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a b s t r a c t

Binocular rivalry occurs when the eyes are presented with different stimuli and subjective
perception alternates between them. Though recent years have seen a number of models of
this phenomenon, the mechanisms behind binocular rivalry are still debated and we still
lack a principled understanding of why a cognitive system such as the brain should exhibit
this striking kind of behaviour. Furthermore, psychophysical and neurophysiological (sin-
gle cell and imaging) studies of rivalry are not unequivocal and have proven difficult to rec-
oncile within one framework. This review takes an epistemological approach to rivalry that
considers the brain as engaged in probabilistic unconscious perceptual inference about the
causes of its sensory input. We describe a simple empirical Bayesian framework, imple-
mented with predictive coding, which seems capable of explaining binocular rivalry and
reconciling many findings. The core of the explanation is that selection of one stimulus,
and subsequent alternation between stimuli in rivalry occur when: (i) there is no single
model or hypothesis about the causes in the environment that enjoys both high likelihood
and high prior probability and (ii) when one stimulus dominates, the bottom–up, driving
signal for that stimulus is explained away while, crucially, the bottom–up signal for the
suppressed stimulus is not, and remains as an unexplained but explainable prediction error
signal. This induces instability in perceptual dynamics that can give rise to perceptual tran-
sitions or alternations during rivalry.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

If one stimulus is shown to one eye and another stimu-
lus to the other, then subjective experience alternates be-
tween them. For example, when an image of a house is
presented to one eye and an image of a face to the other,
then subjective experience alternates between the house
and the face. This is known as binocular rivalry. Binocular
rivalry is a challenge to our understanding of the visual
system, and it is of special importance for studies of phe-
nomenal consciousness in humans and monkeys, because
the stimulus presented to subjects can be held constant

while the phenomenal percept changes (Frith, Perry, &
Lumer, 1999; Koch, 2004).

There have been many empirical studies of binocular
rivalry but the data they produce are conflicting and it is
very difficult to give them an unequivocal interpretation.
A number of proposals have been made but the neurocog-
nitive mechanism that explains this striking visual effect
remains unresolved (for reviews and overviews, see Alais
& Blake, 2005; Blake & Logothetis, 2002; Leopold & Logo-
thetis, 1999; Tong, Meng, & Blake, 2006). There are recent
formal models that can explain a growing number of
psychophysical findings and which fit with a range of
neurophysiological facts (Koene, 2006; Moreno-Bote,
Rinzel, & Rubin, 2007; Noest, van Ee, Nijs, & van Wezel,
2007; Wilson, 2007), and there is a general trend towards
approaches that integrate top–down and bottom–up
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processes in the brain (Tong et al., 2006); however, we be-
lieve the study of binocular rivalry may benefit from a
principled theoretical framework that can motivate these
new developments. Most approaches to rivalry stress the
role of inhibition, adaptation and stochastic noise. We take
the approach of epistemology—the theory of knowledge—
to go behind these approaches and ask the more funda-
mental theoretical question: ‘‘why should a perceptual sys-
tem, such as the brain, have and exploit such mechanisms
in the first place?” The motivation behind this approach is
the idea that binocular rivalry is an epistemic response to a
seemingly incompatible stimulus condition where two dis-
tinct objects occupy the same spatiotemporal location. This
paves the way for the description of a principled and uni-
fied account of rivalling perceptions under dichoptic view-
ing conditions. Our intent is thus not to add new data to
the burgeoning class of data already in hand concerning
binocular rivalry but to describe a unifying framework
for it.

There is growing support of the idea that the brain is an
inference machine, or hypothesis tester, which approaches
sensory data using principles similar to those that govern
the interrogation of scientific data. In this view, perception
is a type of unconscious inference. As Gregory states:

[P]erceptions are hypotheses, predicting unsensed char-
acteristics of objects, and predicting in time, to compen-
sate neural signalling delay (discovered by von
Helmholtz in 1850), so ‘reaction time’ is generally
avoided, as the present is predicted from delayed sig-
nals [. . .] Further time prediction frees higher animals
from the tyranny of control by reflexes, to allow intelli-
gent behaviour into anticipated futures (1997, p. 1122).

This view goes back at least to von Helmholtz (1860)
and has been expressed with increasing finesse since that
time (Gregory, 1998; MacKay, 1956; Neisser, 1967; Rock,
1983). More recently, it has been proposed that this intui-
tive idea can be captured in terms of hierarchical Bayesian
inference, using generative models with predictive coding
or free-energy minimisation; and that this is the main neu-
rocomputational principle for the brain’s perception of the
environment as well as its learning of new contingencies
(Ballard, Hinton, & Sejnowski, 1983; Dayan, Hinton, Neal,
& Zemel, 1995; Friston, 2002; Friston, 2003; Friston,
2005; Friston & Stephan, 2007; Kawato, Hayakawa, & Inui,
1993; Kersten, Mamassian, & Yuille, 2004; Knill & Pouget,
2004; Mumford, 1992; Murray, Schrater, & Kersten, 2004;
Rao & Ballard, 1999).

Our proposal is that this general theoretical framework,
in its more recent incarnations, provides the computa-
tional mechanism that best explains binocular rivalry and
reconciles conflicting evidence. We set out some core prop-
erties of predictive coding, show how it explains binocular
rivalry, and relate the explanation to a number of empirical
neurophysiological, imaging and psychophysical findings
concerning binocular rivalry. A Bayesian framework has
been suggested recently for bistable perception (slant riv-
alry) (van Ee, 2003), however, though this framework is
congenial to the account given here, it is not couched in
terms of generative models, predictive coding and empiri-
cal Bayes. As we shall see, in its more complex version

Bayesian theory has great explanatory promise. Our ac-
count has more in common with an earlier model by Dayan
(1998) that uses explicit generative models (A further re-
cent study of bistable perception (monocular rivalry) by
Knapen, Kanai, Brascamp, van Boxtel, & van Ee, 2007,
seems to count against the use of generative models; we
discuss this further in Section 6).

2. Core properties of predictive coding

A core task for the brain is to represent the environmen-
tal causes of its sensory input. This is computationally dif-
ficult; it is difficult to compute the causes when only the
effects are known: as Hume (1739–40) reminded us,
causes and effects are distinct existences and, in principle,
many different environmental events could be causes of
the same sensory effect. Conversely, the same environmen-
tal causes can occur in different contexts, so the same envi-
ronmental event can be the cause of many different
sensory effects.

Hierarchical Bayesian inference, using generative mod-
els, can manage or finesse these difficulties by harnessing
the causal structure of sensory stimuli to furnish formal
constraints on the mapping between cause and effect.
Rather than trying to work backwards from sensory effects
to environmental causes, neuronal computational systems
work with models, or as we shall say hypotheses, that pre-
dict what the sensory input should be, if it were really
caused by certain environmental events. The hypothesis
that generates the best predictions then determines per-
ceptual content. The hierarchical inversion of the genera-
tive models needed to finesse this inverse problem can
be reduced to quite simple processes that, in principle,
can be implemented by the brain. In fact, one can predict
many anatomical and physiological aspects of the brain
by assuming it is inverting a hierarchical model of its sen-
sory input (e.g., Friston, 2003; Friston, 2005; Friston & Ste-
phan, 2007). Below we give a simplified description, in
basic Bayesian terms of prior probability and likelihoods, of
some of the core properties of a system, employing predic-
tive coding or free-energy minimisation, that is involved in
solving Bayesian perceptual inference. (See Fig. 1).

