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The incompleteness of extensional object languages of 
physics and time reversal. Part 2.  

PART 2: Intensional semantics for physics object languages and the 
deduction of time reversal transformations in physics.  

Andrew Holster. Original 2003. Reposted unchanged 2023.  

 

[This paper continues from Part 1 (Holster 2003(C)). Reference is made to Eq. (1)-(7) from 

there, which are repeated for convenience in Appendix 4 here.] It was shown in Part 1 that it 

is impossible to construct a general compositional operator to represent the T transformation 

in physics if we have only an extensional interpretation of propositions. It may be wondered 

if this is a realistic goal anyway – after all, a number of leading writers on time reversal have 

noted that no systematic way of defining T for theories generally in physics is known1; they 

do not appear to think any fully systematic definition is possible; and they appear satisfied to 

continue with various ad hoc interpretations of T. But I will give a different answer to this 

question.  

To do this, I introduce a simple extension of the object language, to include a 

representation of contingency, through a basic kind of intensional logic, using 

intensionalisation on worlds. I also observe that, given we have a decisive logical 

interpretation of a fundamental theory, then the T operator is defined analytically through this 

interpretation, and does not require further ad hoc or empirical considerations. The problem 

is defining the interpretation of theories, not defining the T operator. I also demonstrate (see 

Appendix 2) that if the original object language is compositional to start with, then it must be 

possible to define a general compositional T operator. I also reiterate that the problems of 

defining a time reversal operator have led to practical problems, which undermine the 

reliability of the analysis of time symmetry in applied physics.2  

7. Intensional versus extensional semantics for physics.  

A system of formal semantics for a language can be thought of as a specification of a 

meaning function, which maps each well-formed term of the language, A, to some kind of 

objects, A. We take A to be the name for the symbol “A”, and we can write schematically:  

 

Meaning(A) = A 

 

An explicit specification of a Meaning function is called formal semantics or objectual 

semantics when we specify a direct mapping from terms or symbols of a language, to objects 

of reference3. The specification of a system of meanings is called an interpretation of the 

 
1 This point and related problems about the definition of time symmetry concepts are discussed in the references 

to de Beauregard, Davies, Earman, Hutchison, Liu, Penrose, Sachs, Watanabe, Zeh.  
2 These points are pursued in detail in Holster 2003 (A) and (B); see also references to Watanabe, de 

Beauregard, Callender and Healy. This paper deals with the underlying logical problem that has led to these 

problems in the applied analysis, not the analysis itself. 
3 The concept of formal semantics was first clearly explicated by Frege. The most popular developments are 

based on the work of Montague: see references to van Benthem, Janssen, Partee for useful summaries. An 

alternative development originated with Pavel Tichy (1971, 72, etc), and has been pursued by Materna, Duzi, 



 2 

language. To give it, we start with some fundamental interpretations, of fundamental terms 

as referring to certain kinds of fundamental objects (we have to start somewhere); we then 

impose rules for the construction of the meanings of complex terms from their syntactic 

constructions in terms of fundamental component terms, and the meanings of the 

fundamental terms. We will see the power of this later in the principle of compositionality, 

which says that the meaning of a complex term is determined by the meanings of its 

component terms, and the manner in which they are combined. But first we specify how this 

kind of semantics works for physics.   

Note that the term ‘objects’ is used in a wide sense here: in physics, ‘basic objects’ 

may be individual particles, points of space, moments of time, space-time manifolds, masses, 

charges, and so on; but the general class of objects used to interpret a theory of physics 

includes all kinds of functions or logical constructions that may be defined from these ‘basic 

objects’.  

In theoretical physics, the objects used to interpret a theory are usually thought to be 

real physical things and their properties. However, this is only obviously the case when we 

give the abstract theories empirical or experimental applications. To begin with, in pure 

theoretical physics, we do not have to think of theoretical terms as making any direct 

reference to real physical things at all. Instead, the basic reference is to a mathematical (or 

abstract) model.  

The theoretical interpretation is normally introduced as an explicit extensional, set-

theoretic interpretation, taking the language terms to refer to entities from an abstract model. 

We may call these the classes of theoretical particles, theoretical positions, theoretical 

moments of time, theoretical masses, etc. The mathematical structures involved in these 

classes are assumed to be well-defined.4  

The theory is subsequently interpreted empirically because these theoretical entities 

and constructions are intended to be applied to give descriptions of real physical things, 

which we identify as ‘physical particles’, ‘physical space’, ‘physical time’, etc; but we need 

not assume that any given mathematical theory is necessarily descriptive of real or physical 

objects when we initially define it as a mathematical structure.  

It is primarily the level of the theoretical interpretation that we will be concerned 

with. The problem of empirical application is separate. The key point is that when we do add 

an empirical interpretation, there must already be an apparatus in the theoretical language to 

represent contingency. This apparatus will be represented by an intensional semantics for the 

object language. But first we introduce the extensional interpretation.  

A basic extensional interpretation for classical mechanics may be sketched as 

follows. First, for the main basic terms:  

 

• We take the term ‘t’ as a variable ranging over a basic class T of moments, and ‘t0’, 

‘t1’, etc, as constants referring to moments.5    

 
and others in the ‘Transparent Intensional Logic’ (TIL) program: see TIL website for more detail. But the 

controversies between different approaches to intensional logic are not relevant to the main issues in this paper.  
4 See Kobayashi and Nomizu, 1963, and Spivak, 1979, for the most explicit kind of extensionalist interpretation 

typically developed in modern physics.  
5 Note that ‘t’ refers to an interval of time, and is vectorial, and the variable t can also be treated as vectorial. 

Note also that there is a common ambiguity between treating t, i, etc, as variables or constants.  Strictly, if these 

are defined as variables, they should be treated uniformly as such. But when we instantiate t at a particular 

moment of time (or i at a particular particle, or m at a mass) it is common to intuitively ‘exchange its meaning’ 
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• We take ‘i’ to signify a variable ranging over a basic class I of individual particles, 

and ‘i1’, ‘i2’, etc, as constants referring to particles.  

• We take ‘X’, ‘Y’, to signify constant point-vectors, or points from a basic class R3 of 

positions.  

• We take ‘m’ to signify a variable ranging over a basic class M of masses, and ‘m1’, 

‘m2’, etc, as constants referring to particle masses. 

 

We also have two special terms:  

• We take ‘r(i,t)’ to denote the point-vector on the trajectory of a particle i at a time t.  

• We take ‘m(i,t)’ to denote the mass of a particle i at a time t.6 

 

Of course, T, R3 and M are really structured entities, rather than just classes: e.g. T has the 

structure of a linear continuum, R3 has the Euclidean manifold structure of a 3-dimensional 

vector space, M has the structure of a ray. These structures are evident through the existence 

of functions giving time intervals (i.e. distances between points of time), vectors and lengths 

(i.e. relations and distances between points of space), or mass additions. We simply take the 

normal interpretations of these structures for granted here: they are exhaustively discussed in 

foundational studies. We assume that a good interpretation of this kind has been supplied 

already – our problem will be to expand this interpretation to an intensional one.  

We call such classes the base sets of the ontology of the theory. There is a definite class 

of such base sets for a well-defined theory, and other theoretical entities (e.g. tensors; fields; 

etc) are constructed from these sets (or more accurately, these fundamental structures).  

Specifying the base of the ontology is the first part of the interpretation. The second 

part identifies the kinds of facts that the theory recognizes. In classical physics, this is 

essentially through the interpretation of the special constants that refer to particle trajectory 

functions, particle masses, and so forth.  

Thus, the special fundamental term: “r(.,.)” is introduced in classical mechanics to 

represent the trajectories of particles. This term is interpreted as referring to a function from 

particles, i, and moments of time, t, to positions in space, X. A second special function is 

“m(.,.)”,interpreted as referring to a function from particles, i, and moments of time, t, to 

masses. The basic kinds of facts represented in classical mechanics are facts about positions 

and masses of particles at moments of time.  

 These special functions allow us to state propositions of the theory. Thus we may 

write: r(i,t) = X¸ for some i, t, and (specific position) X, to state that the particle i has 

position X at time t. Having the trajectory function, r(.,.), we can also define additional 

mathematical operators on them, such as differential operators like: dr(i,t)/dt (velocity), in 

the usual ways. We also frequently use terms like: ri(.) to represent the specific trajectory of a 

constant particle i.  

The laws of a theory are generalised propositions, such as Eq. (4) (see Appendix 4), 

which state identities between various mathematical operations on trajectory functions, mass 

 
as a variable for a new meaning, where it is treated as a constant, taken to refer to a specific moment. This lets 

us avoid using so many subscripted terms for constants. This practice is so deeply embedded that I will not try 

to deal with it here.  
6 This is a generalization of the ordinary symbolism: in classical mechanics, masses are taken to be constant and 

we only need to identify the constant mass, mi, of a particle, i. But the generalization is required for a logical 

view, and immediately comes into play in relativistic physics.  
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functions, etc. These laws involve one further kind of entity, physical constants, such as the 

gravitational constant, G, which I comment on later.  

