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Chapter 1

Quantification and Logical Form

(postprint version)

Andrea Iacona

This paper deals with the logical form of quantified sentences. Its purpose is to
elucidate one plausible sense in which a considerably wide class of quantified
sentences can be expressed in a classical first order language. Sections 1.1
and 1.2 provide some preliminary clarifications. Section 1.3 illustrates by
means of familiar examples how the truth conditions of quantified sentences
can formally be represented. Sections 1.4 and 1.5 show that the method of
formalization suggested is consistent with some established undefinability
results, and that it can easily be extended to a broad variety of cases. Section
1.6 draws a distinction between logical and non-logical quantifier expressions.
Finally, section 1.7 adds some concluding remarks.

1.1 Two questions instead of one

The line of thought that underlies this paper stems from the idea that there
is a crucial ambiguity in the question of what is the logical form of quantified
sentences. This question can be construed in at least two ways:

(Q1) How are quantified sentences to be formally represented in order to
account for the logical relations involving them?
(Q2) How are quantified sentences to be formally represented in order to
provide a compositional account of their meaning?

At least prima facie, (Q1) and (Q2) are independent questions: one thing
is to provide a formal explanation of the logical relations involving certain
sentences, quite another thing is to provide a compositional account of the
meaning of those sentences. However, the most common attitude towards
(Q1) and (Q2) is to think that they are closely related, in that one and the

1



2 Andrea Iacona

same notion of logical form can provide an answer to both. As it will be
explained in this section, the line of thought advanced here di↵ers from two
major views characterized by that attitude: one is old, the other is new.

According to the old view, which goes back to Frege, (Q1) is prior to (Q2),
in that the notion of logical form that proves adequate to address (Q1) also
provides an answer to (Q2). Consider the following sentences:

(1) All philosophers are rich
(2) Aristotle is rich

Frege suggested that there is a substantial di↵erence between (1) and (2):
although (1) is superficially similar to (2), its logical form substantially di↵ers
from that of (2). The di↵erence that Frege had in mind turns out clear if (1)
and (2) are formalized in a classical first order language. Let L be a first order
language whose vocabulary includes a set of predicate letters P,Q,R..., a set
of individual constants a, b, c..., a set of variables x, y, z... and the connectives
⇠,�,_,^, 8, 9. (1) and (2) can be represented in L as follows:

(3) 8x(Px � Qx)
(4) Pa

Here P stands for ‘philosopher’ and Q stands for ‘rich’. If one regards this
formalization as a guide to a compositional account of the meaning of (1),
one will be inclined to think that, once we have an answer to (Q1), we also
get an answer to (Q2)1.

However, some doubts might be raised in connection with this view. First
of all, it is not clear how (3) can figure as part of a compositional account
of the meaning of (1), given that it does not explain the apparent semantic
analogy between (1) and (2). (1) contains a noun phrase, ‘all philosophers’,
which in many respect resembles ‘Aristotle’, while it does not contain the
expression ‘if...then...’. Secondly, even if (3) were regarded as the real semantic
structure of (1), in spite of such disanalogies, it would still be an open question
how a compositional account of (3) could be given. As it is well known, a
definition of truth for the sentences of L can be provided in the way suggested
by Tarski, assuming that the truth value of any formula 8x↵ depends on the
satisfaction conditions of ↵. However, Tarski’s method does not guarantees
compositionality. Since 8x↵ is formed by adding 8x to ↵ in accordance with
the usual syntactic rule, in order for compositionality to hold, the truth value
of 8x↵ should result from the combination of the meaning of 8x with the
meaning of ↵. But if truth in L is defined in the way outlined by Tarski, it
is quite natural to read 8x as an expression that does not have meaning in
isolation2.

1 This line of thought originates from Frege [?].
2 Note that no clear alternative to this reading is provided by Frege’s notion of “second-

level function”. One might be tempted to say that 8x denotes a second-level function F, so

that the truth value of 8x↵ is obtained by combining F with the meaning of ↵. But this is
not a viable route. Let 8x↵ be 8xPx and consider a variable y distinct from x. Do 8x and
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According to the new view, which is currently adopted within formal ap-
proaches to natural language, (Q2) is prior to (Q1), in that the notion of
logical form that proves adequate to address (Q2) also provides an answer to
(Q1). In this case it is assumed that logical form is determined by syntactic
structure, where syntactic structure is understood as LF, that is, as a formal
representation that is distinct from surface structure and is the input of se-
mantic interpretation. The LF of (1) and (2) may be represented as follows
in order to provide a compositional account of their meaning:

(5) [Every philosopher1[t1 is rich]]
(6) [Aristotle[is rich]]

If one assumes that the logical form of a sentence is determined by its LF,
one will be inclined to think that that the inferences involving (1) must be
explainable in terms of (5). This is why now it is quite common to claim,
against Frege, that the logical form of (1) does not substantially di↵er from
that of (2)3.