2.1. Bayesian perceptual inference

According to this kind of Bayesian theory, the hypothe-
sis with the highest posterior probability (i.e., most proba-
ble given the input) wins and gets to determine the
perceptual content of the system. The posterior probability
depends on the likelihood (i.e., how well the hypothesis
predicts the input); and on the prior probability of the
hypothesis (i.e., how probable the hypothesis was before
the input) (Friston, 2002; Kersten et al., 2004; Murray,
Kersten, Olshausen, Schrater, & Woods, 2002). These prior
expectations are constructed hierarchically and are con-
text-sensitive. For example, if the hypothesis is that visual
input is caused by a box, then it is possible to predict, on
the basis of that hypothesis, what the input is going to be
as one moves around it. If the prediction turns out to be
right, and if the presence of a box is otherwise probable,
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then the probability for the hypothesis that it is a box goes
up. If there are no better hypotheses in play, then this
hypothesis wins and the perceptual inference will be that
the environmental cause is indeed a box (These examples
turn on visual perception; Bayesian frameworks are also
often used in multisensory contexts, where one modality
provides prior constraints for the other, e.g., Alais & Burr,
2004; Ernst & Banks, 2002).

2.2. Explaining away of bottom–up signal

The system tries to match bottom–up or driving signals,
caused by objects and properties in the environment, with
top–down predictions. If the predictions are good, then the
bottom–up signal will be explained away such that only
the discrepancies between prediction and driving signal –
the prediction error signal – remains as a bottom–up sig-
nal. As predictions get better, there will be less error signal
associated with a given stimulus at relatively lower levels
in the neural system (Friston, 2005; Yuille & Kersten,
2006). This suppression of best predicted input will be cen-
tral for the explanation of rivalry.

2.3. Hierarchy

The cognitive system is ordered hierarchically in levels.
For any pair of levels, the higher level will have hypotheses
that predict the driving bottom–up error signal from the
lower level. The higher level will itself provide error signals
for a yet higher level. The lower level of the pair will be
higher level for a yet lower level. Priors come from higher
levels, as in empirical Bayes (for a relevant predictive cod-
ing study of face perception, see Summerfield, Egner, Man-
gels, & Hirsch, 2005). Perceptual inference about different
hierarchically organised attributes of the visual scene are
made at different levels (Friston, 2005). It is not unusual
for theories of visual processing and of binocular rivalry
in particular (e.g., Freeman, 2005; Wilson, 2003) to be hier-
archical, the crucial point here concerns the computational
implications of hierarchical levels and the fact that these
provide formal constraints on the generative models that
make them empirical Bayes models.

2.4. Updating hypotheses/perceptual learning

In a hierarchical setting, that uses empirical Bayes, pri-
ors are not extracted directly from the natural scene statis-
tics, nor are they free parameters. They emerge naturally
on interaction with the world as learning suppresses pre-
diction errors at all levels of a hierarchical model. The hier-
archal nature of these models is central to empirical Bayes
because priors on lower levels are themselves constrained
by, and accountable to, higher levels. Empirical Bayes is a
powerful and ubiquitous inference framework that arises
in many contexts; ranging from the distinction between
fixed and random effects models in statistical analysis of
data to hierarchical models that have been proposed for
perceptual inference in the brain.

The prediction error signal plays a crucial role in infer-
ence since it helps to update hypotheses at higher levels,
such that better predictions can be issued and the predic-
tion error continually minimised. Hypotheses also are con-
text-sensitive, via modulation from other hypotheses at
the same or higher levels. Thus predictions about sensory
input can improve as more hypotheses about the context
of the stimulus are generated.

2.5. Prediction error and free-energy minimisation

Terms like ‘predictions’ and ‘hypotheses’ sound rather
intellectualist when it comes to basic perceptual inference.
But at its heart the only processing aim of the system is
simply to minimise prediction error or free-energy, and in-
deed, the talk of hypotheses and predictions can be trans-
lated into such a less anthropomorphic framework.

The notion of free-energy derives from statistical phys-
ics and is used widely in machine learning to convert diffi-
cult integration problems, inherent in inference, into easier
optimisation problems. Free-energy is essentially a mathe-
matical concept that is a function of probability distribu-
tions (like entropy, information or surprise) (a useful
introduction can be found in Dayan & Abbott, 2001, Chap.
10). This optimisation or free-energy minimisation can, in
principle, be implemented using relatively simple neuronal
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Prediction
error

Prediction
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awayX

X

Fig. 1. Simplified schematic of a pair of cortical levels based on generative
models. An open representational system like the brain (indicated with
the black box) must perform perceptual inference about the environ-
mental causes (S) of its sensory input (I). Higher level models or
hypotheses (H) about the possible cause are used to generate top–down
predictions (dark arrows) about the evolving input, which in turn explain
away bottom–up sensory signal (light arrows), leaving only the predic-
tion error as bottom–up signal to be explained away. Subsequent
updating of H should further minimise prediction error.
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infrastructures. The free-energy represents a bound on the
surprise inherent in any exchange with the environment,
under expectations encoded by its state or configuration.
A system can minimise free-energy by changing its config-
uration to change the way it samples the environment, or
to change its expectations. These changes correspond to
action and perception, respectively, and lead to an adaptive
exchange with the environment that is characteristic of
biological systems (Friston & Stephan, 2007 contains
numerous further references and discussion). In short,
any change to the brain’s state or connection parameters
that reduces free-energy renders sensory input less sur-
prising. If we discount uncertainty about the states, when
optimising the parameters (and vice versa) it is fairly easy
to show that the free-energy is the sum of squared predic-
tion errors, weighted by their estimated precision (op.cit.).

2.6. Top–down and bottom–up

What ultimately determines the resulting conscious
perception is the best hypothesis: the one that makes the
best predictions and that, taking priors into consideration,
is consequently assigned the highest posterior probability.
The model is however interactionist (in the terminology of
Tong, 2003) since it is essential to appreciate both activity
at relatively higher levels where predictions are made and
the nature of lower level activity in order to have a theoret-
ical framework for understanding either. This accords with
recent approaches to binocular rivalry that also stress the
interactionist element (e.g., Blake & Logothetis, 2002;
Nguyen, Freeman, & Alais, 2003; Tong et al., 2006). The
interactionist perspective holds for any pair of levels that
communicate with each other as top–down and bottom–
up throughout the brain. We will assume that a percept
corresponds to a prediction. It is important to note that,
in a hierarchical setting, predictions exist at all levels of
the hierarchy and, implicitly, all levels of perceptual detail.
This suggests that the percept is encoded in a distributed
way and accords with related notions of phenomenal
perception and their neurophysiological underpinnings
(e.g., Zeki, 2003).

3. Two problems concerning rivalry: Selection and
alternation

In dichoptic viewing conditions, where one stimulus is
shown to one eye and another to the other eye, binocular
matching fails because two different objects seem to occu-
py the same spatiotemporal position (Blake & Boothroyd,
1985). The epistemological task for the system, given this
incompatible or ‘‘un-ecological” condition is then to ex-
plain the combined bottom–up signal stemming from the
two stimuli: it does this rather elegantly by selecting only
one stimulus at a time and then alternating between them.
To account for binocular rivalry, two things must then
be explained (this important duality is also emphasised
in Noest et al., 2007):

First, the selection problem: why is there a perceptual
decision to select one stimulus for perception rather than
the other, and, further why is one of the two stimuli

selected rather than some conjunction or blend of them?
We propose a solution for this in Section 4.

Second, the alternation problem: why does perceptual
inference alternate between the two stimuli rather than
stick with the selected one? We propose a solution for this
in Section 5.