We formally specify the notion of facts through the fundamental semantic notion of 

worlds. A world, W, is a complete class of facts. In natural language, we are used to allowing 

any kind of jumble of facts to represent a (logically possible) ‘complete truth about the 

world’, but in fundamental physics, the ontology of the theory specifies an extremely limited 

class of possible types of facts. In a basic classical theory, the complete class of facts to 

represent a world may be represented as a collection, W:  

 

Definition of the logical form of a simple classical world.  

W = {(i,r,t,m): particle i has position r and mass m at time t in W} 

 

Comments on the generality of this kind of scheme are made in Section 13 below7, but for 

the moment we will just work through this simple example. This specification is a necessary 

part of the logic of the theory. Logically possible worlds of such a theory are defined as 

classes of facts of this form. Such a class has a strictly limited logical structure. It is this 

specification of the ‘fundamental logical form’ of worlds that gives fundamental theories of 

physics such powerful content. They specify the ‘logical space’ of the world before they even 

start to propose specific contingent laws or propositions about the actual world. The progress 

of fundamental physics, from this point of view, lies in altering the idea of what the 

fundamental underlying logical space of physical possibilities may be.  

It may be noted that this is a distinctly metaphysical idea: the notion that there is a 

fundamental ‘logical space’ for the world (or indeed, that there is a single well-defined world 

at all) is a metaphysical idea, and is not proved by direct empirical observation. For instance, 

an obvious objection to this idea is: what if there is no ultimate level of fundamental facts 

underlying the real world at all? What if, as we continue doing fundamental physics, we 

keep finding that there are deeper and deeper levels of more fundamental composition of the 

actual physical world, with no ultimate end? Now this is a real possibility: but the 

specification of the semantics for a hypothetical theory, like classical mechanics, does not 

depend on its metaphysical assumptions being correct. It is rather an explication of how 

concepts of the theory are intended to be interpreted. And the concept of classical mechanics 

as a fundamental theory is intended to be interpreted as a specification of a certain kind of 

fundamental logical structure of the world.  

We can also note that, although this interpretation may seem to make the theory involve 

‘metaphysical’ assumptions, the resulting theory is not non-empirical, because the structure 

of fundamental facts implied by the theory may be discovered to be too simple, for instance, 

to represent the nature of facts in the actual world that we discover by experience. This is the 

case with classical mechanics: the particular logical structure specified by classical 

mechanics is just too simple to represent the causal connections we discover empirically, and 

we are forced to reject the metaphysical basis of this theory when we move on to quantum 

mechanics or relativity theory. But I will not pursue the discussion of the epistemology of 

physics here: the aim is merely to explicate the semantics, and to do this, we simply interpret 

the metaphysical assumptions behind the construction of the theory as accurately as we can. 

If we get them wrong, the reader can object that we have not represented the theory 

 
7 In particular, the application of this kind of semantics to quantum theory is problematic, because of deeper 

problems in interpreting quantum theory, such as the notion of a complete quantum world; see section 13.  
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accurately; the objection that we have misrepresented the true nature of the world accurately 

(or that the theory we consider is empirically wrong) is beside the point at this stage.  

 

At any rate, we can now state the difference between an extensional and an intensional 

interpretation. This is primarily revealed through the interpretation of statements 

representing propositions, and is reflected directly in the interpretation of the contingent 

terms, such as the trajectory functions and mass functions.   

 

• An extensional interpretation takes a proposition, L, to be a specific truth value. 

Equally, an extensional interpretation takes r(.,.), to be a specific trajectory function, 

i.e. a specific function from (i,t)-couples to positions.   

• An intensional interpretation takes a proposition to take truth values at worlds, and 

thus be a mapping from worlds to truth values. Equally, an intensional interpretation 

takes the trajectory function be a mapping from worlds to specific trajectory functions 

in worlds.   

 

The intensional semantic approach is far more natural: the extensional approach arose 

originally in the context of mathematical theories, where propositions are either necessarily 

true or false; they have the same truth values at all worlds, so we do not have to take the 

variation between worlds into account at all8. But contingent propositions are naturally 

identified as taking different truth values at different worlds, and are formally identified as 

mappings from worlds to truth-values, or more simply, as the classes of possible worlds 

where they are true. (Some versions of intensional logic, e.g. Tichy’s TIL, take propositions 

as mappings from worlds and times to truth values, so that propositions can change their truth 

values with time. This is convincing for natural language; but we can avoid the complication 

of involving times here because we essentially only consider either universal ‘laws’, which 

are stated to hold at all times, or else propositions specified at definite times, and these never 

change their truth values.) 

The key to intensional semantics lies in the explicit representation of this. It is essential 

for the approach here that the concept of worlds is precisely defined, so that the world 

variables are precisely defined, and we can quantify over them properly. We have done this 

above (defined worlds for the present simple theory of classical mechanics), and we can now 

add an explicit representation of world references to the theoretical object language. I will 

now propose a natural interpretation of this.  

To explicitly represent an intensional semantics for trajectory functions, we simply add 

an extra world-argument to the trajectory terms, and write an expanded trajectory function. I 

will capitalize R(.,.,.) to distinguish the intensional term from the ordinary r(.,.). To make the 

connection between the two formalisms, we impose definitions like this:  

 

r(i,t) [obtained in World W] = R(i,t,W) 

 

r(i,.) [obtained in World W] = R(i,.,W) 

 

r(.,.) [obtained in World W] = R(.,.,W) 

 

 
8 This is made particularly clear in Section 2 of Tichy (1988 unpublished). 
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The conditional phrase “obtained in world W” is not explicitly represented in ordinary 

physics formalism itself: it is, however, constantly referred to in the informal reasoning that 

occurs in the meta-language of physics text-books. It is typically evident in phrases 

introducing and generalising mathematical arguments in physics, which take forms like:  

 

“Let us suppose that r(.,.) is a certain trajectory function [for a world W] satisfying the 

axioms of the theory. Then… <There follows some mathematical derivation in the 

object language, producing a derived theorem>.  This obtains for any trajectory 

function [for a world W] that satisfies the theory, and hence represents a general 

theorem.”  

 

The present aim is to incorporate this level of reasoning formally into the object language. 

The following schemas indicate how to extend the object language of ordinary physics to 

make such world references explicitly evident.   

An intensional translation for basic terms of physics. 

 

Classical Trajectories 

 

Extensional System:  r(i,t) [in World W]  gives9:  spatial point-vector 

Intensional System:  R(i,t,W)    gives:  spatial point-vector 

 

 Mass Functions 

 

Extensional System:  m(i,t) [in World W] gives: mass 

Intensional System:  M(i,t,W)    gives: mass 

 

Scalar Fields (e.g. potential fields; quantum wave functions): 

 

Extensional System:  (i,t,r) [in W]  gives:  scalar value (real or complex) 

Intensional System:   (i,t,r,W)   gives:  scalar value (real or complex) 

 

Simple Differential Operators: 

 

Extensional System: ))()(( tft
dt

d
 [f in W] ))()(( rr

r





[  in W]  gives: function 

Intensional System: )),()(( Wtft
dt

d
   )),()(( Wrr

r





 gives: function 

 

Note that the differential operators themselves are world independent mappings, taking 

functions to their derivative functions.  Hence, the differential operators themselves have no 

world variables; only the functions being differentiated require world variables.  

 

Universal Physical Constants: 

 
9 I.e. this gives a spatial vector when we take a valuation of the variables i, t, and W. 
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Extensional System: c  G h  (World independent constants) 

Intensional System:  c(W) = c   G(W) = G  h(W) = h  (World independent constants) 

 

The interpretation of the differential operators and the physical constants will require special 

comment, because there are substantial peculiarities when analysed carefully. However, first 

we turn to applying this system to solving our problem about the time reversal 

transformations, and consider what happens to the representation of propositions.  

8. Intensional propositions in physics. 

We take propositions in general to be represented by statements, L.  We can now represent 

the difference between propositions in intension, and the extensional values of propositions 

at specific worlds, and at the actual world.  

 

Propositions as Intensions  

 

Extensional system:  <not represented> 

Intensional System: L(.) = (W)L(W)     gives:  Mapping from Worlds to Truth values 

 

(The -operation abstracts W  from L(W), to form a function: see Appendix 1.)  

 

Extensions of Propositions  

 

Extensional System: L    =   L [at world W]    gives:  Truth value  

Intensional System:  LW  =   L(W)      gives:  Truth value  

 

Actual Extensions (truth) of Propositions  

 

Extensional System:  L is actually true   =  L [In the actual world, @]    gives:  Truth value  

Intensional System:  L@  =   L(@)       gives:  Truth value 

 

The first point to note is that the value of a term: L(W), for any specified proposition, L(.) and 

world W, is determined analytically or logically, because L is defined as a class of mappings, 

or a class of worlds, and L is true or false of W by their definitions. But of course, the ‘actual 

truth’ of a proposition is generally contingent, not analytic. This contingency is represented 

by the value of: L(@), i.e. the value of L(.) at the actual world, @. This is because @ is not 

defined analytically: rather, it takes a specific world as its value, but the value of @ is only 

determined by determining contingent facts about the actual world. The same goes for 

R(i,t,W) and R(i,t,@). (See Appendix 3).  

Of course, we can never fully determine the value of @ as a unique world in practice: 

rather, we can only partially determine its content, by determining the truth or falsity of 

various propositions: L(@). This requires that we have some way of empirically determining 

the truth or falsity of certain propositions. But we need not analyse the epistemology of this 

in any detail at this point: we merely assume that some such determinations can be done. 