However, it might be argued that this view is not immune to troubles. If
one assumes that the logical form of a sentence is determined by its LF, one
will be unable to provide a formal explanation of all the logical relations in
which the sentence may be involved. For some of those relations hold in virtue
of the content expressed by the sentence. This turns out clear if we consider
context sensitive sentences, which express di↵erent contents in di↵erent con-
texts even though their LF remains the same. To illustrate, consider (1) and
the following sentence:

(7) Not all philosophers are rich

Imagine that you utter (1) with the intention to assert that all philosophers
in your university are rich, while I utter (7) with the intention to assert that
some philosophers in my university are not rich. There is an obvious sense in
which we are not contradicting each other. But if the formal representation of
(1) and (7) does not take into account the content they express, the apparent
absence of contradiction is not formally explained. For the formula assigned to
(7) must be the negation of the formula assigned to (1). More generally, let �
be a set of sentences such that some of its members contain context sensitive
expressions. In order to provide a formal explanation of the logical relations
in � , the formal representation of � must display the semantic relations

8y denote the same function? On the one hand, it seems that they should. If two functions
assign the same values to the same arguments, as it is presumable in this case, then they
are the same function. On the other, however, it seems that they should not. If 8x and 8y
have the same meaning, then their meaning must be combinable in the same way with the
meanings of other expressions. But 8yPx does not have the same meaning as 8xPx. As a

matter of fact 8yPx is not even a sentence, so it cannot be evaluated as true or false.
3 The formal approaches to natural language derive to a good extent from Montague
[?]. The view that a unique syntactic notion of logical form is able to provide both a
compositional account of meaning and a formal explanation of logical properties emerges

in several recent works such as Neale [?], Stanley [?] and Borg [?].
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between the contents expressed by the sentences in � . However, this is not
possible if logical form is individuated in terms of LF. For according to such a
criterion of individuation, the logical form of each of the sentences in � does
not depend on the content it expresses. Arguably, this is a serious limitation,
which prevents any syntactic notion of logical form from being ideal for the
purpose of formal explanation4.

The misgivings considered suggest that neither of the two views is entirely
satisfactory: on the one hand, it is not obvious how a compositional account
of the meaning of quantified sentences can be provided by their representa-
tion in a classical first order language; on the other, it is not obvious how
an adequate formal explanation of the logical relations involving quantified
sentences can be provided in terms of their syntactic structure. Therefore,
unless such misgivings are dispelled, it is reasonable to presume that there is
something wrong with the uniqueness assumption that underlies both views,
namely, the assumption that one and the same notion of logical form can
provide answers to both (Q1) and (Q2).

In what follows it will be taken for granted that di↵erent notions of log-
ical form can be employed to address (Q1) and (Q2). More specifically, the
hypothesis that will be held about (Q1), which is the focus of this paper, is
that the notion of logical form that suits the purpose of formal explanation
is truth conditional, that is, it is a notion according to which logical form is
determined by truth conditions. Since no uniqueness assumption about (Q1)
and (Q2) will be adopted, this is compatible with there being a di↵erent
notion of logical form that is suitable for (Q2). So it is compatible with the
hypothesis that a syntactic notion of logical form is to be adopted to answer
(Q2).

The truth conditional notion of logical form stems from the idea that an
adequate formalization of a sentence s must provide a representation of what
is said by uttering s. For what is said by uttering s cannot be represented
unless the truth conditions of s are exhibited. Obviously, this does not mean
that what is said by uttering s is reducible to the truth conditions of s,
at least if truth conditions are understood as sets of possible worlds, and
sameness of truth conditions is rendered as sameness of truth value in every
structure. It is reasonable to presume that only some of the formulas that
preserve the truth conditions of s in that sense adequately formalize s. For
example, it is usually taken for granted that Fa is better than ⇠⇠ Fa or
Fa ^ (Gb_ ⇠ Gb) as a representation of ‘Fido is a dog’: even though ⇠⇠ Fa

and Fa ^ (Gb_ ⇠ Gb) have the same truth value as Fa in every structure,
they do not capture what is said by using ‘Fido is a dog’ in the relevant sense
of ‘what is said’. Nonetheless, preservation of truth conditions may plausibly
be regarded as a necessary condition of adequate formalization5.

