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Abstract—Research has indicated that microRNAs (miRNAs),
a special class of non-coding RNAs (ncRNAs), can perform
important roles in different biological and pathological processes.
miRNAs’ functions are realized by regulating their respective
target genes (targets). It is thus critical to identify and analyze
miRNA-target interactions for a better understanding and de-
lineation of miRNAs’ functions. However, conventional knowl-
edge discovery and acquisition methods have many limitations.
Fortunately, semantic technologies that are based on domain
ontologies can render great assistance in this regard. In our
previous investigations, we developed a miRNA domain-specific
application ontology, Ontology for MIcroRNA Target (OMIT),
to provide the community with common data elements and data
exchange standards in the miRNA research. This paper describes
(1) our continuing efforts in the OMIT ontology development and
(2) the application of the OMIT to enable a semantic approach
for knowledge capture of miRNA-target interactions.

Keywords—microRNA, non-coding RNA, target gene, biomedi-
cal ontology, ontology development, data annotation, data integra-
tion, semantic search, SPARQL query.

I. INTRODUCTION

In biological, biomedical, and clinical investigation, mi-
croRNAs (miRNAs) are considered as important non-coding
RNAs (ncRNAs). Prior research [1] [2] has indicated that
miRNAs are able to perform significant roles in both biological
and pathological processes, thus affecting the control and
regulation of various human diseases. The mechanism by
which miRNAs realize their critical functions is through some
special binding to respective target genes (short for targets).
Therefore, the ability to effectively identify and analyze dif-
ferent miRNA-target interactions has become a key step to
completely understand and fully delineate miRNAs’ functions.
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Conventionally, data end users (that is, biologists, bioin-
formaticians, and clinical investigators) need to search for
(1) biologically validated miRNA targets (for example, by
querying the PubMed database [3]) and (2) computationally
putative miRNA targets (for example, by initiating inquiries
on various prediction databases or websites such as miRDB
[4]). Not only manual searches are necessary among all
involved data sources, but also more importantly, these data
sources are semantically heterogeneous among each other —
in other words, the meanings of data from different sources
are usually quite different from each other and thus in many
cases confusing to end users. Therefore, it has been extremely
challenging for users to identify and establish possible links
among original data sources. As a result, there exist significant
barriers during conventional miRNA knowledge discovery and
acquisition, which is time-consuming, labor-intensive, error-
prone, and subject to end users’ limited prior knowledge. In
addition, the situation can be far worse: more often than not, it
is also necessary to obtain additional information for each and
every miRNA target, either validated or putative, from relevant
data sources such as NCBI Gene [5] and NCBI Nucleotide
[6]. Likewise, these additional data sources are also highly
heterogeneous with each other.

Emerging semantic technologies are believed to be able to
significantly assist with handling the aforementioned challenge
in the miRNA knowledge acquisition. The core of the current
semantic technologies include formal specifications such as
the Resource Description Framework (RDF), RDF Schema
(RDFS), and Web Ontology Language (OWL), all of which are
intended to provide a formal description of concepts, terms,
and relationships, as well as to enable automatic reasoning
(inference) within a given domain. One way to apply semantic
technologies in miRNA knowledge acquisition is to transform
data obtained from miRNA-related databases into RDF by
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annotating original data with formally defined ontologies. After
such data annotation we can then use SPARQL Protocol and
RDF Query Language (SPARQL) [7] to issue a search query
based on the RDF model.

In our previous research [8–13] we investigated the con-
struction of an application ontology for the miRNA field,
named Ontology for MIcroRNA Target (OMIT), the first of
its kind that formally encodes miRNA domain knowledge.
By providing a standardized metadata model to help establish
miRNA data connections among heterogeneous sources, OMIT
was meant to fill the gap of lacking common data elements and
data exchange standards for the miRNA research, especially
with regard to miRNA-target interactions.

There are two major scientific contributions in this paper:
(1) our continuing efforts and significant improvements on the
OMIT ontology development and (2) the application of the
OMIT to enable a semantic approach for knowledge capture of
miRNA-target interactions, leading to more effective miRNA
data integration and knowledge discovery.

The rest of this paper is organized as follows. Section II
summarizes state-of-the-art research in biomedical ontologies
and semantic mapping & search, respectively; Section III
reports our efforts on reconstructing the OMIT ontology;
Section IV describes a set of software packages to realize
miRNA semantic annotation, data integration, and semantic
search; Section V reports our experimental results along with
discussion; finally, Section VI concludes with some future
research work.