In fact, the definition of the empirical actual world is a subject of philosophical dispute, 

and at least four different ways have put forward to define it. The simplest way, adopted 

here, is just that, within the theoretical ontology, @ must refer a particular, constant world. 
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At any rate, for our purposes, @ is assumed to take a unique value as if it is a primitive 

constant, within the theory. That is: the theory presumes that there is a unique world, called 

@, and we treat this as a constant. But until we connect the theoretical ontology with an 

empirical interpretation, no empirical interpretation of @ is possible.  

This is the basic idea of intensional propositions: we now turn to see how propositions 

as intensions are constructed in detail from the intensional representation of the fundamental 

terms of our object language. We reconsider the earlier statements, (4), (5), and L, from 

previous sections, and substitute the intensional version of terms. First we begin with (4) 

which is the simplest.  

 

(4)(.) (W)(i,t)[m(i,t,W)d2R(i,t,W)/dt2 = ji -Gm(i,t,W)m(j,t,W)(R(i,t,W)-R(j,t,W))/|R(i,t,W)-R(j,t,W)|3]  

 

Here, all terms are directly substituted for their intensional versions, and we obtain a general 

intensional proposition, as required. When we state (4)(.) as actually true, we apply it to the 

actual world, @, to obtain:  

 

(4)(@) (i,t)[m(i,t,@)d2R(i,t,@)/dt2 = ji -Gm(i,t,@)m(j,t,@)(R(i,t,@)-R(j,t,@))/|R(i,t,@)-R(j,t,@)|3]  

 

This represents a truth-value: it is true if (4)(.) is true of the actual world, @, and false if 

not10.  

 The situation with (5) is a little more difficult, because it is really represented as a 

definition of the term v(i,t) based on the values of r(.,.) in the world in question. We might 

take the specific world to be either: (i) the actual world, @, or alternatively: (ii) the world W 

where we evaluate r(.,.). To interpret (5) and (6) correctly, we must choose the latter: for 

when we apply (6) to a world W, we do not want (6) to say that the gravitational 

accelerations correspond to those defined in the actual world, but rather, to those in the world 

W where we evaluate the trajectories R(.,.,W). Thus we can take:   

 

(5)(.)  (V)(i,t,W)(v(i,t,W) = dR(i,t,W)/dt) 

 

(5)(.) is a definition of v(.,.,.), and is true in every world V; but the values of v(.,.,W) are still 

contingent on R(.,.,W) through W. Note that v(.,.,.)is quite distinct from the defined operator 

V[.]:  

r(.,.)[V(r(i,t))=df dr(i,t)/dt] 

 

which is just another symbol for the differential operator, not for the function constructed by 

the differential operation on r(.,.).   

 Next we interpret L defined above. To obtain its intended interpretation, we take it to be 

a statement that the mathematically defined trajectory function, f(t) = exp(t)w, where w is 

some constant velocity vector, is the trajectory function for the particle i, giving:   

 

L(.)  (W)((t)(Ri(t,W)  = f(t)) 

 

 
10 We may also allow it to be null, for instance if the differential operation gives no value at a particular point on 

a trajectory; but we can ignore the question of null values here.  
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Note that because the term f(.) is defined as a mathematical function, it does not have world 

variables. L(.) is not necessarily true. When applied to the actual world, it gives the truth 

value: (t)(Ri(t,@)  = f(t). Now f(.) is independently defined by its mathematical definition. 

This definition is represented in its turn by:  

 

(8)(.)  (W)(t)(f(t) = exp(t)w) 

 

This is just a simple tautology. Given (8)(.) is a tautology, it is not necessary that: L(@), i.e. 

(t)(Ri(t,@)  = f(t)) is true: it depends on the value Ri(t,@) at the actual world, and is 

genuinely contingent.  

 And finally, we can interpret the troublesome proposition, (6):  

 

(6)(.) (W)(i,t)[m(i,t,W)dv(i,t,W)/dt = ji -Gm(i,t,W)m(j,t,W)(R(i,t,W)-R(j,t,W))/|R(i,t,W)-R(j,t,W)|3] 

 

We also need to mention how the logical or defined propositions, like (5)(.) and (8)(.), are 

distinguished from the contingent propositions like L(.) and (4)(.). To make this distinction, 

we add (5)(.) (8)(.) as logical axioms, so that they form part of the general deduction system 

of the language itself. Hence when we turn to obtaining derivations, we have as trivial 

derivations that:  

 

├ (V)(i,t,W)(v(i,t,W) = dR(i,t,W)/dt)      and:    ├ (W)(t)(f(t) = exp(t)v) 

 

I.e. these are derived from nothing. On the other hand, we deduce (4)(.) from the axioms of 

the empirical theory being considering. If we name the theory by the term Classical-Gravity, 

then we have an ordinary logical deduction:  

 

Classical-Gravity├ (4)(.) 

 

If we wish to state that the law (4)(.) is actually true, or that the proposition L(.) is actually 

true, then we can write these as statements, and propose that when @ is evaluated, we get the 

values:  

(4)(@) is True,      or:     L(@) is True 

 

This shows how a variety of different kinds of statements are interpreted intentionally. We 

now turn the system for obtaining their time reversals.   

 

9. Definition of time reversal in intensional logic.  

Having the resources of an intensional formalism available, we suddenly find that it is easy to 

define time reversal. First, however, we must add the fundamental definition of the concept 

of the time reversal, TW, of a world, W:  

 

 Definition of TW.  

 TW = {(i,r,-t,m): particle i has position r and mass m at time t in W} 

 

The time reversal of an intensional proposition is then defined by: 
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Definition. 

A proposition L*(.) is the time reversal of a proposition L(.) just in case:  

(W)(L*(TW) = L(W)) 

 

Or alternatively, we can just write it as an axiom that:  

  

General Definition of T acting on L(.):  

 (W)(TL(TW) = L(W)) 

 

Or equivalently:  

 

 (W)(TL(W) = L(T-1W)) 

 

In fact this applies for all general transformations (see below). A useful equivalent form in 

the special case of time reversal is:  

 

 Special case for transformations where: T = T-1 

 (W)(TL(W) = L(TW)) 

 

This follows for time reversal because: T(TW) = W. It does not hold generally for 

transformations, only when T = T-1. Then because W is universally quantified (a dummy 

variable) in the general axiom, and TW has the same range as W, we can replace W with TW 

there, to obtain: (W)(TL(TTW) = L(TW)), which then simplifies to: (W)(TL(W) = L(TW)).  

  

A proposition L(.) is time reversal invariant just in case: L(.) = TL(.). This means that: 

 

General Definition.   

L(.) is T-invariant just in case:  

 

  (W)(L(TW) = L(W))11 

 

Or using the second form for time reversal of L (which assumes that T = T-1):  

 

L(.) is time reversal invariant just in case:  

 

  (W)(TL(W) = L(TW)) 

 

Obviously this property must hold for all analytically or necessarily true propositions, such as 

definitions, because these propositions are by definition invariant w.r.t. worlds, so that if 

 
11 Note that: (W)(L(TW) = L(W)) is an extension, not an intensional proposition; it is intensionalised by 

abstracting: (V) (W)(L(TW) = L(W)), with V a second world variable. But then it is trivial that (V) 

(W)(L(TW) = L(W)) takes the same value, (W)(L(TW) = L(W)), at every world  V. With trivial cases like 

this, we frequently ignore the intensionalisation, and just write: (W)(L(TW) = L(W)) 
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L(W) is true, then L(TW) is true. Similarly for all analytically false propositions. But it will 

no longer hold automatically if L(.) is contingent.  

 We can also observe that there will now be an automatic procedure to obtain time 

reversals of propositions: if the proposition is formed from abstraction of W from a complex 

entity P, we simply replace W throughout P by TW.  

 

If (W)(P) is a proposition, then: (W )(((W)(P))(TW)) = T((W)(P)) 

 

Hence, when we apply the world W to T((W)(P)), we get: ((W)(P))(TW).  

 

We will now find that the general time reversal operator is represented directly by the 

distributive operator, Ŧ, as defined previously, but extended naturally to include worlds. I.e. 

for any world W:  

 

ŦW = TW 

 

And with an additional rule for operating on -terms themselves:  

 

T(W ) = (W) 

 

And we will obtain the result we wanted in the first place: that for any proposition, L(.):  

 

TL(.) = ŦL(.) 

 

Indeed, we find this for any complex term, X, in the intensional formalism:  

 

TX = ŦX 

 

This is what needs to be subsequently proved: that extending to an intensional formalism, the 

distributive syntactic operator Ŧ  successfully defines real time reversal.   

 However, before turning to this, we will first check these claims by obtaining the time 

reversals of the propositions (4)(.), (5)(.), (8)(.), L(.), and (6)(.).   
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Summary.  

 

General Logical Truths for Intensional Propositions, L(.)  

(W)(L(W) = TL(TW))     

(W)(L(T-1W) = TL(W)) 

(W)( T-1L(W) = L(TW)) 

 

Special Logical Truth whenever: T = T-1 

(W)(L(TW) = TL(W))     

This is also true whenever L is T-invariant 

 

Dependant on the nature of L(.) 

