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Geometric model of gravity, counterfactual solar mass, and the 

Pioneer anomalies. 

 

Introduction.  

 

This is a slightly edited paper from 2004. I do not think the situation summarized here 

has changed significantly in 2014, but I add these extra explanatory notes. This study 

analyses the predictions of the General Theory of Relativity (GTR) against a slightly 

modified version of the standard central mass solution (Schwarzchild solution). It is 

applied to central gravity in the solar system, the Pioneer spacecraft anomalies (which 

GTR fails to predict correctly), and planetary orbit distances and times, etc (where 

GTR is thought consistent.)  

 

The modified gravity equation was motivated by a theory originally called ‘TFP’ 

(Time Flow Physics, 2004). This is now replaced by the ‘Geometric Model’, 2014 

[20], which retains the same theory of gravity. This analysis is offered partially as 

supporting detail for the claim in [20] that the theory is realistic in the solar system 

and explains the Pioneer anomalies. The overall conclusion is that the model can 

claim to explain the Pioneer anomalies, contingent on the analysis being 

independently verified and duplicated of course.  

 

However the interest lies beyond testing this theory. To start with, it gives us a 

realistic scale on which gravity might vary from the accepted theory, remain 

consistent with most solar-scale astronomical observations. It is found here that the 

modified gravity equation would appear consistent with GTR for most phenomena, 

but it would retard the Pioneer spacecraft by about the observed amount (15 seconds 

or so at time). Hence it is a possible explanation of this anomaly, which as far as I 

know remains unexplained now for 20 years. 
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It also shows what many philosophers of science have emphasized: the pivotal role of 

counterfactual reasoning. By putting forward an exact alternative solution, and 

working through the full explanation, we discover a surprising ‘counterfactual 

paradox’: the modified theory slightly weakens GTR gravity – and yet the effect is to 

slow down the Pioneer trajectory, making it appear as if gravity is stronger than 

GTR. The inference that “there must be some tiny extra force…” (Musser, 1998 [1]) is 

wrong: there is a second option: “…or there may be a slightly weaker form of gravity 

than GTR.”  

 

The reason for this is because the counterfactual implications of replacing GTR with 

the alternative theory is not simply to replace the equations, and use the same values 

for the solar mass. We have to reevaluate all the theoretically-dependant 

measurements and quantities. It is a holistic system: we have to recalculate mass and 

distance relations for the solar system bodies, including revising the mass of the sun, 

which is increased by about 1.00000004, or 4 x 10
-8

. This is the counterfactual solar 

mass. It is chosen so the decreased strength of the counterfactual gravity law leaves 

the sun’s gravitational effect the same at Earth’s orbit.  

 

The change to the Schwarzschild solution simply amounts to replacing the quadratic 

factor: 
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these in Taylor series, it is seen they differ only in 2
nd

-order terms, which are quite 

tiny. In a scale symmetric theory, K is the generalization of k.  

 

I think this is the only mathematically coherent modification of the Schwarzschild 

solution to consider as a possible alternative. It is mathematically sensible in that mass 

has a linear addition, with only a small non-linear effect in normal situations, and it 

uses the dimensionless combination: (MG/c
2
r). The first space differential of K is: 

dK/dr = (-MG/c
2
r

2
)K, which has a linear factor in M, with a small non-linearity in K. 

The first space differential of k is: dk/dr = (-MG/c
2
r

2
)k

3
, which is similar. It is also 

equivalent to a GTR metric for a Gaussian-like distribution of mass M smeared out 

from the center, instead of the simple central mass that the Schwarzschild solution 

represents. Hence it makes sense physically, even in GTR.  
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I should also note that in terms of the broader theory [20], the background constant G 

can change in response to the background mass-energy tensor. It may well undergo 

periodic perturbations, if there are large ‘free gravitational waves’ in the local solar 

system or galaxy, which there jolly well could be. I have not considered this, but see 

Sheldrake 2013 [19], who wonders whether there are regular fluctuations in the 

absolute value of G on Earth, and points out that estimates are based on averages, that 

there are special measurement uncertainties with G, and provides evidence supporting 

fluctuations. This is possible in the Geometric Universe, where G does vary 

depending on the background mass-energy density provided by the Earth, sun, galaxy. 

Our position in the Milky Way galaxy has a large effect, increasing G for us by about 

10
-5

 -10
-6

 parts, compared to G in local inter-galactic space. The sun (10
-8

) and Earth 

(10
-9

) make relatively little difference to the background strain tensor, compared to 

the large mass of the galaxy. However I do not think this possibility affects the 

explanation here of the Pioneer anomalies. Note the phenomena is observed for 

multiple space craft, traveling in different directions out of the solar system, so a law-

like explanation is indicated, and special local influences do not seem likely.  