II. RELATED WORK

A. Related work in biomedical ontologies

Ontologies have been widely utilized in biological, biomed-
ical, and clinical research. We briefly describe some represen-
tative bio-ontologies included in both the Open Biological and
Biomedical Ontologies (OBO) Library [14] and the National
Center for Biomedical Ontology (NCBO) BioPortal [15].

Gene Ontology (GO) [16]: GO is by far the most successful
and widely used bio-ontology, consisting of three independent
sub-ontologies: biological processes, molecular functions, and
cellular components. The GO has been utilized to annotate
gene products of model organisms including Homo sapiens.

Sequence Ontology (SO) [17]: SO is an ontology to capture
genomic features and the relationships that obtain between
them. This ontology contains the features necessary to annotate
a genome with structural features such as gene models and also
the terms necessary for the annotation of genomic variants.

PRotein Ontology (PRO) [18]: Proteins are functional en-
tities in many processes eventually impacted by the regulatory
effect of ncRNAs (e.g., miRNA bindings). The PRO, with a
particular focus on human proteins and disease-related variants
thereof, provides an ontological representation of proteins.

RNA Ontology (RNAO) [19]: RNAO is an OBO foundry
reference ontology to catalogue the molecular entities compos-
ing primary, secondary, and tertiary components of RNA. The
goal of the RNAO project is to enable integration and analysis
of diverse RNA datasets.

B. Related work in semantic mapping and semantic search

Our investigation in this paper is related to the research
efforts to map different semantic models, such as ontolo-
gies, RDF/RDFS, and relational databases. In the early work,
Premerlani [20] proposed a seven-step reverse engineering
process and gave the guidelines to get mappings between
semantic models and original schemas. Specially, one similar
approach [21] to our database-to-RDF approach was to map
a relational model to frame logic that can be represented in
RDF. Another approach in the DOGMA ontology framework
[22] also discussed how to translate a query written in some
ontology language into a Structured Query Language (SQL)
[23] query. A more recent research described in [24] provided
a description logic-based ontology language to capture features
from entity-relationship (ER) and Unified Modeling Language
(UML) class diagrams. Their approach was proven to preserve
the semantics of the constraints in relational databases.

As to be demonstrated and discussed later in this paper, our
research focus is not just on representing relational models and
relevant data in RDF/RDFS; but also more importantly, we aim
to show how semantic search queries can be implemented as
RDF SPARQL queries.

Semantic search is a research field that intends to improve
the access to contents by considering the semantics behind
the search process [25]. In other words, semantic search
goes beyond keyword-based search by considering contextual
meaning of words, the intend of the user and the search space.
Ontologies can improve the search by query expansion. The
original set of query keywords can be expanded by considering
their synonyms or their relationship to other words that are
not part of the query. In the work by Chauhan et al. [26], the
original query was first expanded by considering synonyms,
then terms with high semantic similarity were chosen from
the ontology to be integrated to the search query, and the
semantic similarity used for the query expansion was computed
by the distance among concepts in the ontology, the position in
the hierarchy, and the number of upper classes. On the other
hand, ontology can also be used to translate keyword-based
search into formal queries. For example, Tran et al. [25] used
a set of models (mental, user, system, and query) to capture
information, such as thought entities, language primitives,
knowledge representation (KR) primitives, and query elements.
These models were combined with a set of assumptions to
redefine original queries, filling the gap between terms with
structural information from an ontology (e.g., one term of the
query is a property of another term). Similarly, SemSearch
transformed original search queries based on concepts and
instances from an ontology. Depending on the number of
keywords involved in the search, queries were mapped into
a set of structured templates.

III. OMIT RECONSTRUCTION

We have significantly reconstructed the OMIT ontolgy, and
we followed the same development procedure as we did in our
previous investigations, that is, iteratively combining both top-
down and bottom-up processes.
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TABLE I. A SUBSET OF IMPORTED TERMS AND RELATIONS

Imported Term or Relation Source Ontology and Original ID
BFO:has part BFO 0000051

RO:participates in RO 0000056
RO:has participant RO 0000057

NCRO:human miRNA NCRO 0000810
NCRO:hsa-miR-125b-1-3p NCRO 0001813
NCRO:hsa-miR-125b-2-3p NCRO 0001815
NCRO:hsa-miR-125b-5p NCRO 0001816

