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Why Ramify?

Harold T. Hodes

Abstract This paper considers two reasons that might support Russell’s (and
Whitehead’s) choice of a ramified-type theory over a simple-type theory. The
first reason is the existence of purported paradoxes that can be formulated in any
simple-type language, including an argument that Russell considered in 1903.
These arguments depend on certain converse-compositional principles. When
we take account of Russell’s doctrine that a propositional function is not a con-
stituent of its values, these principles turn out to be too implausible to make these
arguments troubling. The second reason is conditional on a substitutional inter-
pretation of quantification over types other than that of individuals. This reason
stands up to investigation: a simple-type language will not sustain such an inter-
pretation, but a ramified-type language will. And there is evidence that Russell
was tacitly inclined towards such an interpretation. A strong construal of that
interpretation opens a way to make sense of Russell’s simultaneous repudiation
of propositions and his willingness to quantify over them. But that way runs into
trouble with Russell’s commitment to the finitude of human understanding.

The Whitehead–Russell project in logic and the foundations of mathematics is
something of a historical anomaly. Usually, scientists and mathematicians try out
simple ideas before complex ideas, moving on to consider complex ideas only after
simpler ideas turn out to be inadequate. But when Whitehead and Russell developed
their (philosophical) theory of types, and their logical system that articulated that
theory, roughly from 1907 to 1910, they went straight to ramified types. The earliest
published consideration of simple types was in work by Leon Chwistek and Frank
Ramsey in the 1920s.1

In this paper, I will consider simple-type assignment systems and ask whether,
given Russell’s background views, he would have had any good reasons to be un-
happy with simple-type theory as captured by such systems. I will consider two
possible such reasons.
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Discussions of reasons for ramification have focused on the avoidance of semantic
paradoxes.2 For example, Quine wrote: “[Russell] thought that these distinctions [of
order] were helpful against a class of paradoxes. . . : the paradoxes known nowadays
as semantic” (see Quine [39, p. 254]).3 This understanding of Russell’s motives goes
back to Frank Ramsey, who first distinguished between the mathematical and seman-
tic paradoxes in [40, p. 20]. He characterized semantic paradoxes, those constituting
his group B, as those “containing some reference to thought, language or symbolism,
which are not formal but empirical terms”—presumably terms like “true,” “denotes,”
and so forth.

Russell clearly thought that ramified types helped avoid the liar and Richard’s
paradoxes, which are uncontroversially semantic, both in the current sense (of in-
volving “semantic ascent”) and in Ramsey’s sense: the liar involved reference to a
speaker and the making of a statement; Richard’s involved reference to syllables and
naming. I will not dispute what seems to be the current consensus: that semantic
paradoxes originate from semantic ascent, rather than from a lack of ramification of
whatever types organize the logical syntax of our language. Since those paradoxes do
not afflict simple-type logic as such (i.e., without machinery to express any semantic
concepts), their avoidance is not a good reason for ramification.

But Russell also found paradoxical an argument naturally formulated in any
simple-type language, one that is not, at least on its face, semantic. And one might
think that, given certain Russellian commitments about the structure and constitution
of propositions, it contaminates simple-type logic. Below, I will discuss this pur-
ported paradox and two simplifications of it. In the end, I will argue that they are not
paradoxical: they rely on converse-compositional principles that, on examination,
are implausible in their own terms. So these arguments do not give us a good reason
for ramification.

I will go on to discuss a reason to ramify that has nothing to do with paradoxes:
the substitutional interpretation of quantification over types other than that of indi-
viduals. If one favors such an interpretation, one has a good reason for ramification.
I will consider a way of using a strong form of that interpretation to make sense of
Russell’s puzzling post-1908 doctrine that propositions are “incomplete symbols.”
Unfortunately, it seems that Russell could not have endorsed this connection, since it
would require the comprehensibility of infinitary propositions.

My purpose here is not to defend or criticize any philosophical view but rather to
better understand Russell’s philosophy and his century-old project in the foundations
of logic and mathematics.

1 Simple Types and Terms

What follows will make use of standard mathematical machinery. For n 2 !, let
.n/ D ¹1; : : : ; nº.

I will inductively define the simple types (sometimes to be called “s-types” or, if
confusion is unlikely, just “types”). Each type will be assigned a place number.

Think of s-types as linguistic expressions and thus as able to occur in terms.4

Definition i is an s-type (for individuals); hi is an s-type (for propositions). We
have place.i/ D place.hi/ D 0. For n 2 ! � ¹0º, if t1; : : : ; tn are s-types, then
ht1; : : : ; tni is an s-type (for n-place propositional functions taking arguments of s-
type ti at the i th place), and place.ht1; : : : ; tni/ D n. Let T s be the set of s-types.
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On one standard approach to variables in typed languages, going back to Alonzo
Church, each variable comes associated with a unique type.5 Another approach, go-
ing back to Haskell Curry, uses “in situ” typing for bound occurrences of variables,
and “external” typing by type contexts for free occurrences of variables.6 I will take
the latter approach (which takes a step toward incorporating Russell and Whitehead’s
preference for “ambiguity” of type.7) I will be careless about the use-mention distinc-
tion and will use Greek letters as variables added to English to range over terms in
the object-language, sometimes mixing upper with lower case to increase readability.

Definitions A type assignment for an expression  is an expression of the form
 W t for t 2 T . Think of the type assignment  W t as the ordered pair h; ti; so the
domain and range of a set of them can be understood in the usual way.

Fix an infinite set Var of variables. Slightly modifying the notion of a type context in
Hindley [19, p. 14], let C be a simple-type (until further notice I will omit “simple”)
context if and only if C is a single-valued set of type assignments for variables; that
is, dom.C / � Var and for any � W t; � W t 0 2 C then t D t 0, such that Var � dom.C /
is infinite.8 Let

C; �1 W t1; : : : ; �n W tn D C [ ¹�1 W t1; : : : ; �n W tnº;

provided that it is a context and �1 W t1; : : : ; �n W tn … C . In specifications of type
contexts, I will sometimes omit the curly brackets of set formation.

To model the roles played by interpreted (i.e., meaning-bearing) expressions, con-
sider a fresh set of expressions to serve as nonlogical constants.

Definitions S is a simply typed vocabulary set or signature (where confusion is
unlikely I will omit “simply typed”) if and only if it is a single-valued set of type
assignments for nonlogical constants. If  W i 2 S , then  is an individual constant
in S ; if  W t 2 S for t ¤ i, then place.t/ > 0 and  is a place.t/-place predicate
constant in S .

In effect, Whitehead and Russell [55] and Russell [41] take as terms to constitute
their broadest syntactic category; formulas are special terms. I will do the same
(though this is inessential; see Hodes [20]).

Definitions Given a vocabulary set S , what follows is the simultaneous inductive
definition of the s-type assignment system )s

S
and the free-variable assignment FV

for that system. (Where confusion is unlikely, I will omit mention of S and the
superscript for “simple.”)

(1) If � W t 2 C , then C ) � W t and FV.�/ D ¹�º.
(2) If � W t 2 S , then C ) � W t and FV.�/ D ¹º.
(3) If C ) � W ht1; : : : ; tni with n > 0 and C ) �i W ti for each i 2 .n/, then

C ) �.�1; : : : ; �n/ W hi and

FV
�
�.�1; : : : ; �n/

�
D FV.�/ [

[
i2.n/

FV.�i /:

(4.1) We have C ) ? W hi and FV.?/ D ¹º.
(4.2) If C ) �i W hi for i D 0; 1, then C ) .�0 � �1/ W hi, and

FV
�
.�0 � �1/

�
D FV.�0/ [ FV.�1/:

Define &, _, and $ as usual, and let :� abbreviate (� � ?).9



382 Harold T. Hodes

(5) If C; � W t ) � W hi, then C ) 9� W t .� W hi, and

FV.9� W t:�/ D FV.�/ � ¹�º:

Define 8 as usual.10

(6) If n > 0, C; �1 W t1; : : : ; �n W tn ) � W hi for distinct �1; : : : ; �n 2 FV.�/,
then C ) .��1 W t1; : : : ; �n W tn:�/ W ht1; : : : ; tni and

FV
�
.��1 W t1; : : : �n W tn:�/

�
D FV.�/ � ¹�i2.n/º:

When ¹�1 W t1; : : : ; �n W tn:�º occurs to the left of ), I will omit the curly brack-
ets; in particular, ) � W t iff ¹º ) � W t .

The relation ) determines its corresponding simply typed language thus:

Ls.S/ D
®
hC; �i W for some t; C )S � W t

¯
:

Definitions � is a term of Ls relative to C iff hC; �i 2 Ls; � is a formula of Ls

relative to C iff C )S � W hi; � is a term [formula] of Ls iff it is a term [formula] in
Ls relative to some type context C . A term is closed if and only if it is a term in Ls

relative to ¹º. A sentence is a closed formula.

Following the convention used in Barendregt [2], we will treat terms as identical if
and only if they are “alphabet variants” (i.e., “identical modulo relettering of bound
variables”), following [2] and [19],11 I will follow contemporary practice and use �

to express identity of terms.
Here are some easy observations.
As usual for formation rules, all of these conditionals reverse.
If � is not a variable and is a term relative to both C0 and C1, then it is a formula

relative to C0 iff it is one relative to C1.
If C ) � W t and C ) � W t 0, then t D t 0.
If C ) �.�1; : : : ; �n/ W t or C ) .�0 � �1/ W t or C ) 9� W t 0:� W t , then

t D hi. Similarly for any other logical constants we may take as primitive. Also, if
C ) .��1 W t1; : : : ; �n W tn:�/ W t , then t D ht1; : : : ; tni and n > 0.

Definition For each t 2 T :

.�0 D
t �1/ �def 8� W hti

�
�.�0/ $ �.�1/

�
;

for � a variable not in FV.�0/ [ FV.�1/.

Definition For distinct variables �1; : : : ; �n,

�Œ�1; : : : ; �n WD �1; : : : ; �n�

is the result of simultaneously substituting each �i for the occurrences of �i free in �
for i 2 .n/, with the understanding that bound variables in � are “relettered” so as to
prevent free occurrences of variables in �i from being “captured” by the substitution.
The definition is by the usual sort of induction on the construction of �.

Definition A �I -term is one of the form .��1 W t1; : : : ; �n W tn:�/.12 Following
[2] and [19], I here reminds us that ¹�i2.n/º � FV.�/ and n > 0.13 Note that these
�I -terms differ from the so-called terms in the standard texts on �-calculi in being
“multivariate” (allowing binding of more than one variable; for more on multivariate
terms, see Pottinger [36]).

The following appropriates standard concepts and results from �-calculi.
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Definitions A term of the form �.�1; : : : ; �n/ is a predication. It is an atomic
predication if and only if � is either a variable or a predicate-constant; otherwise,
it is a ˇ-redex. Let a ˇ-redex .��1 W t1; : : : ; �n W tn:�/.�1; : : : ; �n/ ˇ-convert to
�Œ�1; : : : ; �n WD �1; : : : ; �n�. We will call the latter the ˇ-convert of the given
ˇ-redex. Note that if a ˇ-redex is a term relative to C , both it and its ˇ-convert
are formulas relative to C , and they have the same free variables.
� 1-step ˇ-reduces to � 0 (in symbols � !ˇ �

0) iff � 0 results from replacing exactly
one occurrence of a ˇ-redex in � by its ˇ-convert.14

An �-redex is a term of the form�
�v1 W t1; : : : ; vn W tn:�.v1; : : : ; vn/

�
with distinct v1; : : : ; vn 2 Var �FV.�/ and n > 0. Such an �-redex �-converts to � .

A term � 1-step �-reduces to � 0 (in symbols, � !� �
0) iff � 0 results from replacing

a single occurrence of an �-redex in � by its �-convert.15

A term � 1-step ˇ�-reduces to � 0 (in symbols, � !ˇ� �
0) iff either � !ˇ � 0 or

� !� �
0.

� ˇ�-reduces to � 0 (hereafter � �ˇ� �
0) iff there is a finite !ˇ�-chain from �

to � 0.
� is ˇ�-normal iff � contains no ˇ- or �-redex, that is, � does not 1-step ˇ�-reduce

to anything. Let � 0 be a ˇ�-normalization of � iff � �ˇ� �
0 and � 0 is ˇ�-normal.

Observation We have that �ˇ� , and thus ˇ�-reduction, preserve termhood,
type, and free variables relative to a type context.16

Definition � is strongly ˇ�-normalizable (hereafter SN) iff every !ˇ�-chain is
finite.