4 Iacona [?] provides a more articulated defence of this claim.
5 Sainsbury [?] suggests a criterion of adequate formalization that rests on the idea that
formalization must preserve what is said, pp. 161-162.
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1.2 Some terminology

In order to provide a formal account of quantified sentences based on a truth
conditional notion of logical form, a principled distinction must be drawn
between the meaning of quantified sentences and their truth conditions. This
section introduces some terminology that will be employed to phrase the
distinction.

In the first place, the term ‘quantifier expression’ will be used to refer to
expressions such as ‘all’ or ‘some’, which occur in noun phrases as determiners
of nominal expressions. In accordance with this use, we will restrict attention
to simple quantified sentences that contain expression of this category, such
as (1) or the following:

(8) Some philosophers are rich

In the second place, the term ‘domain’ will be used to refer to the totality
of things over which a quantifier expression is taken to range. In ordinary talk,
quantifier expressions often carry a tacit restriction to a set of contextually
relevant objects. For example, on one occasion (1) may be used to assert that
all philosophers in a university U are rich, while on another occasion it may
be used to assert that all philosophers in another university U

0 are rich. So it
is presumable that in the first case ‘all’ ranges over a set of people working
or studying in U , while in the second it ranges over a set of people working
or studying in U

0. In order to take into account contextual restrictions of
this kind it will be assumed that, whenever a quantifier expression is used,
some domain is associated with its use, that is, the domain over which the
quantifier expression is taken to range6.

In the third place, the term ‘quantifier’ will be used to refer to functions
from domains to binary relations. In accordance with this use, the meaning
of ‘all’ may be defined as a quantifer all, that is, as a function which, for any
domain D, denotes a binary relation that satisfies the following condition:

Definition 1. allD(A,B) if and only if A ✓ B.

Here A and B are sets whose members belong to D, and the left-hand side
is read as ‘the relation denoted by ‘all’ relative to D obtains between A and
B’.

The meaning of ‘some’ may be defined in similar way as a quantifier some,
that is, as a function which, for any D, denotes a binary relation that satisfies
the following condition:

6 This assumption leaves unsettled the question of how the restriction is determined in the
context. More specifically, it is neutral with respect to the divide between semantic and

pragmatic accounts of domain restriction. The accounts of the first kind represent domains

by some sort of parameters in the noun phrase, either in the determiner or in the noun.
Those of the second kind, instead, leave the determination of domains to pragmatic factors

which determine the communicated content as distinct from what is literally said.
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Definition 2. someD(A,B) if and only if A \B 6= ;7.

The relativization to domains involved in definitions 1 and 2 accounts for
the fact that the extension of a quantifier expression may vary from occasion
to occasion, even though its meaning does not change. If e is a quantifier
expression that means Q, then QD is the extension of e relative to D. Thus
if D is a set of people working or studying in U and D

0 is a set of people
working or studying in U

0, ‘all’ denotes di↵erent relations relative to D and
D

0. So there is a sense in which ‘all’ means the same thing on both occasions,
yet the relations denoted di↵er. The same goes for ‘some’. More generally,
a distinction may be drawn between global quantifiers and local quantifiers,
that is, between quantifiers as functions from domains to binary relations and
quantifiers as values of such functions. If Q is a global quantifier and D is a
domain, then QD is the local quantifier assigned by Q to D

8.
If the meaning of quantifier expressions is defined in the way outlined, and

it is assumed that nominal expressions denote sets, the meaning of quantified
sentences is easily obtained by composition. Let A and B be sets denoted by
‘philosophers’ and ‘rich’ relative to D. For example, if D is a set of people
working or studying in U , A and B are subsets of that set. Given definition 1,
allD fixes truth conditions for (1) relative toD, that is, (1) is true if and only if
A ✓ B. So the meaning of (1) may be described as a function from domains to
truth conditions, which results from the combination of all with the meanings
of ‘philosophers’ and ‘rich’. The case of (8) is similar. Assuming that A and
B are sets denoted by ‘philosophers’ and ‘rich’ relative to D, the meaning of
(8) may be described as a function from domains to truth conditions which
results from the combination of some with the meanings of ‘philosophers’ and
‘rich’. More generally, the meaning of a quantified sentence s that contains
a quantifier expression e that means Q is a function from domains to truth
conditions that is obtained by combining Q with the meaning of the nominal
expressions in s. The value of the function for each D is determined by QD,
that is, by the local quantifier assigned by Q to D.

1.3 Formalization and interpretation

Section 1.2 shows how a principled distinction can be drawn between the
meaning of quantified sentences and their truth conditions. The meaning of
a quantified sentence s results from the composition of the meanings of its
constituent expressions, so it belongs to s independently of how s is under-
stood on this or that occasion. The truth conditions of s, instead, are fixed

7 Definitions 1 and 2 are as in Peters and Westerst̊ahl [?], pp. 62-64.
8 The distinction between global quantifiers and local quantifiers is drawn in Peters and
Westerst̊ahl [?], p. 48.
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by the domain associated with the quantifier expression that occurs in s, so
they depend just on how s is understood on this or that occasion.

