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Abstract

This paper shows that a slight variation of the argument in Milne (1996)
yields the log-likelihood ratio l rather than the log-ratio measure r as “the
one true measure of confirmation”.
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1 Introduction
In his (1996) Peter Milne shows that

r (H,E,B) = log [Pr (H | E ∩B) /Pr (H | B)]

is “the one true measure of confirmation” in the sense that r is the one and only
function satisfying the following five constraints on measures of confirmation C.

1. C (H,E,B)
>
=
<

0 iff Pr (H | E ∩B)
>
=
<

Pr (H | B).

2. C (H,E,B) is a function of the values Pr (X | B) and Pr (Y | Z ∩B) as-
sume on the at most 16 truth-functional combinations X, Y, Z of E and H .

3a. If Pr (E | H ∩B) < Pr (F | H ∩B) and Pr (E | B) = Pr (F | B), then
C (H,E,B) ≤ C (H,F,B).

3b. If Pr (E | H ∩B) = Pr (F | H ∩B) and Pr (E | B) < Pr (F | B), then
C (H,E,B) ≥ C (H,F,B).

4a. C (H,E ∩ F,B)−C (H,E ∩G,B) is determined by C (H,E,B) and the
difference C (H,F,E ∩B)− C (H,G,E ∩B).

4.b If C (H,E ∩ F,B) = 0, then C (H,E,B) + C (H,F,E ∩B) = 0.

5. If Pr (E | H ∩B) = Pr (E | T ∩B), then C (H,E,B) = C (T,E,B).

Among these (1), (3), and (5) concern the relation between confirmation and prob-
ability, while (2) and (4) concern confirmation alone. I will only be concerned
with the former.

(1) is logically equivalent to

1+. C (H,E,B)
>
=
<

0 iff Pr (E | H ∩B)
>
=
<

Pr (E | B).

This makes clear that (1), (3), and (5) say what happens to confirmation C (H,E,B)
if various relations between the likelihood of hypothesis H on evidence E and
background information B, Pr (E | H ∩B), and the prior of E given B, Pr (E | B),
obtain.

(1+) is logically equivalent to
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1*. C (H,E,B)
>
=
<

0 iff Pr (E | H ∩B)
>
=
<

Pr
(
E | H ∩B

)
.

Similarly, (3b) is logically equivalent to

3b*. If Pr (E | H ∩B) = Pr (F | H ∩B) and Pr
(
E | H ∩B

)
< Pr

(
F | H ∩B

)
,

then C (H,E,B) ≥ C (H,F,B).

While (1+) and (3b) focus on relations between likelihoods and priors, (1*) and
(3b*) say the same thing by focusing on relations between likelihoods and what,
following Fitelson (2007), we call catch-alls, Pr

(
E | H ∩B

)
. Let us see where

this shift in focus takes us.
Regarding (3a) Milne (1996, 21) states that it “corrresponds more or less to the

claim[...] that, other things being equal, a theory is better confirmed by evidence
the more likely the theory makes the evidence.” More than one thing can be equal,
though. Often not all of them can be equal simultaneously. According to (3a) the
prior of the evidence is held fixed: Pr (E | B) is equal to Pr (F | B).

Consider the catch-all counterpart

3a*. If Pr (E | H ∩B) < Pr (F | H ∩B) and Pr
(
E | H ∩B

)
= Pr

(
F | H ∩B

)
,

then C (H,E,B) ≤ C (H,F,B),

According to (3a*) the catch-all, the likelihood of H on the evidence, is held fixed:
Pr

(
E | H ∩B

)
is equal to Pr

(
F | H ∩B

)
. Given that the theory makes the one

evidence more likely than the other, i.e. Pr (E | H ∩B) < Pr (F | H ∩B), not
both of these other things can be equal.

