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We discuss the mathematical structures that
underlie quantum probabilities. More
specifically, we explore possible connections

between logic, geometry and probability theory.
We propose an interpretation that generalizes the
method developed by R. T. Cox to the quantum log-
ical approach to physical theories. We stress the rel-
evance of developing a geometrical interpretation of
quantum mechanics.
Quanta 2021; 10: 1–14.

1 Introduction

The need of an axiomatic treatment of probability theory,
was sixth in the famous list of problems presented by
David Hilbert in a Conference Held in Paris, during the
year 1900 (see [1] for the complete list of problems).
Hilbert himself dedicated big efforts to solve his sixth
problem, and remarkably, he was also involved in the
development of quantum mechanics. The formalism of
quantum mechanics achieved its rigorous formulation
after a series of papers by von Neumann, Jordan, Hilbert
and Nordheim [2]. Its final form was condensed by von
Neumann [3], after a series of papers (see the discussion
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in [4] for the influence of P. Jordan in the developments
of von Neumann). It is remarkable that the first works
presenting an axiomatic treatment of quantum probability
appeared before Kolmogorov’s masterpiece [5].

In the axiomatic approach of von Neumann, geometry
plays a major role: projection operators, that represent
closed subspaces of a suitable linear space, are central to
the construction. Pure states are represented by points in
the projective geometry associated to a Hilbert space, and
more general elementary events are represented by higher
dimensional linear varieties. Probabilities are defined
as measures over the elements of this geometry, in such
a way that transition probabilities between pure states
are related to the geometrical notion of angle between
one dimensional subspaces (also called rays). The spec-
tral decomposition theorem [6, 7] allows to associate a
projection valued measure to any quantum observable
represented by a self adjoint operator [3, 7].

It turns out that the set of projection operators can
be endowed with a lattice structure. More specifically,
they form an orthomodular lattice [8]. The occurrence
of lattices is very natural in probability theory. In Kol-
mogorov’s approach, probabilities are defined as mea-
sures over sigma-algebras of subsets of a given set. Sigma-
algebras are, in turn, Boolean algebras, which can be
defined as complemented distributive lattices. Boolean
algebras are naturally related to the algebraic treatment of
classical logic. The occurrence of non-Boolean lattices in
the axiomatization of quantum probabilities was quickly
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recognized by Birkhoff and von Neumann as a sort of
non-classical logic, which they called quantum logic [9].
Later on, the quantum logical approach of Birkhoff and
von Neumann was developed further by other researchers,
giving rise to different lines of research (see for exam-
ple [10–21]). For complete expositions of the quantum
logical approach see [7, 8, 22–24]. Among the results of
this research, it can be shown that a propositional struc-
ture associated to a quantum system can be coordinatized
in a generalized Hilbert space [11]. A later result by Solèr
asserts that, under reasonable conditions, it can only be a
Hilbert space over the fields of the real numbers, complex
numbers or quaternions [25].

During the 1930s, von Neumann also turned his at-
tention to generalizations of quantum theory in terms of
the study of rings of operators. The results of this re-
search gave place to the algebraic structures which are
known today as von Neumann algebras [7]. The the-
ory of von Neumann algebras turns out to be strongly
related to lattice theory: in a series of papers, Murray and
von Neumann provided a classification of factors (von
Neumann algebras whose center is formed by the mul-
tiples of the identity operator) in terms of orthomodular
lattices [26–29]. The theory of von Neumann algebras
is central in the study of the axiomatic formulation of
quantum field theory and quantum statistical mechanics
(see for example [30–33]). It is also important to remark
that the lattices of projection operators play a key role
in the study of probabilities associated to von Neumann
algebras [34]. In the algebraic approach, states are de-
fined as positive and normalized functionals over the von
Neumann algebra, and are said to be normal if they satisfy
an additional continuity property (see for example [34]
for details). The set of states thus defined is convex, and
pure states are defined as its extreme points.

As is well known, there are strong connections be-
tween lattice theory and geometry: projective geometry
can be described in terms of lattices and related also to
vector spaces [35]. The archetypical example is that of
vector spaces: each vector space has associated a projec-
tive geometry and a lattice of subspaces. In particular,
the projection operators associated to the Hilbert spaces
used in quantum mechanics form a lattice, and the collec-
tions of pure states—which are in one to one correspon-
dence to one dimensional subspaces—define projective
geometries. But von Neumann was not only interested in
projection lattices coming form Hilbert spaces. He was
specially interested in more general geometrical objects,
namely, continuous geometries [36, 37]. A remarkable
example of this is that of the geometries associated to
the type II1 factors found in the classification theory of
Murray–von Neumann. Type II1 algebras are non-atomic
and the type III contains no non-trivial finite projections.

In this way, it could be said that the generalization of
algebras studied by von Neumann points in the direction
of a rather radical generalization of geometry. Using the
words of von Neumann:

“I would like to make a confession which
may seem immoral: I do not believe absolutely
in Hilbert space any more. After all, Hilbert-
space (as far as quantum-mechanical things are
concerned) was obtained by generalizing Eu-
clidean space, footing on the principle of “con-
serving the validity of all formal rules”. This
is very clear, if you consider the axiomatic-
geometric definition of Hilbert-space, where
one simply takes Weyl’s axioms for a unitary-
Euclidean-space, drops the condition on the
existence of a finite linear basis, and replaces
it by a minimum of topological assumptions
(completeness + separability). Thus Hilbert-
space is the straightforward generalization of
Euclidean space, if one considers the vectors as
the essential notions.

Now we begin to believe, that it is not the
vectors which matter but the lattice of all linear
(closed) subspaces. Because:

1. The vectors ought to represent the physi-
cal states, but they do it redundantly, up
to a complex factor, only.

2. And besides the states are merely a de-
rived notion, the primitive (phenomeno-
logically given) notion being the qualities,
which correspond to the linear closed sub-
spaces.