NCRO:miRNA target gene NCRO 0000025
NCRO:miRNA and target gene binding NCRO 0000003
NCRO:protein miRNA promoter binding NCRO 0000011

CHEBI:chemical entity CHEBI 24431
IAO:information content entity IAO 0000030

IAO:measurement datum IAO 0000109

A. Top-down process

A collection of terms and relations have been imported
from both established upper ontologies and extant ontologies
in the OBO Library, namely: Basic Formal Ontology (BFO)
[27], Relation Ontology (RO) [28], Non-coding RNA Ontology
(NCRO) [29] [30], Chemical Entities of Biological Interest
Ontology (CHEBI) [31], and Information Artifact Ontology
(IAO) [32].

Table I lists a subset of important terms and relations
imported into the OMIT.

• All terms are shown in a normal font, whereas all
relations are shown in an italicized font.

• The format for the left column (Imported Term or
Relation) is “PREFIX:human-readable label” (e.g.,
“BFO:has part”).

• The format for the right column (Source Ontology
and Original ID) is “PREFIX unique identifier” (e.g.,
“BFO 0000051”).

B. Bottom-up process

We continued to create new terms based on an in-depth
analysis of different data sources, such as: miRBase [33],
miRDB [4], TargetScan [34], miRGator [35], and miRanda
[36]. In particular, we designed a software module (greater
details can be found in Section IV) to generate new terms
from the PubMed database [3].

C. Core design of the OMIT

The core design of the OMIT ontology is shown in Fig. 1.
Compared with previously released versions, the current ver-
sion contains many important new terms and relations, and
some of which are listed in Tables II and III, respectively.

• Both terms and relations are represented in the format
of “PREFIX:label” in Fig. 1.

• For the purpose of better readability, labels rather than
identifiers are used in Tables II and III.

• Relations in Table III were either defined in or im-
ported into the OMIT, which can be easily distin-
guished from each other by different prefixes used in
the first column.

IV. SOFTWARE MODULES

A. Term-from-PubMed module

The purpose of the Term-from-PubMed software module
is to create new terms out of PubMed abstracts. The software
architecture is demonstrated in Fig. 2.

1) A total of 49,447 abstracts were downloaded from the
PubMed database, using the search term “microRNA
or miRNA or miR.”

2) We utilized the OpenNLP Library [37] to process all
these abstracts and obtained a total of 488,576 nouns
and noun phrases.

3) All nouns and noun phrases were mapped with exist-
ing OMIT terms or relations through an ontology-
alignment tool developed in one of our previous
investigations [38].

4) All unmatched nouns or noun phrases were treated
as candidate terms and sorted by their cumulative
frequencies among all abstracts.

5) Those candidate terms with a frequency equal to or
greater than 2,452 were presented to domain experts
(five cellular biologists in our research group) for
further checking (some example candidate terms are
demonstrated in Table IV).

6) Finally, we added a total of 117 new terms into the
OMIT ontology.

V. RESULTS AND DISCUSSION

A. The refactored OMIT ontology

The updated OMIT ontology contains a total of 3,081
terms and 60 relations (besides is a). Screenshots of the
resultant ontology in OBO-Edit [39] and Protégé [40] are
demonstrated in Fig. 3 and Fig. 4, respectively. Note
that both screenshots show the scenario where the term
“OMIT:computationally asserted evidence” was selected.

B. Semantic search results

1) Experimental setup: SPARQL queries and user interface
were served from the Neurocommons server [41], a vintage
2007 server with 2 2-core Xeon X5355 processors@2.66Ghz,
with 32 GB of memory and 8 SATA hard disks. Other
experiments were conducted on personal computers (PCs) with
the following configuration: Intel(R) Core(TM) i7-3632 QM
CPU @ 2.20 GHz 2.20 GHz; 8.00 GB memory; and Windows
7 64-bit Operating System.

2) Semantic search setting: To evaluate how OMIT can
help connect different type of information that are available
for the biomedical community, we have used OMIT to answer
two questions of interest for a biologist.

We have added a small set of instances from platforms
such as miRDB and PubMed. From miRDB [4], we have
obtained miRNA-target relationships to the NCBI database
and GenBank. We have selected from PubMed publications
(i.e., their summaries) which are related to the selected set
of genes from miRDB. Although this type of information can
be obtained and integrated through D2RQ, we have used the
ontology editor, Protégé, to add the instances into the ontology
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Fig. 1. The design of core terms and relations in the OMIT ontology (both terms and relations are represented in the format of “PREFIX:label”).