 

Andrew Holster.  

ATASA Research.  

July 2014.  
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TFP gravity in the solar system and anomalies in 

Pioneer spacecraft orbits. 

 

Andrew Holster. March 2004, Pukerua Bay, Wellington, New Zealand.  

 

“…they did notice that the Pioneers have been slowing down faster than 

predicted by Einstein’s general theory of relativity. Some tiny extra force – 

equivalent to a ten-billionth of the gravity at Earth’s surface – must be 

acting on the probes, braking their outward motion. … In 1994 Michael 

Martin Nieto of Los Alamos National Laboratory and his colleagues 

suggested that the anomaly was a sign that relativity itself had to be 

modified.”  Musser, 1998 [1].  

1. Introduction. 

Holster 2004 [2] proposes a new theory of gravity, called TFP gravity, based on a new 

general conception for a unified theory (called Time Flow Physics: TFP). This paper 

compares TFP gravity with the General Theory of Relativity (GTR) for ordinary 

gravitational fields in the solar system. It is concluded that: (i) TFP gravity makes a 

detectible difference for the predicted trajectories of the Pioneer spacecraft and the 

differences are similar to the anomalies observed in these trajectories
1
; (ii) TFP 

gravity makes small differences to the predicted orbits of the planets; the predicted 

discrepancies are actually slightly larger than current measurement error reported for 

mean orbit distances; this appears to disconfirm TFP gravity; but it is not clear that 

these measurements are direct, and independent of the assumption of GTR in the first 

place, and this needs to be checked more carefully. It is also observed that (iii) TFP 

gravity makes only a tiny difference to light trajectories and signaling times on solar 

system scales.
2
  

                                                 
1
 See references [3-14] for a selection of recent attempts to explain the anomalies; many involve 

unconventional theories; [7] proposes a conventional explanation, but appears rejected by others, see 

[9].  
2
 The effect on the perihelions of Mercury is not examined here, but is a further key solar system 

phenomena which requires analysis. 
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The application of TFP gravity in the solar system is idealized as a simple 

central mass problem. The TFP gravity solution for this is a simple modification of 

the usual GTR Schwarzschild solution. Solutions developed for this are here called K-

Gravity.  

One feature is particularly noteworthy in any case: TFP gravity is slightly 

weaker than GTR gravity, for a fixed mass, and this initially suggests that the Pioneer 

trajectories should become slightly faster on TFP than on GTR as they escape the 

solar system. But the application of TFP gravity subsequently requires a 

reinterpretation of the mass of the sun – since this mass is ordinarily inferred on the 

basis of GTR (or its Newtonian limit), along with measurements of distance and 

periods of orbiting bodies, primarily Earth
3
. There is a reversal of the effect when the 

mass of the sun is recalculated according to TFP. The mass of the sun is recalculated 

as slightly larger than on GTR, for consistency with the Earth’s orbit; and when this is 

taken into account, the effect is to slow the predicted trajectories of spacecraft leaving 

the solar system compared to GTR. So somewhat surprisingly, the weaker theory of 

gravity predicts that the gravity will appear stronger for an escaping spacecraft. This 

is an example of the theory dependence of interpretations of astronomical 

observations. 

This is an example of a more general problem raised by Vanderburgh [17].  

The same point must also apply to number of other explanations involving modified 

gravity theories, e.g. Bertolami [4], but this does not appear to be discussed 

elsewhere. Most proposals for a ‘new force’ or modification of gravity to explain the 

Pioneer anomalies seem to assume that modification must generate an additional 

inward acceleration toward the sun, but this is not necessary.   

 

                                                 
3
 More exactly, the product: MG needs to be adjusted, with M the mass of the sun. Measurement errors 

in M and G separately are quite large – they are only known to about 6 decimal places [16]. But MG is 

known (on the basis of GTR applied to Earth’s orbit parameters) to 10 or 11 decimal places [15]. The 

proposed adjustment to MG required by K-gravity alters the value by about 4x10
-8

 of the total, i.e. at 

about the 8
th

 decimal place.  
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2. The K-gravity metric.  

K-gravity is the solution (to a very fine approximation) of the more general theory of 

TFP gravity, for a spherically symmetric central mass. To introduce K-gravity we first 

consider the ordinary Schwarzschild solution GTR in its usual line-element form:  

(1) 
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c
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k

dt 
   

where the factor k (‘little k’)is defined by:  
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For K-gravity, we simply exchange k in (2) for the quantity K (‘big K’) defined by:  

(3) 









rc

MG
K

2
exp  

replacing this in (1) to obtain:  

(4) 
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Note that k represents a series approximation to K. Consider the quantity:  
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and the series expansion for 1/K
2
:  
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Because the term 2MG/c
2
r is very small in ordinary gravity, the higher-order terms in 

1/K
2
 are very small, and the difference with GTR is very small in ordinary fields. 