But if we wish to generalize the lattice of all
linear closed subspaces from a Euclidean space
to infinitely many dimensions, then one does
not obtain Hilbert space, but that configuration,
which Murray and I called “case II1”. (The
lattice of all linear closed subspaces of Hilbert-
space is our “case I∞”.) And this is chiefly due
to the presence of the rule

a ≤ c −→ a∨(b∧c) = (a∨b)∧c [modularity!]

This “formal rule” would be lost, by passing to
Hilbert space!” [38]

The approach to quantum probability developed by
von Neumann was fundamentally connected to geometry.
But also to logic, in the sense of defining quantum proba-
bilities as measures over an algebraic structure which is
a variant of the Boolean algebras that underlie the Kol-
mogorovian approach. In this short article we will discuss
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quantum probabilities in connection to a generalized prob-
ability theory [39], emphasizing its geometrical features.
We believe that the study of these features allows for a
deeper understanding of quantum theory, and can be used
as a basis for a geometric interpretation of its formalism.

Probability measures can be defined in general
von Neumann algebras [15, 34]. A generalized non-
Kolmogorovian probability calculus can be developed
including Kolmogorovian probabilities as a particular
case (i.e., when the algebra is commutative) [34]. Thus,
the approach developed by von Neumann and others leads
to interesting connections between logic, geometry and
probability theory, that we will discuss here.

After reviewing the standard approaches to Kolmogoro-
vian, quantum, and generalized probabilities in Section 2,
we continue in Section 3 with a discussion of a prob-
lem posed by von Neumann regarding the foundations of
logic and probability theory. In Section 4 we review an ap-
proach to generalized probability theory presented in [40],
and then, in Section 5, we discuss its consequences for
the problem posed by von Neumann. Finally, in Section 6,
we draw our conclusions.

2 Formal aspects of probabilistic
models

In this section we describe classical probabilities (follow-
ing Kolmogorov’s axiomatics) and quantum probabilities.
Finally, we review a generalized version of probability
theory, that includes classical and quantum probabilities
as particular cases.

2.1 Kolmogorovian probabilities

The final form of Kolmogorov’s axiomatization of prob-
ability theory was presented in [5], during the 1930s. It
is based on measure theory, and it synthesized the previ-
ous efforts of mathematicians in the field of probability
theory [41]. In order to motivate the definition, let us
consider a very simple example. Suppose that we have
a dice. In any throw of the dice, any member of the
set Ω = {1, 2, 3, 4, 5, 6} can occur as a possible outcome.
Given that Ω represents all possible outcomes of the ex-
periment, it is called the outcome set. A probabilistic
state of the dice is determined by assigning probabilities
pi, i = 1, ..., 6, to each element of Ω. These numbers must
satisfy pi ≥ 0 for all i (probabilities are positive), and∑

i pi = 1 (probabilities are normalized). If the dice is not
loaded, then pi = 1

6 for all i. But a realistic description
of a dice must assume that it can be loaded, and then, all
possible probabilistic assignments must be considered.

One is not only interested in the probabilities of oc-
currence of each element of Ω, but also in the proba-
bilities assigned to subsets of it. The reason is simple:
one may wonder which is the probability of occurrence
of an even result, and this event is represented by the
subset {2, 4, 6}. A simple argument shows that the prob-
ability of this event is given by pEven = p({2, 4, 6}) =

p2 + p4 + p6. The event associated to the proposition “the
outcome is an even number” is then represented by the
set {2, 4, 6}. Its negation, “the outcome is an odd num-
ber”, is represented by its set theoretical complement,
which is the set {1, 3, 5}. We obtain that the probabil-
ity pOdd = p({1, 3, 5}) = p1 + p3 + p5 = 1 − pEven,
yielding a functional relation between the probability
of a given event, and that of its negation. In a similar
way, the disjunction of two given events is represented
by the set theoretical union, and the conjunction by the
set theoretical intersection. Let us consider examples of
this, based on the propositions “the outcome is (strictly)
greater than 3” and “the outcome is even”. These propo-
sitions are associated to the events represented by the sets
{4, 5, 6} and {2, 4, 6}, respectively. It is easy to check that
the conjunction of those propositions is given by the set
{4, 6} = {4, 5, 6} ∩ {2, 4, 6}. Similarly, the disjunction is
given by {2, 4, 5, 6} = {4, 5, 6} ∪ {2, 4, 6}.

Thus, one needs to consider all possible events of inter-
est in the description, which are represented by subsets
of Ω. And these are endowed with the set theoretical op-
erations of complement “(...)c” (representing the logical
negation “¬”), intersection “∩” (representing conjunction
“∧”) and union “∪” (representing disjunction “∨”). In this
way, each logical connective has a set theoretical coun-
terpart. The collection of all possible events forms what
is known as a σ-algebra (or a σ−field) Σ, which is a col-
lection of subsets of Ω that is closed under complements
and countable unions, and includes Ω itself. A probability
measure assigns a probability to each member of Σ. The
axioms that we give below are a natural generalization of
the simple rules described in the dice example.

Given an outcome set Ω, consider a σ-algebra Σ of
subsets of Ω. A probability measure will be a function µ
such that

µ : Σ→ [0, 1] (1a)

satisfying
µ(Ω) = 1 , (1b)

and for any pairwise disjoint denumerable family {Ai}i∈I

µ

⋃
i∈I

Ai

 =
∑

i

µ(Ai) (1c)

Conditions (1) are known as Kolmogorov’s axioms [5].
The triad (Ω,Σ, µ) is called a probability space. Since
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σ-algebras are also Boolean algebras, probability spaces
obeying Eqs. (1) are usually referred to as Kolmogoro-
vian (also: classical, commutative, or Boolean) [15, 39].
One of the most important features of the Boolean alge-
bra Σ, is that the connectives obey what is known as the
distributive law:

A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C), ∀ A, B,C ∈ Σ (2)

A similar distributivity law is obtained by interchanging
the roles of “∩” and “∪” in 2 (see [8] for details). In terms
of the set theoretical complement, these imply that:

A = A∩(B∪(B)c) = (A∩B)∪(A∩(B)c), ∀ A, B ∈ Σ (3)

Equations 2 and 3 have their counterparts in logical ex-
pressions, by exploiting the connection between the set
theoretical and the classical logic connectives: by putting
“∨” instead of “∪” and “∩” instead of “∧”. These are
given by

A ∧ (B ∨C) = (A ∧ B) ∨ (A ∧C), ∀ A, B,C ∈ Σ (4)

Also, by replacing “(. . .)” by “¬”, we obtain

A ∧ (B ∨ ¬B) = (A ∧ B) ∨ (A ∧ ¬B), ∀ A, B ∈ Σ (5)

It is easy to find examples of (4) and (5) using proposi-
tions about the outcomes of the dice example.

