function from Var into 1911 =
 Ml. When a E Var u C and ar is an W-assignment, we put

 den(W, a {, a) V(U) if a e C,
 dc~a) if a E Var.

 The notion of satisfaction (of a formula of YS in a model by an assignment) is
 defined by the familiar recursion. Here are most of the clauses.

 (S. w) I [a];
 (91, w) # (a )D[a] iff den (91, a, a) = den(9, j, z);
 (91 w) I= P(U1, , aJ)[IO] iff (w, den(1, oc, j),.. ., den(9, a, an)) e V( P);
 (91 w) t (Vv) 0[oc] iff (9, w) I 4[x'] for every 4 E A(w); notice the restriction on 4

 which makes "V" actualistic;

 (9, w) I= (Vv) x[1] iff (9, w) v 4{c:] for every 4 E A; notice the lack of such a
 restriction making "V" possibilitistic;

 (S. w) = - 4 [oc] iff for every u E W, if wRu then (S. u) = k[a3].
 When 0 has free variables among vl,.. ., vn and a = (a,.. ., an) E IW1nI, by

 (91, w) # [a] we mean (91, w) I= k[ac] for any a such that a(vi) = ai.
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 WELL-BEHAVED MODAL LOGICS 1395

 When F is a set of formulae, (S, w) I= F[a] iff for all 4 E F, (1, w) [ 4)La]. Let
 W F 4 [a] iff, for all w E W, (1, w) I [a]; (1, w) I 4 iff for all W-assignments a,
 (1, w) 0 [a]; similarly for T1=+. Let (W, R) 4 iff for all structures 1, if
 (W, R) = Frame(W) then W I 4); notice the second-order aspect of this last
 definition. All these notions apply with F in place of 4 in the obvious way.

 W is an L-structure iff Frame(W))e L; similarly X is an L-model iff
 Frame(X) E L. When F u {4} is a set of formulae of St, let F L-imply 4 iff for all
 L-models X and X-assignments o:

 if M 1= F[a] then M41= [a].

 L-validity is L-implication by the empty set; L-equivalence is mutual L-implication.
 Let K be the "universal" logic, i.e., the class of all frames. By "implies", etc. we shall
 understand "K-implies", etc.

 When w E W and (W, R)w = (W', R') and W = (W, R. A, A, V), let W =
 (W', R', A, A, V'), where V' [ C = V [ C and V'(P) = V( P) n (W' x A') (here P is n-
 place). If W = 9W, W is centered at w; if X = (W, w), X is centered at w.
 Observation: (S, w) I= 4[a] iff (Ww w) I= 4[a]. In defining an extended frame we
 required only that U Range(A) c A; this is not because of a taste for the
 impossible, but rather to ensure that 9W is always a structure.

 ?2. A sequent calculus for K. A sequent in Yt is an (n + 1)-tuple (n ? 1)
 of the form (F0...., F, - 150)) hereafter written FO l... I -1 H 4, where
 F0 u u Fn u {1 } c Fml(Yt9). F0I l - 1 4) is valid iff for any structure A,
 R-chain w0, ...,5w1 and W-assignment a, if (W, wi))= r [a] for all i < n then
 (at Wn_ 1) = 4)[a]. The class of theorems is defined inductively.

 All sequents of these forms are axioms:

 F {u }H ; Fo {u F}IrH ; F ao ;
 {oa }HZ(oz); {(1z )}a I (-. a ).

 The following rules are structural: For n < m

 (Compounding) - n1Im

 (Cut) II H Ii- 1 U{4}I"Irmil

 (Thinning) -. I"I-1 H ok, where 17 c F'1 for i < n.

 Then we have the usual sorts of rules for "I", "v ", "V", and "V":
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 1396 HAROLD T. HODES

 where in the last two rules a is substitutable for v in 0;

 FoIIF-II--)&E(v) FI..._I F1
 rg I... l 1~(Vv)o 0 .. Io ~n - 1- (8Vv) '

 where in the last two rules v is not free in Fo,.... ., - l. Furthermore we need one rule
 governing ";z ":

 (Congruence) I..IFn0 v 1 F- 4 ,(v/-1c)

 Finally these novel rules:

 Sol rI.. Fj+1 U{} f r .. -1 ; rI.. Ir"-21{f IQ_ when n 2.