Strong normalization theorem Every term is SN. Tait’s well-known proof suf-
fices.17

Church–Rosser theorem Every term has a unique ˇ�-normalization.18

Though we will not here consider any proof-theoretic system, the reader should be
aware of this: since termhood, and thus formulahood, is relative to type context that
types free variables, being a deduction in any reasonable proof-theoretic system of a
Curry-style language is also relative to such a type context.19 Note also that if � is a
formula and � �ˇ� �

0, we want whatever notion of deduction we adopt to allow us
to infer � 0 from � , and to infer � from � 0.

According to the type theory that motivates systems of the form )s , propositions
are not individuals. So such systems cannot distinguish a 1-place predication whose
argument is a proposition from the result of applying a 1-place operator to a propo-
sition; in effect, a predicate of type hhii is a 1-place operator. A truth predicate T
would be a merely redundant operator: for T W hhii 2 S , the T -principle would be
this axiom: 8� W hi.T .�/ $ �/.

Because it admits quantification into formula position, some sentences of Ls are
not close regimentations of any English sentences. For example, 9� W hi:� is a sen-
tence. English does not allow quantification into formula positions. If one had to try
to express the proposition that it purports to signify in English, “some proposition
is true” would be as close as one could get, though the latter would be more closely
regimented by 9� W hi:T .�/, which is trivially equivalent to 9� W hi:�.20 Although we
start out understanding formal languages in terms of translation between them and a
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natural language, in some cases we can eventually become able to understand formal
languages in their own terms. Does this hold for 9� W hi:�? The answer is hardly
obvious. I will return to this in Section 5.

2 Three Paradoxes, Perhaps

On the next to the last page of [44], Russell presents an argument that he takes to be
paradoxical, one that appears to have played a significant role in motivating ramifi-
cation.21 Here is Russell’s presentation.

If m be a class of propositions, the proposition “every m is true” may or may not be
itself an m. But there is a one–one relation of this proposition to m: if n be different from
m, “every n is true” is not the same proposition as “every m is true.” Consider now the
whole class of propositions of the form “every m is true,” and having the property of not
being members of their respective m’s. Let this class be w, and let p be the proposition
“every w is true.” If p is a w, it must possess the defining property of w; but this property
demands that p should not be a w. On the other hand, if p is not a w, then p does possess
the defining property of w, and therefore is a w. Thus a contradiction appears unavoidable
([44, (p. 527)]).

Contrary to its initial appearance, this argument makes no essential use of classes
or of truth.22 Regarding the former: his treatment ofm and n as if they were common
nouns deserves comment. Surely by “every m” he meant “every member of m,” and
so forth. But his predicational uses ofm and n suggest that clarity would be served by
replacing reference to classes with reference to the propositional functions that define
these classes. Below, I will construe m and n to signify propositional functions of
type hhii rather than classes of propositions. Regarding the latter, in Ls truth can
only be represented by a redundancy operator, so we can eliminate reference to truth
by translating “every m is true” as 8v W hi.m.v/ � v/.23

As Russell presented it, this argument relies on the following statement: “if n
be different from m, ‘every n is true’ is not the same proposition as ‘every m is
true.”’ Avoiding the unnecessary contraposition in Russell’s formulation, the men-
tioned statement amounts to this: Russell’s dictum (hereafter RD),�

8v W hi
�
n.v/ � v

�
D

hi
8v W hi

�
m.v/ � v

��
� .n D

hhii m/:

RD is stronger than necessary. It implies the following, which will suffice for what
follows (hereafter RD)24:�

8v W hi
�
n.v/ � v

�
D

hi
8v W hi

�
m.v/ � v

��
� 8v W hi

�
n.�/ $ m.�/

�
:

What follows reformulates this argument in the notation of Section 1.25 Let GR

be the following:�
�� W hi:9� W

˝
hi

˛��
� D

hi
8v W hi

�
�.v/ � v

��
& :�.�/

��
I

so ) GR W hhii.26 Note that the class of propositions ¹� W GR.�/º corresponds to w
as used in the passage quoted above; also, Russell’s p would be expressed by
GR.8v W hi.GR.v/ � v//. Russell’s argument can be reconstructed as follows.

Assume GR.8v W hi.GR.v/ � v//. By ˇ-conversion,

9� W
˝
hi

˛��
8v W hi

�
GR.v/ � v

�
D

hi
8v W hi

�
�.v/ � v

��
& :�

�
8v W hi

�
GR.v/ � v

���
:
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Fix a witnessing � W hhii so that�
8v W hi

�
GR.v/ � v

�
D

hi
8v W hi

�
�.v/ � v

��
& :�

�
8v W hi

�
GR.v/ � v

��
: (�)

Using weak RD, the left-conjunct in (�) yields 8� W hi.GR.�/ $ �.�//. In particu-
lar,

GR

�
8v W hi

�
GR.v/ � v

��
$ �

�
8v W hi

�
GR.v/ � v

��
:

By the right conjunct in (�), :GR.8v W hi.GR.v/ � v//, contrary to our initial
assumption. Thus :GR.8v W hi.GR.v/ � v//. Thus�

8v W hi
�
GR.v/ � v

�
D

hi
8v W hi

�
GR.v/ � v

��
& :GR

�
8v W hi

�
GR.v/ � v

��
:

By existential introduction,

9� W
˝
hi

˛��
8v W hi

�
GR.v/ � v

�
D

hi
8v W hi

�
�.v/ � v

��
& :�

�
8v W hi

�
GR.v/ � v

���
:

By reverse ˇ-conversion, GR.8v W hi.GR.v/ � v//, a contradiction. Call this ar-
gument Russell’s purported propositional paradox. Note that this presentation shows
that the mention of truth found in Russell’s presentation was unnecessary.27

In fact, we can go further: the use of formulas of the form 8v W hi.�.v/ � v/

can be eliminated from the above argument to give us what I will call the purported
paradox of propositional quantification.

Let Q be 9 or 8 or any other quantifier constant one might add to )’s lexicon.
Letting … and „ represent propositional functions of type hhii, consider the follow-
ing (the propositional quantification schema, hereafter PQ):��

Qv W hi:….v/ D
hi Qv W hi:„.v/

�
� .… D

hhii „/
�
:

PQ implies the following (weak PQ):��
Qv W hi:….v/ D

hi Qv W hi:„.v/
�

� 8� W hi
�
….�/ $ „.�/

��
:

Let GQ be �
�� W hi:9� W

˝
hi

˛��
� D

hi Qv W hi:�.v/
�

& :�.�/
��

I

so ) GQ W hhii.
Assume GQ.Qv W hi:GQ.v//. Thus

9� W
˝
hi

˛��
Qv W hi:GQ.v/ D

hi Qv W hi:�.v/
�

& :�
�
Qv W hi:GQ.v/

��
:

Fix a witnessing � W hhii so that�
Qv W hi:GQ.v/ D

hi Qv W hi:�.v/
�

& :�
�
Qv W hi:GQ.v/

�
: (��)

Using weak PQ, the left conjunct in (��) yields 8� W hi.GQ.�/ $ �.�//. In partic-
ular,

GQ

�
Q� W hi:GQ.�/

�
$ �

�
Q� W hi:GQ.�/

�
:

By the right conjunct in (��), :GQ.Q� W hi:GQ.�//, contrary to our initial assump-
tion. Thus :GQ.Q� W hi:GQ.�//. Thus�

Q� W hi:GQ.�/ D
hi Q� W hi:GQ.�/

�
& :GQ

�
Q� W hi:GQ.�/

�
:
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By existential introduction,

9� W
˝
hi

˛��
Qv W hi:GQ.v/ D

hi Qv W hi:�.v/
�

& :�
�
Qv W hi:GQ.v/

��
:

Thus GQ.Qv W hi:GQ.v//, a contradiction.
As Frege first observed, quantification is a higher-level analogue of predication.

So we should expect there to be a predicational analogue of the above argument, a
purported paradox of propositional predication.

For … and „ as above and any formula ' with � 2 Var � FV.'/, consider the
following (the propositional predication schema, hereafter PP):�

….'/ D
hi „.'/

�
� .… D

hhii „/:

PP implies the following (weak PP):�
….'/ D

hi „.'/
�

� 8� W hi
�
….�/ $ „.�/

�
:

Let G' be �
�� W hi

��
� D

hi �.'/
�

& :�.�/
��
:

So ) G' W hhii.
Assume G'.G'.'//. Thus

9� W
˝
hi

˛��
G'.'/ D

hi �.'/
�

& :�
�
G'.'/

��
:

Fix a witnessing � W hhii so that�
G'.'/ D

hi �.'/
�

& :�
�
G'.'/

�
: (� � �)

Using weak PP, the left conjunct yields;8� W hi.G'.�/ $ �.�//. In particular,
G'.G'.'// $ �.G'.'//. By the right conjunct, :G'.G'.'//, contrary to our
initial assumption. Thus :G'.G'.'//. Thus�

G'.'/ D
hi G'.'/

�
& :G'

�
G'.'/

�
:

By existential introduction,

9� W
˝
hi

˛��
G'.'/ D

hi �.'/
�

& :�
�
G'.'/

��
;

that is, G'.G'.'//. This is a contradiction.
The purported paradoxes of propositional predication and quantification make no

mention of truth or of any other “terms” that would be, in Ramsey’s words, “empiri-
cal” rather than “formal.”28 The same goes for our formulation of Russell’s purported
paradox. If these arguments are paradoxes, there is no reason for classifying them as
semantic paradoxes. If avoiding them counts as a good reason for ramification, that
reason should not be considered a semantic reason.

Russell’s purported propositional paradox is only as paradoxical as weak RD is
plausible. Similarly, the purported paradoxes of propositional quantification and
predication are only as paradoxical as weak PQ and weak PP are, respectively, plau-
sible.

Before addressing these plausibility questions, some consideration of semantic
matters is appropriate.
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3 Metaphysics and Signification

Most contemporary work in semantic theory employs terminology that distinguishes
between the semantic role of occurrences of a formula in “formula position” from
that of its occurrences in “argument position,” for example, by saying that a formula
in formula position expresses a proposition, while one in argument position desig-
nates a proposition. This corresponds to the standard way of presenting the syntax
of a formal language in terms of the disjoint categories of formulas and terms. In his
occasional semantic remarks on his formal language, Russell did not mark this dis-
tinction.29 So in what follows, my terminology also will not mark this distinction.
The word “signify” has a history as a fudge word for the just-mentioned distinction;
in what follows, I will appropriate it for that fudge.30 This will reflect the syntactic
definitions in Section 1 (and in Section 6), in which I use “term” for the broadest
syntactic category and use “formula” to carve out a subcategory of the terms.

One source of obscurity in Russell’s occasional semantic remarks after 1908 was
the shift in his thinking between 1908 and 1910 about the metaphysical status of
propositions and propositional functions that accompanied his adoption of the mul-
tiple relation theory of judgment (hereafter the MRT).31 The MRT remained so un-
derdeveloped that it is hyperbolic to call it a theory.32 For our purposes, we need
only consider the following idea. Facts involving propositional attitudes do not in-
volve a thinking subject being related to a proposition. Rather, for example, if Ann
judges that Socrates is wise, there is a fact relating Ann, Socrates, and wisdom under
a 3-place relation, one which holds of any individuals x and y and any quality q in
that order if and only if x judges that y is q.33 Thus the understanding of proposi-
tional attitudes does not give us a reason to posit propositions.

Both before and after this conversion to the MRT, Russell’s writings on logic
make reference to individuals, propositional functions, and propositions. After his
conversion, his writings in a metaphysical vein make reference to objects or partic-
ulars, universals (divided into qualities and relations), and complexes (i.e., facts)—
hereafter the “real entities.”34 At this stage, he regarded particulars, universals, and
complexes as robust and demoted propositions to an inferior ontological status. On
the “official view” in Whitehead and Russell [55], propositions are “incomplete sym-
bols.” It is far from clear what this means, but it clearly implies that they are not real
entities. In a brief “metaphysical paragraph” in the introduction to [55], we are told
this: “The universe consists of objects having various qualities and standing in vari-
ous relations” (p. 43), while “. . . what we call a ‘proposition’ (in the sense in which
this is distinguished from the phrase expressing it) is not a single entity at all” (p. 44).
More explicitly, in 1918:

Obviously propositions are nothing : : : . When I say “Obviously propositions are noth-
ing” it is not perhaps quite obvious. Time was when I thought there were propositions, but
it does not seem to me very plausible to say that in addition to facts there are also these
curious shadowy things going about such as ‘That today is Wednesday’ when it is in fact
Tuesday. I cannot believe they go about the real world. (Russell [47, p. 223])

As Church observed (see [7, p. 748, n. 4]),35 presumably propositional functions
would have to be at least as shadowy, presumably unreal, as their values.36

Nonetheless, in their logical writings Russell and Whitehead freely quantify over
propositions and propositional functions. Putting a sentence into the that-clause of a
propositional attitude construction may “complete” the proposition signified by that
sentence, but it does nothing to eliminate any quantification over types other than i.
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Today, Quine’s dictum “To be is to be the value of a variable” (see [38, p. 15]) is
likely to strike us as boringly obvious. Its philosophical punch is clearer against the
background of Whitehead and Russell’s unembarrassed quantification over entities
that they thought, in the final analysis, were unreal. In Section 6 I will suggest an
interpretation of ramified-type languages that would allow Whitehead and Russell to
evade this Quinean reproach, although not without friction with another Russellian
principle.