Related to the above distributivity relations, it is pos-
sible to show that in any probability space (Ω,Σ, µ), the
inclusion-exclusion principle holds:

µ(A∪ B) = µ(A) +µ(B)−µ(A∩ B), for all A and B (6)

Again, these can be expressed using the logical connec-
tives:

µ(A∨ B) = µ(A) +µ(B)−µ(A∧ B), for all A and B (7)

Notice that Eq. (7) implies that µ(A∨B) ≤ µ(A)+µ(B), for
all A and B (something that will no longer be valid when
we deal with events associated to quantum systems).

The Borel sets (B(R)) are defined as the smallest family
of subsets of R such that (a) it is closed under set theo-
retical complements, (b) it is closed under denumerable
unions, and (c) it includes all open intervals [6]. A ran-
dom variable f can be defined as a measurable function
f : Ω −→ R satisfying that, for every Boreal subset B of
the real line, we have that f −1(B) ∈ Σ (i.e., the pre-image
of every Borel set B under f belongs to Σ, and thus it has
a definite probability measure given by µ( f −1(B))). Any
random variable f defines a pre-image map satisfying:

f −1 : B(R) −→ Σ (8a)

satisfying
f −1(∅) = ∅ (8b)

f −1(R) = Σ (8c)

f −1

∨
j

B j

 =
∨

j

f −1(B j) (8d)

for any disjoint denumerable family B j. Also,

f −1(Bc) = ( f −1(B))c (8e)

The function f −1 is based in the pre-image of Borel sets,
and should not be confused with the inverse function, that
has a different domain.

Eqs. (8) are important for us, because we will use
them to compare quantum vs classical observables in
the following section.

Summarizing: we have seen that a Kolmogorovian
probabilistic model can be described using measures de-
fined over subsets of a given set, which are endowed with
algebraic operations that correspond to the connectives
of classical logic. Connectives can be defined in such a
way that events satisfy the distributivity laws 4 and 5, and
probabilities satisfy the inclusion-exclusion principle 7.

2.2 Quantum probabilities

Quantum mechanics is a very special theory, since it is
essentially probabilistic. And this is so, independently of
the chosen interpretation: any empirically testable pre-
diction of the theory has a probabilistic character. In
most axiomatizations, the theory of Hilbert spaces plays
a key role, since to any physical system a separable com-
plex Hilbert spaceH is assigned. Physically meaningful
observables are then represented by linear (self-adjoint)
operators acting onH , and states are mathematically de-
scribed by linear functionals over them. As we explain
below, the closed linear subspaces ofH are central to the
formalism, since they represent elementary experiments
and are the building blocks out of which any other ob-
servable can be constructed. Furthermore, the values that
states assign to the elementary experiments represented
by those subspaces fully determine the probabilistic in-
formation that one has to deal with in experiments.

In order to understand why closed linear subspaces
represent elementary experiments, let us consider an ex-
ample. Suppose that we design a devise to test wether the
energy of a given quantum system is ε0 or not. This can be
called a YES-NO experiment, given that it only has two
possible outomes: we answer YES if the measured energy
is ε0, and NO if we obtain any other result. If we prepare
the system in an eigenstate |ψ〉 of the Hamiltonian with
eigenvalue ε0, then, the outcome of the experiment will be
YES with certainty. Any other eigenstate (with the same
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eigenvalue) will yield the same outcome with certainty.
And also any linear combination of them. Thus, the col-
lection of pure states that yield the outcome YES with
certainty forms a subspace of the Hilbert space. Thus,
to the proposition “the energy of the system is ε0”, we
can naturally assign a subspace Sε0 . Equivalently, since
closed subspaces and orthogonal projections are in a one
to one correspondence, we can also assign a projection to
the proposition (namely, the one that projects into the lin-
ear subspace). If we compare this feature of the quantum
formalism with the dice example discussed in the previ-
ous Section, we find that, in quantum mechanics, events
are represented by linear subspaces instead of the simple
subsets of a given outcome set. Similarly, each closed
subspace (or orthogonal projection) of the Hilbert space
will have an associated YES-NO experiment. As we will
see below, linear subspaces are very specific geometrical
objects.

Let P(H) be the collection of closed subspaces as-
sociated to a complex separable Hilbert space. Given
S,T ∈ P(H), define S ∨ T := S ⊕ T (the closure of the
direct sum), S ∧ T := S ∩ T and ¬S := S⊥. With these
operations, P(H) has the structure of an orthomodular
lattice (see [8] for details). The connectives “∨”, “∧” and
“¬” are the quantum logical analogues of the Boolean
connectives. It is important to remark that, with these
connectives, the lattice of closed subspaces does not sat-
isfies the distributivity laws (4 and 5), and then, it is
non-Boolean [9]. This implies that the new connectives
cannot be interpreted in a classical way (i.e., as the logi-
cal connectives of classical logic). Notwithstanding, the
new connectives can find a very natural operational in-
terpretation (see for example the discussion in [11]). As
an example, consider the proposition: “the energy of the
system is not ε0” (which is just the negation of the propo-
sition considered in the above example). It is easy to
check that the pure states that make this proposition true
are all contained in the subspace (Sε0)⊥ (the orthogonal
complement of Sε0). Similarly, if we consider the pure
states that make true the propositions “the system has
energy ε0 or ε1” and “the system has energy ε0 and ε1”,
we can easily find that they are contained in the subspaces
Sε0 ∨ Sε1 and Sε0 ∧ Sε1 , respectively.