L(.) = TL(.)   True just in case L is T-invariant 

L(.) = T-1L(.)   True just in case L is T-invariant 

(W)(L(W) = TL(W))     True just in case L is T-invariant 

(W)(L(W) = L(TW))     True just in case L is T-invariant 

  

10. Examples of time reversal in intensional logic. 

 

Time Reversal Invariance of (4)(.).  

By definition, for any world W: T(4)(W) = (4)(TW). This satisfied by defining: 

 

T(4)(.) 
(W)(i,t)[m(i,t,TW)d2R(i,t,TW)/dt2 = ji -Gm(i,t,TW)m(j,t,TW)(R(i,t,TW)-R(j,t,TW))/|R(i,t,TW)-R(j,t,TW)|3] 

 

This follows since if we apply this proposition to the world W, we obviously obtain the same 

truth-value as the proposition (4)(.) applied to TW. 

 The identity of (4)(.) and T(4)(.) (i.e. the well-known time reversal invariance of (4)(.) ) 

is then obtained by noting that:  

(i) m(i,t,TW) = m(i,-t,W); 

(ii) On the left hand side: d2R(i,t,TW)/dt2  = d2R(i,-t,W)/dt2;  

(iii) On the right hand side: R(i,t,TW)-R(j,t,TW) = R(i,-t,W)-R(j,-t,W) 

(iv) On the right hand side: |R(i,t,TW)-R(j,t,TW)|3  = |R(i,-t,W)-R(j,-t,W)|3 

Substituting these into T(4)(.), we obtain exactly the equation for (4)(.), but with –t replacing 

t. But since (4)(.) is universally quantified w.r.t. time, it holds equally for times t and –t, and 

hence (4)(.) and T(4)(.) are identical. We will examine (ii) more closely below. 

 

Time Reversal Invariance of (5)(.).  

By definition, for any world V: T(5)(V) = (5)(TV), so:   

 

T(5)(.)  (V)(i,t,W)(v(i,t,TW) = dR(i,t,TW)/dt) 

 

If we apply this proposition to any world V, we obtain the same as (5)(TV):  

 

T(5)(V)  (i,t,W)(v(i,t,TW) = dR(i,t,TW)/dt) 
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(5)(TV)  (i,t,W)(v(i,t,TW) = dR(i,t,TW)/dt) 

 

T(5)(.) is the same as (5)(.), being a tautology.  

 

Time Reversal Invariance of (8)(.).  

By definition, for any world W: T(8)(W) = (8)(TW). This satisfied by defining: 

 

T(8)(.)  (W)(t)(f(t) = exp(t)w) 

 

Since if we apply this proposition to the world W, we obtain the same as (8)(TW). Obviously 

this is time reversal invariant, since:  

 

T(8)(W) = (8)(W) = (t)(f(t) = exp(t)w) 

 

Time Reversal Non-Invariance of L(.).  

By definition, for any world W: TL(W) = L(TW). This satisfied by defining: 

 

TL(.)  (W)((t)(Ri(t,TW)  = f(t)) 

 

Since if we apply this proposition to the world W, we obtain the same as L(TW).  

The non-identity of L(.) and TL(.) is then obtained by noting that:  

(i) Ri(t,TW)  = Ri(-t,W);  

(ii) f(-t) ≠ f(t), for at least one value t; 

 

Substituting (i) into TL(.) we get:  

 

TL(.)  (W)((t)(Ri(t,TW)  = f(-t)) 

 

Applying some world, W, to TL(.), and instantiating with t from (ii) we get:  

 

  TL(W)  (Ri(t,W)  = f(-t)) 

But equally:  

L(W)  (Ri(t,W)  = f(t)) 

 

Using (ii):  TL(W)  ~L(W) 

 

Hence, L(.) is not time reversal invariant.  

 

Time Reversal Invariance of (6)(.).  

By definition, for any world W: T(6)(W) = (6)(TW). This satisfied by defining: 

 

T(6)(.) 
(W)(i,t)[m(i,t,TW)dv(i,t,TW)/dt = ji -Gm(i,t,TW)m(j,t,TW)(R(i,t,TW)-R(j,t,TW))/|R(i,t,TW)-R(j,t,TW)|3] 

 

The correctness of this is shown by applying T(6)(.) to the world W, to obtain:  

 



 14 

T(6)(W) 
(i,t)[m(i,t,TW)dv(i,t,TW)/dt = ji -Gm(i,t,TW)m(j,t,TW)(R(i,t,TW)-R(j,t,TW))/|R(i,t,TW)-R(j,t,TW)|3] 

 

But this obtains just in case (6)(.) is true of TW:  

 

(6)(TW) 
(i,t)[m(i,t,TW)dv(i,t,TW)/dt = ji -Gm(i,t,TW)m(j,t,TW)(R(i,t,TW)-R(j,t,TW))/|R(i,t,TW)-R(j,t,TW)|3] 

 

We then prove the equivalence of T(6)(.) and (6)(.) by using the identities (i)-(iv) already 

observed in the previous discussion of (6)(.), and the identity for v(i,t,TW):  

(i) m(i,t,TW) = m(i,-t,W); 

(ii) See (v) and (vi) instead;  

(iii) On the right hand side: R(i,t,TW)-R(j,t,TW) = R(i,-t,W)-R(j,-t,W) 

(iv) On the right hand side: |R(i,t,TW)-R(j,t,TW)|3  = |R(i,-t,W)-R(j,-t,W)|3 

(v) On the left hand side: v(i,t,TW) =  -v(i,-t,W), hence:  

(vi) d(v(i,t,TW))/dt = d(v(i,-t,W))/dt  (reversal of acceleration function).  

 

Substituting these into T(6)(.), we obtain: 

 

T(6)(.) 
(W)(i,t)[m(i,-t,W)dv(i,-t,W)/dt = ji -Gm(i,-t,W)m(j,-t,W)(R(i,-t,W)-R(j,-t,W))/|R(i,-t,W)-R(j,-t,W)|3] 

 

This is the same as (6)(.), since these are universally quantified w.r.t. time. 

 

We can now recognize how the problem encountered at the end of Part 1 with (6) is solved 

by explicitly recognizing the role of W in the term v(.,.,.) as well as the term R(.,.,.) in (6). 

The physicist’s method essentially tries to work by intuitively abstracting on the term r(.,.), 

but we only get a systematic method by abstracting on W.   

 Finally, we can note why the transformation of extensions always gives the result that 

they are invariant under T. Compare the intensional proposition: L(.) with its extension at the 

actual world: L(@). The time reversal of the latter is just: T(L(@)) = TL(T@). But by 

definition, TL(.) is true at T@ just in case L(.) is true at @. Thus T(L(@)) is always the same 

as L(@), whether TL(.) = L(.) or not.  

 

11. Time reversal of the time differential operator.   

First consider the time differential operator defined by:   

 

(.)](.))((.))[( gf
dt

d
f =    

 

Just in case, for all t:  

 

]
)()(

)0)(lim()(
dt

tfdttf
dtttg

−+
→=   

And:  
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]
)()(

)0)(lim()(
dt

dttftf
dtttg

−−
→=   

 

It is assumed that dt limits to 0 from positive values. This double condition ensures that the 

differential exists with the same value when taken from above and below around t. (If we 

consider the simpler differentials taken just from above, or just from below, we find that they 

are indeed time asymmetric w.r.t. certain discontinuous functions).   

Note that this is generalised over all functions: f(.).This differential operator is not 

world dependant: d[.]/dt: f(.)→g(.), maps a function, f(.), of t, to another function, g(.), of t. 

This mapping is not world dependant. This is because the differential operator is 

mathematically defined to be the same operator in every world.  

The fact an operator is world-invariant does not by itself mean that it must be invariant 

under time reversal. But this is a consequence of the specific definition of the time 

differential operator.  The time reversed operator: T(d[.]/dt) is defined as follows:  

 

Definition of time reversal of the time differential operator.  

If d[.]/dt maps: f(.)→g(.), then T(d[.]/dt) maps: Tf(.)→Tg(.) 

 

We can show directly that: T(d[.]/dt) = d[.]/dt by showing that, for any functions f(.) and 

g(.), if: d[f(.)]/dt = g(.), then: d[Tf(.)]/dt = Tg(.).  

Proof. Suppose that: d[f(.)]/dt = g(.). By definition: Tf(.)= T[(t)(f(t))] = (t)(Tf(t)) = 

(t)(f(-t)), and: Tg(.) = T[(t)(g(t))] = (t)(Tg(t)) = (t)(g(-t)). Hence: Tf(t) = f(-t), and: 

Tf(t+dt) = f(-t-dt), and: Tg(t) = g(-t). But by definition of the differential operator:  

dt

tfdttf
dttg

)()(
)0(lim)(

−+
→=  

 

 Hence:  

dt

tfdttf
dttgtTg

)()(
)0(lim)()(

−−−−
→=−=  

 

But then by the definition of Tf(.) this is equal to the differential of Tf(.) (from above) at t:  

 

dt

tTfdttTf
dt

dt

tfdttf
dt

)()(
)0(lim

)()(
)0(lim

−+
→=

−−−−
→  

 

(Note that this only exists if the differential of f(t) exists at t from below, which is why we 

need the double condition in the definition of the full differentials).  