3.1. The current rivalry debate

In the last decade or so there has been two main posi-
tions on binocular rivalry. One widely held view stressed
low-level inter-ocular competition among monocular
neurons in early visual cortex. Another view (to a large
extent triggered by Logothetis, Leopold, & Sheinberg,
1996) stressed high-level competition among incompati-
ble patterns. There are signs that these may merge in a
view that stresses neural competition at multiple levels
of the visual system (for review of this development,
see Tong et al., 2006). A particular merger of top–down
and bottom–up mechanisms in rivalry is central to our
proposal too (for another detailed proposal, see Alais &
Melcher, 2007).

The core of these various approaches to rivalry is that
selection and alternation in rivalry must be explained in
terms of two mechanisms: inhibition of the incoming signal
from the stimulus which is not dominant, which is meant
to explain selection; and adaptation of the inhibitory influ-
ence of the relevant neural populations, which is meant to
explain alternation. Though the brain does exhibit both
inhibition and adaptation, this is a rather a priori character-
isation of the mechanism behind rivalry: any account of
binocular rivalry will have elements of inhibition and
adaptation; otherwise a pattern of dominance vs. non-
dominance of perceptual content can hardly occur. Here,
we take a more epistemological view and ask why a repre-
sentational system such as the brain should have general
computational and statistical properties such that it will
exhibit rivalry in dichoptic viewing conditions? A model
based on predictive coding provides a parsimonious and
principled answer to this question, and explains in one
move why there should be both inhibition and adaptation
in dichoptic viewing.

4. A Bayesian approach to the selection problem

Assume the stimuli are a house and a face and that the
percept currently experienced by the subject is the face.
Then the question, from a Bayesian perspective, is why
the face hypothesis (F) has the highest probability, given
the conjoint evidence (I) of a house and a face. The ques-
tion splits into two: (i) why is F favoured over the hypoth-
esis that it is a house (H)? (ii) Why is F selected over some
kind of conjunctive or blended hypothesis that it is a
‘house-face’ (F AND H)? (see Fig. 2).

Assuming the contents of the stimuli are independent, F
and H explain the evidence equally well even though they
each are unable to account for a large part of it. That is to
say, they are roughly equally likely. Given equal likelihood,
the perceptual inference will tend to depend on the prior
probability of the hypotheses. If, for some reason, F has a
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higher prior, then it will be selected for perceptual
dominance.

For the conjoint hypothesis F AND H the situation is the
opposite. It has a higher likelihood than F or than H
because, in principle, it can predict much more of the
evidence. But F AND H has a much lower prior than both
F and H: it is a priori very improbable that what is seen is
really a ‘‘house-face” and it is difficult to think of interac-
tions with the environment that could have induced a prior
for this hypothesis. As long as the low prior off-sets the
likelihood advantage for F AND H, over F and H, it will
not be selected over F or over H. A prediction follows from
this: rivalry will be extinguished if the blended hypothesis
happens to have a high prior (this may describe what
happens in perceptual grouping under rivalry, see below).

Perceptual selection of a unitary hypothesis follows nat-
urally from the predictive coding. This is because, a priori,
the brain has learnt that there can be only one cause of
sensory input at the same place and time. This generic
prior constraint (a ‘‘hyperprior”) reflects the way we sam-
ple the visual world; binocular vision, in primates, rests
upon both eyes foveating the same part of visual space.
We have therefore learned that the explanation for binoc-
ular visual input is unitary (i.e., has just one cause). In
other species, such as reptiles (whose eyes point in differ-
ent directions) it is possible that a house and face could be
perceived conjointly in different places. However, for us,
this is a priori highly unlikely. In other words, the prior
probability of both a house and face being co-localised in
time and space is extremely small, to the extent it is almost
impossible for us to support this representation or percept.
The neuronal mechanisms mediating this selection are
probably very similar to those mediating lateral inhibition

in the early visual system. These lateral interactions induce
‘winner-takes-all’ or ‘biased competition’ (Desimone,
1998) dynamics and may represent a fundamental mecha-
nism in Bayesian inference.

In a recent model (Noest et al., 2007), it is argued that
selection and alternation are the results of two fundamen-
tally different mechanisms. Noest et al. accordingly model
selection (what they call ‘percept choice’) using subthresh-
old facilitation, and alternation with adaptation, inhibition
and noise. We agree in principle that these two questions
are separate but the account we describe explains them
in a unified manner as different facets of the same empir-
ical Bayesian mechanism.

5. Solving the alternation problem

The theoretical challenge is to explain why the system,
having selected one stimulus for perception, after a few
seconds decides to de-select it in favour of the alternative
stimulus. It is clear a priori that some kind of reciprocal
inhibition must be involved but inhibition cannot be the
whole story, if alternation is to be explained. There must
be a dynamic evolution of inhibition and activity to ensure
alternation. Traditionally, one appeals to adaptation, which
allows disinhibition; this seems to be a fundament of any
theory of rivalry; so we explain in epistemological terms
why the visual system should exhibit adaptation.

The predictive coding framework posits a hierarchical
inversion of generative models of how inputs are caused:

At the higher, hypothesis-generating level only the cur-
rently best hypothesis is allowed to generate predic-
tions. It seems plausible that inhibition will be lateral,
in relation to other hypotheses at the same level. This
gives high activity for the winning hypothesis with the
highest posterior and thus for the dominant percept,
and lower activity for other hypotheses at that level.
At the lower level there is the opposite pattern: the bot-
tom–up driving signal for the dominating percept is
explained away by good predictions, meaning the pre-
diction error for the dominant hypothesis is suppressed.
Conversely, the bottom–up error signal for the currently
suppressed stimulus is not.

In our example, there will be predictive activity creating
the top–down signal for the dominant face stimulus and
much driving activity in the bottom–up prediction error
signal for the suppressed house stimulus. The key point is
that even though F successfully explains the face-signal,
there remains a large error signal, stemming from the
house-stimulus (see Fig. 3).

This unexplained prediction error renders perceptual
inference unstable. It is this instability that causes percep-
tual alternations. It is probably easiest to understand the
mechanisms of perceptual transitions in terms of a bi-sta-
ble system: if the brain is trying to minimise prediction er-
ror or free-energy, we can associate a free-energy or
potential with every brain state, for a fixed stimulus. In
bi-stable systems the resulting energy landscape corre-
sponds to a double well (see Fig. 4). The state of the brain
will try to minimise the free-energy by occupying one of

Fig. 2. Simplified Bayesian account of the selection of one stimulus rather
than the other and rather than a blend: no hypothesis enjoys both high
likelihood and high prior probability, hence the hypothesis with the
highest prior can win (as long as the conjunctive hypothesis does have
very low likelihood).

J. Hohwy et al. / Cognition 108 (2008) 687–701 691
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the two (face or house) wells. Theoretically, there are two
mechanisms that can cause the state of the brain to switch
from one well to the other (i.e., cause perceptual alterna-
tions). These are dynamical and structural in nature and
can be understood in terms of free-energy minimisation:

5.1. Structural instability and adaptation

This mechanism rests on changes in the free-energy
landscape that make the occupied well unstable. Put sim-

ply, the well that is currently occupied increases its free-
energy so that the brain’s state is expelled to the other well
(i.e., perceptual state). This involves a structural change to
the landscape that makes the current state structurally
unstable. The reason the current state becomes unstable
could be that there is a strong (hyper-)prior that the world
changes. A static hypothesis will quickly lose its clout in a
changing world. There are many instances of this in terms
of neuronal dynamics such as spike-rate adaptation and
other adaptation phenomena observed neurophysiologi-
cally. In terms of predictive coding, the current hypothesis
will always have a decreasing prior probability. In neuronal
terms this would be mediated by adaptation of the corre-
sponding neuronal representation. As this hypothesis
shows adaptation, it fails to suppress prediction error and
the free-energy of that state increases. This means that
the occupied energy well becomes unstable and the pre-
diction error associated with the competing hypotheses
will eventually supervene and cause the percept to switch
to the other energy minimum. See Fig. 4a for a schematic
summary of this adaptation hypothesis.