In order to present quantum probabilities in a measure-
theoretic fashion, one can use the following axioms on a
function s [7]:

s : P(H)→ [0; 1] (9a)

such that:

s(1) = 1 (1 is the whole Hilbert space) (9b)

and, for a denumerable and pairwise orthogonal family

of closed subspaces S j

s
(∨
S j

)
=

∑
j

s(S j). (9c)

Gleason’s theorem [42] grants that if dim(H) ≥ 3, for any
measure s satisfying (9), there exists a positive Hermitian
trace class operator (of trace one) ρs, such that

s(P) := tr(ρsP) (10)

where P is the projection operator associated to the sub-
space P. And also the converse is true; using Eq. (10), any
positive trace-class Hermitian operator of trace one de-
fines a measure satisfying (9). Thus, Eqs. (9) can be used
as an equivalent way of defining the set of all possible
quantum states.

One of the main differences between the axioms (1)
and (9) is that theσ-algebra in (1) is Boolean, whileP(H)
is not. In this sense, the measures defined by Eqs. (9) are
called non-Kolmogorovian (or non-Boolean) probability
measures.

It is also very important to mention that, even if P(H)
is not Boolean, it has Boolean subalgebras. Each maximal
Boolean subalgebra of P(H) is intended to represent a
measurement context. In other words, the collection of all
possible events associated to a given quantum mechanical
empirical context C—defined by an experiment that mea-
sures a complete set of commuting observables—forms
a maximal Boolean subalgebra ΣC of P(H). When the
function representing a state s(...) (i.e., a measure satisfy-
ing (9)) is restricted to ΣC , we obtain a classical probabil-
ity space (satisfying Eqs. (1)). Thus, a quantum state can
be considered as a collection of classical probability dis-
tributions, one for each context. But the remarkable fact
is that there is no classical joint probability distribution
for all of them (see, for example, the discussion in [43]).
Furthermore, P(H) can be described as a pasting of its
maximal Boolean subalgebras [8, 44]. And this pasting
is such that two different maximal Boolean subalgebras
may share elements between them. In other words, con-
texts are intertwined in a complex way [45]. This means
that a given observable may belong to very different and
incompatible measurement contexts. The intertwining of
the Boolean subalgebras of P(H) is behind the Kochen–
Specker contextuality (see [46–48]). According to the
Kochen–Specker theorem, there is no algebra homomor-
phism between P(H) and the two valued Boolean algebra
{0, 1} (see, for example, [49] for details).

In quantum theory, physical quantities are represented
by self-adjoint operators acting on a separable Hilbert
space. These are the non-commutative analogs of the ran-
dom variables of Kolmogorov’s theory (see for example,
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the discussion in [39]). Due to the spectral theorem any
self-adjoint operator A can be written as [6]:

A =

∫
R
λ dPA(λ) =

∫
R
λPA(dλ) (11)

where PA(...) is the spectral measure associated to A.
More specifically, given an observable A, a projection
valued measure (PVM) is a map PA satisfying:

PA : B(R)→ P(H), (12a)

such that

PA(∅) = 0 (0 := null subspace) (12b)

PA(R) = 1 (12c)

PA

∨
j

(B j)

 =
∨

j

PA(B j), (12d)

for any disjoint denumerable family B j. Also,

PA(Bc) = 1 − PA(B) = (PA(B))⊥ (12e)

There are important facts related to PVMs. First, notice
that the image of PA(...) (namely, PA(B(R))), is a Boolean
subalgebra of P(H). Second, the spectral theorem allows
us to associate a PVM to each observable, so that they
are in a one to one correspondence. With this in mind,
it is now important to compare Eqs. (12) with Eqs. (8).
Both maps (i.e., PA(...) and f −1(...)) send the collection of
Borel sets into a Boolean algebra: a subalgebra of P(H)
in the first case, and a subalgebra of Σ in the second.
Furthermore, Eqs. (12) and (8) tell us that both PA(...)
and f −1(...) define an algebra homomorphism between
B(R) and their respective images. These similarities show
that quantum observables can be considered as the non-
Kolmogorovian (or non-commutative) version of classical
observables.

In finite dimensions, the spectral theorem acquires a
simple form:

A =
∑

i

aiPi (13)

where the ai’s are the eigenvalues of A, and Pi is the pro-
jection operator that projects onto the subspace associated
to the eigenvalue ai.

One of the expressions of the fact that quantum and
classical probabilities are different, is that Eq. (6) is no
longer valid in quantum mechanics. Indeed, in quantum
mechanics it may happen that

s(P) + s(Q) < s(P ∨ Q) (14)

for suitably chosen P, Q, and s. In the quantum domain,
the sum rule holds whenever P and Q are compatible

(i.e., if they commute). When this is the case, then, they
can be shown to be contained in a Boolean subalgebra
representing a measurement context. But, if P and Q
are taken to be non-compatible (i.e., non-commutative),
the sum rule will no longer be valid in general, and an
inequality such as (14) might be obtained.

It is of major importance for us the fact that the ele-
ments of P(H) are the linear varieties associated to the
projective geometry of a Hilbert space. As Varadarajan
clearly expressed at the beginning of his book on the
geometry of quantum mechanics:

“It must be pointed out, however, that the pre-
cise mathematical nature of the superposition
principle was only implicit in the discussions of
Dirac; we are indebted to John von Neumann
for explicit formulation. In his characteristic
way, he discovered that the experimental state-
ments of a quantum mechanical system formed
a projective geometry—the projective geome-
try of subspaces of a complex, separable, infi-
nite dimensional Hilbert space. With this as a
point of departure, he carried out a mathemat-
ical analysis of the axiomatic foundations of
quantum mechanics which must certainly rank
among its greatest achievements.

