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Abstract. 

The Schwarzschild metric is for a spherical static central mass, and is the simplest 

solution in General Relativity (GTR). But here we introduce an alternative spherical 

metric, which we call the K-metric, and argue that it may be considered as a possible 

alternative metric law, and should be empirically tested. It is the analytic continuation 

of the Schwarzschild metric, and the two are almost indistinguishable in the solar 

system. But they have different forms, they can be tested in the solar system, and the 

result has strong consequences for black holes and cosmology.  

We first show the K-metric is a consistent GTR metric, deriving the stress-energy 

tensor to produce it, working backwards through the GTR equation to find the mass 

distribution. We then observe that this can be taken as an alternative “gravitational 

tensor”, in which “gravitational mass” is dispersed around the inertial mass of a 

particle. This gives an alternative theory of gravity, with a linear superposition 

principle for fields, which we briefly outline. We then describe how a test may be 

carried out.  

The main point is that this appears as the natural solution for gravity for a class of 

models in which gravity is produced as a scale-symmetric continuous spatial 

distortion, without discontinuities. The proposition is that this represents a plausible 

testable variation of GTR, and is perhaps the most radical variation that remains 

untested today.   
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An alternative to the Schwarzschild metric. 

"The chief attraction of the theory lies in its logical completeness. If a 

single one of the conclusions drawn from it proves wrong, it must be 

given up; to modify it without destroying the whole structure seems to 

be impossible." Albert Einstein (1919).  

 

The Schwarzschild metric is for a spherical static central mass, and is the simplest 

solution in General Relativity (GTR). Birkhoff's theorem1 tells us it is unique, i.e. that 

the exterior solution of a spherical, nonrotating body must be given by the 

Schwarzschild metric. It is the basis for all experimental studies of GTR, and for the 

theory of black holes. But here we introduce an alternative spherical metric, which we 

call the K-metric, and argue that it may be considered as a possible alternative metric 

law, and should be empirically tested. It is the analytic continuation of the 

Schwarzschild metric, and the two are almost indistinguishable in the solar system. 

But they have different forms, they can be tested in the solar system, and the result 

has strong consequences for black holes and cosmology.  

We first show the K-metric is a consistent GTR metric, deriving the stress-energy 

tensor to produce it, working backwards through the GTR equation to find the mass 

distribution. We then observe that this can be taken as an alternative “gravitational 

tensor”, in which “gravitational mass” is dispersed around the inertial mass of a 

particle. This gives an alternative theory of gravity, with a linear superposition 

principle for fields, which we briefly outline.  

The main point is that this appears as the natural solution for gravity for a class of 

models in which gravity is produced as a scale-symmetric continuous spatial 

distortion, without discontinuities. The proposition is that this represents a plausible 

testable variation of GTR, and perhaps the most radical untested variation. 

Many GTR theorists would probably only consider a variation of GTR “plausible” if 

it retained the Schwarzschild solution – to retain fundamental assumptions. But we 

take a different approach: instead of taking the forms of general equations as the point 

to generalize from, we may instead consider the special solutions that exemplify the 

force or potential, as the distinctive pattern that nature is providing us; and consider if 

there is a theory that gives generalized solutions.2  

 
1  [Birkhoff, 1923]. First published 1921 by [Jørg Tofte Jebsen, 1921]. See [Deser and Franklin, 2005]. 

2 This is how Newton’s law of gravity was found: by generalizing from special solutions noticed earlier 

by Kepler & co, to a more general theory. Same with Maxwell’s equations, starting with Coulomb’s 

electrostatic law. We cannot generalize GTR from the classical Newtonian equations of motion, 

because they are non-relativistic; but the classical central mass solution still provides the major clue. 

The more general idea is that we do not reason inductively from data to theory directly, but rather in 

two steps, from data → natural patterns → theory. In this case, we argue that the K-metric is the real 

pattern hiding behind the Schwarzschild metric, and from this solution we can reconstruct a theory. 
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So starting with the Schwarzschild metric as the function embodying a natural pattern 

that we want to generalize from, we can ask what a plausible variation within the 

tested bounds of GTR are possible. The K-metric appears as the primary candidate.  

We spend some time showing the consistency of such a solution, in two steps, first by 

analyzing the K-metric in GTR, and then by showing there is a consistent 

superposition principle. It corresponds physical to a kind of continuous elastic 

behavior of space around mass. It is governed an exponential strain function, instead 

of the quadratic function in the Schwarzschild metric, which has a discontinuity.  

The surprising thing perhaps is that the difference between them cannot presently be 

decided empirically. The gravitational data is not quite good enough, and no one has 

done an experiment. The difference between the two metrics has almost been tested 

by accident – but through only one experiment, and the results are inconclusive. So at 

present no one knows which metric holds. 

But it is testable in the solar system with a relatively simple experiment. If the K-

metric proved correct, black holes and GTR would become simpler, and there would 

be significant changes in cosmology. If the Schwarzschild metric proved correct, 

ordinary GTR would pass another test, this time of the form of its stress-energy tensor 

law, and another possible alternative theory (from a shrinking list) would be rejected.  

The key difference between them is that the stress-energy tensor for the K-metric 

never becomes zero “outside” the region of the central mass, but remains finite at all 

distances. Setting T = 0 outside the central mass is the key assumption of the 

Schwarzschild solution. This has the effect of dividing space into one region where: 

T ≠ 0 and another region where: T = 0. This analytic discontinuity is ultimately the 

cause of the singularity at the event horizon. It disappears with the K-metric, which is 

the smooth analytic continuation of the Schwarzschild metric, differing from it only in 

second and higher order terms of 1/r.  

Requiring the tensor T used in the GTR equation to extend outside the central point-

mass of a particle may be seen as analogous to quantum mechanics, where the 

position wave function is extended across space. An underlying model for this is 

briefly explained, in which mass is identified with a continuous spatial field, viz. a 

strain field, which corresponds directly to the distortion of the space metric. The K-

metric is the natural solution for gravity, and it has a simple superposition principle 

for multiple masses. The propagation is proposed to be like the electric field, based on 

a retarded scalar potential. This allows it to be conceived as a real natural law.  

Hence, the primary argument is that it is realistically plausible to interpret the K-

metric as the natural physical lawlike solution for gravity. It is a theory that still 

conforms to the Einstein equation, but involves reinterpreting the stress-energy tensor. 

A primary appeal is from the symmetries of K function. It is the natural exponential 

elastic function, compared to the k-function, which is a quadratic elastic function.  
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Part 1. The stress-energy tensor for K-metric. 

1. The K-metric. 

We give the K-metric analysis from first principles, side-by-side with the 

Schwarzschild metric.3 The Schwarzschild metric is written in polar coordinates:  

 ds2 = c2d2 = c2dt2/k2 – k2dr2 –  r2d2 – r2sin2 d2 (1)  

 𝑘(𝑀, 𝑟) = (1 −
2𝑀𝐺

𝑐2𝑟
)
−1/2

 

We will analyze the alternative metric:  

 ds2 = c2d2 = c2dt2/K2 – K2dr2 –  r2d2 – r2sin2 d2 (2) 

obtained by substituting K (‘big K’) for k, defined: 

  𝐾(𝑀, 𝑟) = 𝑒
(
𝑀𝐺

𝑐2𝑟
)
 (3) 

We refer to (2) as the K-metric and (1) as the k-metric or Schwarzschild metric.  

They converge for large r. E.g. comparing 1/k2 with 1/K2:  

 1/k2 = 1-2MG/c2r 

 1/K2 = 1 - 2MG/c2r + (2MG/c2r)2(1/2!) - (2MG/c2r)3(1/3!)+ … 

These differ by the second-order term: 2(MG/c2r)2 and higher. 1/K2 is the analytic 

continuation of 1/k2. Comparing k and K directly:  

 k = 1 + MG/c2r + (3/2)(MG/c2r)2 + …  Binomial expansion.  

 K = 1 + MG/c2r + (1/2)(MG/c2r)2 +… Exponential expansion.  

 k – K = (MG/c2r)2 + …  For  r >> MG/c2  

Hence for large r, 𝑘 ≈ 𝐾 + (
𝑀𝐺

𝑐2
)
2 1

𝑟2
. Schwarzschild gravity has stronger fields than 

K-gravity for the same source M, everywhere outside the event horizon: r > 2MG/c2.  

We illustrate with normalized units for r on the graphs, setting: MG/c2 = 1. So: r =2 

represents the normal black hole radius for this mass M, at: r = 2MG/c2. 

 

 
3 There are more general techniques, e.g. [Suvorov, 2021], but the analysis for a single mass is simple. 

See any standard text, e.g. [Landau, 1975], [Misner, 1973], [Spivak, 1979], [Wald, 1984], [Kay, 1976], 

[Kobayashi, 1963]). [Oas, 2014] or [Vojinovic, 2010] are convenient to follow the derivations here.  
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Fig. 1. Left. k (red) has a singularity at r =2 where: k(2)→ ∞. K (blue) has only a 

central singularity at r = 0. At around r=2, the slope: K/r, changes from vertical to 

horizontal. Right. Outside the black hole at r = 2, they converge: k → K → 1.  

 

 

Fig. 2. Left. Outside about r = 100, K and k become indistinguishable on the graph, and 

they approach each other much faster than their asymptote at 1. Right. The curve has 

the uncanny property of retaining its shape with changing r or m, when axes are 

rescaled. This is a gauge symmetry. But there is an absolute scale, defined by 1.  

 

2. Derivation of tensor components.  

We now analyze the K-gravity metric as a solution to Einstein’s equation:  

 G = R + ½gR = (8G/c4)T (4) 

G  is determined by the K-gravity metric, and we work out the stress-energy tensor, 

T, and corresponding mass-energy distribution , required to produce the metric.  