 A sequent is a theorem iff it is an axiom or derivable from axioms by these rules.
 Clearly all theorems are valid. Let (Fo,..., F"- 1) be inconsistent iff F0I I E "- I 1 is
 a theorem. So in particular, F is consistent iff F 1 is not a theorem. To prove
 completeness, it suffices to show that if (FO, ... , En 1) is consistent then there exist a
 structure W for So, and R-chain wO,. ,wn-1 in (W, R) = Frame(W) and an W-
 assignment a such that (9, wi) I= FJ[a] for all i < n. (For if F I .I. j- X is not a
 theorem then (FO,..., FE 1 u {f- 0}) is consistent; but by the above, Fol .. . - I F 4
 is not valid.)

 For R c W2 let R be a relational tree with root wo iff:
 (i) R is anti-symmetric (i.e., for all w, u E W if wRu then not uRw);
 (ii) R is anti-transitive (i.e., for all w, u, v E W, if wRu and uRv then not wRv);
 (iii) for any w E Fld(R) there is a unique n so that woRnw;
 (iv) for any w E W, not wRwo; and
 (v) for any w E Fld(R), if w # wo then there is a unique u so that uRw.
 When wo WE 9 is a diagram for (S, W) centered at wo iff 9 = (D, R), where R is a

 relational tree with root wo and D c W' x Sent(Yf), for W' = Fld(R) u {wo}.
 Let D(w) = {f: (w, 4) e D}; when 9' is also a diagram for Y, W centered at wo, let

 .' _ 9 iff D' c D and R' c R.
 9 is finite iff D and R are finite; when 9 is finite, let

 9*(w) A AD(w)&A {c 9*(u): wRu}.

 Since Fld(R) is finite and A { } = T, this is well-defined. 9 is consistent iff for each
 finite 90 c 9 and centered at wo, 9*(wo) is consistent. This is equivalent to: For all
 such 90 and all w E W, GO*(w) is consistent. For D' c W x Sent(Y?), let
 9 u D'= (D u D', R). In what follows YS could be replaced by Y.

 LEMMA 1. Let 9q = 9 u {(w, & )}, where 40 = 4 and 01 = -m 4, i E 2 and w E W'.
 If 9 is consistent then either 90? or _9 is consistent.

 For suppose not. Suppose g90 c 90 and 91 c 91 are finite, while G4*(wo) and
 -9'*(wo) are inconsistent. Without loss of generality, suppose that for u 0 w we have

 Do(u) = D(u), and Do(w) -{ = DoI(w) - { 4}; let wO,..., wn = w be the R
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 WELL-BEHAVED MODAL LOGICS 1397

 chain from w0 to w. Then _,, *(w0) and -9*(w0) have the forms 0 *(00,..., On & 4)
 andO *(00, On & m) ). Thus

 {f} FH D*(o, f, On 4D --I} and { F} 1 *(00o,..On )D
 are theorems. It is not hard to show then that 0c*(00,..., )F- I. So 9 is
 inconsistent.

 LEMMA 2. Let (w, (3v) 0) E D and !9' = -9 u {(w, O(v/c)), (w, E(c))} where c does not
 occur in -9. If 9 is consistent then so is !9'. Similarly for (w, (3v) 0) e D and

 = 9 u {(w,O(V/c)}.
 Suppose 9' is inconsistent. Let w0,. ..,wn = w be as above. There is a finite

 9 C -9 so that ?9 = 90 u {(w, O(v/c)), (w, E(c))} is inconsistent, _9 C 9'. With-
 out loss of generality, q' *(wo) has the form O*(40, . n, & (3v) 0 & 4)(v/c) & E(c)).
 Then the following sequents are theorems:

 { } F D *(+00,.. , (On & (3v) )) D (E(c) v 1 O(v/c))),

 { } H 1 *(0o,...,(4n&&(3V) )) v (E(v) v -4))),
 00o. On - l 10n & (3 v)0 F- E(v) D) m- X,