Are all individuals particulars? Are all particulars individuals? Are universals
individuals? I know of no writings in which Russell gives a clear answer to these
basic questions. I suspect that the answer to the first question is “yes” and to the sec-
ond question, “no, because complexes are not individuals.” Bernard Linsky defends
a “no” to the third question on the basis of passages in which Russell applies type
concepts to universals (see [28]). On the other side, consider this. Before accept-
ing the theory of types (i.e., while still clinging to the doctrine of “the unrestricted
variable”), Russell apparently thought that “. . . there is really nothing that is not an
individual” (see p. 206 of “On ‘Insolubilia’ and their solution by symbolic logic,”
in [50]). It would seem that at this time Russell considered universals to be indi-
viduals. I know of no evidence that he changed his mind on that after accepting the
theory of types. Linsky did not consider the view on which universals and particulars
are individuals, but nonetheless they fall into a metaphysical-type, as opposed to a
logical-type, hierarchy. The metaphysical types could be represented by the hi-free
members of T , except with i interpreted as representing the metaphysical type of all
and only particulars. This double use of types would reconcile the passages Linsky
cites and the thesis that universals are individuals.

Be the metaphysical details as they may, surely real entities have to play some role
in Russell’s post-MRT understanding of the meanings of terms in a ramified-type
language; but what is that role?

If � W i and � is a 1-place predicate of individuals, �.�/ signifies the proposition p
(in a way that fully analyzes p), and � signifies a constituent of p.37 But here is one
clear and quite important principle within the Russell–Whitehead project: “It should
be remembered that a function is not a constituent in one of its values: thus for
example the function ‘bx is human’ is not a constituent of the proposition ‘Socrates
is human”’ (see [55, pp. 54–55]). So taking � to signify a propositional function,
it does not signify a constituent of p. The root of this idea is already present in
[44]. There Russell says that propositional functions depend on propositions, which
depend on their constituents, and this dependence is supposed to be noncircular.38

In fact, it would seem that objects of acquaintance would be real entities. According
to the MRT, propositional functions are not real entities, so on that theory Russell
could not allow an occurrence of a term of type other than i in argument position
within a sentence to signify a propositional constituent, or (more in keeping with
the MRT) a component of a judgment-fact of the sort that could correspond to, for
example, a judgment-attribution with that sentence in the “that” clause; the (so to
speak) “constituents of propositions” would have to be objects of acquaintance and
so real entities.

Does “wise” (or “is wise”) correspond in some way to some constituent of the
proposition signified by “Socrates is wise”? According to Peter Hylton, “The propo-
sition that Socrates is wise contains some constituent other than Socrates, but it is
unclear what this is, and how it is related to the propositional function ‘bx is wise”’
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(see [22, p. 301, n. 23]). Nonetheless, assuming that the proposition that Socrates is
wise is elementary, there is a case to be made for the thesis that the quality of being
wise (i.e., wisdom) is the unique constituent other than Socrates of that proposition.
One piece of evidence: in presenting the MRT in [49, p. 126], Russell says that lov-
ing is a constituent of Othello’s judgment that Desdemona loves Cassio. According
to this theory, an expression of a proposition is an “incomplete symbol,” and “when
I judge ‘Socrates is human,’ the meaning is completed by the act of judging” ([55,
p. 44]). This suggests that in the derivative sense in which we can speak of propo-
sitions at all, being wise is a constituent of the proposition that Socrates is wise. In
what follows, I will assume this.39

More generally, I will assume that for any sentence that provides a full analysis of
the proposition that it signifies, each occurrence of a nonlogical constant (in the no-
tation from Section 1, of a member of dom.S/) in that sentence stands for a genuine
constituent of that proposition, and every genuine constituent is so represented.40

A Russellian semantic theory would say that the occurrence of a predicate-constant �
in �.�/ does two kinds of work: it does the “logical” job of signifying a propositional
function, and the “basic” job of standing for a quality that serves as a constituent
of p, with the logical job uniquely determined by the basic job. More generally, an
occurrence of a term in predicate position in a formula signifies a propositional func-
tion, which it does not contribute as a constituent of the proposition signified by that
formula, but it might also stand for a universal which it does so contribute. Thus the
distinction between universals and propositional functions requires that a Russellian
semantics factor into a “basic,” referential, component and a “logical” component
concerning what I am calling signification.41

To spell this out, I will introduce a notion of proxyhood relating real to logical
entities. I will continue playing the role of a Russellian trying to get by with simple
types. Of course, ultimately, the following discussion would have to be rewritten
using ramified rather than simple types.42

At type i, signification coincides with standing-for: if � W i 2 S and x is an
individual, we can allow that � stands for x and in virtue of that signifies x. Let
each individual be its own proxy. If R is an n-place universal that is instanced by
or relates only individuals and � W hi; : : : ; ii 2 S , we can allow that � stands for R,
and, in virtue of that fact, it signifies the propositional function f such that for any
individuals x1; : : : ; xn, f .x1; : : : ; xn/ is the proposition that R relates x1; : : : ; xn in
that order. In this case, call R the proxy for f . If every universal is instanced by or
relates only individuals, this completely describes the link between standing-for and
signification.

If we want to allow for meaningful predicate constants � W ht1; : : : ; tni 2 S such
that for some i 2 .n/, ti ¤ i, we must extend our use of types by assuming that each
universal is of a type and then extend our notion of proxyhood. It far from obvious
how to make sense of this idea in terms in keeping with the MRT. Here is an attempt.

First, consider types in which hi does not occur. Let a universal R have type
ht1; : : : ; tni 2 T , with the latter hi-free, if and only if R is instanced by or relates
x1; : : : ; xn in that order only if for each i 2 .n/, xi is a real entity of type ti . Then
for � W ht1; : : : ; tni 2 S , we can allow that � stands for R, and in virtue of that fact it
signifies the following propositional function f : for any logical entities y1; : : : ; yn

such that yi has type ti and xi is the proxy for yi , this for each i 2 .n/, f .y1; : : : ; yn/
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is the proposition thatR relates x1; : : : ; xn in that order. In this case, callR the proxy
for f .

So far, our attempt involved no sacrifice of Russellian principles. But if we want
our basic semantics to allow for meaningful predicate-constants � W ht1; : : : ; tni 2 S

for any n 2 ! and ht1; : : : ; tni 2 T , we would have to posit real entities of type hi.
At first glance, it may seem that the entities that Russell called “complexes” would be
appropriate real entities to take type hi.43 Russell’s complexes are what he later called
facts. In the period under consideration, Russell took facts to be real, so to preserve
the Russellian spirit, we might try taking them to be proxies for propositions. But
this will not work. Russell thought that for each proposition p there was a fact c such
that either p positively corresponded to c (in which case it was true) or c negatively
corresponded to c (in which case c was false).44 Were we to take c to be the proxy
for p, it seems that we would have to take it to be a proxy for the negation of p as
well. For � W hi 2 S , if we then allowed that � stands for a quality q of proxies for
propositions, the proxy for p would have q if and only if the proxy for the negation of
p also has q. If what propositional functions are true of p depends on what qualities
p’s proxy has, we would be forced to accept that for a sentence ' signifying p,
(' Dhi :') is true. A strict Russellian should not grant proxies to propositions.

It seems that the only reasonable way to secure a real proxy for each proposition
would be to assume that for each proposition there is a corresponding situation (or
state of affairs), and maintain that the latter “obtains” if and only if the former is true.
Such situations would merely be Russellian propositions, according to his 1903 con-
ception of propositions, all over again: that conception of propositionhood in effect
collapses propositions to such situations. There is no evidence that between 1903
and his conversion to the MRT Russell changed his conception of propositions; it
seems that the reality of such potential complexes was exactly what he repudiated
when he consigned propositions to the shadows. Since situation semantics is gener-
ous in its positing of situations that may not be actual, I will call the proposal that
each proposition has a corresponding situation as its proxy “the situationist path.”
With this non-Russellian metaphysical backdrop, a basic semantics generates a cor-
responding logical semantics for a language of the form Ls.S/ without constraining
assumptions about S .

Assume that basic semantics is given: for each � W i 2 S , � stands for a unique
individual; for n 2 ! � ¹0º and each � W ht1; : : : ; tni 2 S , � stands for a unique
universal R� of type ht1; : : : ; tni.45 For a type context C , let a be a C -assignment iff
a is a function on dom.C / such that for each � W t 2 C , a.�/ is an entity of type t . If
a is a C assignment, C; �1 W t1; : : : ; �n W tn is a type context, �1; : : : ; �n are distinct,
and xi 2 F .ti / for each i 2 .n/, for every � 2 Var let

aŒ�1; : : : ; �n WD x1; : : : ; xn�.�/ D

´
xi if � � �i for i 2 .n/;

a.�/ otherwise.

Thus aŒ�1; : : : ; �n WD x1; : : : ; xn� is a .C; �1 W t1; : : : ; �n W tn/-assignment. The
logical semantics for )S will assign each hC; �i 2 Ls such that � is ˇ�-normal, and
each C -assignment a, to the entity Œ� �a that it signifies, as follows.46

(1) For each � W t 2 C , Œ��a is a.�/.
(2.1) For each � W i 2 S , Œ��a is the individual for which � stands.
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(2.2) For each � W ht1; : : : ; tni 2 S , Œ��a is the propositional function with
proxy R� .

(3) If ) � W ht1; : : : ; tni with n > 0, and for each i 2 .n/ ) �i W ti ,
Œ�.�1; : : : ; �n/�

a is Œ� �a.Œ�1�
a; : : : ; Œ�n�

a/.
(4.1) If for i D 0; 1, C ) �i W hi, Œ.�0 � �1/�

a is the proposition that either Œ�0�
a is

false or Œ�1�
a is true.

(4.2) Œ?�a is the absurd proposition. (Fix one if you think that there are several.)
(5) If C; � W t ) � W hi, Œ9� W t:� �a is the proposition that for some entity x of

type t , Œ� �aŒ�WDx� is true.
(6) If n > 0 and C; �1 W t1; : : : ; �n W tn ) � W hi for distinct �1; : : : ; �n 2 FV.�/,

then Œ.��1 W t1; : : : ; �n W tn:�/�
a is the function f so that for any en-

tities x1; : : : ; xn with xi of type ti for each i 2 .n/, f .x1; : : : ; xn/ is
Œ� �aŒ�1;:::;�nWDx1;:::;xn�.47

Finally, we extend this definition to cover every hC; �i 2 Ls and C -assignment a:
if � is not ˇ�-normal and � 0 is its ˇ�-normalization, let Œ� �a be Œ� 0�a.

4 The Syntactic Picture and the Plausibility Problem

Along with [55], Russell’s published writings from 1903 to 1910 show that he con-
ceived of a proposition as having a structure that in some sense is reflected by the
syntactic structure of an appropriate sentence (in an optimal formal language) that ex-
presses it. At the moment we will leave open what form an optimal formal language
would take. The works [55] and [41] extend this picture to propositional functions:
Russell and Whitehead thought of a propositional function as obtainable by “punch-
ing holes” in a proposition, with free variables (which our notation then indicates
with a �-prefix) indicating these holes. Their discussion of propositional functions
might seem odd by contemporary standards, since they tend to understand a formula
containing at least one free variable to signify a propositional function (with its free
variables representing that function’s argument places)—this even though they also
allow for circumflex binding of free occurrences of variables to indicate those argu-
ment places. They did not reach the contemporary understanding of free variables
in a formula as “parameters,” with the formula signifying a proposition only rela-
tive to a variable assignment, and with the distinction between that and a term (for
us a �I -term) that properly signifies a propositional function (though that too will
be relative to a variable assignment in the case when a �I -term contains free vari-
ables). With that in mind, what the following remark describes would correspond, in
our notation, to peeling off a �-prefix and assigning values to the previously bound
variables to “fill the holes” signaled by that �-prefix:

By a “propositional function” we mean something which contains a variable x, and
expresses a proposition as soon as a value is assigned to x. That is to say, it differs from a
proposition solely by the fact that it is ambiguous: it contains a variable of which the value
is unassigned. ([55, p. 38])
Thus the structure of a propositional function is reflected by that of the scope of

a closed �I -term that signifies that function. (This is the Russellian basis of our re-
striction of �-terms to �I -terms.48) Speaking more strictly, the value q of a 1-place
propositional function f for an appropriate argument contains (in some sense) that
argument, and any value of f for another appropriate argument can be formed from
q by replacing the former argument by the latter. Similarly for multiple-place propo-
sitional functions, I will call these ideas the naive syntactic picture of propositions
and propositional functions.49
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If a sentence ' ˇ-converts to '0, should one think of ' and '0 as signifying the
same proposition? And if a closed term � whose type has the form ht1; : : : ; tni for
n > 0 �-converts to � 0, should one think of � and � 0 as signifying the same propo-
sitional function? If these are terms in an optimal language, the syntactic picture, at
least if applied naively, might suggest that “no” is the correct answer to both ques-
tions: after all, ' and '0 are distinct sentences, and � and � 0 are distinct closed terms.