Whereas the Schwarzschild solution corresponds to a symmetric mass M at a central 

region in otherwise empty space, the K-gravity metric will correspond to the same 

mass M, but distributed radially in increasingly fine shells.  

We start by writing both metrics in the form:  

 ds2 = g dx dx = U(r)dt2 – V(r)dr2 – r2d2 – r2sin2 d2 (5) 

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25K
 o

r 
k 

is
 r

el
at

iv
e 

to
 1

Radius r in natural units

K and k by r for r = 2.5 to 20

K = exp(1/r) k = 1/sqrt(1-2/r)

No mass Center

0

5

10

15

20

25

0 1 2 3 4K
 o

r 
k 

is
 r

el
at

iv
e 

to
 1

Radius r in natural units

K and k by r for r = 0.25 to 3

K = exp(1/r) k = 1/sqrt(1-2/r)

No mass Center

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 50 100 150 200 250

K
 o

r 
k 

is
 r

el
at

iv
e 

to
 1

Radius r in natural units

K and k by r for r = 10 to 200

K = exp(1/r) k = 1/sqrt(1-2/r)

No mass

0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

0 500 1000 1500 2000 2500

K
 o

r 
k 

is
 r

el
at

iv
e 

to
 1

Radius r in natural units

K and k by r for r = 100 to 2000

K = exp(1/r) k = 1/sqrt(1-2/r)

No mass



6 

 

where U and V are spatial functions of r alone. This means:  

 g = U,  g = – V,  g = – r2,  g = – r2 sin2  (6) 

K-gravity and Schwarzschild gravity are defined by alternative choices of U and V, 

and they are distinct metrics: they cannot be transformed into each other by any 

coordinate transformation. However they are both spherically symmetric, and because 

of this, we can use the form (5) for the K-gravity metric, and obtain solutions for 

Christoffel symbols, Ricci tensors and Ricci scalar in terms of U, V, as commonly 

done for the Schwarzschild metric. 

2.1 Useful Identities.  

We start with some identities for k, K, U, V, and their differentials. (7) 

 K-gravity Schwarzschild gravity 

 𝐾(𝑀, 𝑟) = 𝑒
(
𝑀𝐺

𝑐2𝑟
)
 𝑘(𝑀, 𝑟) = (1 −

2𝑀𝐺

𝑐2𝑟
)
−1/2

 

 ln(K) = MG/c2r   

 Definitions of U and V. 

 U = c2/K2= c2exp(-2MG/c2r) U = c2/k2 = c2(1-2MG/c2r) 

 V = -K2= -exp(2MG/c2r) V = -k2 = -1/(1-2MG/c2r) 

 U = -c2/V U = -c2/V 

 V = -c2/U V = -c2/U 

 UV = -c2 UV = -c2 

 U/V = -c2/K4 U/V = -c2/k4 

 Partial derivatives by r. 

 K = exp(MG/c2r) k = (1-2MG/c2r)-½  

 K’ = K/r = -(MG/c2r2)K k’ = k/r = -(MG/c2r2)k3 

 K2’ = -(2MG/c2r2)K2 k2’ = -(2MG/c2r2)k4 

 K-1’ = (MG/c2r2)K-1 k-1’ = (MG/c2r2)k 

 K-2’ = (2MG/c2r2)K-2 k-2’ = (2MG/c2r2) 

 Second partial derivatives by r. 

 K’’ = (2MG/c2r3)K+(MG/c2r2)2K k’’ = (2MG/c2r3)k3+(MG/c2r2)23k5 

 Gradient vector field. 

 K = -(MG/c2r2)K r k = -(MG/c2r2)k3 r 

 3D Laplacian in spherical coordinates. 

 ∇2𝑓 =
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑓

𝜕𝑟
) +

1

𝑟2sin𝜃

𝜕

𝜕𝜃
(sin𝜃

𝜕𝑓

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕𝑓

𝜕𝜑2 General 

 ∇2𝐾 = ∇. ∇𝐾 =
1

𝑟2
𝜕

𝜕𝑟
(
−𝑀𝐺

𝑐2
𝐾) = (

𝑀𝐺

𝑐2
)
2 𝐾

𝑟4
   K-function 

 ∇2𝑘 =
1

𝑟2
𝜕

𝜕𝑟
(
−𝑀𝐺

𝑐2
𝑘3) = (

𝑀𝐺

𝑐2
)
2 3𝑘5

𝑟4
 k-function 
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 Derivatives of U and V in terms of K and k:  

 U’ = -2c2K’/K3 = (2MG/r2)/K2  U’ = -2c2k’/k3 = 2MG/r2 

 V’ = -2KK’ = (2MG/c2r2)K2  V’ = -2kk’ = (2MG/c2r2)k4 

 U’’= 4(MG/r2K)2 – (4MG/r3K2) U’’ = -4MG/r3 

 V’’= -(4MGK2/c2r3)(1 + MG/c2r)  V’’= -(4MGk4/c2r3)(1 + 2MGk2/c2r) 

 Derivatives of U in terms of U: 

 U’ = (2MG/c2r2)U U’ = 2MG/r2  

 U’’ = –(4MG/c2r3)(1–MG/c2r)U U’’ = -4MG/r3 

       = 4(MG/c2r2)2U – (4MG/c2r3)U 

 Derivatives of V in terms of V: 

 V’ = -(2MG/c2r2)V V’ = -(2MG/c2r2)V2 

 V’’ = 4(MG/c2r2)2V + (4MG/c2r3)V  V’’ = 8(MG/c2r2)2V3 + 4(MG/c2r3)V2 

       = (4MG/c2r3)(1 + MG/c2r)V       = (4MG/c2r3)(1 + 2VMG/c2r)V2 

2.2 Christoffel symbols.  

Non-vanishing Christoffel symbols in terms of U and V are for a general spherically 

symmetric metric:4  

 Christoffel symbols written in U, V (8) 

 Γ0
01= Γ0

10= U’/2U 

 Γ1
00= U’/2V,   Γ1

11= V’/2V 

 Γ1
22= -r/V,   Γ1

33= -r sin2 /V,   Γ2
12= Γ2

21= 1/r,   Γ2
33= -cos sin 

 Γ3
13= Γ3

31= 1/r,   Γ3
23 = Γ3

32 = cot 

 Other terms are zero. 

Substituting the coordinate functions for U, V we obtain:   

 Christoffel symbols in coordinate functions (9) 

 K-gravity: Schwarzschild gravity: 

 Γ0
01= Γ0

10= MG/c2r2 Γ0
01= Γ0

10= k2MG/c2r2 

 Γ1
00= -MG/r2K4 Γ1

00= -MG/r2k2 

 Γ1
11= MG/c2r2 Γ1

11= k2MG/c2r2 

 Γ1
22= r/K2 Γ1

22= r/k2 

 Γ1
33= r sin2 /K2 Γ1

33= r sin2 /k2 

 Other terms are zero. 

 
4 See (Oas 2014), p. 3-4.   
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2.3 Ricci tensor and scalar.  

The Christoffel symbols determine the Ricci tensor, which has four non-zero terms.  

 Ricci Tensor written in U,V (10) 

 R00 = -U’’/2V + U’V’/4V2 + U’2/4UV - U’/rV 

 R11 = U’’/2U – U’2/4U2 – U’V’/4UV – V’/Vr 

 R22 = rU’/2UV + 1/V – rV’/2V2 + 1  

 R33 = R22 sin2 

 Ricci tensor components written in coordinate variables (11) 

 K-gravity: Schwarzschild gravity: 

 R00 = 2(MG/cr2)2/K4 R00 = 0 

 R11 = -4MG/c2r3  R11 = 0 

 R22 = 1-1/K2 R22 = 0 

 R33 = R22 sin2 R33 = 0 

 R00/R11 = -(MG/2r)/K4 

 

 Ricci Scalar written in U and V (12) 

 R = R
 = gR  

 = gR + gR + gR + gR 

 = gR + gR + gR + gsin2 R 

 = R/U - R/V - R /r - sin2 R/(rsin2) 

 = R/U - R/V - 2R /r  

Substituting for R and simplifying: 

 R = -U’’/UV + U’V’/2UV2 + U’2/2VU2 - 2U’/rUV + 2V’/V2r - 2/r(1+1/V) 

  (13) 

Then substitute for U, V, U’, V’, U’’ to obtain: 

 Ricci Scalar in coordinate functions (14) 

 K-gravity: Schwarzschild gravity: 

 R = (2/r2K2)(K2 - 1 - (2MG/c2r)) R = 0 

 R   ≈ (4M2G2/c4r4K2) 

For K-gravity, R is positive and proportional to 1/r4 in its highest term.  

 

3. Stress-Energy tensor.  

Using the Einstein equation, we can now determine the T components directly. Only 

diagonal terms can be non-zero, and we obtain three independent equations: 

 Field Equations written in U, V  (15) 
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 (8G/c4)T = R + ½g R = UV’/rV2 - (U/r2)(1+1/V) 

 (8G/c4)T = R + ½g R = -U’/rU - (V/r2)(1+1/V) 

 (8G/c4)T = R + ½g R = (r/2V)(-U’/U + V’/V – rU’’/U  

  + rU’V’/2UV + rU’2/2U2) 

 The fourth equation, for T, is equivalent to the third.  

In the Schwarzschild derivation these are set to zero, and this leads to the solutions: V 

= k2 and U = c2/k2. We now use these to solve T for K-gravity. The solutions are 

given below in coordinate functions and series in 1/r, and as approximations from 

above and below.  