 00ol' On- 1 |0n & (3 v)0 F- (Vv)-- 0,

 01.. On- 1 On& (3v)o 1
 ? *(00, . . ., On & (3V)0) F1

 Thus 90 is inconsistent, and so is 9.
 LEMMA 3. Let (w, 0) e D and D' = D u {(u, O)}, R' = R u {(w, u)}, where u e W

 does not occur in D; let D' = (D', R'). If 9 is consistent then so is !9'.
 Proof of this is routine. 9 is -i-complete (for A, W) iff for each w E W' and

 ) E Sent(y) either 4 or --i 4 e D(w). 9 is 3-complete (for A, W) iff for each

 (w, (3v)o) E D there is a c E C so that 0(v/c), E(c) E D(w). 9 is 3-complete (for Y, W)
 iff for each (w, (3v) )) E D there is a c E C so that O(v/c) E D(w). 9 is OZ-complete (for
 Y, W) iff for each (w, O 4) XE D there is a u so that wRu and (u, 4) E D. 9 is complete
 iff 9 is -i-complete, 3-complete, 3-complete, and K -complete. Such a 9 determines
 a unique model for Y centered at w0. The construction is standard: for c, d E C let
 c - d iff c ~ d E D(w) for some w; - is an equivalence relation; let A = C/-; let

 A(w)= {[c]:E(c) eD(w)}, where [c] is the --class of c; V(c)= [c];
 V(P) = {(w, [cl], [cn]: P(ci, C , c-) e D(w)}, and W = (W', R, A, A, V). By a fa-
 miliar argument, for all 4 E Sent(Yv):

 (9 wo)k 4) iff 04D(wo).

 Given Yo = Y(C0, Pred) and Wo, let K = card(w u C0 u W0), select W1, C1 of
 cardinality K disjoint from W0 and C0, and let C = C0 u C1, W = W0 u W1.

 THE DIAGRAM-COMPLETION THEOREM. If -90 is a consistent diagram for (YO, WO)
 then there is a complete consistent diagram -9 for (S, W) so that -90 c -9.

 PROOF OF THE DIAGRAM-COMPLETION THEOREM. Fix a K-ordering (K is here an

 initial ordinal) of W x Sent(Y7). We construct a sequence of diagrams -9, for
 (Y, W) centered at w0. Suppose we have _9z; let W' = Fld(R:) u {w0} . Let (wi, 0,)
 be the least unused (w, 4) in our listing with w E We. Let +, be +4 if 9, u {(we, +4)} is

 consistent; otherwise : is mi 0; let -9/ = -94 u {(wi, 4),)}. Fact: !9, is consistent.
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 1398 HAROLD T. HODES

 This is easy to prove. If O' is not of the form (]v)t, (]v)t or let , let +1 = -9. If
 h is (3v)t or (3v)t, let c be the least member of C not occurring in _9'; in the first

 case let 9+ - = 9 u {(w,4, (v/c)), (w4, E(c))}, and in the second case let
 -94 + 19= u {(wi, t/(v/c))} . Fact: -9, + 1 is then consistent. Finally, if + is /, let w'
 be the least member of W not occurring in 9'. Let D1 = D u {(w',/)} and

 R +1 = Ra u {(wow')}. Fact: -9<+I is then consistent. For A a limit ordinal let
 9 = Us< ?z9 Then -K = 9 is as desired. Further details are left to the reader.

 The model existence theorem immediately follows: For F C Fml(Y?9), if F is
 consistent then for some centered model Xh for ?o and some X-assignment a,
 X1f= F[a].

 ?3. Well-behaved modal logics. When W and 3 are structures for Y let W and 3
 be almost identical (in symbols W = * 03) iff, when W = (W, R, A,, V),
 0 = (W',S,B,B, V'), W = W',A = B and for all q E Fml(Y), w E W and ac an W-
 assignment, we have

 (9,w)lq5 [a] iff (0,w)) [1a].

 (Notice that if W = * 03 then A = B and V = V'; but W = W', A = B and V = V'
 does not imply that W = * 03.) Let (S, w) = * (3, w) iff W = * 3.