Once the geometric point of view is accepted,
impressive consequences follow...” (see the In-
troduction of Ref. [13]).

A physical interpretation of this geometry could be of
great help for a better understanding of quantum phenom-
ena, and it is a very interesting point of departure for an
interpretation of quantum probabilities.

Let us finish this section with a discussion about the
geometrical interpretation of probabilities in quantum
mechanics. A complex projective space (as is the case
in quantum mechanics) is a compact Kähler manifold.
In that space, it is possible to give a notion of geodesic
distance that satisfies the following identity (see for ex-
ample, [50] and [51]):

|〈ψ|φ〉|2 = cos2
(
σ(|ψ〉, |φ〉)
√

2

)
(15)

where σ(|ψ〉, |φ〉) is the geodesic distance separating the
rays defined by |ψ〉 and |ψ〉. Notice also that the distance
is naturally connected with the notion of angles between
two given rays. If the system is prepared in state |ψ〉, the
transition probability to the state |ψi〉 is then given by

pi(ψ) = cos2
(
σ(|ψi〉, |ψ〉)
√

2

)
(16)

If ai is a degenerate eigenvalue of an observable, there
is a projection operator Pi associated to that eigenvalue,

Quanta | DOI: 10.12743/quanta.v10i1.148 June 2021 | Volume 10 | Issue 1 | Page 6

http://dx.doi.org/10.12743/quanta.v10i1.148


that defines a submanifold of the projective space. In that
case, the transition probability pi(|ψ〉) of obtaining the
outcome ai of a given observable, given that the system
is prepared in state |ψ〉, is given by

pai(|ψ〉) = cos2
(
σ(Pi, |ψ〉)
√

2

)
(17)

where σ(Pi, |ψ〉) is the length of the shortest curve with
initial point in the ray defined by ψ and terminal point in
the subset of projective space defined by the projection
operator Pi. These formulas can be used to provide a
natural geometrical interpretation for transition probabili-
ties: given a quantum system prepared in a state |ψ〉, the
probability of obtaining a result of a particular experiment
is ultimately determined by the shortest geodesic distance
between the point in projective space defined by the initial
state, and those points defined by the projection operator.

2.3 Generalized probabilistic models

In the algebraic formulation of relativistic quantum the-
ory there appear algebras which are different from the
Type I factors used in non-relativistic quantum mechanics.
Normal states over these algebras define measures which
obey axioms similar to those of the classical (Eqs. (1))
and quantum (Eqs. (9)) cases. Indeed, the orthogonal
projections associated to Factor von Neumann algebras
form orthomodular lattices [7]. This suggests that, in
principle, one could conceive more general probabilistic
models than those of standard quantum mechanics. We
describe here a possible generalization, based in ortho-
modular lattices. Let L be a σ-complete orthomodular
lattice (standing for the lattice of all possible empirical
events of a given model). Then, define

s : L → [0; 1], (18a)

such that:
s(1) = 1. (18b)

and, for a denumerable and pairwise orthogonal family
of events E j

s

∨
j

E j

 =
∑

j

s(E j). (18c)

If we put L = Σ and L = P(H), we recover the Kol-
mogorovian and quantum cases, respectively. For a dis-
cussion on the conditions under which measures as those
defined in Eqs. (18) are well defined see [24, Chapter 11].
The fact that projection operators of arbitrary von Neu-
mann algebras define orthomodular lattices [34] shows
that the above generalization includes many examples

of interest. In particular, quantum systems involving in-
finitely many degrees of freedom.

The states defined in Eqs. (18) define Kolmogorovian
probabilities when restricted to maximal Boolean subalge-
bras of L. Every orthomodular lattice L can be described
as a pasting of its maximal Boolean subalgebras (see for
example [8] and [44]). This implies that a state defined
as a measure over an orthomodular lattice can be con-
sidered as collection of Kolmogorovian probabilities for
which their σ-algebras are intertwined. If there is only
one maximal Boolean subalgebra, then the whole L has
to be Boolean. Thus, we recover a Kolmogorovian model.
For theories which display contextuality, such as stan-
dard quantum mechanics [39,52], there will be more than
one intertwined empirical context, and then, the above
decomposition will not be trivial.

3 Birkhoff and von Neumann’s
quantum logical approach to
quantum probabilities

As is well known, any Boolean algebra can be represented
in a set theoretical framework (as subsets of a given set)
[53]. With regard to this relationship, von Neumann
asserted that

“And one also has the parallelism that logics
corresponds to set theory and probability theory
corresponds to measure theory and that a given
system of logics, so given a system of sets, if
all is right, you can introduce measures, you
can introduce probability and you can always
do it in very many different ways.”(unpublished
work reproduced in [54, pp. 244]).

In this way, we can see that, in the classical setting,
there is a close connection between logic, set theory, and
probability. What does this means? The definition of
Cantor of a set reads

“A set is a gathering together into a whole of
definite, distinct objects of our perception [An-
schauung] or of our thought—which are called
elements of the set.” [55]

A set is a collection of objects, and the internal logic gov-
erning them is classical. This also applies to the classical
picture for things in space-time. In the usual approach
to classical theories, material bodies fill space, and re-
late between themselves defining different trajectories in
space-time. They are identifiable, and can be considered
in collections. The situation of fields is similar, and a full
description is given by telling how their associated magni-
tudes vary in space-time. Space-time itself is considered
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as a collection of space-time points, satisfying definite
topological and geometrical requirements. In this sense,
one can say that the ultimate level of the classical organi-
zation of experience in an Euclidean space-time—as well
as in the curved background of General Relativity—is
strongly related to classical logic.