Let an interpretation of a sentence be an assignment of semantic properties
that determines definite truth conditions for the sentence in accordance with
the meaning of its constituent expressions. On the formal account of quanti-
fied sentences that will be suggested, quantified sentences have logical form
relative to interpretations. For interpretations fix domains for the quantifier
expressions occurring in them.

The hypothesis that will be adopted is that quantified sentences can be
formalized in L by means of formulas that represent their truth conditions
relative to interpretations. To illustrate, consider (1). The simplest way to
represent (1) in L is by means of (3). The representation provided by (3) in-
cludes no restriction on the domain. Note that the assumption that quantifier
expressions are used in association with domains does not entail that, when-
ever one uses a quantifier expression, one has in mind a set of contextually
relevant objects. It is consistent with that assumption to say that there are
contexts in which nothing is excluded as irrelevant. So (3) represents (1) as
used in such a context. In other words, (3) represents the truth conditions of
(1) relative to an interpretation whose domain is the totality of everything.

In order to deal with a context in which some things are excluded as
irrelevant, the intended restriction may be stated as part of the formula.
Suppose that (1) is used to assert that all philosophers in U are rich. In this
case, (1) may be represented as follows:

(9) 8x(Rx � (Px � Qx))

Here R stands for a condition that applies to a set of people working or
studying in U . So if two utterances of (1) di↵er in the intended restriction on
the domain, they may be represented by means of di↵erent predicate letters.
Suppose that (1) is used in one context to assert that all philosophers in U

are rich and in another context to assert that all philosophers in U

0 are rich.
This di↵erence may be represented in terms of the di↵erence between (9) and
the following formula:

(10) 8x(Sx � (Px � Qx))

Here S stands for a condition that applies to a set of people working or
studying in U

0. From (9) and (10) it turns out clear that (1) has di↵erent
truth conditions relative to di↵erent interpretations. Note that if (1) and (7)
are formalized in this way, the example considered section 1.1 can easily be
handled as a case where no contradictory pair of formulas is involved.

The case of (8) is similar. The simplest way to represent (8) in L is the
following:

(11) 9x(Px ^Qx)

Again, this representation includes no restriction on the domain. In order
to deal with a context in which some things are excluded as irrelevant, the
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intended restriction may be stated as part of the formula. From now on,
however, considerations about restricting conditions will be avoided for the
sake of simplicity.

1.4 The issue of first order definability

A major implication of the thesis that quantified sentences can be formalized
in L in virtue of their truth conditions concerns a fact that is usually regarded
as decisive for the issue of the expressive power of classical first order logic.
The fact is that some quantifier expressions are not first order definable, in the
sense that they do not denote quantifiers that satisfy the following condition:

Definition 3. A quantifier Q is first order definable if and only if there is a
formula ↵ of L containing two unary predicate letters such that, for every
set D and A,B ✓ D, QD(A,B) if and only if ↵ is true in a structure with
domain D where the predicate letters in ↵ denote A and B.

As it is easy to verify, ‘all’ is first order definable, because (3) is a formula
of L containing two unary predicate letters such that, for every set D and
A,B ✓ D, allD(A,B) if and only if (3) is true in a structure with domain D

where its predicate letters denote A and B. The same goes for ‘some’, given
that (8) can be represented as (11).

However, not all quantifier expressions are like ‘all’ and ‘some’. Consider
the following sentence, which contains the quantifier expression ‘more than
half of’:

(12) More than half of philosophers are rich

The quantifier more than half of may be defined as a function which, for any
D, denotes a binary relation that satisfies the following condition:

Definition 4. more than half ofD(A,B) if and only if | A \B |> 1/2 | A |

Although this definition di↵ers from definitions 1 and 2 in that it involves a
proportional relation that applies to the cardinality of A and B, more than

half of is a function from domains to binary relations exactly like all and
some. So (12) is semantically similar to (1) and (8), in that it is formed
by expressions of the same semantic categories combined in the same way.
However, there is no formula of L that translates (12) in the same sense in
which (3) and (11) translate (1) and (8). This is to say that ‘more than half
of’ is not first order definable9.