  

 T for K-Gravity (16) 

 T = Mc4/4r3K4 + c6/8Gr2K4 – c6/8Gr2K2 

 = (Mc4/4r3K4) + (c6/8Gr2K4)(1-K2) 

 =  (c6/8Gr2K4)(1+(2MG/c2r)- K2) 

 =  -(c6/8Gr2K4)((2MG/c2r)2/2!+(2MG/c2r)3/3! + (2MG/c2r)4/4! + …) 

 =  -(M2Gc2/4r4K4)(1 + 2(2MG/c2r)/3! + 2(2MG/c2r)2/4! …) 

 =  -(M2Gc2/4r4K4) - (c6/8Gr2K4)((2MG/c2r)3/3! + (2MG/c2r)4/4! + …) 

Hence for large r:  

 -(M2Gc2/4r4K2) <≈ T  <≈  -(M2Gc2/4r4K4)     for large r 

  

 T for K-Gravity (17) 

 T = -T K4/c2 = T g/g 

 = -Mc2/4r3 - (1-K2)(c4/8Gr2) 

 =  (M2G/4r4) + (c4/8Gr2)((2MG/c2r)3/3! + (2MG/c2r)4/4! + …) 

Hence for large r:  

 (M2G/4r4) ≈< T  ≈< (M2GK2/4r4)   for large r 

  

 T for K-Gravity (18) 

 T = T r2/K4 = T g/g 

Note that: 

 T = -T K4/c2 = TV/U = T g/g  

 T = -T g/g,   T = -T g/g 

I.e.: T = T g/g   (no summation). T is negative, T, T, T are positive. 
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4. Pressure-Density in K-gravity.  

In K-gravity the gravitational mass, M, is like a fluid, and we now determine the 

distribution. We can follow Vojinovic (2010) p.7.5  

“The stress-energy tensor of a fluid element with density , pressure p, and 4-

velocity u, is: T = (+p)uu + pg. We wish to describe the static fluid (u = 

u = u= 0). So the stress-energy has the form: 

 T = u u + p(u u + g),   T = pg,   T = pg,   T = pg 

while other components vanish. Next the 4-velocity vector must be normalized, 

u u g
  = -1, which means that u u = -g .” Vojinovic (2010) p.7. 

Applying this to the K-metric gives four equations:   

 K-Gravity: Pressure-Density Tensor Equations 

 T = -c2/K2,   T = pK2,   T = pr2,   T = -pg (19) 

Or inversely: 

  = -T K2/c2,   p = T/K2,   p = T/r2 (20) 

For the Schwarzschild solution, these are all zero: T= 0 so p=0 and  =0. 

We now calculate p and  for K-gravity. Since from above: T = T g/g, there is 

only one equation to solve, and: p = . We will solve for . Substituting T from 

Equation (16) gives:  

   = -T K2/c2 = -Mc2/4r3K2 - c4/8Gr2K2 + c4/8Gr2 (21) 

 = (c4/8Gr2)(1 - 1/K2 - 2GM/c2rK2)  

 = (c4/8Gr2)(1 - 1 + 2GM/c2r – (2GM/c2r)2/2! + (2GM/c2r)3/3! … 

  –2GM/c2r + (2GM/c2r)2 - (2GM/c2r)3/2! + … )  

 = (c4/8Gr2)(½(2GM/c2r)2 – (1/3)(2GM/c2r)3 +(1/8)(2GM/c2r)4 … 

 … +(-1)n(2GM/c2r)n((n-1)/n!)) … 

Or expanded as a series in 1/r: 

  = (GM2/4r4) – (G2M3/3 c2r5) + (G3M4/16 c4r6) … (22) 

    = (GM2/4r4)K(1 – (1/3)(GM/c2r) + (1/4)(GM/c2r)2 …) 

Approximations from below and above, for large r, are:  

 (M2G/4r4K2) ≈<   ≈< (M2G/4r4)       for large r (23) 

  is constrained between these two limits, and:   → (M2G/4r4K) for large r. 

Hence  varies with M2/r4 in the lowest order term, for r >> MG/c2. The first-order 

variation with M2 may seem odd: but when we integrate  (next) we find the full mass 

integral is proportional to M. But this integral is dependent on the behavior at small r, 

i.e. where r < MG/c2, and higher-order terms in 1/r and M dominate. Note from the 

 
5 [Vojinovic, 2010] use the reverse metric signature, so we must reverse signs when we apply this.  
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Laplacian earlier: ∇2𝐾 = (
𝑀𝐺

𝑐2
)
2 𝐾

𝑟4
= 4𝜋𝐺𝜌

𝐾2

𝑐2
. Compare with classical gravitational 

systems where: ∇2∅ = 4𝜋𝐺𝜌. As r → 0,  → ∞, and there is a central naked 

singularity. But we see when we integrate for the mass that there is no event horizon. 

 

5. Integrating the mass-energy density. 

We now verify that the total mass-energy adds up to Mc2, by integrating  over the 

spatial volume. This is required to match the Newtonian and Schwarzschild solutions 

in the limit. We first find the indefinite integral: 

 The mass-energy integral 

 I = ∫ ()(4 r2dr)  (24) 

Substituting from (21): 

 I = ∫ (-Mc2/4r3K2 - c4/8Gr2K2 + c4/8Gr2)(4 r2dr)  (25) 

 = ∫ (-Mc2/rK2 - c4/2GK2 + c4/2G)dr 

This has the exact solution: 

 The mass-energy integral solution 

 I = -rc4/2GK2 + rc4/2G + E  (26) 

 = (rc4/2G)(1-1/K2) + E 

where E is an arbitrary constant of integration. To verify this calculate:  

 d/dr(rc4/2GK2) = c4/2GK2 + (-2rc4/2GK3)(dK/dr) = c4/2GK2 + (Mc2/rK2) 

And:  

 d/dr(rc4/2G) = c4/2G 

Next we obtain the limit of I as: r → ∞. We expand the solution in terms of r. 

 I = (rc4/2G)(1-1/K2) + E (27) 

 = (rc4/2G)(1-1+2MG/c2r -(2MG/c2r)2/2! + (2MG/c2r)3/3!) - …) + E 

 = Mc2 - M2G/r + 2M3G2/3c2r2 - … + E 

As we limit r → ∞ all terms in r disappear and only constant terms remain: 

 I∞ = Mc2 + E  

We will set the constant E equal to 0,6 so the indefinite integral is Mc2 at r = ∞. Hence 

the indefinite integral is:  

 I = (rc4/2G)(1-1/K2) (28) 

 
6 For an empty universe. But in any realistic universe model there is a lot of background mass-energy 

that has to be included. However it is just the differentials of I that matter for the metric in GTR.  
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We next obtain the limit of I as r → 0. To simplify, we can define: r = MG/c2, i.e. r 

is defined as a multiple  of the fundamental distance: 2MG/c2. Thus:  → 0 as r → 

0, and: lim r→0 (I)= lim →0 (I). Terms reduce to: 1/K2 = exp(-2MG/c2r) = exp(-1/), 

and: rc4/2G = Mc2. Substituting in I: 

 I = (Mc2)((1-exp(-1/))) 

We need the value of: (1-exp(-1/)) as:  → 0. This goes 0, because:  

 exp(-1/) = 1/exp(1/) and: exp(1/)→ ∞ as: → 0, so: exp(-1/) → 0 

So: (1-exp(-1/))→  → 0. Hence: 

 I(0) = 0    and:   I(∞) = Mc2 (29) 

Hence the definite integral over the whole volume of space is:  

 The total mass-energy integral. 

 I0 to ∞ = r=0 to ∞∫ ()(4 r2dr) = [𝑟𝑐4/2𝐺)(1 − 1/𝐾2)]0
∞ (30) 

 = Mc2 

The total mass-energy of the system is Mc2. Note the mass-energy within a radius r is: 

 I 0 to r = 0 to r∫ ()(4 r2dr)  (31) 

 = [𝑟𝑐4/2𝐺)(1 − 1/𝐾2)]0
𝑟 = (rc4/2G)(1-1/K2) 

 = (rc4/2G)(2MG/c2r)(1 - (2MG/c2r)/2!+(2MG/c2r)2/3! - …) 

 = Mc2(1 - (2MG/c2r)/2!+(2MG/c2r)2/3! - …) 

The factor on the right is larger than 1/K2 and smaller than 1/K from the region: 

r>2MG/c2, hence: 

 Mc2/K   >≈   I 0 to r  >≈ Mc2/K2       for r >>2MG/c2 (32) 

For r >> MG/c2, the total amount of gravitational mass outside the spherical shell of r 

is closely approximated by: M2G/c2r. Conversely M(1–MG/c2r) M/K is 

approximately the gravitational mass within the sphere of radius r. The overall effect 

on proper acceleration at r is very similar to adopting a reduced central mass: M/K2 in 

the Schwarzschild solution (Section 12). The effect of the reduced mass within the 

shell at r adds to the effect of the external mass outside the shell at r, and it weakens 

the effective mass by M/K2 (not just M/K). Two further results help confirm the 

physical consistency of this solution.  

 

Black hole radius is consistent. Although the mass-density increases indefinitely as 

we approach the center, the Schwarzschild (black hole) radius rs for the central mass 

within r is always smaller than r, so there is no conventional ‘black hole’ event 

horizon formed inside. The Schwarzschild radius is: rs = 2MG/c2. The mass within a 

radius r is: M = (rc2/2G)(1-1/K2). Substituting for M we get: rs = (2G/c2)(rc2/2G)(1-

1/K2) = r(1-1/K2), or:  rs/r = (1-1/K2) < 1 
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Hence the Schwarzschild radius, rs, is always smaller than the enclosed-mass radius, 

r. The mass distribution appears consistent, and no problems of singularities arise, 

except the central (naked) singularity, which also appears in conventional GTR.  

 

Pressure is consistent with a quasi-Newtonian force. Note if we differentiate the 

mass integral at r by r we get a force term, and this is exactly equal to: dI/dr = 4r2p. 