Because this term is dimensionless, it is (logically) possible to expand from k to K. 

The alteration to the exponential function K is required by the underlying TFP model, 

but this general model is not discussed here
4
.  

                                                 
4
 There are some dramatic differences in strong gravity; the GTR event horizon disappears in K-

gravity, and there are no longer GTR-type black holes; the theory is conservative, but not gauge 

symmetric; and while TFP models Special Relativity, TFP gravity (and cosmology) is non-covariant. 
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The K-gravity solution, represented by (4), is not complete without adopting 

some principle to play the role of the usual geodesic or action principles of GTR, 

which give the metric equations their physical implications. The meaning of the TFP 

gravity metric is ultimately interpreted via a principle of energy conservation. But 

fortunately, for the central mass problem, the solutions can be obtained (to a very fine 

approximation) by treating (4) as if it was just a special GTR metric equation. The 

possibility of doing this can be seen by observing that (4) provides a consistent GTR 

metric for a spherically symmetric mass distribution – not the central mass singularity, 

but one in which a total mass, M, is slightly ‘smeared out’ in space around the central 

point in a spherically symmetric mass-density distribution. (It must be smeared out to 

an indefinitely large radius from M, and infinitely finely, although only a tiny amount 

of mass is smeared out beyond the small central region.) This smearing of the point-

mass into a continuous mass-density, when treated in GTR, slightly weakens the 

gravitational effect on the metric obtained from a point-mass.  

We can therefore turn directly to calculating the effective differences on 

trajectories between the metrics (4) and (1) regarded as alternative GTR metrics.  

3. Derivation of radial trajectory solutions.  

The main solution of interest here is for a radial trajectory, with non-relativistic 

velocities. Radial light trajectories and circular orbits are derived subsequently. The 

metrics (1) and (4) are static, and we can apply the geodesic principles directly. We 

begin by simplifying (1) to a reduced metric for a specific trajectory, where we 

introduce local orthogonal coordinates at the field point r, represented by: (r,y,z), and 

for the specific trajectory we are considering at this point, we choose the directions of 

y and z so that: dz = 0 on the trajectory. We will subsequently set dy = dz = 0 for the 

radial trajectory, but we leave the dy term in for the moment. Thus we reduce the 

metric (1) to the special simple form:  

(7) GTR: 
2

2

2

22

2

2
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c
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c

kdr

k

dt
  

Equivalently, the form (4) reduces to: 

                                                                                                                                            
These features will not be discussed here; the aim of this paper is only to apply TFP gravity to simple 

solar system phenomena. See [2] for more details of the general conception.  
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(8)  K-gravity: 
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The geodesic equations for these are:  
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(12) 222 )/()/()/()(  ddygddrgddtgsL yyrrtt   

 

We choose the parameter s as the proper time, , as usual, so that L = 1.  

 

Radial trajectories.  

On assuming that dy/d for a radial trajectory, the metric terms are alternatively: 

(13)  GTR:  gtt = 1/k
2
  grr =  -k

2
/c

2
  gyy = -1/c

2
  

(14)  K-gravity: gtt = 1/K
2
  grr =  -K

2
/c

2
  gyy = -1/c

2
 

 

We wish to compare the ordinary velocities, dr/dt, generated by the alternative 

metrics. We can write these as the full differentials, dr/dt, in the special central frame 

of reference for the specific radial trajectory, because we can adopt t as the trajectory 

parameter, i.e. we can transform from: r()  r(t) to represent these trajectories
5
. 

Similarly we can take the partial differentials: ∂k/∂r as equivalent to full differentials: 

dk/dr, since in this coordinate frame, k is a function of r only.  

                                                 
5
 This is possible as long as there is an invertible function: t = t() ↔  = (t), where these functions 

are specific to each trajectory, as in the present examples of  sub-luminal trajectories, and as long as we 

remain outside the event horizon.  We cannot do this for light signals. 
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The first key equation is obtained by setting dy = dz = 0 in (7) and rearranging 

to: 

(15)  
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The ordinary radial velocity, dr/dt = v in this case is the total ordinary velocity. The 

second key equation is:  
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where N is constant. This follows directly from integrating (9). Note that no operation 

has yet been performed on the function k. These two equations let us solve for v = 

dr/dt: 
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We can define v0 as the velocity ‘at infinity’, where k1, given by:  
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For the Pioneer trajectories we assume that this is positive (they have escape 

velocity). This gives:  
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Putting this in (17) and rearranging gives:  
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Finally, we can insert the specific function for k in (20) to obtain the solution for 

GTR.  

