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ABSTRACT 

 

Bayesianism is the position that scientific reasoning is probabilistic and that probabilities are 

adequately interpreted as an agent’s actual subjective degrees of belief, measured by her 

betting behaviour. 

 Confirmation is one important aspect of scientific reasoning. The thesis of this paper 

is the following: If scientific reasoning is at all probabilistic, the subjective interpretation has 

to be given up in order to get right confirmation–and thus scientific reasoning in general. 
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1 The Bayesian Approach to Scientific Reasoning 

Bayesianism is the position that scientific reasoning is probabilistic and that probabilities are 

adequately interpreted as an agent’s actual subjective degrees of belief, measured by her 

betting behaviour. 

Confirmation is one important aspect of scientific reasoning. The thesis of this paper 

is the following: Given that scientific reasoning–and thus confirmation–is at all probabilistic, 

the subjective interpretation of probability has to be given up in order to get right 

confirmation–and thus scientific reasoning in general. 

This will be argued for as follows. First, an example will be considered that is an 

instance of a more general version of the problem of old evidence (POE). This suggests that 

we look whether the two existing solutions to POE–conditioning on the entailment relation 

(Garber [1983]) and the counterfactual strategy (Howson and Urbach [1993])–provide a 

solution to the more general problem (called C, for ‘counterintuitive’). 

As a first result, we get that these two solutions to POE are not genuine solutions, 

because they do not provide a solution to the more general C. 

More importantly, the solutions to C considered here all have in common that they 

depend on the agent’s very first guess, her first degree-of-belief function Pr0. 

C thus leads to the problem of prior probabilities, POPP. However, the standard 

solution to POPP–the ‘washing out of priors’ relying on convergence to certainty and merger 

of opinion (cf. Earman [1992], especially pp. 57-9 and ch. 6)–is not applicable here, because 

the solutions to C never get rid of the agent’s first degree-of-belief function Pr0. 

On the subjective interpretation of probability, Pr0 is any arbitrary assignment of 

values in [0, 1] to the atomic propositions of the underlying language. By choosing an 

appropriate Pr0, one can obtain more or less any degree of confirmation. 



The only way out is some kind of objective or logical probability function the agent 

could adopt as her first degree-of-belief function Pr0. However, the difficulty of determining 

such a logical probability function was precisely the reason for turning to the subjective 

interpretation of probability. 

2 Bayesian Confirmation Theory 

According to Bayesian confirmation theory, an agent’s degree of confirmation of hypothesis 

H by evidence E relative to background knowledge B is measured by some function CPr such 

that 

CPr(H, E, B) > 0  Pr(H | E, B) > Pr(H | B) 

CPr(H, E, B) = 0  Pr(H | E, B) = Pr(H | B) 

CPr(H, E, B) < 0  Pr(H | E, B) < Pr(H | B), 

where Pr is the agent’s degree-of-belief function. Any such function CPr is called a relevance 

measure (based on Pr). 

One example is the distance measure dPr, 

 dPr(H, E, B) = Pr(H | E, B) – Pr(H | B). 

3 The Example 

An agent with degree-of-belief function Pr considers the hypothesis 

 H = All Scots wear kilts. 

At time t1 she has the impression of seeing her friend Stephen wearing a kilt. As the agent is 

not wearing her glasses, her degree of belief in 

 E = Stephen wears a kilt 

is not very high, say 

 Pr1(E | B1) = .6, 

where Pr1 is her degree-of-belief function at t1. B1 is her background knowledge at that time, 

which contains the information that Stephen is Scottish. 



Because she knows that H and B1 logically imply E, the agent gets interested in 

whether Stephen is indeed wearing a kilt. So she puts on her glasses and has a careful second 

look at Stephen, who still seems to be wearing a kilt; this all happens at time t2. 

In passing from t1 to t2, the only change in the agent’s degrees of belief is in E. 

Moreover, for some reason the agent cannot express her observation in terms of a proposition. 

So her degree of belief in E increases exogenously, say to 

 Pr2(E | B2) = .9, 

where Pr2 is the agent’s degree-of-belief function at t2. Her background knowledge B2 at t2 is 

the same as at t1, because the only change is in E and that change is exogenous, i.e. not due to 

any proposition that is fully believed and could thus be conditioned on. So B1 is logically 

equivalent to B2, B1  B2. 