But further thought about the syntactic picture should persuade us that these an-
swers were naive. For suppose we form a propositional function by punching a hole
in a proposition; applying that function to what we just punched out would, presum-
ably, consist in returning what we punched out to the hole that it left, yielding the
original proposition and a “yes” for the first question. A similar point applies to the
second question.50

Thus the naive syntactic picture is too strong. Here is an improvement: a proposi-
tion has a structure reflected by a ˇ�-normal sentence in an optimal formal language
that regiments it. Similarly, a propositional function has a structure that reflects the
matrix of a closed ˇ�-normal �I -term in such a language that signifies that func-
tion.51 (The matrix of a �I -term is the scope of its �-prefix.)

We are finally ready to address the plausibility questions. To give the purported
paradoxes full benefit of the doubt, let us assume that Ls is optimal with regard to
the syntactic picture.

Whatever plausibility weak RD, weak PQ, and weak PP have, they accrue from the
plausibility of RD, PQ, and PP, respectively. Before addressing the latter schemata,
let us consider a paradigm of correct converse-compositional reasoning. Claim: for
any n0-place �0 W hi; : : : ; ii 2 S , any n1-place �1 W hi; : : : ; ii 2 S , �0;i W i 2 S for
i 2 .n0/, and �1;i W i 2 S for i 2 .n1/,�

�0.�0;1; : : : ; �0;n0
/ D

hi �1.�1;1; : : : ; �1;n0
/
�

� .�0 D
hi;:::;ii �1/

is true. Assume the if-clause. So Œ�0.�0;1; : : : ; �0;n0
/� D Œ�1.�1;1; : : : ; �1;n0

/�; let
p be that proposition. Whether or not Ls is optimal, at least the syntactic picture
applies to its atomic sentences and dictates that p has predicative structure: for some
n > 0, p predicates some n-place universal P of n-many individuals x1; : : : ; xn in
that order; furthermore, n0 D n D n1, and �0 and �1 stand for P . So Œ�0� D Œ�1�;
so .�0 Dhi;:::;ii �1/ is well formed and true.

But RD, PQ, and PP are rather different counter-compositional principles. Does
the syntactic picture support them?52 This question is not yet well defined: presen-
tation of these schemata in Section 2 was unspecific about the values of n and m in
RD, and of … and „ in PQ and PP.

For a start, assume that … W hhii; „ W hhii 2 S . To give the purported paradoxes
their best run for the money, we will extend our paradigm of converse-compositional
reasoning. This will require us to have taken the situationist path in Section 3, al-
lowing us to say that … stands for a quality P of potential complexes and signifies
propositional functions f such that for any proposition p, f .p/ is true if and only if
p’s proxy has P ; similarly for „ and a quality X .

Assume that C ) ' W hi and a is a C -assignment. Consider the instance of
PP for our given … and „. Let p be Œ….'/�a, and let q be Œ„.'/�a. The syntactic
picture dictates that p and q are 1-place predications and that p is the proposition that
predicates P of the proxy for Œ'�a (a potential complex). And similarly, q predicates
X of that proxy. Assume that (….'/ Dhi „.'/) is true. Thus p D q. Thus p



Why Ramify? 393

and q have the same predicating constituent, that is, P D X . Thus Œ…� D Œ„�. So
(… Dhhii „) is true, verifying the relevant instance of PP.

Now let Q be 9 or 8 or any other quantifier constant. So

) Q� W hi:….�/ W hi and ) Q� W hi:„.�/ W hi:

Let p be ŒQ� W hi:….�/�, and let q be ŒQ� W hi:„.�/�. The syntactic picture dictates
that p and q are 1-place quantifications, which we can think of as predications with
Œ.�� W hi:….�//� and Œ.�� W hi:„.�//� in what corresponds to argument position.
Assume that (Q� W ….'/ Dhi Q� W „.'/) is true. Thus p D q. Thus p and q have
the same predicated constituent, that is, Œ.�� W hi:….�//� D Œ.�� W hi:„.�//�. So for
any ¹� W hiº-assignment a, Œ….�/�a D Œ„.�/�a. For any sentence ', let a.�/ D Œ'�;
so Œ….'/� D Œ„.'/�, which is a proposition whose predicating constituent is both P
and X . As above, it follows that P D X . As above, this verifies the relevant instance
of PQ.

Similar considerations show that assuming that n W hhii; m W hhii 2 S , the corre-
sponding instance of RD is true.

Summing up: by taking the situationist path, we have argued from the syntactic
picture to the instances of PP, PQ, and RD for which… and„ are predicate constants.
But now the crucial point: our paradigms of converse-compositional reasoning do not
support the instances of PP, PQ, or RD used in the purported paradoxes. This is be-
causeG' ,GQ, andGR are �I -terms, not predicate constants.53 Even after taking the
situationist path, we cannot say that these terms stand for constituents of the proposi-
tions signified by G'.'/ (relative to an appropriate assignment), Q� W hi:GQ.�/, or
8� W hi.n.�/ � �/, respectively.

We might try adding further metaphysical assumptions to the situationist path:
that the propositional functions signified by these three �I -terms have proxies. By
themselves, even these extravagant assumptions will not suffice. In each purported
paradox we “fix” a � of type hhii, for a use of existential elimination. (� here was an
eigenvariable in each argument.) We cannot say that � stands for a constituent of the
proposition signified by �.'/,Q� W hi:�.�/, or 8� W hi.�.�/ � �/, except relative to
specific ¹� W hhiiº-assignment. To transpose the above arguments concerning a pair
of predicate constants into arguments applicable to a �I -term and the eigenvariable
� , we would need to assume that every possible value of � has a proxy. If that
assumption is not to be ad hoc, it would seem that we should assume that every
propositional function of type hhii has a proxy.

This move would be quite ad hoc. In fact, we only need a � W hhi; hii 2 S

to show that the latter suggestion is unreasonable. Given a sentence ', let … be
(�� W hi:�.'; �/), and let „ be (�� W hi:�.�; '/). Let P and X be proxies for
Œ…� and Œ„�. So P is the predicated constituent of Œ….'/�, and X is the predi-
cated constituent of Œ„.'/�. But (….'/ Dhi „.'/) must be true, in which case
Œ….'/� D Œ„.'/�. So the predicated constituents of that proposition are identical,
that is, P D X . So 8� W hi.….�/ $ „.�// is true. But the latter is equivalent to
8� W hi.�.'; �/ $ �.�; '//. Surely we do not want to assume that the latter is true
for any � W hhi; hii 2 S and sentence '.

In conclusion: even if we take the situationist path and are generous in our as-
sumptions about the existence of proxies, the principles on which the purported
paradoxes depend are too implausible to make the latter paradoxical. Having set
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aside semantic paradoxes, I conclude that the purported paradoxes provide the Rus-
sellian no good reason for ramification.

For whom would the paradoxes provide such a reason? Suppose one took vari-
ables of type ht1; : : : ; tni to range over universals, rather than propositional functions,
with the presupposition that every �I -term stands for a universal. Under this con-
strual of Ls , RD, PQ, and PP secure some plausibility, and the purported paradoxes
acquire some bite. But even so, ramification would not be the only response. Perhaps
instead we should ban the binding of variables of propositional type, thus ruling RD,
PQ, and PP ill formed. The intelligiblity of such binding is not obvious—recall the
last paragraph of Section 1.

5 The Vicious-Circle Principle

Even if the arguments of Section 2 were paradoxical, the brute justification by
avoidance—“Ramification lets us avoid these paradoxes; so a ramified-type logic
is better than a simple-type logic”—should feel shallow without a supplemental
“philosophical” diagnosis of the paradoxes that favors ramification. As a start in
that direction, Russell offered the vicious circle principle (VCP) (see [41], [55]), to
which I will now turn.

In different places these texts offer different formulations of the VCP. As Gödel
points out, more than one principle seems to be in play.54 I will consider a “specifi-
cational” reading of the VCP.

Let a predicative specification of an entity be a specification expressible by a term
meeting this condition: every occurrence of a bound variable in that term (or its reg-
imentation into a formal language that handles quantification and abstraction in the
usual ways) has a range which does not contain the entity in question.55 For example,
Ramsey’s example, “the tallest man in the room” will not express a predicative spec-
ification: relative to any context in which it successfully specifies something (i.e., a
context in which there is a unique tallest man in the room), it contains an occurrence
of a bound variable whose range includes the man whom the description specifies.

Here is the specificational reading of the VCP (hereafter just the VCP): in any
context of language use (including thought) in which a term signifies something,
every occurrence of a bound variable in an analysis of that term ranges over entities
each of which can in principle be predicatively specified. Returning to Ramsey’s
example, relative to any context of use, an analysis of “the tallest man in the room”
contains a bound variable ranging over at least the men in the room; this reading of
the VCP would require that each man in the room (and any other individuals in that
range) be predicatively specifiable.56 Presumably that is the case: in some contexts
we can in principle specify men by using demonstratives, in others by using names,
and so forth.

Simple-type languages would seem to flout the VCP. Assume that ' is a sen-
tence containing a bound occurrence of a variable of type hi and that ' signifies
something—a proposition. Then every proposition would have to have a predicatve
specification. In particular, the proposition signified by ' would have to have a pred-
icative specification. Presumably that would have to be another sentence that signi-
fies that proposition but contains no bound occurrence of a variable of type hi. This
would have to hold for every such ', and that is implausible. This problem extends to
�I -terms. Each closed �I -term purports to specify a propositional function with a
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given place number, but if it contains a bound occurrence of a variable ranging over
propositional functions with that number of places, it does not predicatively specify
that propositional function. And it is implausible that every such propositional func-
tion can be predicatively specified in some other way. Without further clarification
of what specification amounts to, there seems little hope of turning this plausibility
argument into a demonstrative argument. But even so, its should have some force: if
we like the VCP, we should shun simple-type languages, and with them the theory of
simple types.

But the VCP is hardly self-evident. Why accept it? Again, it is not enough to say
that by accepting it we can avoid paradoxes—as Russell recognized.57 One might as
well accept the maxim “Don’t engage in deductive reasoning”; by avoiding deductive
reasoning, we can avoid paradoxes. For failure to respect the VCP as serving as a di-
agnosis of paradoxes, we need to have a prima facie reason to think that VCP deserves
respect, one independent of the paradox-avoiding consequences of respecting it.

Some authors suggest that an “in a sense constructivist” cast of mind would secure
a paradox-independent motivation for accepting the VCP.58 In what would such a cast
of mind consist?

In [51], Mark Sainsbury considers “the weird and tortuous interpretation” accord-
ing to which Russell and Whitehead intended that propositional functions be linguis-
tic expressions—presumably interpreted expression types. In its support, Sainsbury
quotes Russell from late in his career. First in 1940: “In the language of the sec-
ond order, variables denote symbols, not what is symbolized.”59 And then in 1959:
“Whitehead and I thought of a propositional function as an expression.”60 Sainsbury
thinks that the only alternative to this unpleasant interpretation would be the inter-
pretation according to which propositional functions are properties (see [51, p. 280]).
In Section 3 I argued that this reading would confuse logical with real entities.

We need not go to a weird and tortuous interpretation of Russell to understand
the force of these late remarks. Sainsbury in fact suggests one: Russell was thinking
of quantification over types other than i in a tacitly substitutional way, and in this
respect his cast of mind was constructivist.61 This way of thinking of such quan-
tification predated Russell. In the Grundgesetze, Frege’s informal explanation of
his notation for first-level universal quantification is objectual (using the phrase that
Montgomery Furth translates as “for every argument” in Section 8; see Frege [15,
p. 41]), while Frege’s informal explanation of his notation for second-level universal
quantification is substitutional (using the phrase “whatever function-name one may
substitute” in Section 20; see [15, p. 71]).62 This feature of Frege’s presentation of
his ideas might not be of much significance for Frege’s project, but it still may have
influenced Russell.

But what is it to understand a quantifier expression, or an occurrence of a quanti-
fier prefix, substitutionally?