Many are inclined to think that this fact constitutes a serious limitation
of the expressive power of first order logic. If it is assumed that formalization

9 Barwise and Cooper [?], pp. 213-214, provides a proof of the first order undefinability of
‘more than half of’.
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is a matter of translation, understood as meaning preservation, then it is
natural to think that there is no way to formalize (12) in L. More generally,
one may be tempted to think that a quantified sentence can be formalized in
L only if the quantifier expressions it contains are first order definable10.

Without that assumption, however, there is no reason to think that the
first order undefinability of more than half of’ rules out the possibility that
(12) is formalized in L. Certainly, it undermines the claim that there are
sentences of L that have the same meaning as (12). But if logical form is
determined by truth conditions, such a claim makes little sense anyway, even
in the case of (1) and (8). For formalization is not a matter of translation,
but a matter of representation of truth conditions.

Instead of asking whether a quantifier expression is first order definable,
one may ask whether it is first order expressible, that is, whether it denotes
a quantifier that satisfies the following condition:

Definition 5. A quantifier Q is first order expressible if and only if, for every
setD and A,B ✓ D, there is an adequate formula ↵ of L containing two unary
predicate letters such that QD(A,B) if and only if ↵ is true in a structure
with domain D where the predicate letters denote A and B.

The sense in which ↵ is required to be adequate is the same sense in which
a formalization is expected to be adequate, as explained in section 1.1: ↵
must represent what is said, relative to D, by a sentence which contains a
quantifier expression that denotes Q and two predicates for A and B. Clearly,
adequacy so understood cannot be phrased in formal terms, as the notion of
what is said is irreducibly vague. However, the condition that ↵ is adequate
is clear enough for the purposes at hand, or so it will be assumed.

To see how adequacy matters, it su�ces to think that a trivial proof of the
existence of ↵ can easily be provided if no such condition is imposed on ↵.
For it easy to find some ↵ that has the required truth value in the structure
for independent reasons. For example, if QD(A,B) and ↵ is a logical truth,
then QD(A,B) if and only if ↵ is true in the structure. However, it is clear
that in this case ↵ is not adequate. The same goes for similar trivial proofs of
the existence of ↵. What is not trivial, instead, is to prove the existence of an
adequate ↵. As it will be shown, ‘more than half of’ is first order expressible,
in that for every D and A,B ✓ D, there is an adequate sentence ↵ of L
containing two predicate letters such that more than half of D(A,B) if and
only if ↵ is true in a structure with domain D where the predicate letters
denote A and B.

The proof that will be provided rests on two assumptions. The first is
that A and B are finite. This is an assumption that one can plausibly make
when one restricts attention to natural language, for ‘more than half of’ is
normally used to state relations between finite quantities, as indicated by the
proportion 1/2 that occurs in definition 4. This is not to deny that ‘more than

10 As in Barwise and Cooper [?], p. 159.
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half of’ can be used in some intelligible way for infinite domains. Presumably,
some technical or semi-technical meaning can be specified for that purpose.
However, infinitary uses of ‘more than half of’ will not be considered in what
follows. Independently of how such uses relate to the ordinary understanding
of the expression, the reasoning simply will not apply to them11.

The second assumption is that, if what is said by s relative to D is that at
least n As are Bs, then a formula of L that contains n occurrences of 9 and
two unary predicates P and Q can provide an adequate representation of s.
More precisely, let the symbol 9�n be used to abbreviate formulas of L in the
following way: 9�nx̄↵(x̄) means 9x1...9xn(↵(x1) ^ ... ^ ↵(xn)

V
1i<jn xi 6=

xj), where ↵(xi) is a formula in which xi occurs free, and in the second part
of the conjunction every xi is said to di↵er from every other. Then, if what
is said by s relative to D is that at least n As are Bs, then the following
formulas adequately represents s:

(13) 9�nx̄P (x̄) ^Q(x̄)

For example, suppose that D includes some persons, and that three of them
are philosophers. Then what is said by (12) relative to D is that at least
two philosophers are rich, which is adequately represented by the formula
9x9y(Px ^Qx ^ x 6= y).

Given these two assumptions, the first order expressibility of ‘more than
half of’ can be proved in two steps.

Theorem 1. If A,B ✓ D, there is an n such that | B |> 1/2 | A | if and
only if | B |� n.