5.2. Dynamical instability and stochastic resonance

Structural instability can be mediated using determinis-
tic mechanisms. Another possible mechanism for percep-
tual alternations relies on stochastic or random effects
(for recent discussions, see Brascamp, van Ee, Noest,
Jacobs, & van den Berg, 2006; Kim, Grabowecky, & Suzuki,
2006; Moreno-Bote et al., 2007). Because the brain is trying
to minimise its free-energy, it has to explore the free-en-
ergy landscape. A generic scheme for this exploration relies
on random or stochastic effects (cf., random mutations in
evolutionary selection or random noise in simulated
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Fig. 3. Simplified schematic of rivalry using generative models and predictive coding for a system consisting of just one pair of levels: even though one
hypothesis (F) about the environmental cause leaves only little prediction error from that stimulus (thin light arrow from IF), a large unexplained signal is
left unexplained from the other stimulus (thick light arrow from IH).
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Fig. 4. Schematic summaries of: (A) Structural instability and adaptation.
A hyperprior that makes the system expect change in the environment
diminishes the energy well for the current perceptual inference. (B)
Dynamical instability and stochastic resonance. Stochastic resonance
refers to the same mechanism by which random fluctuations in a system’s
state enables it to move over energy barriers and explore multi-stable
landscapes. See main text for further explanation.
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annealing). In multi-stable dynamical systems, this can be
expressed as stochastic resonance. Put simply, random
changes, due to neuronal noise, in the brain’s state can
occasionally push it over the free-energy barrier separating
the house and face wells. This mechanism does not involve
changes in, or adaptation of, the free-energy landscape but
rests on dynamical instability introduced by random fluc-
tuations in the brain’s state. See Fig. 4b for a schematic
illustration of this mechanism. There is good evidence that
stochastic resonance plays such a role in rivalry. Kim et al.
(2006) subjected rival stimuli to weak periodic contrast
modulations and observed dominance peaks predicted by
stochastic resonance. Generally, stochastic resonance oc-
curs when the signal-to-noise ratio of a nonlinear system
is maximized at a moderate level of noise. It occurs in
bistable and excitable systems with sub-threshold inputs.
Usually, the inputs constitute a weak periodic signal,
which have a greater effect when noise enables the input
to surpass threshold. However, in our case we are not deal-

ing with input–output characteristics but the dynamics of
a system that is trying to optimise perception. Here, we use
stochastic resonance to refer to the same mechanism by
which random fluctuations in a system’s state enables it
to move over energy barriers and explore multi-stable
landscapes.

In short, either structural or dynamic mechanisms of
predictive coding, or a combination, can explain perceptual
alternation. Alternation ensues in rivalry conditions specif-
ically where there is a large unexplained but explainable
error signal. In Bayesian terms, in this situation no one
hypothesis has both high likelihood and high prior, and
inference becomes unstable. See Fig. 5 and Dayan (1998)
who provides modeling evidence ‘‘that alternation can be
generated by competition between top–down cortical
explanations for the inputs, rather than by direct competi-
tion between the inputs”.

For some relatively compatible pairs of stimuli, conjoint
hypotheses may have a relatively high prior, which would

Fig. 5. Simplified Bayesian scheme for the alternation of stimuli in rivalry. When one stimulus achieves dominance and there are diminishing returns for
predictions regarding it, the system must consider the best explanation of the unexplained error signal stemming from the currently suppressed stimulus
(Starred hypotheses signify explorations of the free-energy landscape).
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slow down alternation by creating a longer transitional
phase (i.e., by adding a third well or attractor). Large differ-
ences in prior for F and H may make the system try to re-
vert to F rather than shift to H (see Brascamp et al., 2006,
for such transition returns); however, the system will not
be stable as long as a predictable but as yet unexplained er-
ror signal from the house stimulus remains. These proper-
ties of the system correspond well to the often hesitant
alternations for various combinations of stimuli (we say
more about the psychophysics in the next section).

5.3. Summary

In this framework, the inhibition is not of the bottom–
up, incoming signal per se. Rather it is inhibition of the
competing high-level hypotheses that could explain away
the sensory signal. In other words, inhibition decreases
top–down predictions of the suppressed stimulus. The
epistemological motivation for this is that the best per-
forming hypothesis dominates perceptual content. The
explanation for competition among high level explanations
(c.f., biased competition; Desimone, 1998) is simple; our
experience of the world tells us that only one object can
exist in the same place at the same time. This hyperprior
is learnt and engrained in our neuronal circuits as an
empirical prior.

The effect of this hyperprior is that bottom–up signals
from the suppressed stimulus are not cancelled by top–
down predictions; this increases the free-energy of the sys-
tem and makes it more unstable. Mechanistically, this may
be mediated by a reduction in the strength of lateral con-
nections in the cortex that encode the uncertainty about,
or precision of, visual signals (Friston, 2003). These
changes may be enacted by modulatory neurotransmission
(c.f., Yu & Dayan, 2005) or possibly fast synchronised oscil-
lations (c.f., Womelsdorf & Fries, 2007).

The ensuing instability helps explain why random fluc-
tuations may play a significant role in rivalry. In contrast,
approaches to rivalry that do not employ predictive coding
or free-energy minimisation will tend to view inhibition as
decreasing the strength of the bottom–up signal; this sta-
bilises the system and thus makes it harder to see why
alternation should occur in the first place. Also, a predictive
coding scheme fits particularly well with a system that ex-
ploits stochastic effects, since both the effect of the noise
and the occurrence of attractors is explained in terms of
the brain’s free-energy landscape. There are many exam-
ples of this interplay in both the physical sciences (e.g.,
Yang, Onuchic, & Levine, 2006) and neurobiology (e.g.,
Winterer et al., 1999).

With empirical Bayes we can see why there is adapta-
tion: if the system has learned that the world always
changes – that there is variability in the environment –
then even initially adequate hypotheses will have decreas-
ing posteriors over time; as it will be more and more prob-
able that there will be portions of sensory evidence that it
fails to explain away. Notice that a prior for change is not
something that the system will be able to extract from sta-
tic visual scene statistics; instead, it comes down as a
hyperprior in an empirical Bayes framework.

Once structural and dynamical instability have done
their jobs, and the perceptual state has shifted from F to
H, the mechanisms kick in again, and the system will then
adapt to H, and eventually shift back to F. There is no psy-
chophysical evidence that rivalry can be extinguished alto-
gether except for very weak stimuli (Liu, Tyler, & Schor,
1992) (this seems in contrast to perception of ordinary
bistable stimuli) so even though one stimulus may enjoy
a high prior probability and be highly variable, and the
other a low prior and not be variable, alternation will even-
tually occur. We explain this by appealing to the fact that
incompatible hypotheses (like F and H) will each have
low but roughly equal likelihoods, which will always leave
an attractor for the non-dominant hypothesis. Given sto-
chastic effects, the system will eventually come to occupy
this state too, with probability one.