Regarding (5) Milne (1996, 22) says that it “is a weak consequence of the
Likelihood Principle”:

In comparing the evidential bearing (relative to background knowl-
edge B) of E on the hypotheses H and T we need consider only
Pr (E | H ∩B) and Pr (E | T ∩B). (Milne 1996, 22)

Note that, in the presence of (1-4), (5) is equivalent to the otherwise stronger

5+. If Pr (E | H ∩B) = Pr (F | T ∩B) and Pr (E | B) = Pr (F | B), then
C (H,E,B) = C (T, F,B).

This is so because r (H,E,B) satisfies (5+).
Here is the catch-all counterpart of (5+):
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5*. If Pr (E | H ∩B) = Pr (F | T ∩B) and Pr
(
E | H ∩B

)
= Pr

(
F | T ∩B

)
,

then C (H,E,B) = C (T, F,B).

Let us rename (2) and (4) by (2*) and (4*), respectively. Then things can be put
as follows. In the presence of (2) and (4), the conjunction of (1), (3), and (5) says
that C (H,E,B) is a function of the likelihood of H on E, Pr (E | H ∩B), and
the prior of E, Pr (E | B) – increasing with the former, and decreasing with the
latter.

In the presence of (2*) and (4*), the conjunction of (1*), (3*), and (5*) says
that C (H,E,B) is a function of the likelihood of H on E, Pr (E | H ∩B), and
the catch-all, i.e. the likelihood of H on E, Pr

(
E | H ∩B

)
– increasing with the

former, and decreasing with the latter.

2 Catch-alls or Priors?
A variation of Milne’s proof (presented in Appendix 1) shows that

l (H,E,B) = log
[
Pr (E | H ∩B) /Pr

(
E | H ∩B

)]
is another true measure of confirmation in the sense that l is the one and only
function satisfying (1*-5*).

As Fitelson (2001, 29) observes, l satisfies (1-4). It is worth noting that r
satisfies (1*-4*). So the difference between r and l lies in (5) versus (5*): l does
not satisfy (5), and r does not satisfy (5*).

Thus r and l agree that confirmation depends on the likelihood of H on E,
Pr (E | H ∩B), and one other factor. They also agree on how to compare the
likelihood of H on E to the other factor, viz. by taking logarithms of ratios. What
they disagree about is the other factor the likelihoods of H on E should be com-
pared to: r says the other factor is the prior of the evidence E, Pr (E | B), while l
says it is the catch-all, i.e. the likelihood of H on the evidence E, Pr

(
E | H ∩B

)
.

3 Odds or Probabilities?
Things can be put differently still. Let O (H | B) and O (H | E ∩B) stand for
the prior and posterior odds of H , respectively,

O (H | B) =
Pr (H | B)

Pr
(
H | B

) and O (H | E ∩B) =
Pr (H | E ∩B)

Pr
(
H | E ∩B

) .
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Then, as Joyce (2003, table 5) observes,

r (H,E,B) = log

[
Pr (H | E ∩B)

Pr (H | B)

]
and l (H,E,B) = log

[
O (H | E ∩B)

O (H | B)

]
.

Seen this way r and l agree that it is differences between priors and posteriors
that matter for confirmation. They also agree on how to measure those differ-
ences, viz. by taking the logarithm of the ratio of posterior over prior. What they
disagree about is, to speak with Joyce (2003, sct. 3), the question whether we
should consider differences in “total evidence” as measured by Pr (H | E ∩B)
and Pr (H | B), or differences in “net evidence” as measured by O (H | E ∩B)
and O (H | B).

4 Conclusion
Milne 1996 presents his argument as a desideratum/explicatum argument for r as
opposed to other measures of confirmation. His confirmation theoretic monism
presupposes that there is one and only one true measure of confirmation. Joyce
2003, sct. 3, on the other hand, favors a confirmation theoretic pluralism accord-
ing to which, among others, each of r and l “measures an important evidential
relationship, but that the relationships they measure are importantly different.”1

This pluralistic view suggests to view Milne’s 1996 argument and the above
variation not so much as arguments for or against one particular measure of confir-
mation. Rather, they can be viewed as characterizations that tell us, descriptively,
what particular measures focus on, without telling us, prescriptively, what we
should focus on. The latter, normative question seems to be beyond the reach of
desiderata/explicata approaches, but to belong to the realm of means-ends episte-
mology or epistemic consequentialism (Percival 2002; Stalnaker 2002) as exem-
plified, for probability, by Joyce (1998), and, for confirmation, by Huber (2005).