Since 4r2 is the surface area at r, this can be interpreted as meaning that the total 

internal force of the mass distribution over the surface at r generates the pressure 

term, p. Note (differentiating the series (27)) that this is like a gravitational self-

attraction: F = M2G/r2 - 4M3G2/3c2r3 + …  M2G/r2 for large r, as if the mass M was 

attracting to itself at a distance of r by a quasi-Newtonian force law. This begins to 

reduce at small r, e.g. at the point where: r = 4MG/3c2, the Newtonian term cancels 

with higher order terms as: M2G/r2 - 4M3G2/3c2r3 = 0.  

We conclude that the mass-energy distribution for  in (21) generates the K-gravity 

metric, and is a consistent solution in GTR. 

  

Part 2. K-gravity as a physical theory. 

6. K-gravity as an alternative physical theory.  

The K-gravity metric is the conventional solution for a special mass distribution in 

GTR. Hence it is consistent if we imagine tiny test masses moving in this potential, 

except at the central (naked) singularity, and it has no event horizon. The mass is 

symmetric and finite but is not constrained within a finite boundary. It is extended 

indefinitely like a fine dust or gas.  

This does not seem very applicable to physical systems at first, because we would not 

expect to encounter such a distribution of matter as a natural phenomenon, and if we 

did we would hardly expect it to be stable. But we now propose to consider this as the 

physical solution for gravity for any inertial center-of-mass particle or system.  

The K-metric contradicts one of the two key assumptions in the normal derivation of 

the Schwarzschild metric: 

(A) Symmetric distribution assumption: the inertial mass distribution is spherically 

symmetric, and static and of finite magnitude. 

(B) Stress-energy tensor assumption: T = 0 for empty space, i.e. all space 

outside the central mass. 

These determine the usual Schwarzschild solution uniquely from GTR. The symmetry 

assumption (A) defines the type of system being analyzed, and is not questioned. But 

we are proposing to replace (B) with (B*).   
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(B*) K-gravity Assumption: T ≠ 0 for empty space. Instead T for a central 

mass is smooth, continuous and corresponds to the K-gravity metric.7  

This is proposed as an alternative principle governing the gravitational stress-energy 

tensor for a central mass M, and what we will now refer to as K-gravity.  

This requires us to reinterpret the stress-energy tensor normally assumed in the GTR 

equation. It means a localized inertial mass M produces an extended gravitational-

mass-density source field throughout space around it. We note that this may not be 

feasible for an infinite flat (STR) universe, but it appears consistent for a finite curved 

universe. However we do not try to solve a full theory here. Rather we argue that it 

can be plausibly generalized to an alternative theory, where the K-metric replaces the 

Schwarzschild metric as the natural approximation for central systems, such as the sun 

in the solar system. This is primarily to support the case that the K-metric should be 

tested against the Schwarzschild metric.  

This proposal to modify the stress-energy tensor does not immediately contradict 

GTR, because the form of the stress-energy tensor is not determined by the GTR 

equation, but by theories of particles and fields. (It is determined in turn by mass-

momentum and charge-current distributions.) The main effect of the modified tensor 

is to remove discontinuities in what we may call gravitational mass distributions. 

Note the conventional assumption that T is strictly zero outside a central mass 

boundary already introduces a discontinuity in the fields. This consequently shows up 

in the event horizon singularity.8  

We may also question the discontinuity in the context of quantum mechanics. 

Hawking radiation is generated at the event horizon, in apparent contradiction of the 

GTR discontinuity – because space has background fields in quantum field theory, 

and matter has position-momentum uncertainties. In QM, there appear generally to be 

no strict spatial boundaries to fields or wave-functions, and no strictly point-like 

classical particles.  

GTR postulates a g characterizing space-time, and a T characterizing a mass-

energy distribution, and a precise connection between these through the Einstein 

equation. However the specification of T is not determined within GTR: it comes 

from other branches of physics: particle and field theories. It is interpreted from the 

mass and field distributions around a point. So what makes us assume that: T = 0 for 

‘empty space’ around a mass? Primarily the classical approximation that mass-energy 

is strictly localized within particles.9 This is what is being questioned here, not the 

 

7 T for complex mass distributions requires a superposition principle consistent with the K-gravity 

metric in the limit of a single mass, as in the following section. 

8 If a (non-zero) field is analytic and continuous everywhere, it cannot become identically zero over a 

finite region. Hence the classical Schwarzschild mass-density function is not analytic. 

9 The relationship between the metric tensor and the stress-energy tensor and the mass-energy 

distribution is really far from clear anyway, e.g. see Lehmkuhl (2010). 
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GTR equation itself. In terms of laws of motion, we can continue to use the theory of 

geodesics in GTR once we have determined the metric tensor.  

So we can take K-gravity as a GTR model with a non-standard stress-energy tensor, 

having a contribution from an extended “gravitational mass” not recognized in 

ordinary particle physics, which deals only with inertial mass. To summarize, we can 

view the K-gravity metric in two ways. First as a purely conventional solution for a 

particular mass density distribution. Second, in a novel interpretation, as the stress-

energy distribution for a single center-of-mass, M.  

 

Fig. 3. Left. A conventional fluid with total mass M, thinning in space as r 

increases. Right. A single inertial mass M produces a metric field g.  

On the left, conventional GTR relates g(r) to the mass-energy density-pressure 

function, (r), via the tensor T(r). The K-gravity solution is a special case for (r). 

On the right, we switch to taking K-gravity as a theory for a single central mass, with 

g corresponding to the solution for the tensor T(r). The ‘gravitational mass’ of a 

single particle thus becomes a density field in space, around the inertial center-of-

mass at a point.  

This is somewhat analogous to the quantization of particle particles. A classical 

particle has a mass with a precise location and trajectory, but in quantum mechanics it 

has a position wave function ‘smeared out’ across space. QM thus required a radical 

change in the conception of particles (still not resolved after a century). K-gravity 

proposes analogously that the ‘gravitational mass’ of “point-like” particles is smeared 

across space.10  

We must distinguish between inertial mass, which we conceive as the centralized 

mass of a localized body, and gravitational mass, which now becomes a mass density 

field across space corresponding “classically” to the stress-energy tensor. The 

conceptual distinction between inertial and gravitational mass was emphasized by 

Einstein, e.g. his [1919] and played an important role in his development of GTR.  

 
10 GTR cannot deal consistently with quantum wave functions in the most fundamental respect: viz. the 

quantum distribution of matter is given by superpositions of position states, but when these undergo 

wave function collapse, there is no concept in GTR for the metric tensor to undergo collapse. GTR is 

deterministic, QM is probabilistic. This is part of the failure to unify GTR and quantum theory. 
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‘Inertial mass’ in this sense has a rest-mass, and a trajectory, and carries energy and 

momentum, and is what is accelerated by forces. ‘Gravitational mass’ is like the 

‘charge distribution’ that the inertial mass provides for the gravitational field. Einstein 

recognized the importance of identifying them, in Newtonian and GTR theories. But 

this also introduces the conceptual possibility of distinguishing them. 

We have analyzed the K-metric for a single mass, but for a viable theory, we need to 

show that there is a viable superposition principle for determining the metric for 

general distributions. We do this next for static mass distributions. The further 

generalization to dynamic systems then requires a principle similar to electrodynamics 

where charges (inertial masses in our case) generate retarded potentials which 

determine the fields (the metric tensor in our case). So we now turn to a superposition 

principle.  

Before we start, we can conceptualize this in terms of a background strain field on 

space, which we briefly illustrate first. In this model, we imagine that we have an 

elastic theory of space, with mass-energy stored in the “stretching of space”, for 

which we introduce an underlying strain variable, W. This acts exactly like an 

additional dimension of space, and is regarded as creating a circular “surface”.  

 

 Fig. 4. We postulate a strain function, W = W0K(M,r), as a model. With the 

exponential K function, it goes to an asymptote: K(r)→ ∞ as r → 0.  

 

We postulate that the natural law for elasticity (strain) in this model for a single mass 

is: W = W0K, and postulate functions relating strain to the metric that make this 

consistent with the K-metric solution. This strain has two effects: it changes the speed 

of light for particles or waves, and it induces curvature on space. By adding three 

dimensions of space in a 6D spatial model, we can use Whitney’s theorem/s [Whitney 

1936/1996], to show that we can make an extrinsically curved space with metric 

homomorphic to any intrinsically curved GTR solution (including global curvature for 

a finite close universe). We then postulate linear superposition of strain functions for 

multiple masses (as in an elastic theory of space), and we obtain functions for the 

metric field directly from this. This strain can be used as an underlying variable to 

substitute for  and obtain the stress-energy tensor. The metric is then a function of 

the strain and its gradient and divergence. But when we add multiple masses, the 
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strain functions multiply linearly to give the full strain function, and we find a linear 

function for the metric directly from this, so we do not have to go through the stress-

energy tensor. 

 

 

Fig. 5. If we add two masses (m1, m2) at different points in space, the 

combined strain function is the linear product. Note the functions should have 

singularities at the mass centers, they are shown smoothed to a finite 

displacement for the diagram.  

 

To see how this gives Minkowski and Schwarzschild metrics in the limit, imagine a 

small test-mass m at a large distance, r, from a central mass, M. The background 

speed of light is now c/K. We see this by rearranging (2), first as locally Cartesian 

coordinates where dr = dx.  

 ds2 = c2dt2/K2 – K2dr2 –  dy2 – dz2  

We define an alternative variable: dw = ds, as a spatial variable affected by the strain 

K. Then the metric is the same as this 4D velocity equation:   

 √(dw2 + dy2 + dz2 + K2dr2)/dt = c/K  

Or: √(vw
2 + vy

2 + vz
2 + K2vr

2) = c/K  

This is the equation for a particle or wave, travelling in a 4D space (w,r,y,z) with an 

elliptical speed function. In (w,y,z)-directions the wave speed is c/K, while in r it is 

c/K2. (Instead of c/k and c/k2 for the Schwarzschild metric).  