Proof. Let F be a function defined as follows. If m = 0, then F (m) = 1. If
m > 0 and m is even, then

F (m) =
m+ 2

2

If m > 0 and m is odd, then

F (m) =
m+ 1

2

Let | A |= m and n = F (m). n is such that | B |> 1/2 | A | if and only if
| B |� n. Suppose that m = 0. Then 1/2 | A |= 0 and F (m) = 1, so | B |> 0
if and only if | B |� 1. Suppose that m > 0 and m is even. Then there is a k

such that m = 2k, hence | B |> 1/2 | A | if and only if | B |> k. Moreover,

F (m) =
m+ 2

2
=

2k + 2

2
=

2(k + 1)

2
= k + 1

Therefore, | B |> k if and only if | B |� k + 1. Finally, suppose that m > 0
and m is odd. Then there is a k such that m = 2k+1, hence | B |> 1/2 | A |
11 Barwise and Cooper [?], p. 163, consider infinitary uses of ‘more than half of’.
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if and only if | B |> k + 1/2. By hypothesis, | B | is a natural number, so
| B |> k + 1/2 if and only if | B |> k. Moreover,

F (m) =
m+ 1

2
=

2k + 1 + 1

2
=

2(k + 1)

2
= k + 1

Therefore, | B |> k if and only if | B |� k + 1.

Theorem 2. For every D and A,B ✓ D, there is an adequate sentence ↵ of L

that contains two unary predicate letters such that more than half ofD(A,B)
if and only if ↵ is true in a structure with domain D where the predicate

letters denote A and B.

Proof. Let A,B ✓ D. From theorem 1, replacing B with A \B, it turns out
that there is an n such that | A \ B |> 1/2 | A | if and only if | A \ B |� n.
By definition 4, there is an n such that more than half of D(A,B) if and only
if | A \ B |� n. The condition that | A \ B |� n is adequately expressed in
L by (13). Moreover, (13) is true in a structure with domain D where P and
Q denote A and B, and more than half the As are Bs12.

Theorem 1 expresses the obvious truth that, for every finite set, there is an
n such that saying ‘more than half of’ amounts to saying ‘at least n’. This
guarantees that, although the global quantifier more than half of is charac-
terized by a proportional relation, each local quantifier more than half of D

fixes a non-proportional relation expressible in L. Theorem 2, accordingly,
“squeezes” a proportional relation on a set of non-proportional relations. So
we get that, for any domain, (12) has a logical form representable in L relative
to that domain. This means that, for any interpretation, (12) has a logical
form representable in L relative to that interpretation.

1.5 Generalization

The account of ‘more than half of’ suggested in section 1.4 may easily be ex-
tended to other quantifier expressions whose meaning is definable in terms of
proportional relations, such as ‘most’, ‘few’ and ‘many’. Even though ‘most’,
‘few’ and ‘many’ exhibit a kind of indeterminacy that does not a↵ect ‘more
than half of’, in that they admit multiple admissible readings, this di↵erence
does not prevent them from being amenable to the same kind of treatment
that applies to ‘more than half of’.

To illustrate, let us focus on ‘most’. A basic fact about its meaning seems to
be that the condition stated in definition 4 must be satisfied for the intended
relation to obtain. Consider the following sentence:

12 The number triangle method outlined by Peters and Westerst̊ahl in [?], pp. 160-161,

provides a clear visual representation of the fact that more than half determines an n on

every finite domain.
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(14) Most philosophers are rich

If one utters (14), one says at least that more than half of philosophers are
rich. However, this is a necessary but not a su�cient condition. Although
‘most’ may be used as synonymous of ‘more than half of’, its meaning seems
to allow for variation in the proportion between the size of A \ B and the
size of A. In order to account for this variation, a definition of most may be
given along the following lines:

Definition 6. mostD(A,B) if and only if | A \B |> n/m | A |

Here 0 < n < m and n/m � 1/2. For example, 1/2 and 2/3 are equally
admissible values for n/m. In other words, most is defined as a class of quan-
tifiers rather than as a single quantifier. Consequently, the meaning of (14)
may be described as a class of functions from domains to truth conditions
that is obtained by combining most with the meanings of ‘philosophers’ and
‘rich’. This means that (14) di↵ers from (12), in that the determination of its
truth conditions involves a parameter other than the domain. Let A and B be
the sets denoted by ‘philosophers’ and ‘rich’ relative to D. Whether mostD

obtains between A and B depends on the values assigned to n and m. For ex-
ample, if n = 2 and m = 3, then it obtains just in case | A\B |> 2/3 | A |. In
order to determine definite truth conditions for (14), we need both a domain
and a value of the additional parameter13.

If most is defined in the way suggested, the distinction between first order
definability and first order expressibility drawn in section 1.4 can be applied
to (14). Although it is a fact that ‘most’ is not first order definable, on the
assumption that logical form is determined by truth conditions (15) can be
formalized in L independently of this fact. For what matters is that ‘most’ is
first order expressible14.