Equally, we can insert K in (20) to obtain the alternative solution for K-

gravity, because the reasoning so far does not depend upon the choice of k or K. We 

use the useful identities:  
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(21)  GTR: 
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(22)  K-gravity: 
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(The ‘…’ terms are cubic or higher-order, and ignored in the approximate solutions). 

The speed function calculated on GTR will be denoted v(r), and the alternative speed 

function calculated on K-gravity will now be denoted v*(r).  Substituting the identities 

(21) and (22) in (20) we obtain the main radial velocity solutions: 
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(24)  K-gravity: 
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We take these relations at the two different radii, r1 and r2, to obtain the 

approximations, up to second order terms:  

(25)  GTR: 
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The last two terms on each side effectively cancel, because: v0
2
(1/k1

6  
- 1/k2

6 
) is 

extremely small compared to other terms, for non-relativistic velocities, and hence to 

a very close approximation:  
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Similarly, in K-gravity we obtain:  
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(27)  K-gravity:  
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We will use these to compare differences in the Pioneer trajectories predicted on the 

two theories in Section 5. 

4. Central accelerations for circular orbits.  

We can derive radial accelerations for non-relativistic circular trajectories from the 

GTR relation above:  

(27) 
2

2
22

2

k

c
Nc

d

dr











 

Differentiating by  gives:  
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Differentiating k gives: 

(29) 
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3
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dr
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Giving the GTR Radial Trajectory Acceleration:  

(30) 
22

2

r

MG

d
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
   

We obtain the solution for K-gravity by using K instead of k. We get a similar result, 

the difference resulting from the fact that:  

(31) 
22rc

MG
K

dr

dK
  

Since k/K ≈ 1, we see that: dk/dr ≈ k
2
dK/dr. This difference between the first-order 

divergences of k and K gives the key difference in the solutions. With K-gravity we 

get:  

(32) 
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2
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d
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


  K-gravity Radial Trajectory Acceleration. 
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This is how the main difference between the two theories arises for weak gravitational 

fields: through the additional factor of 1/K
2
 in the K-gravity accelerations. For non-

relativistic speeds v<<c, essentially the same difference of 1/K
2
 carries through, to a 

very close approximation, to the ordinary accelerations: d
2
r/dt

2
, (for any orbits). This 

is how the modified mass: M* = M/K
2
 introduced below is derived.

6
  

5. Differences between GTR and K-Gravity for radial free-fall.  

The key problem treated here is to determine the time taken by a spaceship in free-fall 

(regarded as a point-particle), traveling on a radial trajectory outwards from a central 

mass, M (the sun), from an initial point, r1 to a final point, r2.
7
 The initial speed, v1 = 

v(r1), is assumed to be known. The speed functions must be determined for the two 

distinct theories, GTR and K-gravity, and the time-lapse difference calculated, to 

determine the discrepancy that can be expected on the alternative theory.  

The speed function calculated on GTR is denoted v(r), and the alternative 

speed function calculated on K-gravity is denoted v*(r).  The total time for the 

journey from  r1 to r2 calculated by GTR is denoted T12, and the corresponding time 

calculated by K-gravity is denoted T12*.  

(33)  GTR dr
rv

T

r

r


2

1
)(

1
12  

 

(34)  K-gravity dr
rv

T

r

r


2

1
)(*

1
*12  

The difference is then given by: 

(35) dr
rv

dr
rv

TTT

r

r

r

r

 
2

1

2

1
)(*

1

)(

1
*1212  

The functions v(r) and v*(r), are obtained from (26) and (27) above, and a numerical 

integration will give the desired result. First I give the Newtonian solution, denoted 

                                                 
6
 A second method of deriving the results of K-gravity from more fundamental principles of TFP 

gravity is given in [2].  
7
 We can neglect the angular momentum in this situation.  
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vN(r). In Newtonian theory, vN(r) is given by fixing r1 and vN1 = vN(r1) as constants at 

some special point, and using the general Newtonian energy relationship:  

 

Newtonian Gravitational Potential for free-fall 

(36) 
1

02

10

02

0
2

1
)(

2

1

r

MGm
vm

r

MGm
rvmE NN   

   

Thus we get the classical velocity function for radial free-fall:  

 

Newtonian velocity 

(37) 
r

MG

r

MG
vrvN

22
)(

1

2

1

2   

The second-order approximation for GTR radial free-fall with non-relativistic 

velocities is obtained by rearranging (26) and taking v = v2:   

 

GTR radial free-fall velocity approximation (v << c). 