 

7. Consistency for the single central mass field. 

We first observe that the single mass K-metric is a conservative energy field exactly 

like usual Schwarzschild solution because it is spherically symmetric, and the curl is 

zero. It gives rise to a universal acceleration field on masses (equivalence principle), 

which appears like a force field. It accelerates test particles towards a central mass. It 

gives a conservative force, because it must be spherically symmetric: F = F(r)r.  
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Note the classical force is the gradient of a spherical potential energy function 

c2ln(K), giving: f =(c2ln(K)) = c2 K/K. The classical force field is the gradient 

ratio: (K/r)(1/K) ≡(ln(K)). But the relativistic force is different (later). Note also if 

we rotate (or reflect) a beam of light from motion in the (y,z) plane into r, its speed 

reduces, but its frequency remains the same. Hence the wavelength reduces:  = 

c0/Kf, or:  f = c/ = c0/0. This means the quantum wave energy remains the same 

under rotation: E = hf, with gravitational red shift like the usual Schwarzschild 

solution. More generally, potential energy is only a function of position in the field - 

rotation does not change energy. 

In any case, the full dynamics are determined by the metric tensor and the GTR 

geodesic principle, so as long as it has a consistent superposition principle for creating 

the fields, it should have a consistent mechanics. Now we show the superposition law 

for adding multiple masses at a single point is consistent.  

Linear superposition of mass holds for K for two masses imposed at the same point.   

 K(m1,r)K(m2,r) = K(m1+m2,r)  (34) 

This is because K is exponential: exp(m1G/c2r)exp(m2G/c2r) =  exp((m1+m2)G/c2r).  

So the linear superposition of two fields: K(m1,r)K(m2,r) acts exactly like K for a 

single point mass: K(m1+m2) = K(M). This corresponds to a physical superposition 

property: treating a single mass M as two component masses, M1+M2.  

• The effect of imposing an aggregate mass of: (M1+M2) on empty space at a 

given point (K = exp((M1+M2)G/c2r)) is identical to imposing M1 on empty 

space first (K1 = exp(M1G/c2r)), and then imposing M2 linearly on the 

resulting space at the same point (K12 = K1K2 = exp(M1G/c2r)exp(M2G/c2r)). 

This means we can define a more general K-scalar field as the linear product of K-

fields of separate masses: K = exp(M1/r1 + M2/r2 + … + MN/rN), for N masses. This 

general K is the exponential of the classical gravitational potential energy functions, 

the usual 3D spherical harmonic functions in (M/r). Note we could also add a 

constant, but this is just equivalent to multiplying K by a constant. K is normalized 

with an absolute scale of 1 for empty space. Multiplying by an arbitrary constant 

appears like a gauge symmetry, but we should be wary of this, because there is 

actually a fixed gauge when we consider the universe as a whole, with K=1.  
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Fig. 6. Superposition of masses at the same point. Note rescaling of the axes.  

 

Since superposition of two or masses at the same point gives the same as the sum of 

the masses this is consistent. Note also that this is quite different to the Schwarzschild 

metric, where linear superposition does not hold for k, because e.g.:  

 k(m1+m2,r) = (1-2(m1+m2)G/c2r) -½ 

While:  

 k(m1,r)k(m2,r) = (1-2(m1+m2)(G/c2r)+4m1m2(G/c2r)2)-½   

So:  

 k(m1,r)k(m2,r) < k(m1+m2,r)11 

We now define a more general metric from the scalar field K and its gradient.  

8. General superposition of K-functions.  

To generalize we need a law for the metric tensor at a field point, arising from 

multiple masses at different distances in different directions. We now propose a 

superposition principle for obtaining solutions for g.  

Note we cannot do this through any direct superposition of the mass-energy density 

functions  (Section 8) for individual masses, because they are not suitably linear. 

Normally if we combine two distinct mass distributions in space, we can add their 

masses together to get a combined mass distribution. This is how we superimpose 

classical mass distributions. But the K-gravity gravitational mass functions , or 

 

11 k also has an interesting property of converging to K if we take the linear product: kN of 

many smaller masses. We divide a mass M into N masses of m, so: m = M/N, and take the 

superposition function k(m) repeated N times: k(m,r)N = ((1-2mG/c2r)N)-½. In the limit of N→ 

∞, (1-x/N)N = e-x. So let: x = 2mNG/c2r = 2MG/c2r, and obtain: k(m,r)N → (exp(2mNG/c2r))-½ 

= exp(MG/c2r). Thus in the limit of N→ ∞: k(m,r)N  →  K(M,r) = K(mN,r) = K(m,r)N. 
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equivalently the T, are not linear. We cannot take the solution (21) and sum (n)’s for 

a collection of N masses to get a total: total = (n) for the whole system of masses, and 

then use this to derive T for the whole system, and subsequently derive g from the 

Einstein equation. The reason is that  or equivalently T , for the K-gravity central 

mass is not linear with mass. E.g. using the approximation: T  ≈ M2G/4r4, which is 

accurate for large r, and defining M as a composite mass: M = M1+M2, we see:  

 T(M1+M2)  ≈ (M1+M2)
2G/4r4  (33) 

  = M1
2G/4r4+ M2

2G/4r4+ 2M1M2G/4r4 

  ≈ T(M1) + T(M2)+ 2M1M2G/4r4 

Hence: T(M1+M2) > T(M1) + T(M2). E.g. when: M1 = M2 = M/2, we have: 

T(M1+M2) ≈  2T(M1) + 2T(M2), not: T(M1+M2) = T(M1) + T(M2). 

So we cannot write a superposition principle directly in terms of  or T.  

(C.f. the k-metric is not linear with mass, and has no linear superposition principle.) 

Instead, we can define g directly from the inertial mass-energy distributions.  

The linearity of K means first that there is a well-defined function generalizing K for 

multiple masses (at multiple positions), called the K scalar field. This is defined over 

all the masses, N, in the space. It is just the product of all the individual K(Mn,r(n))’s 

for the individual masses. At any field point K is defined:  

The K scalar field. 

 K ≡ K(M1,r(1))K(M2,r(2))… K(MN,r(N))   (35) 

The r(i)’s are the distances from the field point O to the masses Mn. We may write this: 

 K ≡ K(M1/r(1)+ …+MN/r(N)) = exp((G/c2)(∑ n=1 to N(Mn/r(n))))  (36) 

This magnitude depends only the masses Mn and their distances: r(n) = |r(n)| from the 

field point. I.e. it is independent of the relative directions of the masses. The gradient 

field of K is defined in local rectangular coordinates for the empty space at a field 

point O as usual, with i = 1,2,3 and xi the basis vectors for coordinates: xi.  

 The K gradient field. 

 K = (K) = (∂K/∂xi)xi                                   (37) 

To differentiate note:  (r(n))= r(n) and:  (Mn/r(n))= -(Mn/r(n)
2)r(n). Because K is linear, 

these are linear. So summing over the masses n: 

  (K) =  (exp((G/c2)∑(Mn/r(n))))  (38) 

  = -(KG/c2)∑((Mn/r(n)
2)r(n)) 

This is simply related to the Newtonian acceleration field, as illustrated.  
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Fig. 7. The vector sum f of Newtonian acceleration fields, illustrated for two 

masses. The K-gradient field is closely related.  

The K-gradient field is just K/c2 times the Newtonian force vector field. The latter will 

be denoted f, defined by linear supposition:  

Newtonian acceleration field 

 f = -G∑((Mn/r(n)
2)r(n))  (39)  

Thus: 

 c2K/K = f  (40) 

 K = Kf/c2 Same 

SoK and f are closely related vector fields. Since: f =() and:  2() = 0, we have: 

c22(K)/K = c2K2/K2 or: 2(K) = K2/K. These have magnitudes: 

  f = |f|  = (f.f)½  (41) 

We only need to work with one or other of f or  c2K/K, so we will use f.   

We now state three rules to determine g directly for multiple source masses, and 

combine them in equation (46). We state this initially in the special local rectangular 

coordinate system, at the field point O, with x1 chosen in the direction of f. The g 

representation may be locally diagonalized in this coordinate system. We develop the 

rules first for simple systems where we know what the result must be (e.g. the single 

particle K-metric), and then we can generalize by taking coordinate transformations.  

The first two rules (for static systems) are: 

• First, the off-diagonal terms with a time component are zero:  

 g = g =  g = g  = g  =  g  = 0 (42) 

• Second, the t-t component g is:  

 g = c2/K (43) 

The third rule is given for the case where f is in the first coordinate direction x1: 

• Third, in our special rectangular coordinates with x = x1 chosen in the 

direction of f the spatial components are: 

 g = -1-(f.x1/f)
2(K2-1),   

 

r(1) 

M1 

M2 

O 

r(2) 

(GM2/r(2)
2
)r(2) 

(GM1/r(1)
2
)r(1) 

 f  = (GM1/r(1)
2
)r(1)  

    + (GM2/r(2)
2
)r(2) 
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 All other gij = -ij (44) 

Hence for this special case the full metric tensor is:  

 Coordinates:  t=x0,  x=x1, y=x2, z=x3 (45) 

[g] =  c2/K2, 0, 0, 0 

  0, -1-(f.x1/f)
2(K2-1), 0, 0 

  0, 0, -1 0 

  0, 0, 0, –1 

 

Note first that the ‘time dilation’ component, viz. g00/c
2= (∂/∂t)2, is always given by 

1/K2. All masses Mn contribute to this by the factor: exp(GMn/c
2r(n)), independent of 

their direction from the field point. This is in conformity with ordinary GTR, within 

the scale factor of: K2/k2.  