TABLE II. A SUBSET OF NEW OMIT TERMS

OMIT New Term Direct Parent Term Human-Readable Explanation
computationally asserted evidence IAO:information content entity Evidence obtained from some computational methods.

information from miRNA OMIT:computationally asserted evidence Records obtained from various miRNA target
target prediction database prediction databases.
prediction from miRDB OMIT:information from miRNA Records specifically obtained from

target prediction database the miRDB database.
prediction from TargetScan OMIT:information from miRNA Records specifically obtained from

target prediction database the TargetScan database.
prediction from miRanda OMIT:information from miRNA Records specifically obtained from

target prediction database the miRanda database.
target score in miRDB IAO:measurement datum The score of some specific miRNA-target

binding prediction from the miRDB database.
context score in TargetScan IAO:measurement datum The context score of some specific miRNA-target

binding prediction from the TargetScan database.
mirSVR score in miRanda IAO:measurement datum The mirSVR score of some specific miRNA-target

binding prediction from the miRanda database.
information from NCBI gene IAO:information content entity Records obtained from NCBI Gene

according to gene IDs or gene symbols.
information from NCBI nucleotide IAO:information content entity Records obtained from NCBI Nucleotide

according to GenBank Accession numbers.
information from PubMed IAO:information content entity Records obtained from the PubMed database

according to PMIDs.

TABLE III. A SUBSET OF NEW OMIT RELATIONS

New Relation in the OMIT Domain Range Human-Readable Explanation
Specific miRNA-target binding

OMIT:miRNA and target binding based on NCRO:miRNA and target gene binding OMIT:computationally asserted evidence prediction is based on some
computationally asserted evidence.

A piece of measurement datum
OMIT:is quality measurement of IAO:measurement datum OMIT:computationally asserted evidence (e.g., the target score in miRDB)

is a quality measurement of
computationally asserted evidence.

A miRNA target gene
OMIT:is gene template of protein NCRO:miRNA target gene OMIT:target protein serves as a template

of relevant protein.
Each miRNA-target binding

RO:has participant OMIT:prediction from miRDB SO:miRNA prediction record has one
miRNA as a participant.

Each miRNA-target binding
RO:has participant OMIT:prediction from miRDB NCRO:miRNA target gene prediction record has one

target as a participant.
Each miRNA-target binding

BFO:has part OMIT:prediction from miRDB OMIT:target score in miRDB prediction record from
miRDB contains one score.

Each record from NCBI
BFO:has part OMIT:information from NCBI gene OMIT:PubMed summary Gene contains one or

more PubMed summaries.
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TABLE IV. EXAMPLE CANDIDATE TERMS FROM PUBMED

Noun or Noun Phrase Cumulative Frequency Noun or Noun Phrase Cumulative Frequency
RNA 200,243 miR 150,966

expression 82,561 cancer 38,365
ratio 29,948 tissue 15,013

RNA expression 8,698 binding 7,491
miR-12 4,075 miR-14 3,136
kinase 2,623 bone 2,452

mature miRNA 950 bronchial epithelial 100
RNA transport 39 cancer chemotherapy 36

canonical miRNA biogenesis 13 neuronal expression 6

Fig. 2. The software architecture for the Term-from-PubMed module.

Fig. 3. A screenshot of the OMIT ontology in OBO-Edit.

because we have focused on a specific set of instances and
concepts.

We have used the SPARQL engine Twinkle [42] to generate
and test the queries that can provide the answers to our two
evaluation questions. Twinkle provides a GUI to the SPARQL
engine, which is simple enough for learning how to structure
queries, yet powerful enough for more sophisticated semantic
query development. Twinkle queries local and remote RDF
documents, and it can perform inference over RDF Schema
and OWL ontologies. The two questions queried are presented
next.

Fig. 4. A screenshot of the OMIT ontology in Protégé.

Fig. 5. Section of OMIT ontology involved in answering our evaluation
questions.
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3) Semantic search: Two original questions from the biol-
ogists:

• Our first evaluation question is about the role of hsa-
mir-125b in cancer drug resistance (e.g., IRF4).

• The second question is regarding the role of hsa-mir-
21 in regulating apoptosis.