(38) 
rc

MG

r

MG

r

MG

rc

MG

r

MG

r

MG
vrv

2

1

2

11

2

1

2 8282
)(   

 

Similarly, rearranging (27) shows that K-gravity modifies the GTR solution, for a 

common mass M, and fixed v1, to:  

 

K-gravity radial free-fall velocity approximation (v << c). 

(39) 
rc

MG

r

MG

r

MG

rc

MG

r

MG

r

MG
vrv

2

1

2

11

2

1

2 102102
)(*   

 

Thus K-gravity modifies the GTR velocity by:  
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(40) 
rc

MG

r

MG

rc

MG

r

MG
rvrv

2

1

2

1

22 22
)()(*   

 

Thus, K-gravity weakens the effect of GTR gravity on non-relativistic velocities by 

the second order factor of: 2(MG/r)(MG/c
2
r), and the effective difference between 

GTR and K-gravity is given by the integral (35) by setting: 

(41) 
rc

MG

r

MG

rc

MG

r

MG
rvrv

2

1

2

1

2 22
)()(*   

This is the convenient form of relationship to generate a numerical approximation for 

the difference between GTR and K-gravity. However, before we can apply this 

solution, there is an additional critical feature that must be taken into account: it 

relates to the theory-dependence of the estimation of the central mass, M. This gives 

an unexpected twist to the situation.   

6. The mass adjustment for the sun.  

We have seen that K-gravity is slightly weaker than ordinary GTR gravity when we 

apply both theories to a common central mass, M. In the case of trajectories in the 

solar system, M is the estimated mass of the sun. But before we can directly apply the 

results to solar system trajectories, we have to take into account that the mass M of the 

sun is inferred from observations on the basis of the adopted theory. This is normally 

GTR (or just Newtonian gravity). But to apply K-gravity properly, we must 

reinterpret the entire solar system using K-gravity, rather than simply substituting 

equation (41) into (35).  

On the assumption of K-gravity, we cannot arrive at the same value for the 

initial mass, M, of the sun, that we obtain on GTR. The mass of the sun is calculated 

by applying our accepted theory of gravity to directly measured quantities of the 

period of rotation and distance of the Earth or other orbiting bodies from the sun. 

These measured quantities tell us the acceleration the sun’s gravity is generating, and 

we estimate the mass of the sun to satisfy this acceleration by assuming the preferred 

theory of gravity.  
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If K-gravity is true, the assumption of GTR must lead us to underestimate the 

real mass of the sun, since GTR overestimates the strength of gravity generated by a 

given mass, M (comparing (30) and (32)). To apply K-gravity, we consequently have 

to re-evaluate the mass of the sun, and assign it a slightly larger measured mass. I will 

continue to use M to denote the mass of the sun estimated through GTR, and M* to 

denote the mass of the sun estimated through K-gravity. We require M*>M to obtain 

consistency with the measured orbits and the laws of K-gravity.
8
  

Note also that GTR and K-gravity converge at large radius from a given mass 

M* (the difference in the second-order terms of r becoming negligible). Hence K-

gravity predicts that, at large r, the trajectories will converge to ordinary GTR 

solutions, but for an increased central mass, M*, which is larger than M as measured 

on the assumption of GTR. This will make it appear to the GTR theorist who observes 

a spacecraft leaving the solar-system in free-fall that there is an additional inward 

force slowing the space-craft down: but it is not really an additional force, it is the 

effect of extra mass of the sun.  

The observation that the Pioneer spacecraft have slowed down more than they 

should have has led to speculation that there is an unknown extra force acting inwards 

to slow them down, or that gravity is slightly stronger than previously thought - but 

this is not necessary. It depends on how a proposed ‘extra force’ acts at the distance of 

Earth’s orbit compared to larger orbits – if it already acts at Earth’s orbit, and 

becomes weaker at larger orbits, then we require the force to be an outwards force; 

but if the force only comes into play at large distances, it needs to be an inward force.   

Thus the explanation obtained from K-gravity for solar-system orbits requires 

simultaneously reevaluating the mass of the sun (or more exactly, MG), along with the 

modified laws of gravity.  

Assuming that M is determined most accurately from measurements of the 

period and radius of the orbit of the Earth, this leads to a correction of:  

                                                 
8
 More exactly, we need to correct the factor: MG, i.e. we should really make the transformation from 

MG-using-GTR to (MG)*-using-K-gravity. Note that MG is known much more accurately than M or G 

separately. The proposed adjustment in M is smaller than the accuracy to which M is known by about 

two orders of magnitude, but larger than the accuracy to which MG is known, by about two orders of 

magnitude. But the correction is made to M rather than MG here, to emphasize that G can be 

determined independently of the mass of the sun, whereas M is dependant on our theory of gravity. 

This makes no practical difference to the calculations since the terms M and G occur inseparably in the 

equations.  
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K-gravity modification of estimated mass of the sun.  