A similar argument applies for the differentials from below. Hence we obtain that:  

 

dt

tTfdttTf
dttTg

)()(
)0(lim)(

−+
→=  

 

And similarly:  

dt

dttTftTf
dttTg

)()(
)0(lim)(

−−
→=  



 16 

 

And so Tg(.) = d[Tf(.)]/dt.  I.e. Tg(.) is the differential of Tf(.) just in case g(.) is the 

differential of f(.). Then, by the definition of Td[.]/dt, this is the same mapping as d[.]/dt. .  

 

Theorem.  

T(d[.]/dt) = d[.]/dt 

 

Physicists assume that time reversal acts by reversing the time differential operator: T(d/dt)=   

-d/dt. But this is false if we take d/dt to represent the differential operator. It is only correct 

for the differential quantities, dt, or 1/dt.   

 

Time reversal of differential quantities.  

T(1/dt)=-1/dt     and:     T(dt) = -dt 

 

The apparent anti-intuitiveness of this result is because we know that the time reversal of the 

time differential of a function, R(i,t,W), taken at i, t, W, is not the original time differential of 

R(i,t,W). But this is different matter. It is the fact that: T[dR(i,t,W)/dt] =  d(TR(i,-t,TW))/dt =   

-d(R(i,t,W))/dt. Notice also that T is compositional and distributive for this term only if we 

take T(d[.]/dt) = d[.]/dt.  

 

The pertinent quality for invariance of any operator or function is this: if operator  maps 

objects: a → b  ̧then it is invariant under T just in case it also maps: Ta → Tb. This means 

that  = T , because by definition, T maps: Ta → Tb just in case  maps a → b. This 

property is separate from being a world invariant mapping. E.g. we can arbitrarily specify a 

simple function like: [ (t) = X for t≥0 and: (t) = 2X for t<0], with X some constant. Then:  

[T(t) = X for t≤0 and: T(t) = 2X for t>0], and  is not the same as T, even though  is 

defined as world invariant.  

 

12. Time reversal of universal physical constants.   

 

The physical constants, like G, c, and h, look simple, but they contain difficulties, because 

they are really physical entities. This is evident when we consider that they map from one 

king of physical quantity to another. For instance, the speed of light, c, when multiplied by an 

interval of time, t, gives us a length in space, r.  The gravitational constant, G, and Plank’s 

constant, h, also map from physical quantities to different physical quantities. This is 

reflected in their dimensional analysis. E.g. c has the physical dimensions: c ≡ L/T = 

Length/Time. This reflects that it maps from time to space. G has the physical dimensions: G 

≡ L3M-1T-2. This reflects that it is a more complicated mapping of physical objects. This is 

also evident from the fact that physical equations must balance dimensionally. If we write an 

equation: A = B, that does not balance dimensionally, then it cannot be physically 

interpreted, because the objects interpreted on one side of the equation are different kinds of 

objects to those on the other side.  

This potentially makes the interpretation of the transformations on physical constants 

difficult. They are defined as world independent quantities, but this does not necessarily 
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mean that they are invariant under general transformations. It all depends on the objects they 

map.  

However, this problem appears to be simplified by the fact that their mappings are 

simply from ‘lengths’ in space, time, or mass, and not from vectorial or directional 

quantities. For instance, if we defined a velocity of light, in a certain direction, as: c = cx, 

where x is a spatial basis vector in a certain direction, and c is just the ordinary speed of light, 

then we must find that Tc = -c, as with any ordinary velocity, and equally, Pc = -c, where P is 

the usual space reversal (parity) transformation. These reversals follow simply because of the 

odd power of time and distance in the dimensions of c.  

However, this does not appear to be so with just c: physicists just take: Tc = c and: Pc 

= c.  Similarly, if G was replaced with G, which mapped in a vectorial fashion w.r.t. space 

and time, we would find that: PG = -G¸ because of the odd power of G in space, although we 

would still have: TG = G¸ since it is even in dimensions of time. Similarly, we would find 

that: Th = -h¸ since the dimensions of h are odd in time.  

I will not try to solve this problem here: it requires a deeper examination of the nature 

of the physical constants as mappings, and a deeper logical treatment of the concept of 

dimensional analysis. What it appears to reflect, however, is that fact that if we P-transform a 

length, r, defined by: r = |r| = sqrt(r.r), then: we obtain: Pr = r, even though: Pr = -r. Similar, 

if we T-transform the length of a temporal vector, which we can write as: |t| = sqrt(t.t), we 

will obtain: T|t| = -t. This indicates that we really need to adopt a vectorial representation of 

time, as we do of space, to make time transformations precise.  

 

13. General time reversal of worlds, atomic facts, and base sets.   

The system outlined here only works as a method for defining time reversals in physics if we 

have a clear definition of worlds available to interpret the theory. For this, we have to choose 

the definition of atomic facts that compose worlds in the first place, to define the logical 

space of the theory. Can this always be done? This is the first major problem. The second 

major problem is that we have to choose the time reversal transformation on the atomic facts, 

or on the base sets, to induce the time reversal of worlds. If this is done, then time reversal 

has a precise definition for the theory: contingent propositions that define the theory (and 

indeed, all complex entities referred to in the theory) will then have their time reversals 

determined. I will outline these two problems, without attempting to solve them here.  

The first problem is therefore whether there is an objective interpretation of worlds or 

atomic facts for a given theory. This is certainly a problem, because a given ‘theory’, 

understood in a broad sense, can often be interpreted, in a precise sense, in many different 

ways. For instance, we chose atoms like: (i,r,t,m) for our simple classical basis. But there are 

alternative possibilities. For instance, what about: (r,t,m), without distinguishing individual 

particles? The point of this idea is that there is no apparent difference between a world 

defined from a class of facts like (i,r,t,m), and an equivalent world defined from a simple 

permutation of particles – so is there any need for any absolute identification of particles? It 

may be seem that without particle identities, we cannot define trajectories, or differentials of 

trajectories. But this is not necessarily true. First, the worlds defined by arbitrary classes of 

(i,r,t,m)-facts generally do not display any kinematic properties anyway. Classical kinematics 

supposes that only a tiny class of the logically possible {(i,r,t,m)}-worlds are physically 

possible: those in which particles have continuous trajectories, with properties of being 
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smooth or analytic and differentiable at points. Classical mechanics supposes something 

stronger again: that worlds are determined from mechanical states at moments of time, where 

the mechanical states are defined by the positions and velocities of all particles, and their 

masses. A system of classical dynamics subsequently imposes a theory of specific forces to 

implement a relationship between mechanical states and acceleration states, through the 

additional introduction of particular kinds of charges. Now in a world W with continuous, 

smooth trajectories, defined by atoms like: (i,r,t,m), we can directly define a trajectory 

function r(i,t) on particles. But do we need i in the atoms to individuate trajectories? Why 

not simply take any two points, (r1,t1,m1) and (r2,t2,m2), in world W, to be on the same 

trajectory, call it i, just in case these are smoothly connected by a class of other points in the 

world W? Then we can construct trajectories, i, from the space-time-mass points themselves. 

Thus we compress the ontology of the theory, and obtain a different type of logical space for 

classical physics.  

For a second example with a rich history of controversy, we might construct a 

relational state instead of an absolute space-time state. Instead of identifying a world with a 

class of (i,r,t) points for absolute space trajectories, why not use a relational-space ontology, 

with atomic facts like: (i,j,rij,t), which represents a relational vector between two particles, i 

and j?  

A further point is, why not expand our ontology from just containing one type of atom, 

like (i,j,rij,t), to containing a number of different types of atoms, e.g. (i,j,rij,t) to represent facts 

about trajectories, and: (i,t,m) to represent facts about masses of particles?  

The initial point is about reformulating the theory in a relational manner, by 

representing it logically through distinct types of facts. This is an open possibility, which 

involves deeper problems beyond the scope of this paper. The further point is true, but does 

not pose any obvious difficulty: we can certainly split our atomic facts into distinct types.  

Sometimes this is unnecessary, because we can combine distinct types into a single 

type. In this example, we could just use: (i,j,rij,t,mi,mj) as a single type of atom. It may be 

objected that then we can take two facts: (i,j,rij,t,mi,mj), (i,j,rij,t,m’i,m’j), in the same world, 

and give i and j two different masses simultaneously. But we can do this anyway: we can just 

take: (i,mi) and (i,m’i) in the same world. Equally, we can take: (i,r,t,m), and (i,r’,t,m) in the 

same world, and give a particle i two distinct positions at the same time. This is not a 

problem, because this is merely the definition of logically possible worlds. The central part of 

the classical theory – the kinematic and mechanical laws – subsequently rules out such 

worlds as physically or nomically possible. But these are contingent laws, not logical ones. It 

is common for physicists to propose the constrained kinematic space as if it is the logical 

space for the theory, but this is a mistake: there should be a representation of non-kinematic 

worlds possible within the theory12.  

What should be distinguished as impossible, though, is the idea of introducing certain 

logical redundancies into the atoms. The obvious way to do this is by using atoms like: 

(i,r,dr/dt,t,m), where we define both trajectory positions and velocities within atoms. But this 

leads immediately to logical impossibilities, because velocity properties, dr/dt, are defined 

from the trajectory properties. If we have a trajectory defined by a class: {(r,t)}, then any 

velocity properties, dr/dt, are thereby determined logically by these points already. The 

essential feature of the logical atoms is that they are logically independent of each other: but 

 
12 If we really want to logically rule out having one particle at two distinct points at the same time, then we 

should drop the reference to particles in the atoms, and write: (r,t,m).  
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a class of atoms of the form: (i,r,dr/dt,t,m) are not logically independent, and we cannot take 

the power set of this class to define logically possible worlds. 