To show that (14) can be formalized in L, it su�ces to prove a squeezing
result similar to theorem 2. This can be done by means of a generalization of
theorem 1: if A,B ✓ D and 0 < n < m, there is a k such that | B |> n/m | A |
if and only if | B |� k. From such generalization it follows that, for every D

and A,B ✓ D, there is an adequate sentence ↵ of L that contains two unary
predicate letters such that mostD(A,B) if and only if ↵ is true in a structure
with domain D where the predicate letters denote A and B.

As in the case of ‘most’, the meanings of ‘few’ and ‘many’ may be defined as
classes of quantifiers few and many. So it may be assumed that the meaning
of the following sentences is obtained by combining few and many with the
meanings of ‘philosophers’ and ‘rich’:

(15) Few philosophers are rich

13 Definition 6 is in line with the suggestion in Barwise and Cooper [?], p. 163, and the

account in Westerst̊ahl [?], pp. 405-406. In the latter work, two readings of ‘most’ are

considered. But if definition 6 is adopted there seems to be no reason to do that.
14 Peters and Westerst̊ahl, in [?], pp. 466-468, outline a proof method that can be employed
to show that ‘most’ and other proportional quantifiers are not first order definable.
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(16) Many philosophers are rich

The meaning of (15) and (16) may thus be described as a class of functions
from domains to truth conditions. This suggests that, as in the case of most,
a squeezing argument can be provided to the e↵ect that few and many are
first order expressible15.

In substance, (14)-(16) can be treated in the same way as (12), with the
only di↵erence that in the case of (14)-(16) some parameter other than the
domain must be taken into account as relevant to the determination of truth
conditions. Therefore, on the assumption that an interpretation of (14)-(16)
includes both a domain and a value for such a parameter, it turns out that,
for every interpretation of (14)-(16), there is a formula of L that represents
the truth conditions of (14)-(16) relative to that interpretation.

1.6 Logicality

The point that emerges from sections 1.4 and 1.5 is that it must not be
assumed that first order definability is the property to be considered in or-
der to settle the question whether quantified sentences can adequately be
formalized in a classical first order language. On the formal account of quan-
tified sentences suggested here, the property to be considered is first order
expressibility. This does not mean, however, that first order definability is
not a significant property. As it will be suggested, there is a straightforward
relation between first order definability and logicality.

The quantifier expressions traditionally studied by logicians, such as ‘all’
or ‘some’, have always been regarded as paradigmatic examples of logicality.
However, there are many more quantifier expressions than those traditionally
studied by logicians. So it is natural to ask whether all quantifier expressions
must be classified as logical. According to Barwise and Cooper they must
not, in that there is no reason to think that the meaning of every quantifier
expression is to be “built into the logic”. A distinction must be drawn between
logical and non-logical quantifier expressions: ‘all’ and ‘some’ belong to the
first category, while ‘more than half’, ‘most’, ‘many’ and ‘few’ belong to
the second. The method of formalization adopted here provides one way to
substantiate this distinction16.

We saw that, for every interpretation of a quantified sentence s, there is a
formula of L that represents the truth conditions of s on that interpretation.
Therefore, di↵erent formulas of L may represent s on di↵erent interpretations.
But there are basically two ways in which the formal representation of s can
vary as a function of its interpretation. Consider (1) and (12). In the case

15 The case of ‘few’ and ‘many’ is definitely more controversial. For example, Keenan and
Stavi [?] excludes that ‘few’ and ‘many’ can be treated in this way.
16 Barwise and Cooper [?], p. 162.
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of (1), the variation concerns at most the non-logical vocabulary of L, as
in (9) and (10). In the case of (12), instead, it may also concern the logical
vocabulary of L. For example, the following formulas of L represent the logical
form of (12) on di↵erent interpretations:

(17) 9�3x̄P (x̄) ^Q(x̄)
(18) 9�4x̄P (x̄) ^Q(x̄)

One thing is to say that more than half of five things have a certain property,
quite another thing is to say that more than half of six things have that
property.

The contrast between the two cases considered may be described in terms
of two kinds of variation in the formal representation of a sentence s. A weak

variation in the formal representation of s depends on some di↵erence in
the non-logical vocabulary of the formulas assigned to s. Instead, a strong

variation in the formal representation of s depends on some di↵erence in the
logical vocabulary of the formulas assigned to s. So, the first case may be
described as one in which a di↵erence between two interpretations entails
weak variation in the formal representation of (1), as in (10) and (11), while
the second may be described as one in which a di↵erence between two inter-
pretations entails strong variation in the formal representation of (13), as in
(18) and (19).

There is a plausible sense in which weak variation, unlike strong variation,
does not entail di↵erence in logical form. This is to say that sameness of

logical form may be understood in terms of weak variation: s has the same
logical form on two interpretations if and only if the di↵erence between them
entails at most weak variation in the formal representation of s. Logicality
may be defined in terms of sameness of logical form so understood:

Definition 7. A quantifier expression is logical if and only if every quantified
sentence in which it occurs has the same logical form on all interpretations17.