As discussed above, the classical set-theoretical de-
scription is not only applied to material bodies or points
in space-time, but also to processes and events. As ex-
plained in Section 2.1, the different events associated to a
probabilistic description of a given system are organized
as a σ-algebra of subsets associated to an outcome set.
The singletons formed by the elements of Ω are the ele-
mentary events (or processes), and all the other events are
formed by applying the set-theoretical operations to them.
We have seen that these operations are naturally related to
the connectives of classical logic. But the things change
radically in the quantum formalism, as von Neumann
pointed out

“In the quantum mechanical machinery the sit-
uation is quite different. Namely instead of the
sets use the linear sub-sets of a suitable space,
say of a Hilbert space. The set theoretical sit-
uation of logics is replaced by the machinery
of projective geometry, which is in itself quite
simple.

However, all quantum mechanical probabil-
ities are defined by inner products of vectors.
Essentially if a state of a system is given by
one vector, the transition probability in another
state is the inner product of the two which is
the square of the cosine of the angle between
them. In other words, probability corresponds
precisely to introducing the angles geometri-
cally. Furthermore, there is only one way to
introduce it. The more so because in the quan-
tum mechanical machinery the negation of a
statement, so the negation of a statement which
is represented by a linear set of vectors, corre-
sponds to the orthogonal complement of this
linear space.” (unpublished work reproduced
in [54, pp. 244]).

And von Neumann continues:

“And therefore, as soon as you have introduced
into the projective geometry the ordinary ma-
chinery of logics, you must have introduced the
concept of orthogonality. This actually is rigor-
ously true and any axiomatic elaboration of the
subject bears it out. So in order to have logics
you need in this set a projective geometry with
a concept of orthogonality in it.

In order to have probability all you need is
a concept of all angles, I mean angles other
than 90◦. Now it is perfectly quite true that in
geometry, as soon as you can define the right
angle, you can define all angles. Another way
to put it is that if you take the case of an orthog-
onal space, those mappings of this space on
itself, which leave orthogonality intact, leave
all the angles intact, in other words, in those sys-
tems which can be used as models of the logical
background for quantum theory, it is true that as
soon as all the ordinary concepts of logics are
fixed under some isomorphic transformation,
all of probability theory is already fixed.” (un-
published work reproduced in [54, pp. 244]).

As von Neumann clearly indicates, the set-theoretical de-
scription is replaced by the geometrical machinery given
by the collection of closed subspaces of a suitably cho-
sen linear space. In other words: in the probabilistic
calculus of quantum theory events are not organized set-
theoretically, but geometrically. The peculiar algebraic
properties of the geometries associated to quantum sys-
tems cannot be identified with the set-theoretical opera-
tions that come from classical logic, and then, the new
connectives cannot have the same interpretation as those
of classical logic. This analogy is the origin of the term
“quantum logic” (which should not be considered as a
logic strictu sensu). We believe that the fact that events
(or observable processes) associated to quantum systems
can be organized in a geometric way, is a fundamental
feature of quantum theory. But it is important to remark
that this notion of geometry, is not that of classical space-
time. Quite on the contrary, is the geometrical form in
which quantum processes are organized, which is of a
very different nature. In analogy with the set-theoretical
description of classical events, this geometrical form has
an internal logical structure, which is that of being a
quantum logic, and is algebraically described as an or-
thomodular lattice.

It is important to remark that this logic does not neces-
sarily deny the classical logic that we use when we think.
The word logic in this context refers to the organization
of processes (phenomena) in the quantum domain. But
what is the connection of all this with probability theory?
J. von Neumann suggested a clue as follows

“This means, however, that one has a formal
mechanism, in which logics and probability
theory arise simultaneously and are derived si-
multaneously.” (unpublished work reproduced
in [54, pp. 245]).

The above quotation clearly underlines a concrete re-
search program: up to which extent one can build a “for-
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mal mechanism” in which logics and probability theory
“arise and are derived simultaneously”? Digging into this
possibility might shed new light in the understanding of
quantum probability theory. In the following section we
will discuss the implications of a derivation of quantum
probabilities using the algebraic properties of the propo-
sitional lattice of quantum mechanics [40].

4 Cox’ approach to quantum
probabilities

R. T. Cox showed that, if it is assumed that a rational
agent deals with an event structure that conforms with the
rules of classical logic (i.e., the algebra of events is repre-
sented by a Boolean algebra), then a plausibility calculus—
which is formally equivalent to that of Kolmogorov—can
be derived in a natural way [56, 57]. This means that if
one wants to define a degree of belief function which is
compatible with the algebraic properties of the classical
logical connectives, it must be equivalent to a Kolmogoro-
vian probability (Eqs. (1)).

In a previous work [40] it was shown that the approach
to probability theory of R. T. Cox [56, 57] can be applied
to lattices much more general than Boolean (see also
[58]). And in particular, that quantum probabilities and
the generalized probability theory can be obtained by
applying a variant of this method. We do not have place
here to introduce all the details (for which we refer to [40])
and just limit ourselves to describe the general method:

• Our starting point is a complete atomic orthomod-
ular lattice L. We assume that the elements of L
represent the events of a given system. This is a nat-
ural assumption, given that many relevant—classical
or quantum—probabilistic models in physics fall
into this class.

• It is reasonable to assume that there is a definite
state of affairs determined by the preparation of the
system. This is a precondition of physical science,
something which is not necessarily true in any field
of experience. A similar remark holds for the exis-
tence of—at least—statistical regularities: if such
regularities were not present, the mathematical de-
scription of phenomena would be untenable. We are
not asserting that any phenomena could be subsumed
into this condition, but that it is a precondition of
physical science. It is not relevant here whether the
preparation process is natural or artificial. What is
important for us is that the system has its own defi-
nite history, which is the collection of circumstances
that give place to a concrete state of affairs.

• Define a function s : L −→ R such that s(E) ≥ 0
∀E ∈ L and it is order preserving (E1 ≤ E2 −→

s(E1) ≤ s(E2)). This function is intended to rep-
resent the degree of likelihood about what would
happen in the different future situations. But it is im-
portant to remark that this measure is a manifestation
of a structured state of affairs.