 Let A' be a propositional language. For 0 E Fml(Y') and t E Fml(Y), t is an
 ?-instance of 0 if / is obtained from 0 by uniformly replacing 0-place predicates in
 4 by formulae of ?; when e c Fml(Y'), let ?(y) be the set of V-closures of ?-
 instances of members of e.

 DEFINITION. LET L be a modal logic, and ' be as above. ' guarantees L iff for any
 Y and any centered model X for ?, if X 1= ?(y) then there is an L-model X for
 ? such that XA = * X.

 ' weakly guarantees L iff for any Y and any structure W for L, if W I= O(Y) then
 there is an L-structure 03 for Y such that W - * 03.

 l makes L well-behaved (weakly well-behaved) iff ' is a set of L-validities which
 guarantees (weakly guarantees) L.

 Note. If ' is a set of L-validities, then so is ?(S). ' is Eli-closed iff for all n < co
 and 0 E ', ' implies LI'%/o.

 OBSERVATIONS. (i) If J guarantees L then ' weakly guarantees L.
 (ii) ' makes L well-behaved iff for all Y and all centered models X for Y:

 X I=- ?(S) iff X = * X for some L-model X for Y.

 To see this, suppose ' makes L well-behaved, X is a centered model for Y, X is an
 L-model for Y and X = * X; since ' is a set of L-validities, X I= ?(Y), so
 X F ?(y)

 (iii) ' makes L weakly well-behaved iff for all Y and all structures W for Y,

 W 1= ?(y) iff 9 = * Q for some L-structure Q for Y.

 The reason is as above.

 (iv) If 0P weakly guarantees L and is Eli-closed then ' guarantees L.
 Suppose X is a centered model for Y, 4 = (9, w); if 4 SI '(Y), then

 X1k=?'(Y) where '={O1q:qe'&n<co}. Thus WIk=P(Y), since X was
 centered.
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 WELL-BEHAVED MODAL LOGICS 1399

 (v) If i makes L weakly well-behaved then:

 P is rn-closed iff l makes L well-behaved.

 Suppose that 4 is not LI-closed but makes L well-behaved. Suppose ( E 4 but 4
 does not imply /0". Let (N, w) be a model for A' so that (N, w) I= 4 u {-i LI"b}.
 (W, w) may be converted into a model (9, w) for Y so that (9, w) I=

 ?(S) u {fi LI"4(f1n )}. Let (3, w) be an L-model so that (9, w) = *(3, w). Since
 (B, w) l - LI nb(f1), for some u, wRnu and (Q, u) =m - O(Y), where R is the
 accessibility relation for 03; but 0(y1) is L-valid and (13, u) is an L-model-a
 contradiction.

 OBSERVATION. When F is a set of sentences of A, F u ?(S) has a model iff F has
 an L-model.

 From right to left holds because ?(Y) is a set of L-validities. From left to right
 holds because l guarantees L.

 This observation is the reason for the notion of well-behavedness: ?(S) is an
 "instant axiomatization" of L, given the underlying formalization of K; fur-
 thermore, we have a reduction of model-existence questions from L to K; so, for
 example, this "instant axiomatization" is complete (given the completeness of our
 underlying formalization of K). (The argument is easy: if ?(S) u F / ( then
 ?(S) u F u {-i 1} has a model, so F U {-i 1} has an L-model; so F does not L-
 imply 0.) Let L be well-behaved iff for some 0, P makes L well-behaved. For most
 purposes, study of the model theory of L reduces to study of the model theory of K.
 Consider this property of a model logic L: for any frame (W, R) there is a frame
 (W,R')eL,whereR c R' c W2.

 If L lacks this property, L is not well-behaved. So, for example, G(= the class of
 transitive well-capped (i.e., converse well-founded) frames) is not well-behaved. Let
 (W, R) E L iff for any w, u E W if wRu then there are w1, w2 E W so that

 wRw1, w1 Rw2 and w2Ru. Let 00 be: K P vD 03P. Claim: {fo} defines L. Clearly if
 (W, R) E L, (W, R) = 00 . Suppose (W, R) I= (0 and w, u E W, wRu; let V(P) = {u}
 and 9J=(W,R,V); then (9,w)I=1 00 & OP; so (9,w)I= 03P; so for some
 w1, w2, w3 E W. wRw1, w1Rw2, w2Rw3, and(S.w3)k= P;SO W3 = U.Clearly for any
 (W, R) there is an R' so that R c R' c W2 and (W, R) E L. Nonetheless Lis not well-
 behaved.