 M/M = (M*-M)/M ≈ 4x10
-8

M.   

 

The solution is obtained by comparing (30) and (32), to obtain:  

(43) 
2)(

*
EarthrK

M
M   

M* generates the same acceleration using K-gravity at Earth orbit as M generates 

using GTR-gravity. 

To confirm this proposal of modifying the sun’s estimated mass, we must also 

consider whether using this modified mass M* in K-gravity would be detectible 

through observations of planetary orbits. The analysis of circular orbits given below 

suggests that this correction is just beyond the current accuracy of planetary 

observations. (The effect might show up in the precession of the perihelions of 

Mercury, but this is not analysed here).  

To complete the application of the theory, we continue by requiring that v*(r) 

in the integrals (34) and (35), and the solutions represented in (39)-(41) are obtained 

by taking the K-gravity solution for the modified mass, M*. We will represent this 

mass transformation by writing k and K and v and v* explicitly as functions of both 

radius and mass, and writing the distinct terms: k(r,M), k(r,M*), K(r,M), K(r,M*), 

v(r,M), v(r,M*). Thus we convert (41) to: 

(44) 
rc

GM

r

GM

rc

GM

r

GM
MrvMrv

2

1

2

1

2 **2**2
*),(*),(*   

Note that we set:  

(45) )(),(*),(*),(*)(* 11111 rvMrvMrvMrvrv   

as the boundary condition for the initial observed velocity, because this is 

independently known. We then use the use the terms:  

(46) ),()( Mrvrv   
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in (33), and the term:  

(47) *),(*)(* Mrvrv   

in (34), to obtain the time-delay equation (35) as:  

(48) dr
Mrv

dr
Mrv

TTT

r

r

r

r

 
2

1

2

1
*),(*

1

),(

1
*1212  

We are now in a position to calculate a numerical approximation for the solutions, 

using parameters appropriate for the Pioneer spacecraft orbits, summarized next.  

  

7. Approximate Numerical Solutions for the Pioneer Trajectories.  

I have calculated numerical approximations of the differences between GTR and K-

gravity for a range of parameters approximating the Pioneer trajectories.
9
 The results 

are quite sensitive to the trajectory parameters, but the results indicate a good match 

with the empirical data.  

We can just use the Newtonian approximation, (37), for v(r), throughout the 

calculations, because although the values for v(r) using (37) are not particularly 

accurate as absolute velocities, the velocity differences between GTR and K-gravity 

predictions generated by using this approximation for v(r) in (41) and (35) are 

accurate. I.e. there is no practical need to obtain v(r) any more accurately than in the 

Newtonian approximation for the comparison of the GTR and K-gravity trajectories.  

The results are graphed in Figure 1, which shows the variation in the time lapse 

for a journey to r2 = 80 A.U., plotted against variations in the radial parameter r1 from 

r1 = 1 A.U. to 20 A.U., using three different velocity parameters approximately fitting 

the real Pioneer data. The critical parameters needed to make the predictions are: (a) 

the radial distances, r1 and r2, between which the free-fall trajectory has been 

measured; and (b) the initial velocity v1 = v1* at r1. The effect is sensitive to the 

                                                 
9
 To make a numerical approximation in a spreadsheet, I have: (i) generated a column of ordinary GTR 

velocities, v(r,M), at discrete points of r (dividing r into 100 equal increments) (ii) generated a similar 

column of mass-modified K-gravity velocities, v(r,M*), using the alternative mass: M* = M/K(rEarth)
2
; 

(iii) used (44), with the mass-modified values v(r,M*) for v(r) in (38), to obtain the difference between 

GTR and K-gravity using the mass M*; (iv) approximated (48) by numerically summing and 

subtracting the differences between the incremental times for journey increments, using the GTR-

velocities based on v(r,M), and the K-gravity velocities based on  v*(r,M*). 
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velocity parameter, and I have duplicated the calculations for three values of initial 

velocity, assuming free-fall by a spacecraft with a radial speed equal to Earth orbit 

speed plus (alternatively) 50,000, 51,000 and 52,000 km/hr.  The results show a good 

initial match with the reported anomalies.  

 

E.g. this shows that a delay of about 16 seconds would be predicted for a free-fall 

trajectory starting from radius r1 at the orbit of Jupiter to 80 AU, assuming an initial 

launch speed of 44330 m/sec (without significant subsequent radial accelerations from 

firing rockets).  

On the assumption of a free-fall from the orbit of Saturn to 80 A.U., the 

following delays are estimated for three different initial speeds:   

 

 

 

 

Figure 1. Predicted delays, in seconds of trajectory, for different initial radius of free-fall, 

and 3 different initial radial velocities. 
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Table 1. Predicted trajectory-time delays in Pioneer spacecraft. 