E is positively relevant for H given B (in the sense of Pr1). Furthermore, the agent’s 

degree of belief in E increases from Pr1(E | B1) = .6 at t1 to Pr2(E | B2) = .9 at t2. Therefore, by 

Jeffrey conditionalisation, her degree of belief in H must also increase, namely from Pr1(H | 

B1) to 

 Pr2(H | B2) = Pr1(H | E, B1)Pr2(E | B2) + Pr1(H | E, B1)Pr2(E | B2) 

   = Pr1(H | E, B1)Pr2(E | B2) 

   = Pr1(H | B2)Pr2(E | B2)/Pr1(E | B1).  

Obviously, the increase in the agent’s degree of belief in H is greater, the larger the increase 

is in her degree of belief in E (which is logically implied by and thus positively relevant for H 

given B1–or its equivalent B2–in the sense of Pr1). 

4 The Less Reliable the Source of Information, the Higher the Degree of Bayesian 

Confirmation 

Let us compare the agent’s degrees of confirmation at time t1 and at time t2.
1 

The agent knows that the conjunction of H and B1 logically implies E, and, as time 

passes, she does not forget this nor that Stephen is Scottish. Thus 



 Prj(E | H, Bj) = 1, for all points of time tj, j  0, 

even if it is not assumed that she is logically omniscient in the sense that all logical truths are 

transparent to her (cf. Earman [1992], p. 122). 

Given Jeffrey conditionalisation, i.e. assuming 

 Pr1(H | E, B1) = Pr2(H | E, B2), 

(B1 and B2 are logically equivalent), it follows that 

 H is more confirmed by E relative to B1 at t1 than at t2 relative to B2 if and only if the 

agent’s degree of belief in E given B1 at t1 is smaller than her degree of belief in E 

given B2 at t2, i.e. 

 dPr1(H, E, B1) > dPr2(H, E, B2)   Pr2(E | B2) > Pr1(E | B1). 

More generally, 

C dPr1(H, E, B1) > dPr2(H, E, B2)  Pr1(E | H, B1) > Pr1(E | B1) & Pr2(E | B2) > Pr1(E | B1) 

 or 

    Pr1(E | H, B1) < Pr1(E | B1) & Pr2(E | B2) < Pr1(E | B1), 

where the only change in the agent’s degrees of belief in passing from t1 to t2 is exogenous 

and in E, whence B1 is logically equivalent to B2, and Jeffrey conditionalisation (JC) is used. 

Here and in the following, the probabilities of all contingent propositions involved are 

assumed to be positive. 

 C is counterintuitive, because E–which is positive evidence for hypothesis H–should 

not provide less and less confirmation for H when it becomes more and more established, 

much less cease to provide any confirmation in the limiting case when it becomes a certainty 

(which is the problem of old evidence). 

 On the contrary, the more certain it becomes that such positive evidence E is true, the 

more this should support H. 

 If some E speaks in favour of some H–say, because it is a logical consequence of the 

latter–then getting to know that E is probably false should not provide confirmation for H; 



rather, H should be disconfirmed by that. On the other hand, getting to know that E is 

probably true should provide confirmation for H–and the more probable it is that E is true, the 

more it should do so. 

 Finally, instead of considering t1 and t2 as two successive points of time, one may 

alternatively view them as two possible situations or worlds differing from each other just in 

the respect that the agent’s degree of belief in E is lower in t1 than in t2. 

 If H and B ( B1  B2) logically imply E, or more generally, if 

 Pr1(E | H, B) = Pr2(E | H, B), 

and Pr1(H | B) and Pr2(H | B) are assumed to equal each other2, the following holds, 

independently of whether E is positively or negatively relevant for H given B: 

H is more confirmed by E relative to B in t1 than in t2 just in case the agent’s degree of 

belief in E in t1 is lower than in t2. 

5. Measure Sensitivity 

As shown by Fitelson ([2001]), many arguments in the literature on Bayesian confirmation 

theory are measure sensitive in the sense that their validity depends on which relevance 

measure one takes as measure of confirmation. 