A substitutional interpretation of a quantifier expression is relative to a vocabulary
set, the latter determining the range of relevant substitutends. Since we are here
interested in s-type languages, consider an s-typed vocabulary set S , and consider
h¹� W tº; �i 2 Ls.S/. One way to understand talk of a substitutional interpretation
of the initial prefix of 9� W t:� would be in terms of truth conditions. Such an
understanding would at least require that one accept this biconditional: the sentence
9� W t:� is true if and only if there is a � so that )S � W t and �Œ� WD �� is true.
But just accepting such a biconditional is too weak to count as an interpretation
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of the quantifier prefix of a sentence of the form 9� W t . It is better to put the
truth-conditional construal thus: the truth of 9� W t:� would consist in there being
a � so that )S � W t and �Œ� WD �� is true.

An even stronger construal of talk of a substitutional interpretation is available,
one that concerns the identity of signified propositions rather than merely the truth
conditions for sentences. It will require allowing for infinitary propositions (which
of course a Russellian may ultimately dismiss as “incomplete symbols”). On this
construal, 9� W t:� signifies the proposition that is “the” disjunction of all propo-
sitions signified by formulas of the form �Œ� WD �� as � ranges over the closed
terms assigned type t under )S .63 On this construal, an occurrence in a sentence
of an existential quantification over a type other than i in Ls is a departure from op-
timality, since it does not reflect quantification within the proposition signified by
that sentence; rather it reflects an infinitary disjunction within that proposition. In
propositions, and thus in an optimal language, the only genuine quantification is over
individuals.

I will pursue this idea in Section 6. But applied to a simple-type language Ls ,
even the weaker construal substitutional quantification (in terms of truth conditions)
will not do: it will not permit an inductive specification of truth conditions for sen-
tences containing quantification restricted to s-types other than i. For example, to
specify inductively the truth conditions for a sentence of the form 9� W hi:' (with
� 2 FV.'/), we would need to have available the truth conditions for every formula
of the form 'Œ� WD �� where ) � W hi, which in turn requires us to have available
the truth conditions for each such � . But one of these �s is 9� W hi:'.

We have reached a good, though conditional, reason to ramify: if we are to inter-
pret quantification over types other than i substitutionally, simple types will not do.
It remains only to check that ramification will.

Before addressing that task, let me mention two consequences of interpreting
quantification over types other than i substitutionally. On the plus side, it promises to
insure that sentences that involve quantification into formula position, for example,
9� W hi:�, are intelligible.64 But there is a big minus. Under a substitutional interpre-
tation, the meaning of quantification over affected types is tied to a particular choice
of vocabulary; adding nonlogical constants to, or dropping them from, a language’s
lexicon would (depending on the type) change the available substitutends and with
that the meaning of quantifier prefixes restricted to such types. This underlines the
difference between (a) interpreting such a prefix substitutionally and (b) interpreting
it objectually but restricted to a domain of linguistic expressions. Under an interpre-
tation of the latter sort, a change of nonlogical constants in our vocabulary would
have no effect on the meaning of quantifier expressions; for example, the naming
of a child would not change the meaning of “everyone” and “someone”; under the
substitutional interpretation, it could.65

If our goal is to model natural language, for many areas of discourse a substi-
tutional interpretation of quantification is unappealing.66 But that was not the goal
pursued by Whitehead and Russell. They were only interested in consideration of a
formal language that could in principle limn reality, doing this by virtue of a spe-
cific (up to choice of linguistic expressions), though unspecified, lexicon, one that
permitted signification of all propositions. Their project is not unscathed by this
point. Russell wrote “It is one of the marks of a proposition of logic that, given a
suitable language, such a proposition can be asserted in such a language by a per-
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son who knows the syntax without knowing a single word of the vocabulary” (see
Russell [43, pp. 200-1]). If a quantifier prefix in the sentence used to make such an
assertion is to be interpreted substitutionally, and a relevant substitutend contained
an un-understood word, the speaker would not understand a relevant substitutend
and so would not understand that quantifier prefix and so would not understand that
sentence!

Assume for the moment that, as Fuhrmann suggested, throughout the period lead-
ing up to his work on Principia Russell thought that Frege’s appendix theorem ex-
posed the fallacy in the purported propositional paradox. Then an adequate rational
reconstruction of Russell’s views could not attribute to him a substitutional interpre-
tation of quantification over type hhii, this because Frege’s appendix theorem (and
even just its f .�/ D 8v W hi.�.�/ � �/ instance, which Russell cites in his letter
to Frege of May 24, 1903) cannot be proved on such an interpretation.67 If such a
reconstruction were to offer a substitutional interpretation of such quantification as
Russell’s motivation for ramification (which I have avoided doing), it would have
to ascribe to Russell a change in the interpretation of such quantification, from ob-
jectual to substitutional, between his writing of that letter and his commitment to
ramification. (Perhaps the move to the MRT caused such a change.)

6 Ramification

In this section, I will present two ramified-type assignment systems.68

First, we have inductive definitions of the ramified (hereafter r-) types. Each type
will have a height and an order.

Definitions i is an r-type, and ht.i/ D ord.i/ D 0. For any m 2 ! � ¹0º, hmi is
an r-type and ht.hmi/ D 0, ord.hmi/ D m. For any m; n 2 ! � ¹0º, if t1; : : : ; tn are
r-types with ord.ti / < m for each i 2 .n/, then ht1; : : : ; tn; mi is an r-type, and

ht
�
ht1; : : : ; tn; mi

�
D max

i2.n/

®
ht.ti /C 1

¯
;

ord
�
ht1; : : : ; tn; mi

�
D m:

Since max¹º D 0, ht.hmi/ D 0. Let T r D the set of r-types.

Informally, i is the type of individuals; hmi is the type of propositions of order m;
for n > 0, ht1; : : : ; tn; mi is the type for n-place propositional functions of order
m taking arguments of type ti at the i th place for each i 2 .n/. Let t 2 T r be
propositional if and only if for some m 2 ! � ¹0º, t D hmi.

For t 2 T r , let the simplification of t , smp.t/, result from deleting all the right-
most (order) components of t ; that is, smp.i/ D i; smp.ht1; : : : ; tn; mi/ D hsmp.t1/;
: : : ; smp.tn/i.

The definitions of being a type assignment, being a type context, and being a
typed vocabulary set extend straightforwardly from s-types to r-types. For an r-type
context C , let smp.C / D ¹� W smp.t/ W � W t 2 C º.

S is an r-type vocabulary set if and only if it is a single-valued set of r-type as-
signments for nonlogical constants. For such an S , let smp.S/ D ¹ W smp.t/ W

 W t 2 Sº.
Until further notice, S is a r-type vocabulary set. We will define the class of

“pre-quasi-terms” based on S and then define a “quasi-type-assignment system” )
q

S

and an associated FV assignment; )
q

S
determines the class of quasi-terms based on
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S relative to an r-type context. Then we will restrict that class by defining, in two
stages, an r-type assignment system based on S .

Definitions I will omit “based on S” and the obvious simultaneous definition of
FV . It will be convenient to simultaneously define j j to track the depth of non-i
quantification.

(1) If � 2 Var, then � is a pre-quasi-term and j�j D 0.
(2) If � 2 dom.S/, then � is a pre-quasi-term and j� j D 0.
(3) If �; �1; : : : ; �n are pre-quasi-terms with n > 0, then �.�1; : : : ; �n/ is a pre-

quasi-term and j�.�1; : : : ; �n/j D maxi2.n/¹j� j; j�i jº.
(4.1) ? is a pre-quasi-term and j?j D 0.
(4.2) If �0 and �1 are pre-quasi-terms, then (�0 � �1) is a pre-quasi-term and

j.�0 � �1/j D max¹j�0j; j�1jº.
(5) If � is a pre-quasi-term, � 2 Var, and t 2 T r , then 9� W t:� is a pre-quasi-term

and

j9� W t:� j D

´
j� j if t D i;
j� j C 1 otherwise.

Additional primitive logical constants may be added in the obvious ways.
(6) If n > 0, � is a pre-quasi-term, �1; : : : ; �n 2 FV.�/ are distinct, and

t1; : : : ; tn 2 T r , then (��1 W t1; : : : ; �n W tn:� ) is a pre-quasi-term and
j.��1 W t1; : : : ; �n W tn:�/j D j� j.

Consider a pre-quasi-term � based on S . Let smp.�/ result from replacing each
occurrence of any t 2 T r in � by smp.t/.

For a r-context C and t 2 T r , let
C )

q

S
� W t iff smp.C / )

s
smp.S/ smp.�/ W smp.t/:

Let � be a quasi-term based on S and relative to C if and only if for some t 2 T r ,
C )

q

S
� W t .

For quasi-terms, being a ˇ-redex and ˇ-conversion of a ˇ-redex are defined
as usual; 1-step ˇ-reduction is defined as usual. Also, being an �-redex and
�-conversion of an �-redex are defined as usual; 1-step �-reduction is defined
as usual. 1-step ˇ�-reduction, ˇ�-reduction, being ˇ�-normal, and being a
ˇ�-normalization of a pre-quasi-term are all defined as usual.

Theorem 6.1 Each quasi-term has a unique (up to choice of bound variables)
ˇ�-normalization.

This follows immediately from the strong normalization and Church–Rosser theo-
rems formulated in Section 1 by replacing quasi-terms by their simplifications.

For any quasi-term � let N.�/ be the ˇ�-normalization of � .
We are almost ready to define the ramified-type assignment system )r

S
. We will

omit mention of S where confusion is unlikely. This definition comes in two stages.
First we define )

r;nf
S

.69

Definition Let C be an r-type context. There will be no need to redefine FV .
(1r ) If � W t 2 C , then C )r;nf � W t .
(2r ) If � W t 2 S , then C )r;nf � W t .
(3r ) If � W ht1; : : : ; tn; mi 2 C [ S , and for each i 2 .n/ either �i W ti 2 C or

)r;nf �i W ti (so FV.�i / D ¹º), then C )r;nf �.�1; : : : ; �n/ W hmi.70
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(4.1r ) C )r;nf ? W h1i and FV.?/ D ¹º.
(4.2r ) If C )r;nf �i W hmi i for i D 0; 1, then

C )
r;nf .�0 � �1/ W

˝
max
i22

mi

˛
:

(5r ) If C; � W t )r;nf � W hmi, C )r;nf 9� W t:� W hmax.m; ord.t/C 1/i.
(6r ) If n > 0, C; �1 W t1; : : : ; �n W tn )r;nf � W hmi for distinct �1; : : : ;

�n 2 FV.�/, and .��1 W t1; : : : ; �n W tn:�/ is not an �-redex, then

C )
r;nf .��1 W t1; : : : ; �n W tn:�/ W

˝
t1; : : : ; tn;max

i2.n/

®
m; ord.ti /C 1

¯˛
:

Note that if C )r;nf � W t , then � is ˇ�-normal.
Define )r

S
thus:

(7r ) If � is a quasi-term and C )nf N.�/ W t , then C )r � W t ;
So )r

S
determines its corresponding ramified-typed language thus:

Lr .S/ D
®
hC; �i W for some t 2 T r ; C )

r
S � W t

¯
:

We can define being a term of Lr , and being a formula of Lr , both relative to an
r-type context C , in the obvious ways.

Note that the type, and thus order, of a term of Lr relative to C is determined
by the type of its ˇ�-normalization. We needed to have the class of quasi-terms and
the operation of ˇ�-normalization on quasi-terms available before defining )r

S
; we

provided that by defining the class of pre-quasi-terms.