It can be shown that under the above rather general as-
sumptions, a probability theory can be developed [40]
following a variant of R. T. Cox approach [56, 57]. In
other words, it is possible to show that:

s

 ∞∨
i

Ei

 =

∞∑
i=1

s(Ei) (19a)

s(¬E) = 1 − s(E) (19b)

s(0) = 0 (19c)

(where the {Ei} in Eq. (19a) form a denumerable and or-
thogonal family). Let us see an example of how the Cox’s
machinery works. If E1, E2 ∈ L and E1⊥E2, it is reason-
able to assume that s(E1 ∨ E2) can only be a function of
s(E1) and s(E2). In this way, s(E1∨E2) = f (s(E1), s(E2)),
with f an unknown function to determine. Due to associa-
tivity of “∨”, s((E1∨E2)∨E3) = s(E1∨(E2∨E3)) for any
E1, E2, E3 ∈ L. If E1, E2 and E3 are orthogonal, we will
have s((E1 ∨ E2) ∨ E3) = f ( f (s(E1), s(E2)), s(E3)) and
s(E1 ∨ (E2 ∨ E3)) = f (s(E1), f (s(E2), s(E3))). But then
f ( f (s(E1), s(E2)), s(E3)) = f (s(E1), f (s(E2), s(E3))). Or
put in a more simple form, we are looking for a function
f (assumed to be continuous and strictly increasing in
both arguments) such that

f ( f (x, y), z) = f (x, f (y, z)) (20)

But Eq. (20) is a functional equation [59] whose solution—
up to rescaling—is f (x, y) = x+y. For a discussion about
the rescaling we refer to [56]. In this way we arrive at
s(E1 ∨ E2) = s(E1) + s(E2) (whenever E1⊥E2). We refer
to [40] for the complete derivation.

As explained above, it is possible to show that the
probability theory defined by Eqs. (19) is non classical
in the general case. If L is not Boolean, it may happen
that s((E1 ∧ ¬E2) ∨ (E1 ∧ E2)) = s(E1 ∧ ¬E2) + s(E1 ∧

E2) < s(E1) (for suitably chosen E1, E2 and s), while any
Kolmogorovian probability satisfies s(E1) = s(E1 ∧ E2) +

s(E1 ∧ ¬E2) [40].

5 Quantum probability and
structured processes

Quantum mechanics seems to pose a problem in the in-
terpretation of space-time as is expressed, for example,
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in the difficulties in defining trajectories for the particles
without appealing to non-local hidden variables. This
seems to suggest that a new kind of structure underlies
the quantum mechanical description of natural processes.

Space-time—as considered by modern physics—is not
a naturally given structure: it was a great achievement
of mankind—that took many years—to develop geome-
try as an axiomatic theory. This geometrical approach
to the world we experience underlies the mathematical
description of reality provided, for example, by classi-
cal mechanics. And it turns out that our description of
the geometry of space-time changes in history: general
relativity assumes a different organization of space-time
events. Our experience of natural phenomena is not a
complete chaos. Quite the contrary, it can be structured in
a geometrical way. But we must never forget that the fact
that we can organize our experience using a space-time
description is just an assumption, whose consistency is to
be tested empirically. General relativity shows us that one
can use a more elegant and more powerfully predictive
description of experience than the one provided by the
Euclidean flat space-time of classical physics. The limits
and success of these descriptions are not granted a priori:
they must be confronted with their capability of defining
a consistent connection between theory and experiment.

We are somehow committed to a classical description
in the following sense: we need definite and objective
things to happen in order to even speak about an exper-
iment. An example of this is a pointer of an instrument
yielding a value in a given outcome set (which could be,
for example, the set of real numbers, but it could also
be more general, like the set formed by {+,−}). As we
saw in Section 2.1, the fact that the outcomes of a ex-
periment always form a set (called the outcome set) and
the events will be represented by its subsets (forming a
σ-algebra), ties us to a very specific kind of algebraic
structure (namely, a Boolean algebra) which is closely
related to classical logic. For certain observables, the
outcome sets can also be endowed with very specific ge-
ometries (for example, Euclidean geometry, or a curved
space-time). This perspective could be understood as a
more accurate explanation of the observations of N. Bohr:
the very possibility of exerting experiments ties us to clas-
sical logic and a set theoretical organization of experience.
The space-time description is just a particular case of this
more general regulative logical machinery.

But there is absolutely nothing granting us that the
Boolean description (thought necessary to exert exper-
iments) will exhaust the scenario in which phenomena
occur. And this lies at the heart of the existence of com-
plementary (and incompatible) contexts in quantum me-
chanics: in order to determine the state of a quantum
system, a quantum tomography must be performed, and

thus, we are obliged to study the system in different in-
compatible measurement contexts. While in classical
mechanics the description of phenomena can be based
in a purely set-theoretical approach (and thus, we can
describe probabilities by appealing to a Boolean algebra
associated to an outcome set), in quantum mechanics, this
is no longer possible. Indeed, as explained in Section 2.2,
we are interested in how the different Boolean algebras
associated to the different measurement contexts are inter-
twined. The remarkable fact is that, even if the quantum
description of all possible events cannot be reduced to
that of a Boolean algebra, it can be endowed with a very
precise geometrical structure. In quantum mechanics the
geometry associated to the experimental propositions be-
comes of the essence, and then, we need more structure
than the one given by the simple collection of subsets of
a given set. In classical mechanics, the description of an
object can be equated with its space-time representation:
from the point of view of classical mechanics, the main
goal is to describe continuous motion of material bodies
(or the variation of fields) in space-time. That is why
motion (and change) can be naturally described as the
solutions of deterministic differential equations. And this
feature is much more general than the usual description
of a particle moving through space under the action of
forces. Any quantity of interest taking continuous values,
if it is classical, will have associated a time derivative, and
thus the description reduces to the motion of a system in
an abstract phase space obeying deterministic differential
equations. The classical probabilistic description, appeal-
ing to stochastic equations, can be fully described using
Kolmogorov’s framework, and one can always assume an
ignorance interpretation. Quite contrarily, quantum me-
chanics is (at least, empirically) characterized by jumps,
by discontinuous and unpredictable behavior. That is
why the organization of experience in quantum mechan-
ics comes inherently endowed with a probabilistic de-
scription: it is impossible to predict the future events with
complete certainty, and thus, the actual state of affairs has
to be unavoidably described by appealing to a probability
distribution. This is what led many authors to suspect
that, in the quantum realm, probabilities have an onto-
logical status, and that they do not accept an ignorance
interpretation (see, for example, the discussion in [60]).