 The example of the preceding section (C) is no exception. C holds for the distance 

measure dPr, the log-likelihood ratio lPr, and the ratio measure rPr, 

lPr(H, E, B) = log[Pr(E | H, B)/Pr(E | H, B)] 

 = log[(Pr(H | E, B)Pr(H | B))/(Pr(H | E, B)Pr(H | B))], 

rPr(H, E, B) = log[Pr(H | E, B)/Pr(H | B)]. 

C does not hold for sPr (Christensen [1999])3, 

sPr(H, E, B) = Pr(H | E, B) – Pr(H | E, B) = dPr(H, E, B)[1/Pr(E | B)], 

because the latter is invariant with regard to exogenous belief changes in E4 (which yield B1 

logically equivalent to B2), i.e. 

sPr1(H, E, B1) = Pr1(H | E, B1) – Pr1(H | E, B1) 



 = Pr2(H | E, B2) – Pr2(H | E, B2) = sPr2(H, E, B2). 

Indeed, the same holds true of every function of Pr(H | E, B) and Pr(H | E, B). 

 In case of cPr (Carnap [1962]), 

cPr(H, E, B) = Pr(H, E, B)Pr(B) – Pr(H, B)Pr(E, B) = dPr(H, E, B)Pr(E, B)Pr(B), 

something different–but not much better–holds: 

C’ cPr1(H, E, B1) > cPr2(H, E, B2)   

Pr1(E | H, B1) > Pr1(E | B1) & Pr1(E, B1)/Pr2(E, B2) > Pr2(E, B2)/Pr1(E, B1) 

or 

Pr1(E | H, B1) < Pr1(E | B1) & Pr1(E, B1)/Pr2(E, B2) < Pr2(E, B2)/Pr1(E, B1). 

6 A More General Version of the Problem of Old Evidence 

C is a more general version of the problem of old evidence (POE). 

 C says that evidence E–which is positively relevant for hypothesis H given 

background knowledge B5–provides more confirmation for H relative to B, the less the agent 

believes in E. In the limiting case of POE where E is known, E ceases to provide any 

confirmation at all. 

 Conversely, if E is negatively relevant for H given B, E provides the less 

disconfirmation for H relative to B, the more the agent believes in E. In the limiting case of 

POE where E is known, E ceases to provide any disconfirmation at all. 

 POE is that evidence E that is old in the sense of being assigned a degree of belief of 1 

cannot provide any confirmation, since for any Pr, H, E and B: 

 Pr(H | E, B) = Pr(H | B), if Pr(E | B) = 1. 

POE is a problem, because there are historical cases in which old evidence did provide 

confirmation (for hypotheses, both old and new–cf. chapter 5 of Earman [1992] for an 

excellent discussion). 

 If POE is a problem, so is C.  



 This is important, because a Bayesian could simply refuse to consider C as 

counterintuitive. Is it not rational, she might say, that I take positively relevant E to provide 

the less confirmation for H, the more I already believe in E and have built this belief into my 

degree of belief in H?6 

 This reply is perfectly reasonable, but it applies equally well to POE. However, a brief 

look at the literature shows that Bayesians do take POE to be a problem. 

 So let us look whether the existing solutions to POE give rise to a solution to C. 

Generally, there are two ways of approaching POE: 

 1) Conditioning on the entailment relation: Garber ([1983]), Jeffrey ([1983]), 

Niiniluoto ([1983])7 

 2) Counterfactual strategy: Howson and Urbach ([1993]) 

Each of them will be considered in turn. 

7 Conditioning on the Entailment Relation 

The idea here is to distinguish between a historical and an ahistorical POE and to solve the 

former by noting that 

what increases [the agent]’s confidence in [H] is not E itself, but the discovery of 

some generally logical or mathematical relationship between [H] and E (Garber 

[1983], p. 104). 

Then one shows that even if Pr(E | B) = 1,  

the discovery that [H entails E] can raise [the agent]’s confidence in [H] (Garber 

[1983], p. 123). 

Conditioning on the entailment relation does not provide a solution to C, because in our 

example the agent is only interested in E because she knows that the conjunction of H and B1 

logically implies E (and does not forget this and that Stephen is Scottish), whence 

 Prj(H entails E | Bj) = 1, for every point of time tj, j  0. 