Initial extra 

velocity at Earth 

orbit (km/hr) 

Initial total 

velocity 

(m/sec) 

Velocity at 80 

A.U. (m/sec) 

Predicted delay in 

journey, from 9.5 

A.U. (Saturn) to 

80 A.U.  

50,000 43775 12338.2 -16 seconds 

51,000 44052 13290.1 -13 seconds 

52,000 44330 14183.7 -11 seconds 

 

It is also useful to see what happens to the absolute velocities, and Figure 2 below 

shows the absolute velocity differences expected in free-fall from 1 A.U. to 100 A.U.  

  

Fig. 2 shows that the absolute speed difference, v(r) – v*(r), is very small compared to 

the total speeds. And the effect on total speed falls off rapidly with distance; about 

half the total speed difference in going from Earth to 80 A.U. is already generated in 

going just from Earth to the distance of Saturn, at about 9.5 A.U. But the time delay is 

 

Figure 2. Predicted velocity differences: v(r) – v*(r), for free-fall from 1 A.U. to 100 

A.U., for initial radial speed of 50,000 km/s.  
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obtained from integration over the length of the journey, and a long journey magnifies 

the tiny speed differences into a detectible time delay.  

This is shown by comparing the predicted delays shown in Figure 1, for the 

long free-fall to 80 A.U, with an alternative free-fall from 1 A.U. to Jupiter’s orbit, 

shown in Fig. 3 below.   

 

In this case, for a free-fall journey measured from Earth to Jupiter, the total speed 

difference between GTR and K-gravity is comparable to that for a journey starting 

from Saturn’s orbit and going to 80 A.U. But the time of the Earth to Jupiter journey 

is much shorter, and the delay effect is only about 0.8 sec in the trajectory time, or 

about 6 x10
-5

 seconds delay for round-trip light signals from Earth to the spacecraft. 

Such a delay is detectible in principle, but unlikely to be noticed in the Pioneer orbits, 

since there are many confounding factors, including the influence of Earth and 

Jupiter’s planetary gravity, the effect of the solar wind, and any firing of propulsion 

rockets, which introduce uncertainties into the absolute predicted times, and it may be 

expected that any observed anomaly in this part of actual Pioneer trajectories would 

be put down to error. These confounding factors are scarce in the long outer-solar-

system journey from Saturn. 

 

 

ApproxTrajectory Time Delay found when r2=5.25 A.U.(Jupiter) 
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Figure 3. Predicted delays in journey measured from r1= r to r2= 5.25 A.U. (Jupiter 

orbit), for initial radial speed at Earth of 51,000 km/hr. 
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8. Circular orbits and light-signal delays.  

 

There are two further features of K-gravity that need to be considered: effects on the 

radial light signals which provide the measurements of the trajectories of the 

spacecraft and effects on planetary orbits, which are modeled here by approximating 

them to circular orbits. A check also needs to be done for effects on the precession of 

the perihelion of Mercury, but this is not discussed here.  

The effect of K-gravity on the light-trip time between the spacecraft and Earth 

is necessary to establish the differences in the round-trip signaling time, but it is easy 

to show that this turns out to be tiny (<10
-20

 secs), and may be completely neglected.  

I will briefly summarize the effects of K-gravity on circular orbits 

approximated by planets. We first assume that we have measured the period and 

radius of the Earth’s orbit exactly, and taken the mass of the sun as M so that the 

acceleration matches with GTR. The relationship for a circular orbit (with non-

relativistic speed) is: v = 2r/T = √(MG/r), so T and r determine MG. This is known 

very precisely. We then measure the period, T, of some other planetary orbit, which is 

also done very precisely. Using this period T with the GM and the laws of GTR gives 

us a prediction of this radius, r, of the planetary orbit. We can check GTR by checking 

this prediction against direct measurements of r.  

We then compare with predictions using K-gravity and the modified sun mass 

M*. M* is chosen to make the K-gravity predictions consistent for Earth’s orbit. 

Applying K-gravity to a planetary orbit with a fixed period T using mass M*, we 

obtain a different predicted orbit radius, r* ≠ r, for the planet. If r* was detectibly 

different from r, then the difference between the two theories would be evident in the 

orbits. The predicted differences are graphed in Fig. 4.   
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 The K-gravity correction for Venus makes its average orbit radius about 0.5 

km smaller than expected.  

 The correction for Mars makes its average orbit radius almost 1 km larger.  

 The correction for Jupiter (not shown in Fig. 4) makes it orbit about 6.4 km 

larger.  