In the above sense, quantum mechanics fails to give
a spatio-temporal description of phenomena. In other
words, it shows us that the spatio-temporal description
is just a part (or perspective) of the whole scenario in
which phenomena are structured. One can only set up a
measurement context aimed to measure the localization
of a quantum system. But in order to give a complete de-
scription, other incompatible contexts must be considered.
One of the most important consequences of quantum me-
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chanics is that space-time can no longer be considered
as an exhaustive scenario in which physical events take
place. Quite on the contrary, experience can be structured
as a sort of logic and, at the same time, as a specific kind
of geometry, as von Neumann explained. Different mod-
els of event structures represent different possible ways
in which phenomena can be structured.

The results presented in [40] show that once the logic-
algebraic properties of a structured domain of phenomena
are determined, to great extent, the whole probability the-
ory is determined. In this way, we gave a concrete step
in the solution of the problem posed by von Neumann
discussed in Section 3. Experience is not complete chaos:
quite on the contrary, it can be structured. This organiza-
tion of phenomena has a definite logical form (as is the
case in the classical or the quantum descriptions), and
this form is expressed in a geometric way.

But in quantum theory this geometry must not be con-
fused with the geometrical background of space-time
(Euclidean space or the curved background of general
relativity); the space-time description is just an aspect
or perspective of a more general state of affairs. In the
general case, physical events can be organized as lattices,
which are non-Boolean in general. Or even more gener-
ally, as σ-orthocomplemented orthomodular posets [15],
which are not even lattices in the general case.

Thus, once the structure of experience is determined
as a logic (or as a geometry), a probability calculus fol-
lows. If the description is Boolean, then probabilities
will be Kolmogorovian. But if the logic is non-Boolean,
any description based on an ignorance interpretation of
probabilities will be difficult to sustain (at least, without
appealing to non-local hidden variables). In the standard
formulation of quantum mechanics, deterministic equa-
tions of motion (as the Schrödinger equation) must be
complemented with “jumps” (as the quantum jumps) and
the concomitant processes that they trigger.

In the quantum mechanical description objects appear
as a partial aspect of a particular description. As an exam-
ple, think about a laboratory. Each object (the door, the
walls, the chairs, a source, a photon counter, the comput-
ers, etc) has a definite position and is situated in a definite
relationship with respect to the others. We can describe
any concrete measurement context using the tools of clas-
sical physics (in terms of event structures represented by
Boolean algebras). But the laboratory itself, as it presents
to us, is more than that. It comes into being as an orga-
nized structure of objects and possibilities: everything
is correlated in some way, and the situation is open to
different empirical setups. The openness to the different
experimental arrangements that we can set is an essen-
tial aspect of the lab. And, as explained in Section 2.2,
there is no joint classical probability distribution for the

events of all the possible contexts. The totality of results
associated to all possible experimental setups, gives place
to a description based in intertwined Boolean algebras
which is globally non-Boolean and is related to a pro-
jective geometry. Quantum mechanics tells us that the
possible outcomes associated to the different experimen-
tal arrangements are organized in a geometrical way, and
that the probabilities associated to the different processes
that we can observe are constitutive coordinates of the
state of affairs produced by a state preparation. The na-
ture of a quantum system is closely related to the place
in which events and processes occur: it is related to how
phenomena are structured. After a preparation, there is an
actual state of affairs in the lab, which has its own history,
and the set-theoretical-spatio-temporal description as a
collection of objects in space is only an aspect of it. This
structure can be considered as logical form expressed
as a particular form of geometry. The experiments and
processes associated to a quantum system in a laboratory
cannot be reduced to a classical description: this is at the
heart of the complementarity principle. In this way the
quantum mechanical description manifests itself as the
study of probability distributions, which can be consid-
ered objective and (at least in principle), experimentally
controllable.

6 Conclusions

Throughout this work, we have discussed the connection
between quantum probabilities and geometry. Our main
conclusions can be summarized as follows:

• The processes that take place at the fundamental level
of nature are structured in a logical way. This is, at the
same time, related to a very specific form of geometry.

• States are determined as measures over the linear
varieties associated to the above mentioned geometry.

• A formalism can be obtained [40] in which logic, ge-
ometry and probability theory appear articulated. We con-
sider this as a step forward in the research program initi-
ated by von Neumann that we have discussed in Section 3.

• The geometry of space-time appears as a substructure
of the more general geometry associated to the elementary
processes. In other words: physical phenomena seem to
have a geometrical structure that is not exhausted by the
one that we use to describe space-time.

• The discussion in this work points naturally to a
geometrical interpretation of quantum mechanics, that
can be framed in similar approaches that have as the main
goal the development of a quantum theory of gravity.
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[31] H. Halvorson, M. Müger. Algebraic quantum field
theory. in: J. Butterfield, J. Earman (Eds.), Philoso-
phy of Physics, Part A. North-Holland, Amsterdam,
2006. pp. 731–922. arXiv:math-ph/0602036.

[32] O. Bratteli, D. W. Robinson. Operator Algebras and
Quantum Statistical Mechanics, Vol 1: C*- and
W*-Algebras, Symmetry Groups, Decomposition of
States. Springer, Berlin, 2002. doi:10.1007/978-
3-662-02520-8.

[33] O. Bratteli, D. W. Robinson. Operator Algebras
and Quantum Statistical Mechanics, Vol 2: Equilib-
rium States, Models in Quantum Statistical Mechan-
ics. Springer, Berlin, 1981. doi:10.1007/978-3-
662-09089-3.
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