Observations from Section 1 regarding )s carry over to )r .
Definition (3r ) captures one feature of Laan and Nederpelt’s reading of [55] (see

[25], especially their definition of FV on p. 246; they refer to [55, *9.14–15]).
But one might wonder why we have not replaced (3r ) by this more general clause:
if � W ht1; : : : ; tn; mi 2 C [ S , and for each i 2 .n/ C )r;nf �i W ti , then
C )r;nf �.�1; : : : ; �n/ W hmi. For an example of the difficulties to which this change
would lead, consider � W i; � W hi; 1i 2 S and C D ¹� W hhi; 1i; 2i; � W hh2i; 3iº.
Under the proposed more general definition we would have C )r;nf �.�.�// W h3i.
For � � .��0 W hi; 1i:�0.�//, )r;nf � W hhi; 1i; 2i; so we want to have

� W
˝˝
hi; 1i; 2

˛
; 3

˛
)

r;nf �
�
�.�/

�
Œ� WD �� W h3i:

But �.�.�// ˇ-reduces to �.�.�//, which is not a term of Lr relative to ¹� W

hh2i; 3iº.71

The following definitions and lemmas are lifted from [21, Section 6]; # is a natural
summation for ordinals.72

Definitions If � 2 Var, k�k D 0; if � W i 2 S , k�k D 0; if � is a predicate-
constant in S , k�k D 1; k?k D 0:�0.�1; : : : ; �n/

 D k�0k#k�1k# � � � #k�nk#1;.'0 � '1/
 D k'0k#k'1k#1;

k9� W t:'k D k'k#!ord.t/;.��1 W t1; : : : ; �n W tn:'/
 D k'k#!m;

form D maxi2.n/ ord.ti /. The following should clarify the idea behind this indexing
function.
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Let a quantifier prefix of the form 9� W t have order ord.t/ C 1.73 Let a �-prefix
��1 W t1; : : : ; �n W tn have order maxi2.n/ ord.ti / C 1. Consider a term � of L and
m > 0. If m > 1, let $m.�/ equal the number of occurrences in � of quantifier
prefixes and �-prefixes of order m. (Choice of a type context relative to which
� is a term of L is irrelevant to $m.�/.) It will be convenient to define $1.�/

as follows: let $�
1 .�/ equal the number of occurrences in � of quantifier prefixes

and �-prefixes of order 1, let $�.�/ equal the number of occurrences of � in � ,
and let $pc.�/ equal the number of occurrences of predicate constants in � ; then
$1.�/ D $�

1 .�/C $�.�/C $pc.�/.
Observation If m > 0 is the maximum of the orders of a quantifier prefix or
�-prefix in a term � of L (with the understanding that if there are no quantifier pre-
fixes or �-prefixes in � , then m D 1), then

k�k D !m�1
� $m.�/C � � � C !0

� $1.�/:

Thus if C ) � W ht1; : : : ; tn; mi, then k�k < !m.
Lemma If C ) � W t , then every quantifier prefix or �-prefix occurring in � has
order � ord.t/.
Lemma If � is a term of L relative to C [ ¹�i W ti ºi2.n/, for each i 2 .n/,
ord.ti / < m, and C ) �i W ti , then $m.�Œ

�!� WD
�!� �/ D $m.�/.

Lemma If � !ˇ� �
0, then k�k > k� 0k.

Observations (1) If �0.�1; : : : ; �n/ is a term of L, then for each i 2 n C 1,
k�i k < k�0.�1; : : : ; �n/k. (2) If ('0 � '1) is a term of L, then k'i k < k'0 � '1k

for i 2 2. (3) If 9� W t:' is a term of L relative to C and C ) � W t , then
k'Œ� WD ��k < k9� W t:'k.
The previous observations insure that truth for a sentence ' can be characterized
by induction on k'k treating sentences of the form 9� W t: substitutionally if
ord.t/ ¤ 0. This secures our truth-conditional construal of a substitutional inter-
pretation of such quantification.74

We now turn to infinitary-type assignment systems and their languages. These
systems will use quantification only over individuals and use infinitary disjunction
(and if one wishes, conjunction) in place of other quantification. To follow the format
used for the finitary case, we start with simple-type assignment systems.

Let � be an uncountable cardinal. Assume that card.Var/ D �. We will require
of an s-type context C that card.Var � dom.C // D �. Let S be a simply typed
vocabulary set with card.S/ < �. The simple-type assignment system )s�

S
adds

“levels” to types.
Definition We will omit mention of S and all but one clause of the obvious si-
multaneous definition of FV .

(1�) If � W t 2 C , then C )s� � W 0; t .
(2�) If � W t 2 S , then C ) � W 0; t .
(3�) If C )s� � W l; ht1; : : : ; tni with n > 0 and C )s� �i W li ; ti for each

i 2 .n/, then C ) �.�1; : : : ; �n/ W maxi2.n/¹l; li º; hi.
(4.1�) C )s� ? W 0; hi.
(4.2�) If C )s� �i W li ; hi for i D 0; 1, then

C )
s� .�0 � �1/ W max¹l0; l1º; hi:
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(5.1�) If C; � W t )s� � W l; hi (with t 2 T s), then C )s� 9� W i:� : l; hi.
(5.2�) If l 2 !, �0 is an infinite cardinal and �0 < �, for each i < �0, C )s�

�i W li ; hi, l D maxi<�0 li , and Card.Var �
S

i<�0 FV.�i // D �, then
C )s� .

W
i<�0 �i / W l C 1; hi, and FV.

W
i<�0 �i / D

S
i<�0 FV.�i /.

Define other connectives, including (
V

i<�0 �i ) and 8 restricted to i, as usual, or add
them as primitives.

(6�) If n > 0, C; �1 W t1; : : : ; �n W tn ) � W l; hi (with ti 2 T s for i 2 .n/) for
distinct �1; : : : ; �n 2 FV.�/, then

C ) .��1 W t1; : : : ; �n W tn:�/ W l; ht1; : : : ; tni:

Other notions regarding s-type assignment systems carry over to )s� ; in particular
we have this infinitary language:

Ls�.S/ D
®
hC; �i W for some l 2 ! and s-type t; C )

s�
S � W l; t

¯
:

Informally, level measures the depth of infinitary disjunction. Note that if for i 2 2,
Ci )s� � W li ; ti , then l0 D l1. Thus for any term of Ls� we can let j� j1 D the l
such that for some C and t , C )s� � W l; t .

Let an 1-term be one of the form .
W

i<�0 �i /. h� I �1; : : : ; �nI �1; : : : ; �ni is
an outer structure for a term � in Ls� if and only if � contains no 1-subterm,
�1; : : : ; �n 2 Var � FV.�/ are distinct, �1; : : : ; �n are 1-terms, and � is �Œ�1; : : : ;

�n WD �1; : : : ; �n�. Clearly every term of Ls� has an outer structure that is unique up
to choice of �1; : : : ; �n and the ordering of its maximal 1-subterms.
ˇ-conversion and �-conversion are defined as usual for terms of Ls� . But !ˇ� ,

which should be read as “one level” rather than “one step” ˇ�-reduction, must be
defined with care. If � is a ˇ-redex and ˇ-converts to � 0, let � !ˇ� � 0. If � is
an �-redex and �-converts to � 0, let � !ˇ� � 0. If � is (�v1 W t1; : : : ; vn W tn:� )
and � !ˇ� �

0, then � !ˇ� .�v1 W t1; : : : ; vn W tn:�
0/. If � is �.�1; : : : ; �n/ and

� !ˇ� �
0, then � !ˇ� �

0.�1; : : : ; �n/; if � is �.�1; : : : ; �n/, j 2 .n/, �j !ˇ� �
0
j ,

and for each i 2 .n/ � ¹j º �i is � 0
i , then let � !ˇ� �.�

0
1; : : : ; �

0
n/; the clauses for �

and 9� W i are straightforward. If � is .
W

i<�0 �i /, for each i < � either �i !ˇ� �
0
i or

� 0
i is �i , and for some such i �i !ˇ� �

0
i , then � !ˇ� .

W
i<�0 � 0

i /.
Define �ˇ� for terms of Ls� as usual. Define ˇ�-normality and being a

ˇ�-normalization of a term as usual.

Theorem 6.2 Every term of Ls� has a unique ˇ�-normalization.

Proof This is by induction on level. Fix an outer structure

h� I �1; : : : ; �nI �1; : : : ; �ni

for � . If n D 0, j� j1 D 0; use Theorem 6.1. Assume that n > 0. Consider
j 2 .n/; let �j be .

W
i<�j

�j;i /; for each i < �j by induction fix � 0
j;i to be the

ˇ�-normalization of �j;i ; let � 0
j be .

W
i<�j

� 0
j;i /. Then � 0

j is the ˇ�-normalization
of �j . Let � 0 be the ˇ�-normalization of � . So � 0Œ�1; : : : ; �nI � 0

1; : : : ; �
0
n� is the

ˇ�-normalization of � . Uniqueness follows by the usual argument.

Next we have the infinitary ramified-type assignment,which will follow the pattern
we set under the finitary ramified case. Assume that S is a ramified vocabulary set
with card.S/ < �.
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Definitions First, we define being a �-pre-quasiterm based on S . Again, we omit
mention of S and the clauses defining FV for these terms.

(1*) If � 2 Var, then � is a �-pre-quasi-term.
(2*) If � 2 dom.S/, then � is a �-pre-quasi-term.
(3*) If �; �1; : : : ; �n are �-pre-quasi-terms with n > 0, then �.�1; : : : ; �n/ is a

�-pre-quasi-term.
(4.1*) ? is a �-pre-quasi-term.
(4.2*) If �0 and �1 are �-pre-quasi-terms then .�0 � �1/ is a �-pre-quasi-term.
(5.1*) If � is a �-pre-quasi-term, � 2 Var, and t 2 T r , then 9� W i:� is a �-pre-quasi-

term.
(5.2*) If m 2 !, �0 is an infinite cardinal and �0 < �, for each i < �0, �i is a

�-pre-quasi-term, and Card.Var �
S

i<�0 FV.�i // D �, then .
W

i<�0 �i / is a
�-pre-quasi-term.

Additional primitive logical constants may be added in the obvious ways.
(6*) If n > 0, � is a �-pre-quasi-term, t1; : : : ; tn 2 T r , and �1; : : : ; �n 2 FV.�/

are distinct, then (��1 W t1; : : : ; �n W tn:� ) is a �-pre-quasi-term.

For any �-pre-quasi-term � , form smp.�/ by replacing each occurrence of any t 2 T r

in � by smp.t/.
For an r-context C and t 2 T r , let

C )
q

S
� W t iff smp.C / )

s
S smp.�/ W smp.t/:

Let � be a �-quasi-term based on S and relative to C if and only if for some
t 2 T r , C )

q

S
� W t . Clearly for such a � , FV.�/ D FV.smp.�//.

For �-quasi-terms, define being a ˇ-redex and ˇ-conversion of a ˇ-redex as usual;
Define a 1-level reduction !ˇ� as in the simple case. Define ˇ�-reduction, being
ˇ�-normal, and being a ˇ�-normalization of a �-quasi-term as usual.

Theorem 6.3 Each �-quasi-term has a unique (up to choice of bound variables)
ˇ�-normalization.

This follows immediately from Theorem 6.2 by replacing quasi-terms by their sim-
plifications.

For any �-quasi-term � let N.�/ be the ˇ�-normalization of � .
We are almost ready to define the r-type assignment system )r�

S
. We will omit

mention of S . This definition comes in two stages. First we define )
r�;nf
S

.

Definition Let C be an r-type context.
(1r�) If � W t 2 C , then C )r�;nf � W 0; t .
(2r�) If � W t 2 S , then C )r�;nf � W 0; t .
(3r�) If � W ht1; : : : ; tn; mi 2 C [ S and for each i 2 .n/ either �i W ti 2 C and

li D 0 or )r�;nf �i W li ; ti , then C )r;nf �.�1; : : : ; �n/ W maxi2.n/ li ; hmi.
(4.1r�) C )r�;nf ? W 0; h1i.
(4.2r�) If C )r�;nf �i W li ; hmi i for i D 0; 1, then

C )
r�;nf .�0 � �1/ W max¹l0; l1º;

˝
max
i22

mi

˛
:

(5.1r�) If C; � W t )r�;nf � W l; hmi (with t 2 T s), then

C )
r�;nf

9� W i:� : l; hmi:
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(5.2r�) If l 2 !, �0 is an infinite cardinal and �0 < �, for each i < �0,
C )r�;nf �i W li ; hmi i, l D maxi<�0 li , m D maxi<�0 mi , and
Card.Var �

S
i<�0 FV.�i // D �, then (.1) if for some � 2 Var � dom.C /,

� , k, and s, ord.s/ < m, C; � W s )r�;nf � W k; hmi, and for every i < �0

there are a �i and l 0i so that �i is �Œ� WD �i � and C )r�;nf �i W l 0i ; s, then
C )nf;s� .

W
i<�0 �i / W l C 1; hmi; (.2) otherwise C )nf;s� .

W
i<�0 �i / W

l C 1; hmC 1i.
Define other connectives, including .

V
i<�0 �i / and 8 restricted to i, as

usual, or add them as primitives.
(6r�) If n > 0, C; �1 W t1; : : : ; �n W tn )r�;nf � W l; hmi for distinct �1; : : : ;

�n 2 FV.�/ and (��1 W t1; : : : ; �n W tn:� ) is not an �-redex, then
C )

r�;nf .��1 W t1; : : : ; �n W tn:�/ W l;
˝
t1; : : : ; tn;max

i2.n/

®
m; ord.ti /C 1

¯˛
:

The case division in (5.2r�) yields the following.

Observation If C )r�;nf .
W

i<�0 �i / W l0 C 1; hm C 1i, C )r�;nf .
W

i<�0 �i / W

l1 C 1; hmi, and ¹�i ºi<�0 D ¹�i ºi<�0 [ ¹�i ºi<�0 , then C )r�;nf .
W

i<�0 �i / W

max¹l0; `1º C 1; hmC 1i.