Moreover, by substituting ‘H entails E’ for E, one gets another instance of C: Given that ‘H 

entails E’ is positively relevant for H given B, it provides more confirmation for H, the less 

the agent believes in it. 

8 The Counterfactual Strategy 

Concerning POE, Howson and Urbach ([1993]) write: 

the support of [H] by E is gauged according to the effect which one believes a 

knowledge of E would now have on one’s degree of belief in [H], on the 

(counterfactual) supposition that one does not yet know E (Howson and Urbach 

[1993], pp. 404-5). 

Suppose B – E is the logically weakest proposition such that 

 (B – E)E is logically equivalent to B, 

so that Pr(X | B – E) is the agent’s degree of belief in X ‘on the (counterfactual) supposition 

that [she] does not yet know E’. 

 Then, if Pr(E | B) = 1, the agent’s degree of confirmation is given by 

 d’Pr(H, E, B) = Pr(H | B) – Pr(H | B – E)  g5 

 ‘actual’ – ‘counterfactual’, 

which is positive if and only if 

O Pr(H | B) > Pr(H | B – E), 

(‘O’ for ‘obvious’) and also if and only if (‘P’ for ‘positive’) 

P Pr(E | H, B – E) > Pr(E | B – E). 

However, if E is not known, it cannot be dropped from B. Therefore one has to generalize 

from the case of POE where Pr(E | B) = 1 to the case of C where Pr(E | B) need not be 1. 

 The question is, of course, how the counterfactual strategy can be adequately 

generalized. Apart from the above, there are the following (and uncountably many more) 

formulations of d’Pr(H, E, B): 

 



 

d’Pr(H, E, B) = Pr(H | B – E, E)Pr(E | B) + Pr(H | B – E, E)Pr(E | B) – Pr(H | B – E) 

 g1 

 = Pr(H | (B – E)E)Pr(E | B) – Pr(H | B – E)  g2 

 = Pr(H | B – E, E) – Pr(H | B – E)  g3 

 = Pr(H | B, E) – Pr(H | B – E)  g4 

(The gi refer to the generalisations considered in the next section.) 

9 Generalizing the Counterfactual Strategy 

Instead of considering 

the (counterfactual) supposition that one does not yet know E (Howson and Urbach 

[1993], p. 405) 

the quote suggests considering 

the (counterfactual) supposition that one does not yet believe in E to degree Pr(E | B). 

However, in our example the background knowledge at t1 and at t2 is the same, because the 

change in the agent’s degree of belief in E is exogenous. Therefore one cannot just drop 

something (say, all information bearing on E) from B2 to get a counterfactual supposition that 

could play a role analogous to that of B2 – E in the special case where Pr2(E | B2) = 1. 

 Instead, one really has to adopt a new probability function PrE. Suppose, therefore, 

that PrE(X | B) is the agent’s degree of belief in X on the counterfactual supposition that she 

does not yet believe in E to degree Pr(E | B). 

 Then there are the following (and uncountably many more) ways of generalizing d’: 

g1Pr(H, E, B) = PrE(H | B, E)Pr(E | B) + PrE(H | B, E)Pr(E | B) – PrE(H | B) 

g2Pr(H, E, B) = PrE(H | B, E)Pr(E | B) – PrE(H | B) 

g3Pr(H, E, B) = PrE(H | B, E) – PrE(H | B) 

g4Pr(H, E, B) = Pr(H | B, E) – PrE(H | B) 



g5Pr(H, E, B) = Pr(H | B) – PrE(H | B) 

10 The Desired Result–and a Necessary and Sufficient Condition for it 

Instead of arguing for or against any of these generalisations, let us first have a look at where 

we want to arrive. According to Bayesian intuitions, the desired result is that 

 H is more confirmed by E relative to B2 at t2 than relative to B1 at t1 if and only if the 

agent’s degree of belief in E given B2 at t2 is greater than her degree of belief in E 

given B1 at t1, i.e. 

   CPr2(H, E, B2) > CPr1(H, E, B1)  Pr2(E | B2) > Pr1(E | B1), 

 provided E is positively relevant for H given B1 ( B2). 