 

These are the expected effects on the average orbit distances (semimajor axes) for a 

fixed period. But the planetary orbits are of course not exactly circular, and have 

small perturbations due to other bodies (particularly their satellites), making practical 

checks of these discrepancies difficult. In practice there are measurement uncertainties 

in both the periods and orbit distances of the planets, but the periods are easier to 

measure directly. The question is whether the joint uncertainties are large enough to 

allow the predicted discrepancies.  

 Most important however is whether the distance measurements can be used to 

infer precise distances to the center of mass. Measurement uncertainty for average 

orbit distances for Venus is standardly reported at around 1 km by the late 1990’s, and 

most recently error as small as 0.1 km is reported. The latter is smaller than the 
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predicted discrepancy of 0.5 km. This might indicate a negative empirical result, but 

only if this represents the measurement uncertainty in the absolute distance 

measurement to the center of mass of Venus. In fact it represents variations in the 

center-of-mass distance (from the sun), but not the precision of the absolute 

measurement.  

 

It is also not clear whether the reported errors pertain to direct measurements of 

distances. We require direct measurements of the orbit distances throughout the 

orbits.  We cannot use indirect inferences of average orbit distances, based on the 

application of GTR to precise measurements of periods and MG, along with direct 

distance measurements of only the minor and major axes of the orbits, for instance – 

since K-gravity will slightly distort the non-circular orbits from those predicted by 

GTR.
10

  

I conclude that the current data on planetary orbits appears prima facie 

consistent with K-gravity, but a more careful study is required, and other anomalous 

effects in the solar system must come to light if the new theory is correct.  

 

9. Experiment.  

 

An experiment could be done to directly test the difference between K-gravity and 

GTR, by sending a simple space-craft in free-fall from Earth at 1 AU, to a distance of 

a few AU (Jupiter), avoiding planets, and measuring its trajectory precisely. By 

choosing the initial speed appropriately, the anomaly predicted by K-gravity can be 

tested in a journey of about two or three years. The speed of the Pioneer’s was not 

optimal in this respect, and would have only produced an anomaly of about 0.8 

seconds in free-fall from 1 AU to about 6 AU; this can be enhanced by choosing an 

initial speed closer to the solar escape velocity. Nieto and Turyshev [9] have proposed 

a (more ambitious and general) project to test the origin of the Pioneer anomalies; but 

testing K-gravity alone would be much quicker and simpler than their proposal.   

                                                 
10

 Also: (c) it is not clear whether a careful comparison of the most recent orbital data has been 

carefully compared with predictions of GTR anyway. 
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10. Conclusion.  

Solutions of K-gravity for a central mass system are obtained as a modification of the 

usual Schwarzschild solutions. The application to the solar system requires a 

reinterpretation of the solar mass, M, (or more exactly, MG), which is currently 

inferred on the basis of GTR (or just the Newtonian limit), applied to orbital data for 

Earth. K-gravity is slightly weaker than GTR (or Newtonian) gravity for a given 

central mass, so we are required to reinterpret the mass of the sun as slightly larger 

than we do using GTR. 

Applying K-gravity to the solar system we recalculate the solar mass M (or the 

product MG) as about 1.00000004 times the GTR estimation based on the Earth’s 

orbit, and we then use this revised mass in the K-gravity equations.  

The overall effect on the trajectory of a spacecraft in free-fall in the outer solar 

system makes the force of gravity appear stronger than predicted by GTR gravity, 

because using GTR gravity underestimates the solar mass. The predicted anomaly 

with GTR for the trajectory time of Pioneer 10 in free-fall from the orbit of Saturn at 

about 9.5 AU to 80 AU is found to be around 10 to 20 seconds (depending on the 

initial speed). This is a good fit with the observed anomaly, and justifies a more 

precise study.  

K-gravity also predicts slightly different planetary orbits to GTR. The 

discrepancies are slightly larger than the measurement error reported for the orbit 

parameters for Venus, which suggests a negative result. However the reported 

measurement errors do not pertain to the absolute distance measurement to the center-

of-mass. A more detailed study is required to evaluate K-gravity on these grounds, but 

it seems unlikely that direct measurements to the center of mass could be done 

independently of the theoretical assumptions in any case. 

K-gravity is indistinguishable from GTR in its effects on light signals in the 

solar system, and makes no appreciable difference in the expected light-delays for 

signals between the Pioneers at 80 AU and Earth.  

Finally note that while K-gravity differs only very slightly from GTR for weak 

fields, there are large differences for strong fields, and fundamental theoretical 

differences between the two theories. It may affect the gravitational dynamics of 

galaxies, galaxy formation, the interpretation of ‘dark matter’, ‘dark energy’, and so 

on. Observations of the phenomena have anomalies with current theory (primarily 
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GTR), so radical theory changes remain an open possibility, but this is beyond the 

scope of this paper.  
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