Define )r�
S

thus:
(7r�) if � is a �-quasi-term and C )r�;nf N.�/ W t , then C )r� � W t .
)r�

S
determines its corresponding ramified-typed language thus:

Lr�.S/ D
®
hC; �i W for some � 2 T r and l 2 !; C )

r�
S � W l; t

¯
:

We can define being a term of Lr� , and being a formula of Lr� , both relative to C ,
in the obvious ways.

Observations from Section 1 regarding )s� carried over to )r� .
Let � D max¹!; card.S/ºC.75 For a ramified-type context C and t 2 T r , let

�C;t D card.SC;t / for SC;t D ¹� W C )r� � W tº; note that �C;t < �. Fix a
�C;t -ordering h�i ii<�C;t

of SC;t .
We will now define a canonical translation trn from )r into )r� . This definition

is inductive, using the ordinal indexing k k. All clauses except that for quantification
over types other than i are homomorphic. If C; � W t )r� ' W hmi, let

trn.9� W t:'/ D

_
i<�C;t

trn
�
'Œ� WD �i �

�
:

To see that trn is well defined, note that, in this last clause, for each i < �C;t ,
k�Œ� WD �i �k < k9� W t:�k.

Observation If C )r � W t , then C )r� trn.�/ W j� j; t , that is, j� j D j trn.�/j1.
Proof is by induction on the construction of � . Note that if � is 9� W t:', the argument
uses the case division in clause (5.2)r� .

Informally, trn preserves meaning. Making this precise would require model-
theoretic discussion that it seems best to skip in this paper.

I do not mean to suggest that Russell’s hints at a substitutional interpretation of
quantification over non-i-types were hints at the strongest construal of such an inter-
pretation. But were we, in Russell’s place, to adopt the strongest construal, trn would
allow us to circumvent the Quinean objection to the repudiation of propositions that
accompanied Russell’s conversion to the MRT: for � any sentence of Lr , we could
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construe a sentence of the form “S judges that �” as a shorthand for “S judges that
trn.�/,” and similarly for other propositional attitude verbs. The step from Lr to Lr�

would then be a step toward optimality: unlike sentences of Lr , propositions would
contain no quantification of nonzero order.

On the suggestion we are considering, for S to judge that � , presumably S would
have to understand the proposition signified by trn.�/, which would be infinitely
long if � is of order greater than one. Of course for many such sentences � , judging
that � might be beyond human capacities. But there are higher-order choices of
� that figure in the Russellian foundations of mathematics. The approach we are
considering would require that human beings be able to understand trn.�/ for such
sentences.

Could Russell have adopted the strongest construal consistently with his other
views? This question reduces to the following: could he have thought it possible
to understand a proposition signified by an infinitely long formula? In [44, Sec-
tion 141], Russell asks whether there are infinite “unities”—understanding a unity
to be a proposition. He denies that we can know such propositions but leaves open
the possibility that they exist. But his infinite unities are infinite by virtue of infi-
nite complexity, which might better be called infinite depth: “it is possible to find a
constituent unity, which again contains a constituent unity, and so on without end”
(p. 145). In this sense, a proposition whose structure is reflected by an infinite for-
mula of Lr� should not count as infinitely complex, as is shown by the fact that for
any term � of Lr� , j� j1 < !. Still, it is hard to believe that this twist has much
promise: even if we do not consider an infinite sentence � of Lr� to be infinitely
complex, it can contain infinitely many nonlogical constants. Russell’s principle of
acquaintance is usually understood to require that if one understands � , one is ac-
quainted with each of the genuine constituents of trn.�/, which could be infinite in
number. If this understanding is correct, the suggestion on the table runs into conflict
with the plausible idea that a human being can only be acquainted with finitely many
entities.

Although I know of no reconstruction of Russell’s repudiation of propositions that
does better, in the end it is far from clear that translation into Lr� supports a satis-
factory interpretation of the repudiation of propositions. I am inclined to conclude
that there is an unresolvable tension between the repudiation and Russell’s thesis that
human understanding must be finitary.

Setting aside the worry posed by our finite capacity for acquaintance, where would
a language of the form Lr� leave the Russellian who wants to live with the MRT? As
a matter of surface syntax, the MRT requires us to consider phrases like “S judges
that” to be sentential (or more generally, formula) operators that form sentences (or
more generally, formulas); furthermore, these sentences (formulas) are semantically
atomic, with the underlying predicate (e.g., “Judges*”) provided by the operator. For
example, we can translate “Russell judges that Socrates is wise” as “Judges(russell,
Socrates is wise),” with “Judges”: hi; h1ii; but the semantic analysis provided by
MRT requires that this be refined to “Judges*(russell,socrates,wisdom)” if we are to
get closer to the underlying logical form. What about a sentence of the superficial
form “Judges(russell, ')” if ' is infinitary, perhaps containing infinitely many indi-
vidual constants? To apply the MRT to such a sentence would require going beyond
Lr� . It would seem to require infinite r-types and predicate constants with infinite-
ly many places. So even a language of the form Lr� is not optimal for Russellian
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purposes. Describing an optimal such language in detail would require a careful
formulation of the MRT, a project that I will not tackle here.76

One last point regarding the above discussion. Why not go all the way and elimi-
nate quantification over individuals? Doing this would be contrary to some straight-
forward remarks about such quantification. On the assumption that “Socrates is mor-
tal” expresses an elementary judgment, Russell wrote this:

Our judgment that all mean are mortal collects together a number of elementary judg-
ments. It is not, however, composed of these, since (e.g.) the fact that Socrates is mortal
is no part of what we assert, as may be seen by considering the fact that our assertion can
be understood by a person who has never heard of Socrates. In order to understand the
judgment “all men are mortal,” it is not necessary to know what men there are. We must
admit, therefore, as a radically new kind of judgment, such general assertions as “all men
are mortal” [55, p. 45].77

Russell’s point seems to be this: understanding a judgement with content signi-
fied by ^®�

Man.�/ � Mortal.�/
�

W � W i 2 S
¯

would require acquaintance with every individual signified by a member of S , and
understanding a judgment with content signified by 8� W i.Man.�/ � Mortal.�//
does not. Thus we should not translate the latter into the former.

Notes

1. In [4], Chihara says of Russell’s brief sketch of a typed hierarchy of classes in [44, Ap-
pendix B, pp. 523–24] that it “would now be roughly classified as a simple-type theory.”
This is not how I would understand type theories: the view of classes that Russell there
sketched was not based on an ontology of propositions and propositional functions.

Ramsey’s The Foundations of Mathematics (read in 1925, published in 1926),
reprinted in [40], is well known. In a paper published in Polish in 1921, Chwistek had
already suggested a simple theory of types; see the translation “Antimonies of formal
logic” in McCall [33, p. 343]. There was more in Chwistek [9], where he said that
simple types were in some respect inadequate (“inconsistent with certain fundamental
problems of Logic and Semiotics”).

2. The history of Russell’s thinking on paradoxes as a reason for ramification was explored
by Warren Goldfarb in [18].

3. See also Chihara [4, pp. 14, 16].

4. Perhaps Myhill’s phrase “type signatures” would be better (see Myhill [34]). But I will
defer to the more common usage.

5. Church [6] seems to be the original source. See also Church [5].

6. See Curry, Feys, and Craig [12, pp. 315–43] for Curry’s most-cited presentation. I gather
that Curry’s earliest presentation in print is [10]. Jonathan Seldin informed me that Curry
wrote to Hilbert about external typing in 1929. Curry’s original notation is no longer
used. I have followed the standard contemporary notation; see [19].
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7. In [55], the authors announce that what they actually put on the page will lack explicit
typing and should be understood as “typical ambiguous,” correctly calling this a matter
of “convenience.” What follows meets them halfway: occurrences of variables free in
a term do not as such have types. This approach reflects the discussion of “any” and
“all” in [41] (see also pp. 67–68 in Russell [46]), in which Russell construes “any” to
indicate free occurrences of variables subject to a universality interpretation (an astute
observation about the semantics of English).

8. Sometimes the notion of a type context is defined simply as a set of type assignments for
variables, in which case what we here call a context would be called a consistent context.

9. Alternatively, add them as new primitive expressions.

10. Alternatively, add 8 as a new primitive. Where its scope is clear, I will omit the period
after an occurrence of a quantifier prefix.

11. This convention lets us avoid reliance on ˛-conversion and ˛-reduction.

12. Whitehead and Russell used the circumflex “in situ” in place of � prefixing. As is well
known, this leads to ambiguities (see Curry [11]).

13. What Church [6] calls a �-term is what Barendregt [2] calls a �I -term; of course in both
texts every �-prefix contains a single variable. For a nice introduction to the �I -calculus,
see Anderson [1, Section 71].

14. Strictly speaking, the definition is by an obvious induction on the construction of � , as
follows. If � is a ˇ-redex and ˇ-converts to � 0, � !ˇ �

0. If � � .�v1 W t1; : : : ; vn W tn:�/

and � !ˇ � 0, then � !ˇ .�v1 W t1; : : : ; vn W tn:�
0/; if � � �.�1; : : : ; �n/ and

� !ˇ � 0, then � !ˇ � 0.�1; : : : ; �n/; if � � �.�1; : : : ; �n/, j 2 .n/, �j !ˇ � 0
j , and

for each i 2 .n/ � ¹j º �i � � 0
i , then let � !ˇ �.� 0

1; : : : ; �
0
n/; the remaining clauses for

:, �, 9, and any other primitive logical constants are straightforward.

15. The strict definition is by the obvious induction; I will omit details.

16. That is to say, if C ) � W t and � �ˇ� �
0, then C ) � 0 W t and FV.�/ D FV.� 0/.

17. See, e.g., Troelstra and Schwichtenberg [54, pp. 210–12]; also, see [19].

18. See [19].

19. For such a system, see Hodes [21].

20. The following remark from Russell bears on this distinction (see “The theory of logical
types” in [50, p. 221]):

“Thus a convenient way to read .x/:'x is “'x is true with all possible values
of x.” This is, however, a less accurate reading than “'x always,” because the notion
of truth is not part of the content of what is judged. When we judge “all men are
mortal,” we judge truly, but the notion of truth is not necessarily in our minds, any
more that it need be when we judge “Socrates is mortal.”
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21. This argument bears comparison with the one that Russell found in 1907 and that led
him to give up on his so-called substitutional theory and commit to a theory of types
(see Linsky [30]).

22. Of course Russell did not recognize this when he wrote Appendix B to [44]. In [16], An-
dré Fuhrmann suggested that this recognition came in his letter to Frege of May 24, 1903
(see Frege [14, pp. 158–60]), in which Russell first proposed the “no class” reduction of
classes to propositional functions. Fuhrmann argued that along with this recognition,
Russell also, (1) in effect, recognized the falsehood of what below I call Russell’s dictum
(see a later note), and with this he recognized (2) the fallaciousness of his propositional
paradox. Fuhrmann concluded that the purported propositional paradox played no role
in motivating ramification.

23. By the above remarks, 8� W hi.m.�/ � T .�// would be slightly better; but the difference
will not matter for what follows. To facilitate comparison with the passage quoted above,
I here use m and n instead of Greek letters.

24. In his appendix to Volume II of the Grundgesetze, Frege proved what I will call his ap-
pendix theorem: “For every second-level function of one argument . . . there are concepts
which if taken as arguments of this function determine the same value, although not
all objects falling under one of these concepts also fall under the other” (see Frege [15,
p. 136]). Slightly modifying Michael Potter’s formulation (see [35, p. 134]) and using
9.o/ for existential quantification over Fregean concepts of level 1, we can express it thus:

9
.o/'9

.o/ 
�
f .'/ D f . / & '

�
f .'/

�
& : 

�
f . /

��
:

This is a Fregean version of the set-theoretic fact that for any set d and any f W

Power.d/ ! d , f is not one–one. It can be proved by a variation on the above pur-
ported paradox. (Let '.x/ be 9.o/�.x D f .�/ & :�.x//. Assume :'.f .'//; since
f .'/ D f .'/, '.f .'// follows for a contradiction. By excluded middle, '.f .'//. So
we may fix a  so that f .'/ D f . / & : .f .'//).

In his letter to Frege of May 24, 1903, Russell clearly refers to his purported proposi-
tional paradox and to the instance of Frege’s appendix theorem obtained by taking f .�/
to be 8� W hi.�.�/ � �/, saying “now these difficulties have been overcome by means of
the theorem in your appendix. . . ” (see [14, p. 160]). I take Furhrmann to have proposed
that this amounts to Russell’s rejection of weak RD (see [16, p. 209]).

25. What follows is close to Church’s [8] reconstruction of the original paradox. In partic-
ular, (1b) on p. 517 is almost weak RD, except that Church uses a special symbol for
propositional identity. For an even more important difference, see a note in Section 4.