More generally, this means either DC or DA (‘C’ for ‘counterfactual’, ‘A’ for ‘actual’), 

depending on how one construes ‘positively relevant’: DC 

     CPr2(H, E, B2) > CPr1(H, E, B1)  Pr1
E(E | H, B1) > Pr1

E(E | B1) & Pr2(E | B2) > Pr1(E | B1) 

or 

Pr1
E(E | H, B1) < Pr1

E(E | B1) & Pr2(E | B2) < Pr1(E | B1) 

DA    CPr2(H, E, B2) > CPr1(H, E, B1)  Pr1(E | H, B1) > Pr1(E | B1) & Pr2(E | B2) > Pr1(E | B1) 

or 

Pr1(E | H, B1) < Pr1(E | B1) & Pr2(E | B2) < Pr1(E | B1). 

Before continuing, note that it is plausible to assume that counterfactual degrees of belief are 

stable over time, i.e. 

E Pr1
E(H | B1) = Pr2

E(H | B2). 

The reason is that in going from t1 to t2 the only change in the agent’s degrees of belief is 

exogenous and in E, and Pri
E(H | Bi) just is the agent’s degree of belief in H on the 

counterfactual supposition that she does not yet believe in E to degree Pri(E | Bi). 

 Interestingly, E sheds positive light on g1 and g5, in which B1 and B2 are assumed to be 

logically equivalent: 



1) E is necessary and sufficient for g1 to satisfy DC, assuming ‘counterfactual Jeffrey 

conditionalisation’, i.e. Pr1
E(H | E, B1) = Pr2

E(H | E, B2), and 

2) E is necessary and sufficient for g5 to satisfy DA, assuming Jeffrey 

conditionalisation. 

Moreover, E reflects badly on gi, i = 2, 3, 4. Given counterfactual JC, 

3) E is necessary and sufficient for g2 to satisfy F, and 

4) E is necessary and sufficient for g3 to satisfy GC. 

Given JC,  

5) E is necessary and sufficient for g4 to satisfy GA. 

Here 

F CPr2(H, E, B2) > CPr1(H, E, B1)  Pr2(E | B2) > Pr1(E | B1), 

GC CPr2(H, E, B2) = CPr1(H, E, B1) = Pri
E(H | Bi, E) – Pri

E(H | Bi) = g3Pri(H, E, Bi), 

GA CPr2(H, E, B2) = CPr1(H, E, B1) = Pri(H | Bi, E) – Pri
E(H | Bi) = g4Pri(H, E, Bi). 

F is odd because it says that it does not matter whether E is positively relevant for H given B1 

( B2) in the sense of Pr1 or Pr2. 

 GC and GA are odd for a Bayesian, because they have confirmation being invariant 

with regard to exogenous belief changes in E. They yield that the differences in the agent’s 

degree of belief Pri(E | Bi) in E at different times ti are irrelevant for the comparison of her 

degrees of confirmation of H by E relative to Bi at the times ti. For this reason the knock-

down feature that confirmation is dependent on the agent’s first degree of belief function Pr0 

is also true for any measure satisfying GA or GC. 

 All things considered, it seems fair to say that the proper generalisation of d’ is g1 or 

g5. In order to get confirmation right they both require counterfactual degrees of belief to be 

stable over time. 

 g1 and g5 reduce to 

g1Pri(H, E, Bi) = Pr0
E(H | B0, E)Pri(E | Bi) + Pr0

E(H | B0, E)Pri(E | Bi) – Pr0
E(H | B0), 



g5Pri(H, E, Bi) = Pri(H | Bi) – Pr0
E(H | B0), 

where the only changes in the agent’s degrees of belief in going from t0 to ti are exogenous 

and in E, making B0 logically equivalent to Bj for any j, 0  j  i. 

 Obviously, g5(H, E, B) is positive if and only if 

O’ Pri(H | Bi) > Pr0
E(H | B0), 

which generalizes O. 

 g1(H, E, B) is positive if and only if 

PC Pr0
E(E | H, B0) > Pr0

E(E | B0) & Pri(E | Bi) > Pr0
E(E | B0) 

or 

Pr0
E(E | H, B0) < Pr0

E(E | B0) & Pri(E | Bi) < Pr0
E(E | B0), 

which seems to be the appropriate generalisation of P in terms of counterfactual degrees of 

belief. 