The queries for both questions use miRNA as the starting point.
As we can see in Fig. 5, from miRNA we can determine
predicted target genes from miRDB. The gene information
gives access to PubMed publications that are related to a
specific gene (i.e., information from NCBI gene). With the
PubMed information, we can retrieve summary and identifica-
tion of the relevant publications. Both question use the same
approach to retrieve information. The only difference in queries
between the two is that instead of filtering by hsa-miR-125b-
5p and IRF4, we filter by hsa-miR21-5p and PDCD4 (i.e.,
programmed cell death 4). The following is the SPARQL query
for the first question with the results of the semantic search in
Table V:

PREFIX rdf: <http://www.w3.org/1999/02/
22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/

rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX OMIT: <http://purl.obolibrary.org/obo/OMIT#>
PREFIX ncro: <http://purl.obolibrary.org/obo/ncro#>
PREFIX OBO_REL: <http://purl.obolibrary.org/obo/OBO_REL#>
PREFIX OMIT-obo: <http://purl.obolibrary.org/obo/

OMIT-obo-WorkingVersion-06302015#>

SELECT ?pm_NCBI_n ?miRNA ?target_gene ?pm_NCBI
?pm_id ?pm_sum

WHERE
{?miRNA rdf:type obo:SO_0000276 .
FILTER regex(str(?miRNA),

’hsa*-*miR*-*125b*-*5p’, ’i’) .
?target_gene rdf:type obo:ncro_0000025 .
FILTER regex(str(?target_gene), ’IRF4’, ’i’) .
?pm_NCBI_n rdf:type obo:OMIT_0000037 .
?target_gene OMIT:_has_gene_accession_number

_in_NCBI_nucleotide ?info_NCBI_n .
?p_miRDB rdf:type obo:OMIT_0000020 .
?p_miRDB OBO_REL:_has_participant ?miRNA .
?p_miRDB OBO_REL:_has_participant ?target_gene .
?p_miRDB OMIT-obo:BFO_0000051 ?gene_id .
?info_pm rdf:type obo:OMIT_0000003 .
?gene_id OMIT:_has_gene_id_in_NCBI_gene ?info_NCBI .
?pm_NCBI rdf:type obo:OMIT_0000039 .
?info_pm OMIT-obo:BFO_0000051 ?pm_NCBI .
?pm_id rdf:type obo:OMIT_0000030 .
?pm_sum rdf:type obo:OMIT_0000041 .
?info_pm OMIT-obo:BFO_0000051 ?pm_id .
?info_pm OMIT-obo:BFO_0000051 ?pm_sum .}

The following is the SPARQL query for the second ques-
tion with the results in Table VI:

...
SELECT ?pm_NCBI_n ?miRNA ?target_gene

?pm_NCBI ?pm_id ?pm_sum
WHERE

{?miRNA rdf:type obo:SO_0000276 .
FILTER regex( str(?miRNA),

’hsa*-*miR*-*21*-*5p’, ’i’ ) .

?target_gene rdf:type obo:ncro_0000025 .
FILTER regex(str(?target_gene), ’PDCD4’, ’i’) .
?pm_NCBI_n rdf:type obo:OMIT_0000037 .

?target_gene
OMIT:_has_gene_accession_number_in
_NCBI_nucleotide ?info_NCBI_n .

?p_miRDB rdf:type obo:OMIT_0000020 .
?p_miRDB OBO_REL:_has_participant ?miRNA .
?p_miRDB OBO_REL:_has_participant ?target_gene .
?p_miRDB OMIT-obo:BFO_0000051 ?gene_id .
?info_pm rdf:type obo:OMIT_0000003 .
?gene_id OMIT:_has_gene_id_in_NCBI_gene ?info_NCBI .
?pm_NCBI rdf:type obo:OMIT_0000039 .
?info_pm OMIT-obo:BFO_0000051 ?pm_NCBI .
?pm_id rdf:type obo:OMIT_0000030 .
?pm_sum rdf:type obo:OMIT_0000041 .
?info_pm OMIT-obo:BFO_0000051 ?pm_id .
?info_pm OMIT-obo:BFO_0000051 ?pm_sum .}

C. Discussion

1) The significantly restructured OMIT ontology: Impor-
tant changes are summarized as follows.

• The majority (around 82%) of all 3,081 terms in the
updated OMIT were imported from the NCRO ontol-
ogy [29] [30]. Because the NCRO is a comprehensive
domain ontology in the ncRNA field, following the
NCRO hierarchy will enhance the interoperability be-
tween the OMIT and future ontologies to be developed
in other ncRNA sub-domains.