However, there are other cases where we want to use two different types of atoms: 

specifically, when we incorporate both particles and fields. E.g. suppose we want to 

introduce electric fields as well as charged point particles. Then we can have two types of 

atoms: (i,r,t,m,q) for point-particles, and in addition, (r,t,E), for a global electric field over all 

space. Or alternatively, we might want to introduce electric fields associated with specific 

particles: (i,r,t,E). Now we cannot combine these into one kind of atomic fact of the simple 

form: (i,r,t,m,q,E), because we do not have an appropriate distinction between r for the 

particle position, and r for the fields point. But we could always find another way: e.g.: 

(i,r,t,m,q,r’,E), where r’ specifies the field points or E.  But this is rather unnatural and 

immensely redundant: it is better to split the atomic facts into two types, for two distinct 

types of entities. There is no specific problem with doing this, however, from the point of 

view of the theory of propositions or time reversal sketched above.  

 

At any rate, this outlines the main problem in the first place: is there any objectively correct 

interpretation of the logical space for a theory? This is a deep problem in the foundations of 

physics. The popular answer is probably that there are always different possible 

interpretations of the logical space, but these converge on ‘isomorphic’ theories at the level 

of the stronger empirical consequences. If there is an unsolvable problem in this respect, then 

it is a problem for interpreting a theory generally, and there may well be no single theory in 

the end. If the choice of logical interpretation affects the time reversal properties, then the 

theory is not objectively determined in a unique manner. This means, however, that the 

problem lies in specifying the theory, or its interpretation: it does not mean that the concept 

of time reversal for a fully specified theory is undefined.  

 

But this leads us to the second major problem: suppose that we have chosen a well-defined 

logical interpretation. Let us suppose that this is represented by a definite choice of logical 

atoms, written more generally as: (t, q1, q2,…qn), where the qi’s  are general variables, 

interpreted over classes of base sets. The main question is then: is there an objective 

interpretation of what the time reversal of these variables should be?  

The problem arises if we have a variable, qi, which is itself time-dependant, or has an 

intrinsic construction that relates to time. There are two good examples: first, the magnetic 

field, B  ̧is normally thought to reverse on time reversal; so if we have magnetic fields in our 

atoms, shouldn’t we reverse them on time reversal? But then, how do we decide that this is 

the appropriate choice? Or take the extended EM theory, with magnetic monopoles, 

represented by magnetic charges q*. Shouldn’t we reverse these charges? A second example 

involves the simple quantum mechanical wave function, . If the values of this are complex 

scalars, z, then on time reversal we normally take z*, i.e. the complex conjugates, rather than 

just z. But how do we know to do this?  

The usual reason for choosing these special transformations is because they ‘work’ in 

the context of the dynamics laws of these theories: i.e. they render the theories time reversal 

invariant. Choosing: T(r,t) = (r,-t)* renders the Schrodinger equation reversible. 

Choosing TB(r,t) = -B(r,-t) renders the Maxwell equations reversible. But it must be 

questioned whether this is necessary or proper. My opinion is very briefly that: 
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 (i) If we formulate the logical atoms for simple QM in the form: (i,r,t,z), with z being 

complex values, and take the time reversal of this atom to be: (i,r,-t,z), then we get a perfectly 

sensible concept of time reversal – but it gives an irreversible theory of QM. Alternatively, if 

we wish to take the reversal, as usual, to be: (i,r,-t,z*), then why? My own opinion is that this 

is not viable – given that we use atoms of the form: (i,r,t,z), then time reversal must be taken 

as (i,r,-t,z). The conventional result is obtained instead by reformulating the atoms: e.g. let us 

take the atoms as: (i,r,t,{z,z*}), giving a kind of ‘dual’ representation of the wave-function. 

Then the time reversal is: (i,r,-t,{z,z*}), and, given the appropriate laws, etc, the theory turns 

out to be reversible after all. But this points to the fact that the reversible interpretation of 

QM is a logically different theory to the simpler, irreversible theory.  

But there is a deeper problem of whether any logical representation of QM in terms of 

‘well-defined worlds’ is adequate to represent the broader probabilistic laws of QM. As a 

result, the usual theory of ‘semantics’ for QM is usually given in two parts: the first part 

gives the theoretical model of wave functions for systems of particles, the second gives the 

‘measurement theory’, in terms of ‘observables’ obtained from the wave functions on 

measurement13. But this introduces the deeply distressing problems of interpreting QM, 

including the problem of whether QM is interpretable as a fundamental theory, which cannot 

be discussed here. 

(ii) If we formulate the logical atoms for EM in the form of charge distributions: 

(i,r,t,m,q), with q being electric charges, and we construct the E and B fields from these 

according to Maxwell’s equations, then we obtain a reversible theory after all by taking: 

T(i,r,t,m,q) = (i,r,-t,m,q),  because all the E and B fields are generated from charge 

distributions, and not introduced as fundamental entities. This is really what we want – the 

magnetic fields reversed under T because they are generated by the motions of charges, and it 

is these that are reversed. But if we take the extended theory with magnetic monopoles, and 

use atoms like: (i,r,t,m,q,q*), with q* being magnetic charges, we should take the time 

reversal as: T(i,r,t,m,q,q*) = (i,r,-t,m,q,q*), I think we find that the theory is indeed 

asymmetric.  

(iii) A final point involves the time reversal of probability laws, such as we find in QM 

and classical thermodynamics. The conventional view is that the time reversal of a law like: 

prob(s2(t+t|s1(t)) = p is a law: prob(Ts1(t+t|Ts2(t)) = p. But I have argued at length in 

other places that this is a mistake, and the genuine time reversal is: prob(Ts2(t-t|Ts1(t)) = p. 

This result is confirmed by taking a careful semantic analysis as well, but this topic is beyond 

the scope of the present paper.  

 

These examples indicate real problems about time reversals of well-known theories. The 

semantic approach outlined here traces these problems back to the logical representation of 

the theories. There are serious difficulties in deciding what the representations should be. But 

these difficulties are not solved by adopting the physicist’s rough and ready ad hoc 

interpretations of time reversal for specific theories to suit their desires to view all theories as 

time reversible. Instead, the problems are deeply tied up with issues of interpretation, and this 

level of analysis needs to be addressed. These difficulties should not be hidden, nor should 

‘solutions’ be adopted merely on the grounds of pragmatic convenience. Most important, the 

logical representation of theories reflects the scope for potential developments of theories: if 

 
13 See Jauch (1967), Cohen (1989) for examples of the usual approach, and Fine (1986) for a discussion of some 

key interpretational issues.   
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our current theories were perfectly adequate, the problem would not be so important, but the 

deeper problem in physics is to develop better theories, and this requires awareness and 

reevaluation of the deeper theoretical structures, not merely pragmatic treatments of the 

current, imperfect theories. 

 

Appendix 1: Semantic concepts: compositionality, abstraction, and 
general transformations.  

 

A fundamental concept of semantics is the meaning of terms. A formal system of objectual 

semantics formally specifies the content of the meaning function for a language, by assigning 

objects as the meanings of all its terms. We will use bold symbols like “A”, “a”, etc, for 

terms of the language, and italicized versions of the same letters: “A”, “a”, etc, as terms 

referring to the symbols themselves, thus introducing the meta-language in which we can 

refer to compositions in the language. Thus, we can write: A = “A”, B = “B”, and for the 

conjunction of two complex terms: AB = “A”^“B” = “AB”.  

 Complex terms are assumed to be well-defined by recursive constructions over classes 

of primitive terms. Any complex formulae or sentence of the language is assumed to have a 

fundamental form: “a1a2…an”, represented by: a1a2…an, with bracketing of terms as 

appropriate.14  We will generally use a1a2…an, etc, for strings of primitive terms, and A, B, 

etc, for general terms. We will use the intuitive and commonsense understanding of 

bracketing, with juxtaposition of terms representing functions and terms representing the 

arguments with arguments inside the brackets as normal, so that, for instance, we write: r(t) 

rather than: r(.)t, to represent the complex term: r(t).  

The definition of meaning for a language L can then be given by specifying a 

function, Meaning: 

Meaning(A) = A 

 

where the function Meaning is defined over all terms A of the language. Thus, Meaning is a 

mapping from terms of the language (which are types of symbols), to objects to which the 

terms of the language refer (which are things).  

The main formal property we require the meaning function to satisfy in an adequate 

formalized language is called compositionality: 

  

Compositionality.  