Now for the space components, which determine the accelerations, in this special 

case: (f.x1/f)
2 = 1, because f is chosen in the direction of x1 and f.x1 = f. So we can just 

write: g11 = -K2.  

It is written in the functional form above to compare with the form of the more 

general case, which is:  

 gij = -ij - (f•xi/f)(f•xj/f)(K
2-1) (46) 

This is the third rule generalized for rectangular coordinates (xi) rotated with respect 

to f in a plane of f by an angle . The dot product: f•xi gives the magnitude of f in the 

xi direction, and we may write this as: f•xi = fi.  

For consistency as a tensor relation, this metric (46) in rotated spatial coordinates in 

the x-y plane of f, by an angle , must match that obtained through the usual 

coordinate transformation rule: g’ = gkl (∂xk/∂x’)(∂xl/∂x’), with the Jacobian 

(∂xk/∂x’) for rotation defined: 

 (47)  

   1, 0, 0, 0 

  0, cos, -sin, 0 

  0, sin, cos,  0 

  0, 0, 0, 1 

 

This transforms the simple K-gravity metric (2) or (45) to: 
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 K-Gravity metric tensor for M in rotated Cartesian coordinates (48) 

 [g()]’ =  c2/K2, 0,  0,   0 

  0, -1-cos2(K2-1), -cos sin (K2-1), 0 

  0, -cos sin (K2-1), -1-sin2(K2-1),  0 

  0, 0,  0,   –1 

We can confirm we get the same result by using our general rule (46) to assign the 

components in a rotated frame. First consider the simple central mass case, where: f•xi 

= f, and use (46) to assign components in a rotated frame. In the simple frame, x = x1 

is chosen in the direction f, so: f•x1 = f, and f•x2 = f•x3 = 0. Now suppose we rotate in 

the x-y plane by , as in the transformation (35). We find that:  

 f•x1 = f cos    f•x2 = f sin (49)  

This is simply the vector geometry of rotating f. Thus we find the components directly 

from (46) as: 

 g11 = -11 - (f cos /f)(f cos /f)(K2-1) = -1 - cos2(K2-1) (50) 

 g22 = -22 - (f sin /f)(f sin /f)(K2-1) = -1 - sin2(K2-1) 

 g12 = -12 - (f cos /f)(f sin /f)(K2-1) = -cos sin (K2-1) 

 g21 = -21 - (f sin /f)(f cos /f)(K2-1) = -cos sin (K2-1) 

This confirms we get the same result using (46) directly as by transforming the 

diagonalized metric to the rotated coordinate system (48). This holds generally when 

f•xi = fi < f, because fi/f acts as a constant when we differentiate the gij. We may write 

the rule (46) in a generalized matrix form:  

  K-metric for a static system in rectangular coordinates  (51) 

 c2/K2, 0, 0, 0 

 0,  -1-(f•x1/f)
2(K2-1), -(f•x1/f)(f•x2/f)(K

2-1), -(f•x1/f)(f•x3/f)(K
2-1)   

 0,  -(f•x2/f)(f•x1/f)(K
2-1), -1-(f•x2/f)

2(K2-1), -(f•x2/f)(f•x3/f)(K
2-1) 

 0,  -(f•x3/f)(f•x1/f)(K
2-1), -(f•x3/f)(f•x2/f)(K

2-1), -1-(f•x3/f)
2(K2-1) 

and this is consistent and symmetric with general coordinate rotations in space. This is 

the metric represented in orthogonal rectangular coordinates (in any direction).  

Of course this is only for a static system (so the space-time terms are zero). To 

generalize we should take the individual K-functions as retarded sources, as we in 

electrodynamics. It is more difficult as the propagation speed now varies with the 

metric (c/K), and we leave a full treatment for another discussion.  

To verify this is physically realistic, and to prepare to discuss empirical tests in the 

subsequent section we examine accelerations next.  
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9. Acceleration of a stationary test particle.  

We will use: U for the velocity 4-vector and A for the acceleration 4-vector. These 

are the differentials of the x w.r.t. proper time, d. Thus for a stationary test particle 

at the field point: U = dt/d = c/√g00 = K, and Ui = dUi/d = 0 for the spatial 

velocities. The general tensor relationship for acceleration is:  

 A  = UU  (52) 

 = U(U/x + Γ
U) 

For the stationary particle, only U  0, and this simplifies to:  

 A  = U(U/x + Γ
U)  (53) 

 = (U)2Γ
 

For a Schwarzschild-type metric, the only non-vanishing Christoffel symbol is Γ
. 

So the proper-time acceleration: d2x/d2 of a stationary particle at a field point O is:  

 A1 = (c2/g00)Γ
1
00 = (c2/g00)(∂g00/∂x)(1/2g11)  (54) 

This is then equal to:  

 A1 = (c2/g00)Γ
1
00 = -(c2K2/c2)(c2∂K-2/∂x)(1/2K2)  (55) 

 = – ½c2(∂K-2/∂x)  

In the case of the single-mass K, the differential is simply: ∂K-2/∂x = 2MG/c2r2K2, and 

the result is: A1 = -MG/r2K2. C.f. the Schwarzschild result is: A1 = -MG/r2. Thus the 

Schwarzschild acceleration is greater by a factor of K2. This is the acceleration with 

respect to proper time. The acceleration w.r.t. real time t for a stationary test particle 

with: dr/dt = 0 is then: a = d2r/dt2 = A1(d/dt)2 = -MG/r2K4. c.f. the Schwarzschild 

result is: a = -MG/r2k2.  

In the more general case of multiple masses, we do not have a spherically symmetric 

metric, the Christoffel symbols Γ
 other than Γ

 are not generally vanishing, and 

we have to go back to the more general equation (53). However we can use the special 

assumption at the field point O, that we have chosen x = x in the direction of f. I.e. f 

= f x. The partial differentials of K in other directions are zero at this point, and for 

this point the Christoffel symbols Γ
  do vanish except for Γ

.  

For the generalized K scalar field, the differential: ∂K-2/∂x is given through the 

gradient function: ∂K/∂x = (K).x = Kf.x/c2. We have: ∂K-2/∂x = -2f.x/c2K2. Thus the 

result of calculating A1 is more generally:  

 A1 = (c2/g00)Γ
1
00 = -½c2(∂K-2/∂x) = f.x/K2 (56) 

This diverges from the Newtonian acceleration by the factor 1/K2 (as f.x is just the 

Newtonian acceleration).  

We can give a simple example to illustrate. Take a field-point O half-way between 

two masses of magnitude M and 2M respectively, at a distance r0 from each.  
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 Fig. 8. Field point halfway between two unequal masses. 

The resultant Newtonian acceleration is towards the larger mass with: f = MG/r2. The 

function K in x is:  

 K = exp((G/c2)(2M/(r0-x)+M/(r0+x)) (57) 

The magnitude at the field point, where x = 0, is simply: K = exp((G/c2)(3M/r0). 

However notice the signs of the variable x are different in the two denominators in K, 

so when we differentiate we get:  

 ∂K/∂x = ((G/c2)(2M/(r0-x)2)- (G/c2)(M/(r0 +x)2))K (58) 

The value at the field point where x = 0 is: ∂K/∂x|x=0 = (GM/c2r0)
2K = Kf/c2. And this 

is what should give the correct acceleration.  

(56) is not a general expression for K of course, because it does not show the general 

dependence on the other two coordinates, y and z. The general expression is rather 

given by defining radial distance variables:  

 r(1) = √((r0+x)2+y2+z2), r(2) = √((r0-x)2+y2+z2)  (59) 

and then writing: 

 K = exp((G/c2)(M/r(1) +2M/r(2))) (60) 

When we differentiate this w.r.t. x, y and z we get the same result.12 We conclude this 

discussion of a static superposition principle for K-gravity here.  

Of course it is a further problem to generalize for dynamic systems. Source masses in 

motion must be treated as retarded sources, like moving electric charges in 

electrodynamics. This is beyond the scope here. This development is primarily meant 

to justify raising the question of the empirical difference between (1) and (2), by 

showing that it has a plausible generalization to a more general theory for multiple 

masses, with the general character of a natural law.  

There may be various choices to fully generalize it, but there is a clear path to 

empirically testing it. We do not have to establish a full theory for this. This was also 

the situation when GTR was first developed: it was subject to tests against Newtonian 

 

12 The result is that because we have chosen x in the direction f at the field point O, only the 

differential w.r.t. x is non-zero at that point. This is why the matrix is diagonal at the point O 

in this coordinate system. However when we have multiple masses, the differentials in all 

directions are involved.  

 

r0 

O 2M M 

r0 

MG/r
2
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gravity without fully understanding its theoretical implications. Similarly, K-gravity 

may be immediately tested against Schwarzschild gravity.  

Before we move on to empirical tests, we note one more important theoretical point, 

which helps to motivate the concept.  

 

Part 3. Testing K-gravity empirically. 

10. Empirical tests. 

We now consider how K-gravity compares empirically against Schwarzschild gravity. 

The main testing domain is solar system gravity, with the sun acting as an 

approximately spherical central mass for the major gravitational effect.13 This is a 

weak gravity domain, and the two metrics (1) and (2) give very similar predictions for 

this, because (a) the functional form of the metrics are very similar, predicting very 

similar qualitative effects in weak gravity, and (b) k and K are very close in these 

weak fields, giving very similar quantitative effects. The critical term: MG/c2r is 

about 10-8 for the gravity of the sun at roughly 1 AU.14 Hence the terms k and K from 

the sun for inner planetary orbits typically differ by about: (k – K) ≈ (MG/c2r)2 ≈10-16. 

This is not directly detectible in itself. Rather, the key difference is for accelerations 

of slow-moving bodies, which differ by the factor: K2  1+2MG/c2r.  