• All miRNAs appearing in humans were encoded,
along with the information about the gene family
group of each miRNA. According to miRBase [33],
there are a total of 1,981 distinct human miRNAs,
belonging to 320 different gene family groups. This
information can be highly valuable because the fact
that two or more miRNAs of interest indeed belong
to the same gene family group can provide biologists,
bioinformaticians, and clinical investigators with crit-
ical clues in constructing new hypothesis.

• As discussed in Section IV, a total of 117 new terms
were added based on the analysis of PubMed abstracts.

• To further disseminate the ontology, and, to gather
feedback from community in a more effective manner,
we created a GitHub project site for the OMIT, on
top of three available resources (a designated project
website [43], the OBO Library [44], and the NCBO
BioPortal [45]) that were established in our previous
investigations.

• We also established a tracker [46] for an enhanced
mechanism in handling the discussion among groups
to further improve the ontology. New concepts, def-
initions, and their locations in the OMIT can be
proposed, debated, and approved (or rejected) by an
open group of individuals through this tracker.

2) Semantic search: In the process of evaluating the OMIT
for semantic search, it becomes clear that the ontology is
highly connected. This high connectivity between concepts in
the ontology allows us to develop approaches for querying.
This translates to more efficient queries and more complete an-
swers. This high connectivity also leads to certain redundancy
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TABLE V. SAMPLE OF QUERY RESULTS FOR THE FIRST EVALUATION QUESTION.

PubMed ID from Summary PubMed ID from Summary
NCBI Gene NCBI Nucleotide

Selective targeting of IRF4 by synthetic microRNA-125b-5p Cloning of human lymphocyte-specific interferon regulatory
mimics induces anti-multiple myeloma activity in vitro and regulatory factor (hLSIRF/hIRF4) and mapping of the gene to

25987254 in vivo. Morelli E, Leone E, Cantafio ME, Di Martino MT, 8921401 6p23-p25. Grossman A, Mittrcker HW, Nicholl J, Suzuki A,
Amodio N, Biamonte L, Gull A, Foresta U, Pitari MR, Chung S, Antonio L, Suggs S, Sutherland GR, Siderovski DP,
Botta C, Rossi M, Neri A, Munshi NC, Anderson KC, Mak TW.
Tagliaferri P, Tassone P.
No evidence for a genetic association of IRF4 with systemic Deregulation of MUM1/IRF4 by chromosomal translocation in

24292686 lupus erythematosus in a Chinese population. Liu SS, Ye D, 9326949 multiple myeloma. Iida S, Rao PH, Butler M, Corradini P,
Lou J, Fan Z, Ye DQ. Boccadoro M, Klein B, Chaganti RS, Dalla-Favera R.
Differentiation stage-specific expression of microRNAs in IRF4 is a key thermogenic transcriptional partner of PGC-1α.t

25987254 B lymphocytes and diffuse large B-cell lymphomas. 24995979 Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P, Wang X,
Malumbres R, Sarosiek KA, Cubedo E, Ruiz JW, Jiang X, Yu S, Lo JC, Tseng YH, Cypess AM, Xue R, Kleiner S, Kang S,
Gascoyne RD, Tibshirani R, Lossos IS. Spiegelman BM, Rosen ED.

A polymorphism in IRF4 affects human pigmentation through
a tyrosinase-dependent MITF/TFAP2A pathway. Praetorius C,

Association of interferon regulatory factor 4 gene Grill C, Stacey SN, Metcalf AM, Gorkin DU, Robinson KC, Van
24906573 polymorphisms rs12203592 and rs872071 with skin 24267888 Otterloo E, Kim RS, Bergsteinsdottir K, Ogmundsdottir MH,

cancer and haematological malignancies susceptibility: Magnusdottir E, Mishra PJ, Davis SR, Guo T, Zaidi MR,
a meta-analysis of 19 case-control studies. Wang S, Helgason AS, Sigurdsson MI, Meltzer PS, Merlino G, Petit V,
Yan Q, Chen P, Zhao P, Gu A. Larue L, Loftus SK, Adams DR, Sobhiafshar U, Emre NC,

Pavan WJ, Cornell R, Smith AG, McCallion AS, Fisher DE,
Stefansson K, Sturm RA, Steingrimsson E.