11 Actual Degrees of Belief 

Whether or not the preceding generalisations are appropriate, they are not satisfying, because 

it remains questionable how the agent’s counterfactual degree of belief function PrE( | B) is 

determined and related to her actual degree of belief function Pr( | B). This question being 

unanswered, the counterfactual strategy does not provide a genuine solution to C. 

 Let us therefore consider an account couched solely in terms of actual degrees of 

belief (and providing a possible answer to the aforementioned question). 

 Generally, the example in section 3 is one in which evidence E is positively relevant 

for hypothesis H given the agent’s current background knowledge B according to her current 

degree of belief function Pr; and her degree of belief in E changes exogenously as time goes 

on. If there is an increase (decrease) in the agent’s degree of belief in E given B, her degree of 

belief in H given B increases (decreases), too–and conversely, if E is negatively relevant for 

H given B according to Pr. 



 All Bayesian accounts of (incremental) confirmation measure in some way the 

difference between 

 Pr(H | E, B) and Pr(H | B). 

Given Bayes or strict conditionalisation, this is just the difference between the agent’s prior 

and posterior degree of belief in H given B when she learns E and nothing else. 

 The counterfactual strategy measures the difference between the agent’s actual or 

posterior degree of belief in H given B and her counterfactual one–the latter replacing her 

prior. The reason is that the prior and posterior degrees of belief in H given B coincide if E 

was already known. 

 Solving C requires something more general, because in C the agent does not learn or 

know E; there is only a change in the agent’s degree of belief in E given B. 

 This suggests considering the agent’s prior and posterior degree of belief in H given B 

when the only change in her degrees of belief is exogenous and in E. In other words, one 

replaces strict conditionalisation by Jeffrey conditionalisation. 

 However, one cannot simply take the difference between 

 Pri(H | Bi) and Pri-1(H | Bi-1). 

For suppose the agent’s degree of belief in E increases enormously between ti-2 and ti-1, say 

from 

 Pri-2(E | Bi-2) = .01 to Pri-1(H | Bi-1) = .9; 

and then it increases again in going to ti, but only slightly, say to 

 Pri(E | Bi) = .91. 

Then the difference between 

 Pri-2(H | Bi-2) and Pri-1(H | Bi-1) 

is much greater than the difference between 

 Pri-1(H | Bi-1) and Pri(H | Bi). 



Consequently, the difference between the prior and posterior degree of belief in H at ti-1 is 

much greater than that at ti, although the agent’s degree of belief in E at ti-1 is smaller than at 

t2, i.e. 

 Pri(H | B) – Pri-1(H | B) < Pri-1(H | B) – Pri-2(H | B) and Pri(E | B) > Pri-1(E | B). 

The absolute value is needed for the case in which E is not positively but rather negatively 

relevant for H given B in the sense of Pri-2. 

 What one must consider instead is the difference between the agent’s current degree 

of belief in H, Pri(H | Bi) and her first degree of belief in H, Pr0(H | B0), where the only 

changes in her degrees of belief in going from t0 to ti are exogenous and in E. 

 The proposal, therefore, is: 

The agent’s degree of (incremental) confirmation of H by E relative to Bi at time ti is given by 

a generalized relevance measure, i.e. some function g(0,i) =: g such that 

g(H, E, B) > 0   Pri(H | E, Bi) > Pr0(H | B0) 

g(H, E, B) = 0   Pri(H | E, Bi) = Pr0(H | B0) 

g(H, E, B) < 0   Pri(H | E, Bi) < Pr0(H | B0), 

where the only changes in the agent’s degrees of belief in going from t0 to ti are exogenous 

and in E (in which case B0  Bj, for every j, 0  j  i). 