In sum, the proposal therefore motivates inhibition and
adaptation in a more principled way than non-epistemo-
logical accounts, and thus explains rivalry as an unavoid-
able and emergent outcome of representational systems
like the brain. It rests on the recurrent dynamics required
by hierarchical inference and positions itself in direct
opposition to conventional heuristics that frame percep-
tion in terms of feedforward dynamics; e.g., like the follow-
ing from Lee, Blake, and Heeger (2005) ‘‘competition
between two rival stimuli involves neural circuits in V1,
and attention is crucial for the consequences of this neural
competition to advance to higher visual areas and promote
perceptual waves.”

6. Integrating psychophysical evidence under the
predictive coding framework

6.1. Less rivalry for consistent stimuli

As noted by Blake (1989) rivalry tends to occur when
there is an increasing incompatibility between the stimuli
presented to the two eyes. More consistent stimuli will
tend to fuse. This fits within the predictive coding frame-
work because it is a case where the conjoint hypothesis
does have high prior. That is, were the stimuli a mouth-less
face and a mouth, then the updated, dominant hypothesis
F* (‘‘it’s a face with a mouth”) would have a substantial
prior. Fusion would then be allowed since the most likely
hypothesis will have a high prior and the system will settle
in a deep third well.

6.2. Patchy break-through of suppressed percept

Often, there is no clear-cut shift between percepts in
binocular rivalry. Dominance breaks through in small
patches of the visual field and gradually spreads before
completely or partially suppressing the competing image
(Lee et al., 2005; Meenes, 1930; Wheatstone, 1838). So
there are periods where the subject experiences some of
the face and some of the house. This is explained by the at-
tempts to update the currently dominating hypothesis by
exploring the free-energy landscape in response to the pre-
diction error signal. The system does not stabilise with
these patches because much prediction error still is unac-
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counted for and because the conjoint hypothesis has a very
low prior.

This part of the phenomenology may be influenced by
perceptual inference for local stimulus attributes at low
levels of the visual hierarchy. For example, for a particular
area of visual space, where parts of the house and the face
do not have much overlap, there may be a good perceptual
inference to the occurrence of, say, the elemental features
of a nose such that error for that area is efficiently ex-
plained away. Solutions for this area may therefore be a
starting point for perceptual inference for the whole stim-
ulus. However, even though the local posterior probability
of the occurrence of a nose is high, it will decrease when
considered in a more global context where ‘nose-houses’
have very low prior.

6.3. Inter-ocular grouping

Subjects may also experience rivalry where they per-
form visual grouping of items presented to both eyes. For
example, if there is an image of half a face and half a house
presented to one eye, and an image of the other halves of
the face and of the house presented to the other eye, then
there may be perceptual rivalry between a house and a
face; the two halves of the two images have been grouped
together, and it is the re-grouped percepts that are rival-
ling, not the original segmented images (Diaz-Caneja,
1928). This can also be done with patchy rivalry sets, and
the effect is less stable than with non-patchy, conventional
rivalry stimuli (Alais & Blake, 1999a; Kovacs, Papathomas,
Yang, & Feher, 1996; Lee & Blake, 2004). This can be ex-
plained by a higher prior probability for the grouped stim-
uli than for the divided stimuli. That is, F and H will each
have higher priors or stronger attractors than the hypoth-
esis that it is a half face-half house. As F begins to domi-
nate, the face signal from each eye will be explained
away, leaving a coherent whole-house signal unaccounted
for as the prediction error. This effect would be more top–
down or prior driven than when no grouping occurs (since
the likelihoods of the competing hypotheses will be simi-
lar) and indeed this effect requires some learning and is
harder to sustain.

For interocular grouping of Díaz-Caneja stimuli (dich-
optic viewing of two half-fields of concentric circles and
vertical lines) perception alternates between rivalry be-
tween the half-fields and rivalry between the coherent
stimuli (Ngo, Miller, Liu, & Pettigrew, 2000), and domi-
nance times of the coherent but not the half-field percepts
can be modulated with caloric vestibular stimulation (Ngo,
Liu, Tilley, Pettigrew, & Miller, 2007). This suggests two
pairs of attractors, at different hierarchical levels, that rival
within each pair and among pairs (‘‘meta-rivalry”, Ngo
et al., 2007). This complex energy landscape could be ex-
plained by pairwise adaptation of attractors: once the
attractors for half-fields have both been occupied the sys-
tem begins to expect change in the environment away
from half-fields. Since a pair of higher level attractors is
available the state settles there until they in turn adapt.

Lee and Blake (2004) explored the role of patchiness in
inter-ocular grouping and found that eye-specific process-
ing may have a role to play in this type of inter-ocular

grouping. They propose that dominance patterns comprise
local eye-based zones of dominance that are in turn subject
to more global grouping forces. This is in fact consistent
with the hierarchical nature of predictive coding that al-
lows local solutions to bias priors in favour of one or the
other global stimulus. The exact course of dominance and
grouping will depend strongly on the choice of rivalling
stimuli and the nature of the patchiness since rivalry for lo-
cal stimulus attributes will depend on the balance of priors
and likelihoods for the patch as well as the concurrent
updating of probabilities for neighbouring patches.

6.4. Flicker and swap rivalry

When flickering stimuli are swapped rapidly between
the eyes, normal dominance patterns of rivalry still occur
such that one flickering percept may dominate for several
seconds, during which period each eye is actually pre-
sented with each stimulus numerous times (Logothetis
et al., 1996). This is surprising because we would expect,
perhaps, that there would be rivalry between difficult-to-
distinguish trains of flickering, shifting percepts. We again
explain this in terms of relatively high priors or attractors
for the distinct hypotheses F and H, relative to the conjoint
hypothesis.

Under these conditions, there is, in fact, change in the
world since each eye channel is presented with changing
stimuli. This might suggest that the hyperprior for change
is satisfied, and that adaptation therefore should not take
place. However, the prior probability that two objects
could move sufficiently fast between locations to repro-
duce flicker-stimuli is very low. Indeed such hyperpriors,
that flickering stimuli are caused by the motion of a single
stimulus, are the cornerstone of many psychophysical and
electrophysiological studies of apparent motion (e.g., Bil-
lock & Tsou, 2007).

The unexpectedly normal pattern of rivalry, where the
swapping is not perceived, can be explained by appeal to
hierarchical processing, which entrains early visual cortex,
before binocular convergence, and imposes higher level
constraints on the percept. This has been modelled suc-
cessfully in a hierarchical neural model (Wilson, 2003). In
short, it may be that the hyperprior for a variable environ-
ment favours slow change over rapid change (cf. apparent
motion). A good case for such a prior for slow change has
also been made in relation to tactile perception in a model
of the cutaneous rabbit illusion; this is a condition with
much noise due to poor tactile acuity, which therefore al-
lows priors to play a pivotal role for perceptual inference
(Goldreich, 2007).

In a different type of paradigm Blake and colleagues
(Blake, Westendorf, & Overton, 1980; Lee & Blake, 2004) al-
lowed one stimulus to achieve dominance before they
gradually decreased the intensity of the stimuli and
swapped them. When the suppressed stimulus is swapped
to the eye of the dominant stimulus, it becomes dominant,
suggesting a role for eye-dominance rather than pattern
competition in rivalry. This is also consistent with predic-
tive coding. With respect to processing for the dominant
eye stimulus it is a situation where there is successful pre-
diction of (gradual or non-rapid) changes in the world. On
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the assumption that there is less adaptation effect for such
changing stimuli the system should remain relatively sta-
ble, and one should expect the dominant eye to continue
its domination.