Accelerations by the sun at orbits around 1 AU calculated with the Schwarzschild 

solution will be about 1+10-8 times larger than those calculated using K-gravity using 

the same Msun/r. The accuracy to which we can measure MsunG is a critical limiting 

factor for testing this.15 The relative uncertainty in MsunG is currently claimed to be 

around 10-11 [Pitjeva, 2015]. This precision would make predicted differences well-

measurable in principle. However this accuracy is obtained from averaging over 

hundreds of thousands of measurements of planets and space probes at different 

orbits, taken over decades (Pitjeva 2015), and with averages modelled on the 

assumption of ordinary GTR. But to test K-gravity directly through accelerations we 

need precise measurements made at definite orbits. The relative error of 10-11 in MsunG 

that is claimed for averaged results is not applicable, and measurement error in single 

experiments is much poorer than this.  

 
13 There are implications for cosmology, galaxy or star formation, black holes, etc, but these cannot be 

used for direct tests. If K-gravity was directly confirmed it might be supported by further observations 

in these domains, but there is a lot of theory-dependant modelling required. 

14 While MG/c2r is only about 7×10-10
 for the gravity of the Earth at the surface.  

15 The CODATA (2014) recommended value of the gravitational constant G alone has a relative 

uncertainty of 4.7×10-5, which is poor. This is the uncertainty provided by laboratory-scale 

experiments, which cannot provide a test of K-gravity. Hence there is about the same error in estimates 

of solar or planetary masses. The accuracy of MsunG is much better; see Pitjeva (2015). 
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And it is also not a simple matter of measuring acceleration at a single orbit: we have 

to compare measurements of acceleration at two different orbits. We need to 

investigate whether gravitational experiments at single orbits can be made sufficiently 

accurately to decide between the two theories. 

Before we look at this, it should be emphasized that the classic tests of GTR against 

Newtonian gravity do not distinguish the Schwarzschild solution from K-gravity. The 

relativistic phenomena of K-gravity are qualitatively identical to those of 

Schwarzschild gravity in weak gravity: bending of light, gravitational red shift, time 

dilation and orbital precession all work almost identically.16 These phenomenon 

represent distinctive mechanisms in GTR that are absent from Newtonian theory, and 

differentiate those two theories. But there are no such qualitative differences between 

Schwarzschild gravity and K-gravity in weak fields, there are only fine quantitative 

differences. No classic tests of Schwarzschild gravity against Newtonian gravity are 

sensitive enough to distinguish Schwarzschild gravity from K-gravity. 

We are aware of only one set of observations which is potentially precise enough, viz. 

the Pioneer 11 spacecraft trajectories.17 (This was reinforced by a similar anomaly in 

Pioneer 10, but the data is much weaker, although it confirmed an anomaly.) This 

initially promised to give a sensitive quantitative measurement of gravitational 

acceleration over a large radial trajectory. This appears to be the only direct 

measurement to date of sufficient precision to directly test between the two metrics.  

If the Pioneer data had unambiguously confirmed Schwarzschild gravity, K-gravity 

would be rejected. But instead, famously, anomalies appeared in the Pioneer data, 

inconsistent with Schwarzschild gravity. In an earlier study18 it was found that these 

anomalies are consistent with K-gravity. So at first it appeared to confirm K-gravity.  

But this evidence is now weak, because the experiment is in doubt. NASA researchers 

and others spent many years searching for a conventional explanation, to reconcile 

with GTR. It was eventually claimed by the NASA-based study [Turyshev, 2012] that 

the anomalies are due to anisotropic radiation from the spacecraft. Probably most 

GTR theorists accept this since it confirms their expectations.  

But this proposed explanation is complicated, theoretical, and untested. There is no 

independent confirmation or experimental replication to prove the cause. It is 

proposed that a new experiment is the only way to decisively test the matter. First 

however we look briefly at the basic concept of testing the theories through 

measurement of accelerations, and then point out the most practical method.  

 
16 In strong fields the theories diverge, e.g. there is no event horizon in K-gravity. But there is no 

experimental confirmation of the existence of the Schwarzschild black hole event horizon yet. 

17 E.g. [Musser, 1998], [Mbelek, 2004] [Trencevski, 2004], [Ranada, 2004 a,b], [Nieto, 2004]. 

18 Unpublished preprint, 2005. 
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11. Acceleration differences.  

The conceptual starting point is that the predicted difference in accelerations, for 

slowly moving test particles in weak gravity, is K2. For Earth orbit (1 AU), K2 is about 

1+10-8. For Saturn orbit (10 AU), it is reduced to about 1+10-9.19  

Now for experiments at a fixed orbit, adopting K-gravity instead of Schwarzschild 

gravity is essentially the same as recalibrating the estimated magnitude of MsunG for 

the sun by the factor K2 at that orbit. Testability at first sight seems to depend upon 

whether acceleration measurements are made accurately enough to detect the 

difference between MsunG and MsunGK2. But measuring absolute accelerations at one 

orbit is no good because these are what we use to determine MsunG in the first place - 

using the assumption of the Schwarzschild metric. Any such observation at a single 

orbit is equally consistent with K-gravity: we would just recalibrate MsunG by the 

factor K2. Instead we must compare accelerations across different orbits.20 This point 

is critical and needs a brief analysis.  

MsunG can be measured quite accurately, currently to an uncertainty of around 10-9 - 

10-10, using space probes at a single orbit (over a period of several orbits, i.e. several 

years for 1 AU).21 So it might seem a difference of K2 could be immediately detected 

in absolute accelerations. But to repeat the point above, this is wrong. MsunG at a 

single orbit may be calculated from measuring acceleration (of orbiting bodies or 

space probes), and then using the assumption of Schwarzschild gravity to infer MsunG. 

But if we assumed K-gravity instead, we would just infer that MsunG is larger by K2, 

using K for the orbit where we measured the acceleration. Note because K-gravity is 

weaker, we infer a larger MsunG from the same observed acceleration. MsunG inferred 

from Schwarzschild gravity from a single orbit will correspond by definition to 

MsunGK2 inferred from K-gravity.  

To use acceleration measurements, we need to measure accelerations at two different 

orbits, and compare their values. Suppose we first determine (proper) accelerations: 

MsunG/r1
2 and MsunG/r2

2 at two different orbits, using the assumption of Schwarzschild 

gravity to infer MsunG in both cases. Their difference is:  

 N = (MsunG/r1
2 - MsunG/r2

2) = (MsunG)(1/r1
2 - 1/r2

2)  (61) 

We can measure this accurately to the sum of relative uncertainties in the terms This 

uncertainty involves the r terms as well as MsunG. Let us define this uncertainty (to 

one standard error) as: MsunG/r1
2. Now this depends on the measurements at both 

orbits. If we do a very careful measurement at a primary orbit r1 we may get a small 

 
19 Note accelerations can be measured directly by tracking positions, in the case of space-craft, or from 

orbital periods and radius, in the case of orbiting bodies.  

20 The same applies to time dilation or red shift effects, but red shift effects are measured to relative 

error of only about 10-6  [Will 2014 p.13-15] and are not sensitive enough. Measurement of the 

precession of the perihelion of Mercury is less accurate again.  

21 [Hofmann, 2018], [Pavlov, 2016], [Pitjeva, 2015]. 
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error, but for a good comparison we need a similarly careful measurement at r2 and as 

we see next, we need r2 to be in a suitable range to maximize the differences. 

To see the predictions of K-gravity, we can recalibrate MsunG to the value: MsunGK1
2 

at r1, and then use this value for MsunG at r2. The accelerations predicted by K-gravity 

will then be very close to: MsunGK1
2/r1

2K1
2 = MsunG/r1

2 and MsunGK1
2/K2

2r2
2. Their 

difference will then be predicted as:  

 K = (MsunG/r1
2 – MsunGK1

2/K2
2r2

2) = (MsunG)(1/r1
2 – K1

2/K2
2r2

2)   (62) 

Expanding the K term, this is approximately: 

 K  (MsunG)(1/r1
2 – 1/r2

2 – (1/r2
2 )(2MsunG/c2)(1/r1–1/r2)) (63) 

Then the absolute difference: K - N is: 

 K - N  = -(MsunG)(1/r2
2)(2MsunG/c2)(1/r1–1/r2) (64) 

This is the difference between the two theories for the accelerations predicted at r2. 

Define  = r1/r2, so this is:   

 K - N  = -(MsunG2/r1
2)(2MsunG/c2r1)(1- ) (65) 

Now we need to compare this magnitude to the error term: MsunG/r1
2.  

Dividing gives: 

 (K - N)/(MsunG/r1
2) = -22(1- )(MsunG/c2r1)(1/) () 

Effects become conclusively detectible when this is substantially greater than 1, say 

on the scale of 10.22 Let us use this to define a conclusively detectible limit so:  

  2(1- )(MsunG/c2r1) = 10           Conclusively detectible limit for  

Now we can put in approximate numbers, for r1 = 1 AU as: MsunG/c2r1  10-8, so: 

     2(1-)10-9 

This tells us the maximum limit of  required at different choices of  = r1/r2 to 

achieve a clear detection of the K-gravity effect. 

  

 
22 Theoretically 4-5 standard errors is sufficient; but the likelihood of systematic error through 

miscalculation of small effects, like radiation pressure, dust collisions, planetary effects, solar 

asymmetry, which are larger in the inner solar system than at the 10-80 AU orbit of the Pioneer 11, 

means we need a much better precision to decisively confirm or disconfirm an effect. 
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Fig. 9. Graph of  against r2/r1, where the radii are two different orbits at 

which acceleration is measured.  

This illustrates minimal precisions required in acceleration measurements to achieve 

experimental precision of the z-score = 20, for a range of the second orbit radius. 