 An example is the generalized distance measure g6, 

 g6(H, E, Bi) = Pri(H | Bi) – Pr0(H | B0) 

 = Pr0(H | E, B0)Pri(E | Bi) + Pr0(H | E, B0)Pri(E | Bi) – Pr0(H | B0) 

 JC i times, and B0  Bj, for every j, 0  j  i. 

g6 satisfies DA, and it is positive if and only if 

PA Pr0(E | H, B0) > Pr0(E | B0) & Pri(E | Bi) > Pr0(E | B0) 

or 

Pr0(E | H, B0) < Pr0(E | B0) & Pri(E | Bi) < Pr0(E | B0), 



which seems to be the appropriate generalisation of P in terms of actual degrees of belief. 

 Interestingly, g1, g5, and g6 coincide, if 

 Pr0
E(H | E, B0) = Pr0(H | E, B0) and Pr0

E(H | B0) = Pr0(H | B0). 

As counterfactual degrees of belief PrE(X | B) in X are required to be invariant with regard to 

exogenous belief changes in E, this is also the promised possible answer to the question of 

how an agent’s counterfactual degree of belief function at any time ti, Pri
E( | B), should be 

related to her actual degree of belief function at that time, Pri( | B): It should equal her first 

degree of belief function Pr0( | B) when the only changes in her degrees of belief in going 

from t0 to ti are exogenous and in E (in which case B  Bj, for every j, 0  j  i). 

12 The Common Knock-Down Feature or Anything Goes 

All three measures g1, g5, and g6 (and also g3, g4, s, and every function of Pr(H | E, B) and 

Pr(H | E, B)) have in common that their values essentially depend on the agent’s first degree 

of belief function Pr0. 

 In case E is known and logically implied by H and B, the agent’s degree of 

confirmation of H by E relative to B at time ti (measured by g6) is even uniquely determined 

by her initial guesses in E and H, Pr0(E | B) and Pr0(H | B)! 

 Why the exclamation mark? 

 First, because this shows that the idea behind any Bayesian theory of confirmation–

namely to determine an agent’s degree of confirmation by her actual subjective degrees of 

belief–is shown to fail. 

 Second, because–by the subjective interpretation–Pr0 is any arbitrary assignment of 

values in [0, 1] to the atomic propositions of the underlying language, and thus by choosing 

an appropriate Pr0, one can obtain more or less any degree of confirmation. 

For let r be any value in the interval 

[Pri(H | B) – Pri(H | E, B), Pri(H | B) – Pri(H | E, B)], 



if Pri(H | E, B) > Pri(H | E, B); and let r be any value in the interval 

[Pri(H | B) – Pri(H | E, B), Pri(H | B) – Pri(H | E, B)], 

if Pri(H | E, B) < Pri(H | E, B), where the index to B is dropped, because all changes in the 

agent’s degrees of belief are exogenous. 

This means that r can always be chosen to be positive or negative or 0! 

Then the function Pr0, 

Pr0(E | B) := [Pri(H | B) – Pri(H | E, B) – r]/[Pri(H | E, B) – Pri(H | E, B)], 

Pr0( | E, B) := Pri( | E, B), 

Pr0( | B) := Pri( | E, B)Pr0(E | B) + Pri( | E, B)Pr0(E | B), 

is a conditional probability function (defined on the same (-) field as Pri and conditional on 

the same background knowledge B) that yields that 

g6Pri(H, E, B) = r, 

where Pri results from Pr0 by Jeffrey conditioning i times on E and where the agent’s degrees 

of belief changed exogenously and only in E in going from t0 to ti. 

 Indeed, under this assumption that E is not independent of H given B (in the sense of 

Pri) one can have, for every generalized relevance measure, whatever one pleases: 

confirmation, disconfirmation, or irrelevance!8 Simply choose r from the above interval > 0 

for confirmation, < 0 for disconfirmation, and = 0 for irrelevance. Then Pr0 as defined above 

yields the desired result, for any generalized relevance measure, since 

Pri(H | Bi) = Pr0(H | B0) + r. 

13 The Problem of Prior Probabilities 

Thus we are back at the problem of prior probabilities, POPP. According to Earman ([1992]), 

there are three answers to this problem: 

The first is that the assignment of priors is not a critical matter, because as the 

evidence accumulates, the differences in priors “wash out.” [...] it is fair to say that the 



formal results apply only to the long run and leave unanswered the challenge as it 

applies to the short and medium runs. [...] The second response is to provide rules to 

fix the supposedly reasonable initial degrees of belief. [...] We saw that, although 

ingenious, Bayes’s attempt is problematic. Other rules for fixing priors suffer from 

similar difficulties. And generally, none of the rules cooked up so far are capable of 

coping with the wealth of information that typically bears on the assignment of priors. 