6.5. Percept selection repetition (rivalry memory)

If viewing of bistable stimuli is interrupted for long
periods of time (5 s), then the selected percept post-inter-
ruption will tend to be a repeat of the last seen stimulus
(Orbach, Ehrlich, & Heath, 1963). At shorter interruptions
rivalry alternation is not disturbed in the same way. This
has recently been modelled with subthreshold facilitation
(Noest et al., 2007), or excitatory synaptic facilitation fol-
lowed by depression (Wilson, 2007). This phenomenon
can also be accommodated within the present framework.
Interruptions are changes in the environment and thus, gi-
ven a hyperprior for change in the environment, something
that relieves the need for continued adaptation (i.e., de-
creased prior) for the dominant percept. Thus when the
stimuli are shown again, short-term changes in synaptic
efficacy established by the last percept confer an advan-
tage in terms of perceptual inference. Such changes in syn-
aptic efficacy (Noest et al., 2007) are entirely consistent
with perceptual learning under empirical Bayes (Friston
& Stephan, 2007) and may mediate sensory learning in
the auditory domain, when stimuli are repeated (Garrido,
Kilner, Kiebel, Stephan, & Friston, 2007). The reason the
repetition effect is weaker after shorter interruptions
may be that the hyperprior for change (possibly mediated
by synaptic depression) is still active.

6.6. Monocular rivalry

Rivalry can also occur for a single stimulus presented to
one or both eyes (Andrews & Purves, 1997; Breese 1899;
Campbell, Gilinsky, Howell, Riggs, & Atkinson, 1973). The
experience of monocular rivalry is less stable than in bin-
ocular rivalry and seems to occur mostly for fairly rudi-
mentary stimuli such as a mesh of blurred green and red
gratings. We think this reflects dynamically stable priors
for the hypothesis that the environment has line segments
of different distinct orientations. In other words, this is
something the visual system is always expecting (Hubel
& Wiesel, 1962; Kenet, Bibitchkov, Tsodyks, Grinvald, &
Arieli, 2003). Therefore, when no higher level hypotheses
are involved and when there is enough uncertainty or
noise in the system (e.g., blurring), the system will try to
predict the scene for line segments rather than meshes.
With these kinds of meshes such predictions will be suc-
cessful and rivalry will then occur. This would also help ex-
plain why there is rivalry for orthogonal gratings presented
dichoptically even though the prior for the conjunctive
hypothesis is not very low.

A recent study of monocular rivalry (Knapen et al.,
2007) shows that increased depth perception of blurred
orthogonal gratings (such that one is perceived to be be-
hind the other) does not decrease rivalry even though it
then is less likely that they are incompatibly occupying
the same spatiotemporal location. This supports the view
that suppression is ‘‘determined by a distance in a low-le-

vel neurally represented space subtended by features such
as orientation” rather than by estimation of likelihoods
based on the parameters of fully elaborated object repre-
sentations in internal models. Given the hierarchical nat-
ure of our empirical Bayes framework, different stimulus
attributes are each processed at distinct levels in the hier-
archy where the priors of each model will be influenced
from levels above. The question is then why the priors of
this low level model do not give the predicted role to depth
cues. The answer, as above, is that this may be tied to the
specific stimulus used, which is very basic and noisy. It fol-
lows that higher-level bistable stimuli should decrease riv-
alry as incompatibility is lessened, e.g., if depth and
context cues allow us to interpret the faces in Rubin’s vase
as behind the vase, then rivalry should decrease, contrary
to the findings for monocular rivalry gratings in Knapen
et al.’s study.

6.7. Levelt’s Second Proposition (Levelt, 1965)

This is the key finding that contrast change in one eye
(the ‘‘variable” eye) primarily causes changes in domi-
nance durations in the other, ‘‘fixed” eye, rather than in
the variable eye itself (the variable eye still has some dom-
inance change (Bossink, Stalmeier, & De Weert, 1993;
Mueller & Blake, 1989). Our account of Levelt’s Second
Proposition is that, when the fixed eye stimulus is domi-
nant, changes in the unexplained prediction error from
the suppressed stimulus in the variable eye induces
changes in the overall energy landscape, such that the per-
ceptual decision for the fixed stimulus is brought away
from or towards transitions over the free-energy barrier.
For example, the probability that the fixed stimulus is
the cause decreases as the variable stimulus is strength-
ened because the hypothesis for the fixed stimulus then
predicts less of the total bottom–up signal. The fixed stim-
ulus attractor is then evacuated earlier than if the variable
stimulus had not been changed. This decreases its suppres-
sion periods, as the Second Proposition says (and vice versa
when the variable stimulus is weakened). On the other
hand, when the variable stimulus is itself dominant there
is not this additional increased prediction error to destabi-
lize the system. In that case, there is only the normal struc-
tural and stochastic dynamics in play.

The above account of Levelt’s Second Proposition is tied
to conditions where the fixed stimulus contrast is rela-
tively high. It has recently been found (Brascamp et al.,
2006) that when the fixed stimulus contrast is very low,
the Proposition is reversed such that the dominance of
the variable stimulus is mainly modulated by changes in it-
self. Under the current account, this may be because the
attractor for the fixed stimulus is then already quite shal-
low and thus already more susceptible to transitions asso-
ciated with an unstable energy landscape.

Levelt’s Fourth Proposition is that, when the strength of
both stimuli are increased, suppression periods for both
will be shortened (Levelt, 1965). Again, the explanation is
that when perception of both stimuli is associated with
stronger, unpredicted error signals from the other percep-
tually suppressed stimulus, then the system will be im-
pelled to explore the free-energy landscape earlier.
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These considerations also help explain why changes in
the suppressed stimulus will be noticed, and thrust the
stimulus into dominance, if accompanied by abrupt in-
creases in stimulus strength (Blake, Yu, Lokey, & Norman,
1998). On the other hand, when such probes have less
abrupt onsets they tend to go unnoticed irrespective of
whether they are congruent or not with the stimulus
(Blake & Camisa, 1979). This coheres with the predictive
coding account since probes that are congruent with the
dominant stimulus are already predicted and probes that
are not congruent are not predicted and just adds to the al-
ready large error signal.

6.8. Modulation of dominance duration

(i) When one stimulus is viewed in a congruent context
and the other in a non-congruent context, the dominance
duration of the former tend to increase (Alais & Blake,
1999). Introducing a congruent context does not increase
bottom–up error signal strength when suppressed, so the
predictive coding framework can explain why context
modulation does not give shorter dominance periods for
the non-congruent stimulus. On the other hand, context in-
creases the prior for a congruent stimulus relative to a non-
congruent stimulus, so it would take longer for the poster-
ior for the dominant, updated hypothesis to be destabi-
lised. This would explain the increased dominance
periods. (ii) With practice, voluntary (endogenous) atten-
tion can prolong dominance periods for the attended stim-
ulus without however being able to extinguish rivalry (on
the other hand, endogenous attention to properties of the
suppressed stimulus will not bring that stimulus out of
suppression) (for discussion, see Blake & Logothetis,
2002; Leopold & Logothetis, 1999). This is an example of
a top–down process modulating dominance. In the predic-
tive coding framework we can view endogenous selective
attention as increasing or enforcing priors for a certain
hypothesis. That would make the system sensitive to what
the hypothesis ‘‘wants” to see, which could prolong domi-
nance. This admittedly schematic proposal is also consis-
tent with findings that attention to a cue can determine
onset predominance (Mitchell, Stoner, & Reynolds, 2004)
and that removing attention from the stimuli slows down
rivalry alternations (Paffen, Alais, & Verstraten, 2006) (for
more on the relationship between attention and free-en-
ergy, see Friston & Stephan, 2007). It also makes sense that
this cannot halt rivalry; if the system is using inappropriate
priors they will not be sustained, because these priors are
themselves subject to top–down influences. This is what
happens in rivalry conditions where F and H are in effect
bad hypotheses due to the large error signal they must
leave unpredicted. On the assumption that the high level
hypothesis for the suppressed stimulus is inhibited, it
seems plausible that activity in it cannot be artificially
maintained, which explains why endogenous attention to
the suppressed stimulus will not bring it to dominance.
(iii) Whereas endogenous attention has some effect on
the dominant stimulus, exogenous attention (attention
‘‘grabbing”) in the suppressed stimulus will bring it out
of suppression (Fox & Check, 1968). Attention grapping
thus decreases the dominance period of the other stimulus

and is explained by an increase in strength of the error sig-
nal (this seems consistent with findings on continuous
flash suppression; Tsuchiya, Koch, Gilroy, & Blake, 2006).