 To see this, let W= o, R = {(ii + 1):ie co}, V(P) = {2i:ieco} and
 W = (W, R, V). Then for all i E Wand all sentences ( of Y',

 (W,i)10q iff (91,i+2)I2 .

 This follows by induction on the construction of 4. Thus 91 I {/0}(2'); when 4 is
 the set of all L-validities, 00 implies each / e EP; so U 1= P(9'). Suppose
 R ' R'' W and (W, R') E L. Since (0, 1) E R, either (0, 0) E R' or (1, 1) E R'. But
 (9,0): P&LiiPand(W, 1) = P -P& LIP; sofor ' = (W,R', V), 9 : * '.

 ?4. Special logics. We now turn to the question: which familiar modal logics are
 well-behaved? Rather than answer this question piecemeal, we shall introduce a
 class of special logics and show them all to be well-behaved. Familiar logics like T,
 K4, B, S4 and S5 are readily seen to be special.

 Let A' be the propositional modal language based on the sole 0-place predicate

This content downloaded from 
������������132.174.252.179 on Tue, 08 Feb 2022 02:03:30 UTC������������ 

All use subject to https://about.jstor.org/terms



 1400 HAROLD T. HODES

 "P"; for / E Fml(Y"), 4 is pre-special iff / is built up from "P" and " T" using "&"

 and "KO". 0 is a special formula of Y' iff 0 is of the form

 21*k, , 1 _0 : ?P)5

 where GOD..., Ok are pre-special and "P" occurs exactly once in only one Xi for i < k.
 Notice that the characteristic axioms for T, K4, B, S4 and S5 in any Y are all
 instances of the following special formulae:

 Pa 0P; >2P D OP;

 P v ( TL-(T P) (equivalent to P Lv K P);
 o P v LO(T v K P) (equivalent to K P v L O P).

 A set of formulae l of A' defines a modal logic L iff for all frames (W, R), (W, R) E L
 iff (W, R) O= 4. L is special iff some set l of special formulae defines L.

 We consider another representation of special formulae. Let X be the quantifi-
 cational (nonmodal) language based on the 2-place predicate-constant "R" (without
 identity). Let "1= *" represent satisfaction for formulae of S'. We define a
 "translation" between special formulae of A' and formulae of X, which we shall
 also call special. Let T be a finite tree on co (i.e., T c o < ', T closed under initial

 segments). For each t E Tintroduce a distinct variable v,. For any r, s E T we define a
 formula /(T,r,s) of K. When te T and It >0, let t- be <to,...,t >, where
 t = <to,..., ti+ 1 > (here i = Itl -2). For 0 < i < Irl let:

 Oi = A{R(v,-, v,): t t i : r t i};

 0 = A{R(vrrivr[(i+l)):i < IrI};
 q(T, r, s) = ((6iri & 0) D R(vr, vy));

 *(T, r, s) = the universal closure of *(T, r, s).

 A special formula of K is one of the form *(T, r, s). We shall now transform a special
 *(T, r, s) = / into f(/), a special formula of Y'.

 For t : s, let:

 ,,=A{0t ~t' c-T, tf = t} if to 9-
 -A )/{ t: t' E T,t' = t,t'(ItI) $ r(ftj)} if t ' r-.

 Let:

 _ JP&A{Ot: t'e T,t' =t} if s 9 r-;
 {P&A{KOt:t' E T,t' = tt'(ItI) A r(ltI)} ifs c r-.