1Actually Joyce 2003 considers er and el, that is, r and l without the log.
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Appendix 1: A Variation of Milne’s (1996) Proof
The following proof is entirely due to Milne 1996, appendix 1, although all errors
are, of course, mine.

(2*) entails that C (H,E,B) is a function of Pr (E | H ∩B), Pr
(
E | H ∩B

)
,

and Pr (H | B). (5*) entails that C (H,E,B) is independent of Pr (H | B). So
C (H,E,B) = F

(
Pr (E | H ∩B) ,Pr

(
E | H ∩B

))
for some F : [0, 1]2 → <∗,

where <∗ = < ∪ {±∞}.
(1*) entails that F (x, x) = 0 for all x ∈ [0, 1]. As

Pr (E ∩ F | H ∩B) = Pr (E | H ∩B) · Pr (F | E ∩H ∩B)

Pr
(
E ∩ F | H ∩B

)
= Pr

(
E | H ∩B

)
· Pr

(
F | E ∩H ∩B

)
,

(4*) entails that there is a possibly partial G : <∗2 → <∗ such that for all
x, y, z1, z2, w1, w2 ∈ [0, 1]

F (x · z1, y · w1)− F (x · z2, y · w2) = G (F (x, y) , F (z1, w1)− F (z2, w2)) . (1)

The range of F is assumed to be a real interval.
F (1, 1) = 0, and so

F (x · z, y · w)− F (x, y) = G (F (x, y) , F (z, w)) , (2)

which yields G (0, u) = u and G (u, 0) = 0 for x = y = 1 and z = w = 1,
respectively. Equation (2) and the previous equation give us

F (x · z, x · w) = F (x, x) +G (F (x, x) , F (z, w))

= F (z, w) .

If x/z = y/w, then F (x, z) = F
(

z
w
· y, x

y
· w

)
and z/w = x/y, or F

(
w
z
· x, y

x
· z
)
=

F (y, w) and w/z = y/x. Hence F (x, z) = F (t · y, t · w) or F (t · x, t · z) =
F (y, w) for some t ∈ [0, 1].

Assume without loss of generality that F (x, z) = F (t · y, t · w) = F (y, w)
for t ∈ [0, 1]. Then C (H,E,B) = F (x, z) = F (y, w) with x/z = y/w, and so

C (H,E,B) = H
(
Pr (E | H ∩B) /Pr

(
E | H ∩B

))
for some H : <≥0 → <∗.

For z2 = w2 = 1 Equation (1) entails

H (x · y) = H (x) +G (H (x) , H (y)) = H (y) +G (H (y) , H (x)) . (3)

7



This and Equation (1) give us

G (H (x) , H (y))−G (H (x) , H (z)) = H (x · y)−H (x · z) (4)
= G (H (x) , H (y)−H (z)) , (5)

which yields

G (t, u+ v) = G (t, u) +G (t, v) .

For integers m,n and u·m/n in the range of F so that (t, u ·m/n) is in the domain
of G, we thus have G (t, u ·m/n) = m

n
· G (t, u). (3a*) entails that G (t, u) ≤

G (t, v) if u ≤ v. So for all reals r with u · r in the range of F so that (t, u · r) is
in the domain of G, G (t, u · r) = r ·G (t, u). Hence G (t, u) = u · g (t) for some
g : <∗ → <≥0 (at this point Milne refers to Aczél 1966, 31-34).