7. Accounting for conflicting neurophysiological and
imaging evidence

Empirical findings on rivalry using single unit record-
ings and fMRI seem to be in conflict and are difficult to uni-
fy under a single theoretical framework. However, it is
important to remember that neuronal implementations
of predictive coding require both the representation of
the prediction and the prediction error in hierarchically or-
dered pairs of levels in the brain. It is the hierarchal
deployment of reciprocal changes among these that will
offer an explanation for diverse empirical findings.

Single unit studies in monkeys, yield the following con-
sistent picture. Starting with the LGN, there seems to be no
evidence of rivalry related changes in the geniculo-striate
system (Lehky & Maunsell, 1996). Successive stages of
the visual cortex show increasing levels of activity in phase
with the animal’s reports of dominance: at low levels (V1)
only few units selective for a given stimulus will fire in
phase with dominance and suppression. At middle levels
(V4, MT) more will, but the picture is somewhat mixed
with some cells more active than other, almost no cells
completely suppressed and some cells even active when
their preferred stimulus were suppressed. This suggests
that single unit recording can selectively sample either
the predicting neurons or the prediction error neurons.
At high visual levels in the temporal lobe there is good cor-
respondence between rivalry alternation and physical
stimulus alternation with most units firing only when their
preferred stimulus were perceptually dominating and not
firing when it was suppressed (Leopold & Logothetis,
1996; Logothetis & Schall, 1989; Logothetis & Sheinberg,
1996; Logothetis et al., 1996; Sheinberg & Logothetis,
1997). This would be expected because this is where
high-level predictions are formed.

In general, fMRI studies in humans furnish a different
picture. These studies have found that activity during riv-
alry corresponds to activity during physical alternations
of stimuli over a large posterior portion of the brain rang-
ing from temporal (fusiform and parahippocampal) areas
(Tong, Nakayama, Vaughan, & Kanwisher, 1998), over V1
(Lee & Blake, 2002; Polonsky, Blake, Braun, & Heeger,
2000), including monocular areas such as the blind spot
representation (Tong & Engel, 2001) and extending all
the way to the lateral geniculate nucleus (Haynes,
Deichmann, & Rees, 2005; Wunderlich, Schneider, & Kast-
ner, 2005). Thus, in these areas of the brain, fMRI activity
during dominance is comparable to activity during monoc-
ular viewing and activity during suppression is comparable
to when the stimulus is not presented to the subject.

Perceptual rivalry presents a particular challenge to
interpreting fMRI results in terms of predictive coding. This
is because low-level areas that represent the elemental
features of both stimuli will always express prediction er-
ror, because only one set of sensory signals can be ex-
plained away at any time. This means that there may be
no difference in fMRI signals between the two perceptual
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states in these regions. We would only expect fMRI differ-
ences at the first hierarchical levels, encoding one of the
perceptual attributes showing rivalry. This signal might re-
flect the activity of deep pyramidal cells sending predic-
tions to the lower levels or their post-synaptic effects in
the subordinate level. The differential signals in the fusi-
form and parahippocampal areas are easy to understand
because these areas show category-specific responses;
but what about lower visual areas like V1? Interestingly
Tong and Engel found rivalry effects for elemental features
(gating orientation) that are encoded in V1. In their study
the difference between orientations (which are all repre-
sented in V1) was observed in the monocular region corre-
sponding to the blind spot. This region represents or
predicts the input from only one eye and can therefore
show perceptual differences that are not confounded by
predictions or prediction error from the other eye.
Although these authors framed their explanation in terms
of lateral interactions within V1, their conclusions was
based on the same constructivist arguments used by pre-
dictive coding. The study by Polonsky et al. (2000) elected
difference by using stimuli with differing contrast, another
elemental feature encoded by V1. The findings in the LGN
are consistent with prolific top–down influences from V1
(backwards connections from visual cortex are an order
of magnitude greater in number than forward afferents).
These results suggest that fMRI signals reflect the postsyn-
aptic effects of top–down afferents and the inherent pre-
dictions these projections convey to lower areas.
Physiologically, this is sensible because hemodynamic sig-
nals are thought to be driven by pre-synaptic discharges
causing depolarization in both target neurons and glial
cells (c.f., Logothetis & Pfeuffer, 2004). This depolarization
does not necessarily cause the neurons to fire.

Exactly the same dissociation between single-unit
recordings and fMRI signals has been observed with top–
down attentional effects, which are seen with fMRI but
not in terms of single unit firing (Somers, Dale, Seiffert, &
Tootell, 1999). In short, fMRI correlates of rivalry may be
driven by top–down predictions, whereas electrophysio-
logical responses may reflect predictions or prediction er-
ror, depending on which population or unit is recorded.

Irrespective of these considerations, the highest predic-
tion error (free-energy and BOLD signal) would be antici-
pated during perceptual transitions, when neither
stimulus is explained away. This is exactly what was found
in one the first studies of rivalry using fMRI (Lumer,
Friston, & Rees, 1998). In summary, generative models
and predictive coding therefore provide a framework that
is capable of unifying the apparently conflicting findings
on binocular rivalry.

8. Discussion

Under the account described here, an empirical Bayes
framework with generative models and implemented with
predictive coding or free-energy minimisation explains
many aspects of binocular rivalry; because dichoptic view-
ing of mutually inconsistent stimuli creates a situation
where no hypothesis about the environmental causes of

the incoming sensory signal has both a high prior and high
likelihood. The system therefore settles into a rhythm,
where at any time the hypothesis with the highest poster-
ior probability determines perceptual content but at the
cost of leaving a large unexplained but explainable error
signal. In the attempt to account for this error signal, the
posterior probability for the winning hypothesis is driven
down below the free-energy for the alternative hypothesis
that therefore begins to dominate.

8.1. Recent models of binocular rivalry

A number of formal models have been developed which
are able to reproduce aspects of binocular rivalry (Dayan,
1998; Grossberg & Mingolla, 1985; Kalarickal, 2000;
Kawamoto & Anderson, 1985; Koene, 2006; Laing & Chow,
2002; Lehky, 1988; Lumer, 1998; Matsuoka, 1984; Noest
et al., 2007; Wilson, 2003; Wilson, 2007; Zhou, Gao, White,
Merk, & Yao, 2004). The majority of these models analyse
binocular rivalry a priori as a phenomenon driven by adap-
tation of the winning neural population, and lateral and/or
top down inhibition of the competing population. Since
successive dominance durations are stochastic system
noise is often added.