Association of interferon regulatory factor 4 gene
polymorphisms rs12203592 and rs872071 with skin cancer Lineage-specific modulation of interleukin 4 signaling

24906573 and haematological malignancies susceptibility: a 10601358 by interferon regulatory factor 4. Gupta S, Jiang M,
meta-analysis of 19 case-control studies. Wang S, Yan Q, Anthony A, Pernis AB.
Chen P, Zhao P, Gu A.

TABLE VI. SAMPLE OF QUERY RESULTS FOR THE SECOND EVALUATION QUESTION.

PubMed ID from Summary PubMed ID from Summary
NCBI Gene NCBI Nucleotide

A genome-wide association meta-analysis of self-reported
The PDCD4/miR-21 pathway in medullary thyroid carcinoma. Structural mechanism of CCM3 heterodimerization with GCKIII

25316501 Pennelli G, Galuppini F, Barollo S, Cavedon E, Bertazza L, 23541896 kinases. Zhang M, Dong L, Shi Z, Jiao S, Zhang Z, Zhang W,
Fassan M, Guzzardo V, Pelizzo MR, Rugge M, Mian C. Evans DM, St Pourcain B, Ring SM, Mountain JL, Francke U,

L, Zhou Z.
Cholesteatoma growth and proliferation: posttranscriptional Loss of CCM3 impairs DLL4-Notch signalling: implication in

19672202 regulation by microRNA-21. Friedland DR, Eernisse R, Erbe C, 23388056 endothelial angiogenesis and in inherited cerebral cavernous
Gupta N, Cioffi JA. malformations. You C, Sandalcioglu IE, Dammann P, Felbor U,

Sure U, Zhu Y.
Antisense-miR-21 enhances differentiation/apoptosis and Sporadic cerebral cavernous malformations: report of further

26289851 reduces cancer stemness state on anaplastic thyroid cancer. 24058906 mutations of CCM genes in 40 Italian patients. D’Angelo R,
Haghpanah V, Fallah P, Tavakoli R, Naderi M, Samimi H, Alafaci C, Scimone C, Ruggeri A, Salpietro FM, Bramanti P,
Soleimani M, Larijani B. Tomasello F, Sidoti A.
Exosomal levels of miRNA-21 from cerebrospinal fluids Crystallization and preliminary crystallographic studies

26284486 associated with poor prognosis and tumor recurrence of 22750858 of CCM3 in complex with the C-terminal domain of MST4.
glioma patients. Shi R, Wang PY, Li XY, Chen JX, Li Y, Xu X, Wang X, Ding J, Wang DC.
Zhang XZ, Zhang CG, Jiang T, Li WB, Ding W, Cheng SJ.
MiR-21 overexpression in human primary squamous cell lung Genomic causes of multiple cerebral cavernous malformations

20508945 carcinoma is associated with poor patient prognosis. Gao W, 23485406 in a Japanese population. Tsutsumi S, Ogino I, Miyajima M,
Shen H, Liu L, Xu J, Xu J, Shu Y. Ikeda T, Shindo N, Yasumoto Y, Ito M, Arai H.

in the data. We could modify OMIT to avoid the redundancy by
eliminating or consolidating concepts and relationships. How-
ever, these changes can lead to contradictions to the domain
knowledge. Another alternative is to use the redundancy as a
validation mechanism for the query or the data itself. However,
it is not clear how a validation mechanism could affect the
performance when answering queries.

VI. CONCLUSIONS

As a special class of ncRNAs, miRNAs have been demon-
strated to play important roles in various biological and patho-
logical processes. Because miRNAs realize their functions
by regulating respective targets, it is critical to identify and
analyze miRNA-target interactions for a better delineation
of miRNAs’ functions. Emerging semantic technologies and
domain ontologies have been utilized to overcome limitations
identified during conventional miRNA knowledge acquisition
methods. We followed the research direction identified in our

previous investigations regarding the establishment of common
data elements and data exchange standards in the miRNA
research. Specifically, our major contributions in this paper
are: (1) our continuing efforts and significant improvements on
the OMIT ontology development and (2) the application of the
OMIT to enable a semantic approach for knowledge capture of
miRNA-target interactions, leading to more effective miRNA
data integration and knowledge discovery. This paper describes
our research design, methodologies, software implementation,
experimental outcomes, and relevant discussion.

One obvious future research direction is to continue
the development and refinement of the OMIT ontology.
Another interesting piece of future work is to incorporate
into our system other related data sources during the miRNA
knowledge discovery and acquisition.
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