The best precision is found when r2/r1 is 1.5. (Or inversely, 0.66). I.e. assuming the 

closest orbit is at r1 = 1 AU, the second orbit would need to be around 1.5 AU for the 

most sensitive experiment. Orbits from about 1.3 – 2.5 AU will be good enough if we 

can achieve relative measurement error better than about 10-10 for the acceleration 

measurements at both orbits. Note this error must include compensation terms for 

forces other than the solar gravity component, e.g. solar radiation, solar wind, dust or 

small particle collisions, planetary tugs, possible EM forces, oblateness of the sun, 

and velocity of the probe, as well as measurement error of r itself, and the period. 

Since relative measurement error of 10-10 is about the present limit for measuring 

accelerations of space probes, it is possible for this experiment to be done, but it 

would take many years. Data for such a test is not available from previous 

experiments. It requires high-precision measurements at two appropriate distances 

from the sun, but these have not been done. (Without a theory to test GTR against 

there is no way to guess the appropriate distances for such an experiment.) There is no 

indication that any analysis of data from gravitational experiments has been 

undertaken to test this. Any inconsistencies present in current gravitational data that 

might confirm K-gravity have gone unexplained. Current analyses do not envisage a 

possibility like K-gravity, where the gravitational field changes shape significantly 

compared to Schwarzschild gravity with radial distance.23  

 
23 Variations conceived in the framework of the Paramistised Post-Newtonian formalism, e.g. [Will, 

2014] do not allow for such differences, and neither do popular alternative theories of gravity.  
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12. A practical experiment.  

There is a much better way to do the experiment than by measuring accelerations 

directly at two orbits; viz. by carefully observing the trajectory of a probe in radial 

free-fall. The optimal experiment is a probe launched at an optimal speed, that sees it 

traveling radially from Earth to about Jupiter orbit, over several years. Such an 

experiment has not been done. The tracking of the Pioneer spacecraft at more distant 

orbits (traveling from around 10 AU to 80 AU) provided a similar experiment in 

principle. However the Pioneer test is far from optimal: it is in much weaker gravity, 

and the speed is not optimal. But as far we know this is the only data of sufficient 

precision available to potentially test the hypothesis of K-gravity.  

Note there are two reasons the Pioneer experiment provides a more accurate test of 

acceleration than any space-craft experiments at closer orbits. First it was taken over a 

long period of time (several decades), so that small differences in acceleration 

accumulate. Second, it involves a free-fall trajectory over a substantial range of r, 

from about 10 AU (when the spacecraft left Saturn’s orbit) to around 80 AU. This 

second point is most important. The functions K and k which determine accelerations 

change shape over changes of r. It is easier to detect the predicted anomalies in radial 

trajectories observed over an appropriate range of r than to detect differences in 

absolute accelerations measured at two orbits directly.  

This also leads to a critical realization when analyzing the effects on radial 

trajectories. Because K gravity is weaker than Schwarzschild gravity, for the same 

assumed MsunG/r, we intuitively expect it to predict that probes traveling in free-fall 

outwards to large r will travel faster under the K-gravity metric. “The Pioneers have 

been slowing down faster than predicted … some tiny extra force … must be acting on 

the probes, braking their outward motion.” [Musser 1998]. This is true if the cause of 

slowing was a non-gravitational force. But if the cause is a modified form of gravity, 

the opposite is the case: a weaker rather than stronger gravity is required. This is 

because MsunG/r is initially calibrated from the inner solar system, on the assumption 

of Schwarzschild gravity, and from the point of view of K-gravity this leads us to 

underestimate the magnitude of MsunG/r (by 1/K2). If K-gravity is correct, then we 

should increase the conventional magnitude of MsunG/r by this factor, i.e. K2. In weak 

gravity, the differences between K and k are very small, and we will get almost the 

right acceleration predictions for K-gravity from the conventional Schwarzschild 

analysis - but by applying it with the larger value: MsunGK2/r instead of MsunG/r. This 

is what we saw in the analysis above. 

So if K-gravity is correct, we should notice the spacecraft slowing down more than 

expected on the basis of the Schwarzschild solution. There should be an increasing 

delay in the expected position, exactly as first observed with the Pioneer spacecraft. 

Anomalies of about a 16 seconds delay in the expected journey to around 80 AU 

appeared, and we found a similar magnitude of difference (predicting about 12 - 18 

seconds delay, the range due to uncertainties in parameters).  
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However as mentioned above, the Pioneer evidence has subsequently become unclear.  

Turyshev et alia [2012] claim a faint source of anisotropic heat radiation from the 

Pioneer spacecraft is the cause of slowing. But if such a tiny factor is able to be 

overlooked for 20-30 years, who knows if there are further tiny factors also 

overlooked? Tiny effects are amplified over a long period of time, and there are 

multiple possible effects to calculate, e.g. radiation and particle pressure from the sun, 

small planetary pulls, ‘dark matter’, heat anisotropy, dust collisions, so-called ‘frame-

dragging’ effects, possible tiny EM forces, and even the Hubble expansion of the 

universe are on roughly the same scale. The upshot is that the analysis of the Pioneer 

trajectories is vulnerable to too many possible uncertainties which are precisely in the 

magnitude of anomalies predicted by K-gravity to provide any conclusive test of K-

gravity or confirmation of GTR.  

Experimental replication would be the only real way to resolve the question of the 

Pioneer anomalies. But replication of the original experiment is not feasible. However 

we do not have to replicate experiments exactly: we replicate to test for possible 

alternative causes of phenomenon. This is where having an alternative theory to test 

against is necessary. It lets us design variations of the original experiment, calculated 

to enhance anomalous effects on the hypothesis of a specific alternative cause.  

A decisive experiment to test K-gravity, and simultaneously try to replicate the 

Pioneer phenomenon on the hypothesis that K-gravity, may be done in a timeframe of 

around 3-4 years, by precisely tracking a probe in free-fall traveling from roughly 

Earth to Jupiter orbit. The speed is optimized to amplify the anomaly predicted by K-

gravity. This is a more efficient and robust experiment than trying to measure 

accelerations of probes at orbits of 1 AU and 1.5 AU to high precision. Calculation of 

optimal initial trajectory speeds and predicted effect can be easily obtained using the 

basic theory above.  

13. Summary.  

The K-metric is the analytic continuation of the Schwarzschild metric, and is a 

consistent solution in ordinary GTR, for a mass-density extending indefinitely with 

spherical symmetry. Such distributions of matter do not form in the real world, but it 

appears as a natural type of solution for an alternative GTR-type theory. The main 

argument is that this should be regarded as a real possibility, and tested empirically.  

The metric in the context of GTR requires us to distinguish the point-like inertial 

center of mass from a distributed gravitational mass. This is somewhat analogous to 

quantum mechanics, where classical point-particles become spatially extended waves. 

Opinions will differ over whether this is a plausible concept. But unless it is shown to 

be positively inconsistent (e.g. by failing to have consistent definitions of momentum 

or energy), it cannot be decided by theoretical principles alone. It has such similar 

solutions to the standard theory that they can barely be distinguished. And it has 

strong symmetries of its own, although they will ultimately differ from the current 

theory. Theoretical intuitions are useful heuristic guides to theory development, and 
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theorists become highly attached to their favored “symmetry principles”. Theorists 

often take the success of theories to prove their symmetries as general principles of 

nature. But we cannot decide such matters by arguing about the symmetries we prefer. 

Only empirical tests can decide objectively between two similar such theories. 

There is also a motivation today to look for alternatives to ordinary GTR, and a strong 

suspicion that it will have to be modified in some way, because of its inconsistency 

with quantum mechanics, as reflected in the failure to find a unified theory. 

Something must change in either GTR or QM, or more likely in both, to allow a 

unified theory. GTR also has difficulties with singularities or discontinuities. K-

gravity removes the event horizon singularity (a discontinuity), and it provides 

alternatives to deal with the central singularity. We also note that it only appears 

viable in a closed finite universe, although we did not discuss that here. When applied 

to a finite universe, it also leads to distinctive differences with standard cosmology – 

but in areas that are fraught with anomalies, so this is difficult to evaluate. But it has 

very significant implications beyond gravity alone.  

Although the K-metric is quite different to the Schwarzschild metric, the difference 

does not appear to be empirically decidable from current experimental data. This may 

be surprising to those who think GTR is so well confirmed that there is now little 

possibility of it failing. But it is a mistake to think we can simply confirm a general 

theory like GTR in isolation, by doing more and more precise measurements. We 

cannot test a theory unless we have some idea of where it might fail. We have to test 

theories against alternative theories that predict precise differences that we might 

expect. Ordinary GTR has never been tested against K-gravity, and at present there is 

no way to tell which is empirically correct.  

K-gravity can be tested with a fairly simple solar system experiment. This represents 

perhaps the largest plausible divergence from ordinary GTR that remains untested at 

present. A test would set a new limit to the accuracy of GTR. This also falls outside 

the main program for testing GTR, through the parameterized post-Newtonian 

formalism. ([Will, 2014]). The PPN is a model of variations of GTR, and includes 

tests of some well-known theories, e.g. Brans–Dicke theory, string theory or quantum 

loop gravity; but nothing as radical as the K-metric. Such a test might reject K-

gravity, and confirm a new limit of the accuracy for GTR; or it might confirm K-

gravity, and force us to reconstruct the fundamental theory; or it might contradict 

both, and reveal something quite unexpected again. 

To conclude, referring to the quotation from Einstein at the start, GTR is a freakishly 

accurate theory, and this leads many physicists to conclude that it is irrevocable; but 

there may be more theoretical possibilities than first appears possible. We should 

distinguish the metric theory, which appears robust as a general description of motion 

once we have obtained a metric tensor, from the connection to the stress-energy 

tensor proposed in Einstein’s equation, which may have an alternative model at a 

more fundamental level.  
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