[...] The third response is that while it may be hopeless to state and justify precise 

rules for assigning numerically exact priors, still there are plausibility considerations 

that can be used to guide the assignments. [...] This response [...] opens the Bayesians 

to a new challenge[.] [...] That is, Bayesians must hold that the appeal to plausibility 

arguments does not commit them to the existence of a logically prior sort of 

reasoning: plausibility assessment. Plausibility arguments serve to marshall the 

relevant considerations in a perspiciuous form, yet the assessment of these 

considerations comes with the assignment of priors. But, of course, this escape 

succeeds only by reactivating the original challenge. The upshot seems to be that 

some form of the washout solution had better work not just for the long run but also 

for the short and medium runs as well ([Earman 1992], pp. 57-9). 

I take the standard Bayesian answer to be that differences in the priors do not matter, because 

they are ‘washed out’ in the long run. 

However, this solution is not applicable here–and would not even be, if the limit 

theorems of convergence to certainty and merger of opinion worked for the short and medium 

runs as well. For g6 and company never get rid of the agent’s first degree of belief function 

Pr0. 

The example shows that differences in the priors do matter. Unless E is irrelevant for 

H given B according to the agent’s actual degree of belief function Pri, the agent’s first degree 



of belief function Pr0 can be used to obtain a positive or a negative value (or 0) for any 

generalized relevance measure g(H, E, B)–provided E is among the atomic statements. 

 The only way out is some kind of objective or logical probability function the agent 

could adopt as her first degree of belief function Pr0. 

 Yet the difficulty of determining such a logical probability function just was the 

reason for turning to the subjective interpretation! 
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1 It is crucial to note that what is compared here are not the degrees of confirmation obtained 

by two distinct pieces of evidences E1 and E2 but the degrees of confirmation obtained by one 

and the same piece of evidence E at two successive points in time (which may also be viewed 

as two possible worlds, in which case the use of Jeffrey conditionalisation is not justified). 

 As mentioned above, these different degrees of belief in E at two successive points in 

time lead to different degrees of belief in H (unless E is irrelevant for H). Pr1(H | B1) and 

Pr2(H | B2) are related as dictated by Jeffrey conditionalisation. This means, in particular, that 

they are not assumed to be the same (unless E is irrelevant for H). 
2 If t1 and t2 are interpreted as two possible worlds (and not as two successive points in time), 

Jeffrey conditionalisation cannot be used to obtain Pr2 from Pr1. For this reason one has to 

assume that Pr1(H | B) and Pr2(H | B) equal each other, otherwise one cannot compare the 

corresponding two degrees of confirmation. 

This is not assumed in the example of section 3, for there t1 and t2 are two successive 

points of time, and Pr2(H | B) is as dictated by Jeffrey conditionalisation. 
3 The references to Christensen ([1999]) and Carnap ([1962]) are taken from Fitelson 

([2001]). It is important to note that the common knock-down feature (cf. section 12)–namely 

dependence on the agent’s first degree of belief function Pr0–is also true of sPr. 
4 Cf. section 10 below. 
5 By the Duhem-Quine thesis, confirmation is always relative to a set of auxiliaries. Instead of 

interpreting B as background knowledge, B may be viewed as such a set of auxiliaries. This is 

particularly attractive if one considers the background knowledge to be summarized by the 

degree-of-belief function Pr (and not as a proposition). I owe this view of the background 

knowledge to Christopher Hitchcock. 
6 This point was made by Luc Bovens in personal correspondence. 
7 The references to Jeffrey ([1983]) and Niiniluoto ([1983]) are taken from Earman ([1992]). 
8 However, one cannot have confirmation, disconfirmation, or irrelevance to any degree 

(within some interval). This depends on the generalized relevance measure under 

consideration. For instance, the generalized relevance measure could be such that it takes on 

the value 1 when there is confirmation, the value –1 when there is disconfirmation, and the 

value 0 when there is independence. 