26. The subscripted R refers to Russell.

27. This was pointed out in Potter [35, pp. 132–33] and even earlier in [8].

28. One might conceive of propositions as mental entities to whose existence we only have
empirical access. If so, perhaps Ramsey would have put these propositional paradoxes
in his group B. But this mentalistic conception of propositions is foreign to Russell’s
writings. Had Ramsey, like Quine, thought that all legitimate quantification is into ar-
gument positions, he would have rejected the very sort of formal language within which
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the above arguments are formulated. But Ramsey liked simple-type languages. I can-
not see any grounds on which he could have considered the above arguments to rely on
“empirical terms.”

29. Russell also did not draw the now-standard distinction between a proposition and a for-
mula that might signify that proposition (relative to an appropriate assignment to the
variables free in that formula).

30. See Irwin [23] for some background on Aristotle’s use of the Greek word standardly
translated as “signify.”

31. See “On the nature of truth and falsehood” in Russell [42]. Bernard Linsky has suggested
that this change in Russell’s view occurred in 1908.

32. For an intriguing step towards spelling out such a theory, see Wrinch [57]. I thank
Bernard Linsky for this citation.

33. This example assumes that Ann and Socrates are individuals and that wisdom is a qual-
ity (and thus, in pre-MRT terms, the proposition that Socrates is wise is elementary).
In several places Russell treates these as idealizing assumptions.

34. See in particular the “metaphysical paragraph” in Whitehead and Russell [55, p. 43]. For
some useful discussion, see Linsky [29]. With the multigrade-relation theory, commit-
ment to facts crowded out commitment to propositions (see the quotation below). For
more on this shift, see Proops [37].

35. The relevant sentence (“They seem to be aware that this fragmenting of propositions
requires a similar fragmenting of propositional functions”) is omitted in the reprinted
version in Martin [32]. The mentioned fragmenting presumably refers to attributions of
propositional attitudes. Perhaps Church became unhappy with his lack of a textual basis
for this remark. Be that as it may, Whitehead and Russell should have gone along with
Church’s presumption.

36. So Russell could not consistently think that qualities were propositional functions. This
has not been universally appreciated. In [51], Sainsbury construes qualities to be “prop-
erties with which we are acquainted in perception” (p. 268). Perhaps this is right. But he
goes on to take seriously the suggestion that Russell considered propositional functions
to be properties (see pp. 285–92). And the converse inclusion has some currency (e.g.,
“For if we go with Russell in assuming that properties are propositional functions. . . ”;
see [1, p. 392]).

In [28, pp. 453–54], Linsky surveys Russell’s equivocal use of “property.” At [55,
p. 57], Russell uses “property” to apply to propositional functions; elsewhere it is pretty
clear that he does not (see [49, p. 94]).

37. See, for example, Russell [44, p. 356].

38. Also see [55, p. 39]: “A function is not a well-defined function unless all its values are
already well-defined.” See Hylton [22, p. 289, n. 7] and Linsky [28, p. 448].
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39. Again, such examples are to be understood as based on idealizing assumptions about
what entities are genuine individuals or genuine universals, or (speaking outside of the
MRT) what propositions are genuinely elementary.

40. “. . . genuine constituents in the sense that they do not disappear on analysis” [55, p. 51].
In [44], Russell allows that a proposition can be a constituent of another proposition.
I take it that, after repudiating propositions, Russell would not allow that one proposition
could be a genuine constituent of another.

41. In [28], Linsky independently made a similar suggestion: “Atomic predicates. . . stand
directly for both a universal and a propositional function” (p. 454). I think it clearer
not to use “stand for” for the latter role. He goes on to remark, with complete justice,
“Russell did not systematically work out the place of universals in his logic.”

42. Even so, the option of having universals take only simple types in the metaphysical
hierarchy would remain open; in fact, I think that it makes more sense than saying that
they take ramified types.

43. From [55, p. 44]: “We will give the name of ‘a complex’ to any such object as ‘a standing
in relation R to b’ or ‘a having quality q,’ or ‘a and b and c standing in relation S .’
Broadly speaking, a complex is anything which occurs in the universe and is not simple.”
Russell and Whitehead clearly understand these to exist if and only if a stands in relation
R to b, and so forth.

44. In Russell [47]; see [46, p. 208].

45. I take qualities in Russell’s sense to be 1-place relations.

46. If � is closed, we may take a to be empty and write Œ� � for Œ� �a.

47. One might object that in 3.2(4.1) and (5), I use the concept of truth in an illegitimate
way and that the following would be improvements: (4.10) Œ.�0 � �1/�

a is the result of
applying the material-conditional propositional function to Œ�0�a and Œ�1�a in that order;
(50) Œ9� W t:� �a is the result of applying the existential-quantifier-of-type-t propositional
function to Œ.�� W t:�/�a. But it is unclear that there is a real difference between (4.1) and
(4.10), or between (5) and (50), especially in light of the use of “true” and “false” in the
explanations of the meanings of connectives and quantifiers in [55, pp. 93, 127].

48. Russell was thinking in these terms by 1903. “There is, for each propositional function,
an indefinable relation between propositions [that are values of this function] and enti-
ties, which may be expressed by saying that all the propositions have the same form, but
different entities enter into them” ([44, p. 29]; see also p. 510). One’s first inclination is
to think of this “punching out” as a removal of constituents from a proposition. But this
fits uncomfortably with Russell’s metaphysics after his conversion to the MRT. Assum-
ing that the constituents of a propostion are real, the MRT would dictate that propositions
are not constutents of other propositions, in which case the arguments of a propositional
function could not have propositional types. This suggests that no language of the form
Ls could be optimal. (Similarly for languages of the form Lr , to be introduced in Sec-
tion 6. But a language of the form Lr� , also to be introduced in Section 6, would not
face this difficulty.)
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49. I call this a picture rather than a theory because it leaves open in what reflection of
structure consists.

50. For further discussion, see [21].

51. In Section 6 I will further consider the shape of an optimal formal language.

52. Michael Potter thought so: “If Russell had analyzed the reason for the apparent resolu-
tion of his propositional paradox by this result (viz. the “appendix theorem” mentioned
in a previous note), he would surely have realized that Frege’s result is itself in direct op-
position to Russell’s conception of propositions” ([35, p. 134]). This “opposition” would
require that Russell’s conception commit him to at least RD and presumably PQ as well.
Furhmann apparently agreed with this claim of “opposition,” though he concluded that
Russell’s resolution of his purported propositional paradox “heralds the demise of Rus-
sell’s early theory of propositions as certain complexes—at least in the naive version that
permeates his writings until and including The Principles” ([16, p. 210]). If this were
correct, there should be evidence of this demise in Russell’s writings between May 24,
1903, and his adoption of the MRT in 1908 (at the earliest). I would like to see such
evidence.

53. In [8, p. 518], Church referred to his n and m as names, which I take to mean that they
are nonlogical constants. But in the principle he actually used in his reconstruction of
Russell’s paradox, (1b) from p. 517, n and m are not in boldface and so presumably are
variables (which the argument requires, since the use of existential elimination requires
an eigenvariable). Since he missed the question of what a predicational occurrence of a
term in a formula can indicate about a constituent of the proposition expressed by that
formula, it seems that he was too quick to find RD plausible.

54. See Godel [17]. For example, there is evidence of a reading that requires the well-
foundedness of class membership.

55. In places, Russell uses “defined” rather than “specified.” I avoid that usage: we want a
name to be a predicative specification of its bearer, but it would be odd to say that a name
defines its bearer.

56. Let MR abbreviate “is a man in the room,” and let T abbreviate “is at least as tall as.”
With some simplification, we could regiment “the tallest man in the room” into Ls as
follows:

the � W i:
�
MR.�/ & 8� W i

��
MR.�/ & T .�; �/

�
� .� D

i �/
��
:

57. This is from the manuscript “On Insolubilia” from 1906: “t is important to observe
that the vicious-circle principle is not itself the solution of vicious-circle paradoxes, but
merely the result which a theory must yield if it is to afford a solution of them” ([50,
p. 205]).

58. See Goldfarb [18, pp. 24–25]. This usage goes back at least to Gödel [17], who refers
to “the constructivistic (or nominalistic) standpoint” (see Benacerraf and Putnam [3,
p. 456]). Gödel finds this cast of mind but says, “In the first edition of Principia . . . the
constructivistic attitude was, for the most part, abandoned. . . ” ([3, p. 461]). Note that in
this context “constructivist” has nothing to do with avoiding use of excluded middle.
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59. From Russell [45, p. 254].

60. From Russell [48, p. 124].

61. Apparently, no one explicitly recognized the difference between a substitutional inter-
pretation and a objectual interpretation of a quantifier until the early 1960s. To my
knowledge, the distinction was first clearly drawn in Marcus [31]. A substitutional inter-
pretation of quantification over types other than i would not imply that propositions and
propositional functions are linguistic expressions; in fact, on such an interpretation the
latter thesis is ill formed. On such an interpretation, a variable restricted to a type other
than i would not have a range of values; it would merely have a range of permissible
substitutends. Unclarity about these points has outlived Russell; see, e.g., Landini [26]
and Klement [24].

62. See Dummett [13, pp. 217–18] for discussion. It is not clear that this indicates a sub-
stitutional interpretation of such quantification. In [56], Wittgenstein’s understanding of
quantification is, crucially, substitutional.

63. If we insist that the disjuncts in an infinite disjunction are well ordered, we can fix in
advance a well-ordering of such terms to drop the scare quotes on “the.” But we could
as well take the disjuncts of an infinitary disjunctive proposition to be unordered.

64. On a Fregean view of the semantic values of sentences, 9� W hi:� is intelligible with
9� W hi interpreted objectually; but on non-Fregean views, it would be less clear how
interpret this (and related) sentences.

65. Another con from the viewpoint of the Whitehead–Russell project: when applied to
ramified-type formulas, substitutional interpretation of quantification over propositional
functions makes the axioms of reducibility even less plausible than they are under an
objectual interpretation.

66. For a useful discussion, see Soames [52, Chapter 2].

67. In the proof sketched in a footnote in Section 2,  was an arbitrary witness to an exis-
tential truth. Were we to interpret type hi to consist of sentences of Ls.S/ (for a given
S), that instance of Frege’s theorem would be false.

68. The following material on )r is presented with further discussion and detail in [21].

69. The superscripted nf is for “normal form.”

70. Thus �.�1; : : : ; �n/ is not a ˇ-redex.

71. According to the revision being considered, we would have to say of�
�� W

˝˝
2
˛
; 3

˛
; � W

˝
hi; 1i; 2

˛
:�

�
�.�/

��
either that it fails to signify at all, or that it signifies a partial propositional function.
Neither is appealing. I have no idea of whether this concern motivated Whitehead and
Russell in effect to count this and similar �l-terms as ill formed. But that ruling, captured
by (3r ), suggests that )r

S
should not be the last word in ramified-type assignments. I

discuss this further in [21].
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72. For ordinals below !! , # is defined as follows; for j 2 2 and ˛j D
Pnj

iD0 !
i � xj;i

for xj;0; : : : ; xj;nj
2 !, ˛0#˛1 D

Pn
iD0 !

i � xi where n D max.n0; n1º, and setting
xj;i D 0 for all nj < i � n, for all i � n, xi D x0;i C x1;i . Note that # is associative
and commutative.

73. Similarly for any other primitive quantifier constants.

74. See [21] for a detailed model-theoretic exposition of this idea.

75. Here ˛C is the successor cardinal for a cardinal ˛.

76. If a universal can only be instanced by a particular or a tuple thereof, a vocabulary set S

need only contain predicate constants of order 1. In this unlikely case, we could haveLr�

be optimal: the ˇ�-normal sentences of Lr� carry no commitment to propositions or to
propositional functions; not only do they contain no quantification over such shadowy
entities, they also contain no predications of them either, as shown by the following.

Observation. If all predicate constants in S are of order 1 (i.e., for any � W ht1; : : : ;

tn; mi 2 S , ti D i for i 2 .n/ and m D 1), ' is a ˇ�-normal sentence of L� ,
and �.�1; : : : ; �n/ is an occurrence of a subformula of ', then for each i 2 .n/ either
�i W i 2 S or �i 2 Var and is bound by a prefix in ' of the form 9�i W i. Proof: assume
otherwise. By assumption about S , � is not a predicate constant. If � is a �-term, then '
is not ˇ-normal, and so not ˇ�-normal. If � is a variable, it is not bound in ' since the
occurrence in question cannot be bound by an occurrence of 9� W i, but it cannot be free
in ' since ' is a sentence.

77. There is an almost identical passage in Russell’s “The theory of logical types”; see [50,
p. 226].
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