From definition 7 it turns out that ‘all’ is logical. For (1) has the same log-
ical form on all interpretations, whether or not its formalization includes a
restricting condition. The same goes for (8). By contrast, ‘more than half of’,
‘most’, ‘many’ and ‘few’ are non-logical, for (12) and (14)-(16) have di↵erent
logical forms on di↵erent interpretations.

Note that the sense of ‘logical’ provided by definition 7 is essentially rela-
tive, in that it depends on the choice of logical constants that underlies the
language in which logical forms are expressed. On the assumption that logical
forms are expressed in L, ‘logical’ is to be read as relative to L. This, however,
should not be regarded as a flaw. Definition 7 is neutral with respect to the
notoriously controversial question of whether an absolute criterion of logical
constancy can be specified in non-circular way. If the answer to that question

17 Note that, given the restriction mentioned in section 1.2, ‘quantified sentence’ refers to

simple quantified sentences such as (1) or (12). This rules out obvious counterexamples

such as ‘Most but not all philosophers are rich’.
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is a�rmative, then it is presumable that some independent justification of
the choice of logical constants that underlies L can be provided. If it is neg-
ative, instead, then the choice of logical constants that underlies L is itself
in need of justification, so an account of logicality based on L is definitely
circular. Even though it is arguable that only in the first case we can get an
interesting distinction between logical and non-logical quantifier expressions,
in any case the relativity involved in definition 7 causes no trouble by itself.

There is a straightforward relation between logicality so defined and first
order definability:

Theorem 3. Every logical quantifier expression is first order definable.

Proof. Let us assume that e is a logical quantifier expression that denotes a
quantifier Q, and that s is a quantified sentence in which e occurs. Let ↵ be
a formula of L which contains two predicate letters and represents the truth
conditions of s on some interpretation with domain D. Then it must be the
case that, for A,B ✓ D, QD(A,B) if and only if ↵ is true in a structure with
domain D where the predicate letters in ↵ denote A and B. Now take any
domain D

0. For some interpretation with domain D

0, there is a formula ↵

0 of
L such that ↵0 represents the truth conditions of s, so that, for A0

, B

0 ✓ D

0,
QD0(A0

, B

0) if and only if ↵0 is true in a structure with domain D

0 where the
predicate letters in ↵

0 denote A0 and B

0. But since e is logical, s has the same
logical form on all interpretations. This means that ↵ and ↵

0 di↵er at most
in the predicate letters. Therefore, ↵0 is true in a structure with domain D

0

where the predicate letters in ↵

0 denote A

0 and B

0 if and only if ↵ is true in
a structure with D

0 where the predicate letters in ↵ denote A

0 and B

0. This
is to say that ↵ satisfies the condition required by definition 3, so that e is
first order definable.

Theorem 3 characterizes logical quantifier expressions as first order definable
quantifier expressions. This characterization entails that every quantifier ex-
pression that is not first order definable is not logical. So, the point that
has been made in sections 1.4 and 1.5 may be refined as follows. Quanti-
fier expressions such as ‘more than half of’, ‘most’, ‘few’ and ‘many’ are not
first order definable. But this does not entail that the quantified sentences
in which they occur cannot be formalized in a classical first order language.
What it entails is at most that they are not logical18.

18 There is an interesting convergence between the account of logical quantifier expressions
suggested here and the independently motivated account outlined in Feferman [?], see p.
140. As it is noticed in that work, pp. 144-145, it is not as obvious as it might seem that

the converse of theorem 3 is guaranteed to hold.
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1.7 Conclusion

From the analysis of quantified sentences suggested in the previous sections
it turns out that there is something right and something wrong in each of
the two views considered in section 1.1. On the one hand, there is a sense
in which it is right to say that (1) and (2) are structurally di↵erent, namely,
that in which (1) and (2) are adequately represented as (3) and (4) in order
to formally explain the inferences involving them. On the other, there is a
sense in which it is right to say that (1) and (2) are structurally similar,
namely, that in which (1) and (2) are adequately represented as (5) and (6)
in order to provide a compositional account of their meaning. What is wrong
is to think that there must be a unique sense in which either (1) and (2) are
structurally di↵erent or they are structurally similar. On the understanding
of logical form that is suitable to address (Q1) they are structurally di↵erent,
while on the understanding of logical form that is suitable to address (Q2)
they are structurally similar. This is just another way of saying that there
is no unique answer to the question of what is the logical form of quantified
sentences.