The meaning of a compound expression is a function of the meanings of its parts and of 

the syntactic rule by which they are combined.15  

 

 
14 This formulation for a meta-language only applies exactly with Polish notation, where functional application 

of one term to another is reflected syntactically by juxtaposition. In ordinary physics and mathematics, we find 

it much clearer to use bracketing notations to indicate functional composition. 
15 This is the formulation of Theo Janssen and Barbara Partee, “Compositionality”, Handbook of Logic and 

Language¸ 1997, p.462. Pavel Tichy (1978) calls this the Frege-Church principle. But Tichy’s theory of 

meaning does not make meaning a function of the syntactic rules of combination: rather, the syntactic rules of 

combination themselves reflect another level of semantics, which Tichy calls constructions. This theory has 

been notably developed by Pavel Materna (1998), and others in the TIL project: see website reference.  
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We can express this through a general axiom-scheme governing Meaning:16  

 

Meaning(a1a2…an) = a1a2…an 

 

Or more simply:   

Meaning(AB) = AB 

 

This works because complex terms can always be completely broken down into their basic 

parts by successively breaking each complex term into a pair of complex or basic parts. 

Compositionality means that the meaning of a compound expression:  

A = a1a2…an 

is determined by:  

 A  = Meaning(A)   

 = Meaning (a1a2…an) 

 = (Meaning a1)(Meaning a2)…( Meaning an) 

  = a1a2…an 

 

Thus we see that this give the (denotation) Meaning function a special kind of distributive 

property to begin with.  

 

 

The Abstraction Operator.  

"Where b is a variable of type  and A a formulae of type , bA is a formulae 

of type  denoting the function which assigns to an arbitrary entity b of type  

the value taken by A when b takes the value b." (Tichy, 1971, p.285). 
 

There are a number of different theories of lamba-calculus, but the main theory referred to 

here was developed in the context of recursive function theory by Alonzo Church; see his 

1954. The lamba-terms are improper symbols, because they operate on syntactic items 

(symbols or terms or formulae) rather than being simple functional terms of the language. 

Thus, if we have complex symbolic term, call it A, which contains occurrences of a term t, 

we can write a new term: ((t)A)(-t), call it B. The resulting formulae, ((t)A)(-t), represents a 

certain object: we can write: Meaning(((t)A)(-t)). The meaning can be obtained through a 

system of syntactic rules: the formulae is equivalent to the formulae A with all the 

occurrences of t uniformly substituted by the term –t. But it only operates through basic 

terms of A. For instance, let A be the simple term: “t+” (I have now bolded the symbols 

themselves to distinguish from the names for the symbols). The term: “((t)( t+))(-t)” is 

equivalent to: “-t+”. Although the (t) acts syntactically, “(t)( t+)” itself directly 

represents a function. Thus, when we write: (t)(t+), this has a meaning: it constructs a 

function which takes moments of time to a new moment. But the principle of 

compositionality as usually defined does apply directly to the abstraction operator (for 

denotational meanings at least). I.e. Meaning(bA) is not equal to: 

 
16 On the Tichy or Materna theory, the interpretation of meaning offered here is only a denotational theory, and 

the principle of compositionality here is only applicable to denotations, not to full meanings. However, 

denotation for object languages of theoretical physics is all that we need to consider at this stage.   
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Meaning()Meaning(b)Meaning(A). Instead, Meaning(bA) is obtained by operating on 

symbolic constructions.  

 

General Transformations.  

A general transformation is defined here as a transformation on all the objects referred 

to in the meaning function for the language, which is generated from an automorphism 

of basis sets back onto themselves.  

 

An automorphism is a 1-1, invertible, onto, mapping from a class of objects back to itself. 

Thus for instance the automorphism that generates the time reversal transformation, T, is the 

mapping: T: t → -t. The general transformation generated by this is obtained (i) taking any 

object, A, (ii) identifying its fundamental construction from the elements basis sets, and (iii) 

applying the mapping T on the set of times throughout the construction of A.  

The primary example is the transformation on worlds. If we define a world as a class of 

fundamental atomic facts (reverting to our normal symbolism, rather than bolding all terms): 

W = {(i,r,m,t)}, then the the automorphism: T: t→-t  may be said to induce the 

transformation: TW = {(i,r,m,Tt): (i,r,m,t)} W} on the world W.  

Other examples of general transformations from physics are:  

• The space-reversal transformation, based on: P: r → -r 

• The charge-reversal transformation, based on: C: q → -q 

• The time translation transformation, based on: +T: t → t+t 

• The space translation transformation, based on: +R: r → r+r 

• General Galilean transformations, based on: G: r→G(r), where G corresponds 

to any combination of Galilean space translations, space rotations, and velocity 

boosts 

• General Lorentz transformations, based on: L: (r,t) →L(r,t), where L 

corresponds to any combination of space translations, space rotations, and 

Lorentz velocity boosts 

An example of a general transformation from logic is:  

• The truth-reversal transformation, based on: ~: True → False 

 

Appendix 2: Sketch of a more general proof of distributive T-Operator in 
a compositional language.  

I will now rapidly sketch how the concepts of general transformations and compositionality 

combine to generate the result that there must be a general (typed) distributive syntactic 

transformation operator. We want to obtain a lemma:  

 

• Lemma: In a compositional language, a general (typed) transformation, T, 

corresponding to an automorphism (or permutation) of the basic sets of the ontology 

back onto themselves, can be represented by a unique (typed) transformation 

operator-family, T, where T is also compositional.     

 

• There is a unique operator, Ti , for each type of object: Ai = Meaning(Ai) where Ai is 

any term of the language; such that: 

TiAi = Meaning(TiAi) = Meaning(Ti) Meaning(Ai) 
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For simplicity, we just write T and T, because their types are usually obvious from their 

arguments. This means that the effect of the general transformation T can be represented in 

the language by a (typed hierarchy of) operator term(s), T, and the language with T is still 

compositional.  

 

The distributive syntactic property can be seen to reflect a simple feature of homomorphisms, 

viz. there is a homomorphic mapping from the class of terms to the class of objects, which is 

the compositional meaning function; the general transformation is by definition an 

automorphism or isomorphism from the base sets onto themselves; this can be used to induce 

an isomorphic image of the original language; by definition, the image of the object A is the 

object TA. This is represented in the image language by the term TA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The line  could represent an alternative meaning 

function, which is how coordinate transformations in physics are often 

introduced.  

 

Let us start with a compositional language, Lang, without any T terms for transformation 

operators. Then we must be able to add a class of terms: for every term A of the original 

Lang, we just add a new term TA. The new, extended language is interpreted by taking the 

obvious interpretation: if Meaning(A ) = A, then: Meaning(TA) = TA, where TA is the 

transformed object A, obtained from the same construction for A, but substituting all base 

objects for their T-images in the construction. This is what leads to compositionality of the 

extended language with the TA terms: the new term T distributes through the complex terms 

A because of compositionality of the original Lang.  

Note that the extended language we form has complex terms of the form: TP 

expressing propositions which are images of the corresponding propositions P expressed in 

the language {Ai}. If P = AB, then: TP = T(AB).  We also have the construction: (TA)(TB). 

The isomorphism guarantees that: (TA)(TB) = T(AB). Hence distributivity of T at this level. 

T is a distributive semantic operator, distributing through complex functional 

constructions of objects; likewise, T is a distributive syntactic operator, distributing through 

Compositional 

Meaning for Lang 

 

= a homomorphic 

mapping from terms 

to objects.  

Syntax of Lang without T 

Terms: {Ai} 

 

Semantics for Lang 

 

Objects:   {Ai} 

 

Compositional 

Meaning for  

T Lang 

 

= a homomorphic 

mapping from terms 

to objects.  

Syntax of Lang-with-T 

 

Terms: {TAi} 

Semantics for Lang 

 

Objects: {TAi} 

Automorphism T from 

{Ai} back onto {Ai} 

Isomorphism from 

{Ai} onto {TAi} 
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complex concatenations of terms. Thus, for a general transformation, T , there is a 

corresponding term T such that:  

T(BC) = T(Meaning(BC))  Definition of symbols B,C, B, C. 

 = Meaning(T(BC))  Assumption that T can be represented by T 

 = Meaning((TB)(TC))  Assumption that T is distributive  

 = Meaning(TB)Meaning(TC))  Compositionality 

 = TBTC Definition of symbols T, B, C, T, B, C. 

 

Rules for the syntactic operation of T on terms of the language are defined inductively, in 

parallel with the semantic operations, from: 

(i) basic transformations on the basic terms; e.g. for time reversal:  

 Tt → -t; TX → X; etc.     

(ii) the syntactic distributivity of T across complex terms;  

T(AB) = (TA)(TB) 

E.g. for time reversal, if vt is defined by: vt = d/dt(r(t)), then we can syntactically 

transform (using complex transformations we have seen earlier): 

Tvt  →  T(d/dt(r(t))) → Td/dt(Tr(Tt)) → d/dt(Tr(-t)) → -vt 

 

The inductive step. This is just the first step: we also need to add a second set of terms: 

T(TA), so we can reiterate T generally on terms. This proceeds in a similar way, but there is 

now a subtlety to obtain distributivity of T, as follows.   

We must have for general distributivity of T that a double application of T to a term A: 

T(TA) → (TT)(TA). Since the domain of TA is the same as the domain of A, we thus have 

that: T(A) → (TT)(A), for any A. Hence we require the syntactic transformation rule:  

 

(iii) the syntactic transformation of T to itself;  

TT → T 

 

This is a general feature of T. It is self-consistent for reiterated applications, like: T(T(T(A))).  

We get: T(T(T(A))) → TT(TT(TA)), and the rule that: TT → T is valid. It is obvious that this 

inductively generalizes to give distributivity for any number of iterations of T.  