Equation (3) entails

H (x · y)−H (x · z) = H (y)−H (z) +G (H (y) , H (x))−G (H (z) , H (x))

and so Equation (5) gives us

g (H (x)) · (H (y)−H (z)) = H (y)−H (z) +H (x) · (g (H (y))− g (H (z))) . (6)

(1*) entails H (1) = 0 and that H is not constant, which implies that g (0) = 1.
For H (x) 6= 0 Equation (6) entails

g (H (y))− g (H (z)) = (g (H (x))− 1) · (H (y)−H (z)) /H (x)

The left-hand side is independent of x, and so

g (H (x)− 1) /H (x) = k

for some constant k ∈ <∗.
From Equation (3) we have

H (x · y) = H (x) +G (H (x) , H (y))

= H (x) +H (y) · g (H (x))

= H (x) +H (y) · (H (x) · k + 1)

= H (x) +H (y) + k ·H (x) ·H (y) .

(4b*) entails that H (x) +H (y) = 0 if H (x · y) = 0. k = 0, since it is possible
that H (x · y) = 0 while H (x) 6= 0 and H (y) 6= 0 (it suffices to consider a case
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where E is positively relevant for H , F is negatively relevant for H , and E ∩ F
is independent of H in the sense of some Pr – note that this argument would be
problematic if the underlying probability space were fixed). Hence

H (x · y) = H (x) +H (y) , (7)

and so H
(
xm/n

)
= m/n·H (x) for integers m,n. (3*) entails that H (x) ≤ H (y)

if x ≤ y, and so H (xr) = r ·H (x) for all r ∈ <. (As Milne notes, no assumptions
about the domain of H need be made this time, because any number in <∗ can be
the ratio of two probabilities – again, note that this argument would be problematic
if the underlying probability space were fixed). Therefore H (x) = c · log x for
some constant c (at this point Milne refers to Aczél 199, 39-41) that has to be
positive in view of (1*) and equals 1 by a suitable choice of the base of log.
Hence C (H,E,B) = log

(
Pr (E | H ∩B) /Pr

(
E | H ∩B

))
. 2
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Appendix 2: Fitelson’s (2001) Objection
Fitelson (2001, 28) notes that “Milne’s argument implicitly requires that the prob-
ability function Pr [...] satisfy some rather strong, unmotivated, and unintuitive
constraints.” In particular, “Milne’s argument makes use of certain theorems [...]
which force the probability function Pr (and, hence, the spaces over which the
measure [of confirmation C] is defined) to satisfy various kinds of continuity con-
ditions” (Fitelson 2001, 28, fn. 43). For a discussion of these Fitelson refers to
Halpern (1999a, 1999b), where it is shown that Cox’s (1946) theorem does not
hold in finite domains.

I think it is perfectly reasonable for Milne (and proponents of the above vari-
ation of his argument) to require the domain of the measure of confirmation C to
be infinite. As Halpern (1999a, sct. 5; 1999b, theorem 5) observes, one response
is to say that we are not interested in a single domain in isolation, but a notion of
belief or confirmation (in his or our case, respectively) that applies uniformly in
all domains.

But suppose we are in fact interested in just one single field of propositions A
over which our measure of confirmation C is defined. Suppose further A is finite.
Even then the domain of C is uncountable, provided we assume C does not vary
with the underlying probability measure Pr. That is, we only have to think of C
as a mapping of probability spaces (and not propositions without probabilities)
into the reals, and take its domain to be the set of all probability spaces 〈A,Pr〉
(for the fixed A from above). As far as I can tell, this assumption is implicit in
all discussions of incremental confirmation. Rejecting it means to use different
measures of confirmation for different probability measures on one fixed domain,
rather than uniformly using the same measure of confirmation.

However, the assumption Milne (1996, 24) actually makes is that the range of
C forms a real interval. This implies that the domain of C is uncountably infinite.
As argued, the latter assumption is reasonable for Milne to make. Obviously it is
another question whether the former is, too.
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