Two very recent and impressive models exemplify this.
Noest et al. (2007) construct a very simple low-level dy-
namic model that has terms for adaptation, lateral inhibi-
tion and noise. Wilson’s (2007) model also has the virtue
of simplicity: it too has terms for adaptation, inhibition,
and can incorporate noise. These models differ mainly in
mathematical complexity, and much of their behaviour
can be described in terms of a double well energy land-
scape. Without appealing to high-level decision-making
or memory, they can both reproduce phenomena such as
rivalry, Levelt’s Second and Fourth Propositions as well as
percept choice repetition (explained differently in the
two models; Wilson also incorporates a top–down role
for attentional bias). This could appear to contrast with
the present account that does appeal essentially to top–
down processes. However, our account is based on hierar-
chical Bayes: each pair of levels throughout the cortical
hierarchy forms a dynamic, functional unit that exercises
perceptual inference. So perceptual inference is not driven
directly by ‘‘decision-making” levels very high in the corti-
cal hierarchy, though within each pair of levels rivalry is
the outcome of dynamics ensuing from the upper level’s
attempt to explain the lower level’s activity (for some evi-
dence of decision-making processes in rivalry, see Einhaus-
er, Stout, Koch, & Carter, 2008). A further, key difference is
that, on our account, the dynamics for the structural and
stochastic destabilization requires that there be no direct
inhibition, between the lower level populations of any pair
of levels, of the prediction error from the suppressed stim-
ulus. The framework thus describes a different functional
role for lateral inhibition on which explanation of phenom-
ena such as Levelt’s Second Proposition comes out as more
surprising than it does for models that are built to directly
inhibit competing populations. For these reasons Dayan’s
(1998) model, which explicitly uses top–down explain-
ing-away, remains the model closest to ours. His model,
however, does not motivate the adaptation (or ‘fatigue’
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function) in terms of hyperpriors and does not give the
prediction error a core role in explaining the dynamics.
Our framework is based on a principled story about overall
brain function that has some biological and epistemic
plausibility (Friston, 2002; Friston, 2003; Friston, 2005).

8.2. The role of noise

Successive dominance durations are unpredictable
(Levelt, 1965) so most models of rivalry operate with added
system noise. Recently, there has been an increased focus
on the role of noise and stochastic resonance (e.g., Bras-
camp et al., 2006; Freeman, 2005; Kim et al., 2006; Moren-
o-Bote et al., 2007). Brascamp et al. (2006) show that the
noise that is normally allowed in simple low-level models
cannot account for the length of transition periods nor for
transition returns. They congenially point to the possibility
of a functional role of noise that ‘‘continuously reorganize
sensory input to reach a perceptual solution. [N]oise may
act to destabilize the present organization and prevent
the brain from getting trapped in a single interpretation
while others may have more survival value.” (1250).

If the minimization of free-energy is the overall pro-
cessing aim of the brain, then we probably should not
expect that the system produces blanket noise to dis-
perse perceptual states randomly. However, hyperpriors,
such as the expectation of change in the environment,
may decrease prior probabilities of specific hypotheses
even though they are successfully predicting the input
at the moment. This destabilizes the energy landscape
in a directed manner. The effect is, as described by Bras-
camp et al., that the system begins to explore the free-
energy landscape. In addition, our account suggests a
pivotal role for increased free-energy that is specific for
rivalry conditions, namely the destabilizing effect of the
unexplained prediction error from the suppressed stimu-
lus. This is not merely added system noise but ‘‘noise”
that occurs as an intrinsic aspect of the basic Bayesian
framework.

8.3. Other kinds of bistable perception: the role of attention

Our account of binocular rivalry is principled and based
on a general view of brain function, and we believe that it
may also apply to other kinds of bistable perception, such
as Rubin’s vase and the Necker cube, but with less involve-
ment at lower cortical areas (a shared type of mechanism
is also suggested by the similarity of time courses for dif-
ferent kinds of bistable perception, van Ee, 2005). The dif-
ference in levels may be related to an epistemic difference:
dichoptic viewing tends to present two different objects
with different properties in the same spatiotemporal posi-
tion (e.g., a red house vs. a green face). This never happens
at any level in the causal hierarchy mapped by the cortex,
so the hyperprior against it is global and as such encoded
at low cortical levels. In contrast, the incompatibility for
the dioptically presented bistable stimuli is less severe:
e.g., one object that can be interpreted as having different
properties (i.e., the Necker cube where transparency cre-
ates a situation with matched likelihoods). It is rare but
not impossible to be confronted with such scenarios of

equally poised likelihoods and priors, so the hyperpriors
that influence perceptual inference in these unusual cir-
cumstances will probably be less strong and encoded at
higher hierarchical levels (since it takes analysis of deeper
causal levels to grasp phenomena such as transparency).
This leads us to expect that non-binocular rivalry bypasses
lower levels.

A difference between binocular and non-binocular riv-
alry is that dominance durations in the former are harder
to modulate with selective attention, while on the other
hand non-selective attention can increase the alternation
rate similarly in both types of rivalry (Meng & Tong,
2004). It is fundamental for the epistemic framework
we are describing that there are distinct causes in the
environment, so the hyperprior that prohibits spatiotem-
poral co-occupancy is global: without it the system
would always have to consider whether an entirely dis-
tinct cause was at the same place and time, which would
not be conducive to adaptive behaviour. Selective atten-
tion to one rivalling stimulus at the expense of the other
is an attempt to get the brain to ignore prediction error
at this very fundamental level, and it is thus not surpris-
ing that selective attention cannot modulate binocular
rivalry so strongly. This does not hold for other kinds
of bistable percepts where the stimulus incompatibility
is less strong. Non-selective attention, in contrast, can
be seen as relaxing the much less fundamental hyperpri-
or that change in the environment is mostly relatively
slow, thus speeding up alternation rate. Priors embody
our expectations and whereas we can be in a context
where unusually fast changes are common we cannot
be in context where numerous distinct objects share spa-
tiotemporal location.

8.4. Predictions

In this review, we have been most concerned with pro-
viding an epistemological framework for the conflicting
data on rivalry rather than generating new data. However,
a number of predictions can be made. (i) Semantic or sub-
liminal priming will increase priors and thereby facilitate
inter-ocular grouping and bias ‘‘meta-rivalry”. (ii) Conjoint
hypotheses with a high likelihood will tend to facilitate fu-
sion rather than rivalry (e.g., two transparent images on a
shared background). (iii) A moving stimulus (e.g., gratings
with a chaotic time pattern) will dominate over more pre-
dictable moving stimuli since new predictions will contin-
ually be needed and there will be less adaptation. (iv) LGN
and blind spot representation activity measured with fMRI
will not suggest that rivalry is resolved before binocular
convergence, if deprived of backwards signals from areas
above binocular convergence.

9. Conclusions

Core properties of a theoretical framework for percep-
tual inference in the brain based on generative models
and predictive coding can be described in fairly basic prob-
abilistic terms. The framework can explain and unify many
aspects of binocular rivalry, in particular why one stimulus
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is selected for perception and why there is alternation be-
tween stimuli. The framework also accommodates many of
the major psychophysical findings on rivalry and provides
a unified interpretation of the apparently conflicting sin-
gle-unit and fMRI studies of rivalry.

The predictive coding explanation of binocular rivalry
allows a principled, theoretically motivated combination
of top–down and bottom–up processes. This further inte-
grates the debate on how the primary findings on rivalry
should be interpreted (Blake, 1989; Leopold & Logothetis,
1999; Tong et al., 2006). It does this by describing one uni-
fying mechanism – prediction error minimisation – rather
than a variety of different mechanisms (Blake & Logothetis,
2002). The framework relates to recent computational
models (Noest et al., 2007; Wilson, 2007) in as far as it
builds on inhibition, adaptation and noise but it gives these
notions a distinct functional role and hierarchical dynam-
ics (Dayan, 1998).
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