 Then kr, Or (Irl-n), i d r i' Ort is a sequence of pre-special formulae; furthermore,
 "P" occurs exactly once in at most one element of this sequence. For suppose so is
 maximal such that so c r and so c s; for t so that so c t-, t c r, "P" does not occur
 in /t; "P" occurs once in /O.; for t' c so and t = t'- (where IsoI < 0), "P" does not
 occur in (ts because t'(ItI) = r(ItI). Let

 (or [i = r_ *((Ort Oir - * Or r :D P);

 let f(o) = (>. Thus f(o) is a special formula of Y'. Conversely, given a special
 formula - of Y' it is easy to construct T, r and s so that f(/(T, r, s)) = k; this
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 WELL-BEHAVED MODAL LOGICS 1401

 construction is left to the reader.'

 LEMMA 1. For any special formula / of X' and any frame (W, R), (W, R) # * iff
 (W, R) # f(0).

 PROOF. Assume (W, R) # * , where / = /(T, r, s). Fix W = (W, R, V) for ',
 wo e W. Claim: (VI, wo) # f(/). If (W, wo) V kr[O, we are done; so assume
 (9, wo) t 0,r 0. Then there is a flo mapping {v< >} U {vt: t [1 = r [ 1} into W so that
 (W, R)t 01 [3o], flo(v< >) = wo, and if s = < > or s [ 1 = r [ 1 then /3o(vs) e V(P).
 If Irl = 0, 0 is T; so (W,R) # *(00&0)[f1o]; furthermore s = < > or s r1 I
 < > = r [1; so /30(vs) is defined; so (W,R) # *R(v<>,vs)[3o], i.e., woR30(vs);
 so(9,wo) # O P;in this case f(/i) is r- D P,(,wo) f(/). Suppose that In ? 1.
 Consider a w, so that woRwl. If (V, wl) t 1tr1 (W, wl) t qt"1. So then /3o extends to
 a fl, mapping {v<>} u {v,:t [2 0 r [2} into W, where (W,R)I=*02/,B],
 /,3(vr1) = w1, and if s = < > or s 2 :A r 2 then /, (vs) e V(P). If IrI = 1, as before we
 have (91,w 1)k OP; and thus (9I,w1)= Or[1. Since in this case f(/) is
 D, [0 = -1(tr, D P), and w was arbitrary, (9, wo) # f/(0). Suppose that In ? 2.
 Proceeding inductively we show that, for any R-chain wo,... , w1,1 such that
 (W, wi)) lr[i for i < Irl, we have (1,wlir)# OP; so (,Twi) t (rri; in particular,
 (V, wo) f(0).

 Now suppose that (W, R) # f(t/i). Suppose /B maps {v,: t e T} into W and
 (W, R) t * (0rj & 0)[/3]. Claim: (W, R) t * R(Vr, vs}[/T]. Let V(P) = {/(vs)}, W =
 (W, R, V), wi = /3(Vr[i) for i < Irl; soW0, .. ., Wjrj is an R-chain. For i < Irl, Oir implies
 Oi;so by construction of 0rti' (T wi) t (rti Since (? wo) # tf(t), (W, wj) t 0rri; thus
 (W, Wirj) t O P; by choice of V(P), WlriR/3(vs), as claimed. Q.E.D.

 In what follows, P is a set of special formulae of Y' defining L.
 LEMMA 2. For any frame (W, R) there is an R, R c R* C W2, so that (W, R*) e L.
 PROOF. Suppose f (0) e P, / = O/(T, r, s). Given (W, R), let

 Rq, = {(/3(Vr), /3(vs)): (W, R) t * (01rl & 0)[f3] }.

 Let R = R u U{R: f(0) e P}; let Ro = R and Rn+1 = Rn for n < , and let
 R* = U {Rn: n < } . Considering the form of t/(T, r, s) we have (W, R*) t * /. So
 (W,R*) # P, using Lemma 1. Q.E.D.

 For W = (W, R, A, A, V), let 9I, 9n and 9* be the result of replacing "R" by R. Rn
 and R* respectively.