Note that this is quite distinct from the double application: T(TA).  There is a special 

rule that: T(T(A)) → A for transformations where: T = T-1. This is the rule that “double-time-

reversal operations cancel”. The rule (iii) however holds for all general transformations.  

 

For self-consistency, we see from compositionality applied to the extended language, with T, 

that:  

T(BC) = meaning(T(BC)) = meaning(T)meaning(BC)  

= meaning(T)BC 

Or: 

T = meaning(T) 

 

This is a consistency condition that we need for compositionality in the fully extended 

language. When we apply T to itself, in: TT → T, we then require that: Meaning(TT) = 

Meaning(T)Meaning(T) = TT. To deal with this properly, we need a proper hierarchical type 

theoretic treatment, where we recognize a hierarchy of different types of T. I will not 
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comment on this here, except that to observe that it remains consistent with the meaning of T 

as a transformation. If we define T as the transformation over a specific class of objects, 

then: T: A → B = TA. Then we define a higher-order: T: T → T, for some T. But since: 

T: A → B, then by definition: T(T ) = T: TA → TB = T(TA). But: T: TA → 

T(TA) already. Hence: T = T, i.e.: T(T ) = T.  

 

I conclude that, if the object language for a theory of physics is compositional, then we must 

be able to represent a general transformation by general distributive semantic operator term, 

T, corresponding to the transformation T, and retain compositionality. The fact that there is 

no such distributive operator for an extensional language shows that the language is in fact 

not compositional, and is logically inadequate.  

 

Appendix 3. Possible worlds and the actual world.  

The interpretation of the simple term ‘the actual world’ has caused much controversy in 

natural language semantics and the related discussions of metaphysics underlying empirical 

languages. However, I am not proposing a natural language theory: I am only proposing a 

logical interpretation of the theoretical formalism of typical theories of physics. It is only 

when we go on to interpret this empirically that we can try to identify the notion of @ as ‘the 

real actual world’. The view I have adopted here is that: (i) we take @ a constant referring to 

one possible theoretical world, in the theoretical ontology; but: (ii) we do not actually 

identify @ as any specific world in the theory: we just assume the term is an unknown 

constant; (iii) @ in the abstract theory does not refer to the ‘empirically real actual world’ at 

all until the theory is interpreted empirically; and (iv) if the theoretical framework or logical 

space for the theory itself is wrong, so that the empirical actual world is not like any world in 

the  theoretical ontology, then the interpreted theoretical term ‘@’ cannot denote the real 

actual world at all. (v) If the theoretical framework is compatible with the logical structure of 

the real world (even if it merely a partial theory), then @ in the theory is interpreted to be 

‘the empirical actual world’; but: (v) the stronger contingent propositions of the complete 

theory may not be true of the real actual world, and thus @ in the theory will lie outside the 

laws of the contingent laws of the theory.    

I will add some comments about the interpretation of natural empirical language. 

Here, I think we can introduce ‘the actual world’ as a primitive office: we evaluate 

propositions at worlds, but the actual world simply maps to a single, specific world. We 

cannot know what this world is, but we do know some things about it, so we must know its 

concept. But it is a primitive concept: we cannot define it in any more primitive way.  

It is a simple metaphysical thesis that there is only one actual world; and it might be 

wrong (as the ‘many worlds’ interpretation of quantum theory proposes). We obtain this 

knowledge from our experience that we live in only one world; we generalise that there are 

no more actual worlds, because we do not appear to need any more actual worlds to explain 

all our actual knowledge.   

The main alternative view is that ‘the actual world’ taken at a world W should be 

identified with W. My argument against this is as follows.  

Suppose there is a possible world, W, which is not the actual world, but is similar. 

(Remembering that the whole point of allowing possible worlds is so we can talk about 

possibilities which are not actual). Let P be a proposition true of W, but false of the actual 
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world. Suppose that someone in W states that the proposition P is actually true, i.e. true of the 

actual world. Then they are wrong: P is not true of the actual world – even though it is true of 

the world W in which the person makes this statement. (A person stating the same 

proposition in the actual world would clearly be stating something false).  

The point is that the actual world should not be identified with the world ‘within 

which’ propositions are stated at all. It is a mistake to index the truth of propositions to 

worlds ‘within which’ they are stated. Instead: there is an objective class of truths about the 

actual world. Propositions may be ‘stated within possible but non-actual worlds’, by 

‘possible but non-actual people’ but the worlds they are ‘stated within’ is irrelevant to their 

truth. Otherwise we have to give up the conception that there are ‘possible but non-actual 

worlds’ altogether.  

The only solution I can see out of this is that we regard the actual world as an office 

which is satisfied by just one world. It doesn’t vary according to ‘where’ a proposition is 

‘stated’ or ‘evaluated’. Propositions may be said to be ‘evaluated within worlds’: but their 

truth is not determined by the worlds within which they are evaluated. Rather, their truth is 

evaluated at worlds. They are not actually true or false according to the worlds ‘in which 

they are stated’, or ‘in which they are evaluated’: they are true or false according to the class 

of truths that specifies the objective actual world.  

The concept of evaluating propositions ‘within worlds’, so that ‘within a world W, W 

is regarded as the actual world’, leads either to the ‘indexical’ theories of meaning, where 

meaning is relative to ‘tokens’, or to the Lewis view that all worlds are equally real. The 

objective theory of truth leads to the view that the actual world is objective, and the actual 

world is not relativised to any kind of evaluation of truth within worlds.  

To reflect this in the theoretical interpretation, @ is not world-dependant: it is a 

constant. The office of ‘the actual world’ maps every world to a single world, @. 

(Or rather: @ would be a constant if its content didn’t change with time.)  

The fact that we don’t know what particular world the actual world is doesn’t seem to 

me to be of any relevance. We take it as a primitive concept and primitive metaphysical 

intuition that there is a single and unique actual world. We can hardly even justify that we do 

‘know’ this. It is just an assumption. But once we make this assumption, there is no way of 

understanding it in an objective theory of truth except by taking ‘the actual world’ as an 

office which specifies a constant world.  

A second view, earlier proposed and then rejected by Pavel Tichy, is to take @ as the 

mapping from worlds to themselves: @ = (W)(W) (see Tichy, 1975; 1988). This might be 

taken to represent the idea that the term ‘the actual world’ is evaluated from ‘within’ worlds, 

and from ‘within’ any world, W, the actual world is naturally evaluated as W (although this is 

hardly Tichy’s intention).  For instance, suppose that we take a world W which is a little 

different to ‘our actual world’, in which the proposition: “L(@)” is evaluated, and suppose 

that (i) L(.) is true of W, but (ii) L(.) is false of ‘our actual world’. We may then distinguish 

two different evaluations: (i) L(@) evaluated within W is true at W, but (ii) L(@) evaluated 

within “our actual world” is false at W. The immediate problem this seems to raise is that 

the term @ appears to become infinitely regressive, in the sense that: L(@) = L((W)(W)) = 

L(.), and so L(@) does not actually specify any truth-value – until it is evaluated within some 

world. Tichy subsequently rejected this idea, and proposed a further theory, which I do not 

adequately understand.  
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A third idea is to take @ as an ‘indexical’, so that its meaning is directly ‘indexed’ to 

the world in which it is stated. This is undoubtedly the most popular idea. Thus the meaning 

of an occurrence of the symbol ‘@’ is said to be ‘indexed to its own token statement’. I.e. @ 

is the world in which the term ‘@’ itself is made. However, despite its superficial appeal, this 

is not a plausible interpretation, as Tichy has shown: see his 1988. For a start it implies that 

the meaning of the term @ alters from token statement to token statement in a vicious way  – 

and anyway, proponents of this view never seem to formally explicate the notion of 

‘indexing to token statements’, they just introduce this notion intuitively as if it makes sense. 

Tichy’s own earlier theory that: @ = (W)(W) is much better, but suffers from the defects 

described above. 

A fourth view is the idea championed by David Lewis, usually called ‘modal 

realism’, which holds that all possible worlds are (actually) real, so that there is no unique 

actual world. The reader will have to make up their own mind about this as a metaphysical 

conjecture: but I think it is safe to say that it is not how the concept of the ‘actual world’ is 

intended to be understood in ordinary physics, which is what we are analyzing here. 

 

Appendix 4. Statements from Part 1.  

 

(1) Fi = miai(t) ≡ mid
2ri(t)/dt2 

 

(2) Fij = -Gmimjrij/|rij|
3 

 

(3)  Fi = ji Fij  

 

(4) mid
2ri(t)/dt2 = ji -Gmimjrij/|rij|

3 

 

(4) (i,t)[m(i,t)d2r(i,t)/dt2 = ji -Gm(i,t)m(j,t)(r(i,t)-r(j,t))/|r(i,t)-r(j,t)|3] 

 

(5)  v(i,t) =df dr(i,t)/dt 

 

(6) (i,t)[m(i,t)dv(i,t)/dt = ji -Gm(i,t)m(j,t)(r(i,t)-r(j,t))/|r(i,t)-r(j,t)|3] 

 

(7)  (i,t)[m(i,t)d2r(i,t)/dt2 = ji -Gm(i,t)m(j,t)(Tr(i,t)-Tr(j,t))/|Tr(i,t)-Tr(j,t)|3] 
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