 LEMMA 3. Let 9f be a structure for ', 9 # P. If wRu and u e V(P) then

 PROOF. If wRu this is trivial. Otherwise for some / with f/(0) e P, wRpu. Let
 o = /(T, r, s); for some /3 mapping {vt: t e T} into W, (W, R) # * (01rl & 0)[/3] and
 /3(Vr) = w, 3(vs) = u. Let wi = j3(vr[i) for i < Irl; so Wo,. ..,Wrj = w is an R-chain.
 Trivially (W, B) * Oi[J] for 1 < Irl; so by the construction of Orpi, and since
 /3(vs) e V(P), we have (VI, wi) # /r i. But (VI, wo) # f(/); so (VI, wj) t grri. Thus by
 induction (1, Wirj) t O P, as claimed. Q.E.D.

 ' Added in proof. A few examples may help the reader understand the relation of V to f (V); on the left
 we have a choice of T, r, s, and on the right f (f(T, r, s)):

 {< >=r=s} PD OP

 {> = r, <O>, <,o> = s} 22PD oP
 {> = s, <O> = r} P, :D P
 {>, <O> = s, <1> = r} OP, _ 0P
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 LEMMA 4. Let 91 be a structure for any modal language Y where 9 (1 P(S). Let 0
 be any formula of Y, a any 9-assignment. If wRu and (9, u) # + [a] then

 (W, w) 0 0[a].
 PROOF. Let V(P) = {v:(I, v) F PIRjx]}; then Q = (WR, V) is a structure for A'

 (where (W, R) = Frame(W)). Furthermore 93 1= 1, since 9 1= O(P/l). Because
 u e V(P), by Lemma 3 (93, w) = <> P. Suppose (3, v) = P and wRv; then
 (9, v) I= 50[a]; so (9, w) 1 K> 0 [], as claimed. Q.E.D.

 LEMMA 5. Let 91 be a structure for Y. If 91 F ?(y) then 1 (y).
 PROOF. Let 0 be a formula of Y, c E 1, and a an %-assignment. Suppose

 f(i/(T, r, s)) = 4. We shall show that 91 I 4(P/O)[x]. Suppose that w = wo,. . ., Wk is

 an R-chain and (S, wj) I= 4rli(p/o)[a] for all i < k; thus we associate with each t E T
 a w, E W such that for t E T, Iti > 0, we have wt- Rwt, where wi = Wrri, and such that
 (91, wt) I= /t(P/0)L[a], for all t E T. This relies on the construction of dt and 4rri. But

 by Lemma 4, (9, wt) F Ot(P/0)D[a] for all t E T. It suffices to show that
 (91 Wr) I= O [ac]. If not, (91 Wr) V <> 0[a], since R c R. Thus (91 Wr) k _r(plo)[a],
 since 4r = (O/r D <>P). But by Lemma 4, (9,wr-) S ?r(P/Q)[a] Iterating this
 argument, we get

 (S. wo) 0 0< I (P/ 0) [a];

 since O<> = 4, this is a contradiction. Q.E.D.
 COROLLARY. For all n < co, if 91 F ?(S) then 9 I= ?(S),
 THEOREM. If L is special then L is well-behaved.

 PROOF. Let P define L; P' = { C:n": d E P} is a set of L-validities. Claim: P' makes
 L well-behaved. Let Y be a modal language and 9 a structure for Y centered at
 w e W; let (S, w) P ?'(S).

 Since % is centered at w, % 1= ?(S). For 0 E Fml(Y), u E W, n E cl and o an %-
 assignment, we have

 (%, u) k= 4[c] iff (%n, u) = [{c] iff ( *,u k) =[4c].

 Proof of this will suffice to show that % * - *9A. We induce on the construction of 4.

 The only nontrivial case is where 0 = D A. It suffices to show that if (S, u) I= 0 [o]
 then ( n', U) = f [o] for all n. (If for all n, ( n', u) = 0 [ox], then by the construction of
 R *, (a *, u) [ 4{,x].) Suppose (0, u) I= I [o]. We argue by induction on n. For n = 0
 there is nothing to prove. Suppose that (% n+ 1, u) V 41[9]. Then for some u E W,
 uRn + 1 v and (% n+ 1, v) V f [or]. By the induction hypothesis for A, ( n', v) V f [or]. By
 the corollary to Lemma 5, 9n (= O(Y). So by Lemma 4, (%n, U) V 1 [oa]. This proves
 the last claim. Q.E.D.
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