
Computation of higher order Lie derivatives on the Infinity
Computer

F. Iavernaroa, F. Mazziab,∗, M.S. Mukhametzhanovc,d, Ya.D. Sergeyevc,d

aDipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Italy
bDipartimento di Informatica, Università degli Studi di Bari Aldo Moro, Italy

cDIMES, Università della Calabria, Italy
dIITMM, Lobachevsky State University of Nizhni Novgorod, Russia

Abstract

In this paper, we deal with the computation of Lie derivatives, which are required, for example,
in some numerical methods for the solution of differential equations. One common way for
computing them is to use symbolic computation. Computer algebra software, however, might
fail if the function is complicated, and cannot be even performed if an explicit formulation of
the function is not available, but we have only an algorithm for its computation. An alternative
way to address the problem is to use automatic differentiation. In this case, we only need the
implementation of the algorithm that evaluates the function in terms of its analytic expression
in a programming language, but we cannot use this if we have only a compiled version of the
function. In this paper, we present a novel approach for calculating the Lie derivative of a
function, even in the case where its analytical expression is not available, that is based on the
Infinity Computer arithmetic. A comparison with symbolic and automatic differentiation shows
the potentiality of the proposed technique.

Keywords: Lie derivatives, Ordinary differential equations, Multi-derivative methods,
Derivatives computation, Numerical infinitesimals, Infinity Computer.
2010 MSC: 65L06, 65D25

1. Introduction

Lie derivatives play an important role in many mathematical and physical problems [1]. In
particular, many methods in nonlinear control and system theory require the computation of Lie
derivatives [2]. In this paper, we restrict our attention to the use of Lie derivatives in numerical
methods for the solution of differential equations

y(t)′ = f(y(t)), y(t0) = y0, (1)

where f : Rm → Rm,m ≥ 1, is a Cl, l ≥ 1, function on its domain and y0 ∈ Rm is assigned. To get
an intuitive understanding, Lie derivatives can be considered as total derivatives of certain fields
along the solution of a differential equation. One of the main motivations for such an interest
is the recent introduction of a class of multiderivative methods in the context of geometric
integration [3, 4, 5]. When applied to canonical Hamiltonian problems, these methods have been

∗Corresponding author
Email addresses: felice.iavernaro@uniba.it (F. Iavernaro), francesca.mazzia@uniba.it (F. Mazzia),

m.mukhametzhanov@dimes.unical.it (M.S. Mukhametzhanov), yaro@dimes.unical.it (Ya.D. Sergeyev)

Preprint submitted to Elsevier July 21, 2020



shown to be conjugate-symplectic up to order p + 2, where p denotes the order of convergence.
This property makes them eligible for the numerical simulation of Hamiltonian problems over
long times, provided that a reliable and efficient technique to compute the derivatives of the
function f(y(t)) is available, where y(t) is implicitly defined by the differential problem itself
(see (1)).

Two standard approaches to attack the problem of determining Lie derivatives in an automatic
procedure make use of Symbolic Differentiation and Automatic Differentiation. The former
exploits expression manipulation in computer algebra systems and is available in many problem
solving environment such as Mathematica, Maxima, Maple and Matlab. Computer algebra
software, however, could fail if the function is complicated and could not even be performed if
an explicit analytic formulation of the function is not available at all.

In contrast, Automatic Differentiation (AD) can successfully operate also in the case where
the function is defined through an algorithm implemented in a suitable programming language
but would be useless if only a compiled version of the source code is available. AD refers
to a family of techniques that compute derivatives through accumulation of values during code
execution to generate derivative evaluations rather than derivative expressions. This, in general,
allows estimations of derivatives whose accuracy is close to the underlying machine precision.

The website http://www.autodiff.org reports updated informations about papers and soft-
ware available for AD. We refer to [6] for a survey on Automatic Differentiation in Machine Learn-
ing, and to [7] for a benchmark of selected algorithmic differentiation tools in the same field of
research. Here the authors compare hand-derivative computation, finite differences, two symbolic
differentiation tools, and 11 automatic differentiation tools written in different languages. The
analyzed problems are simple objective functions from computer vision and machine learning.
Simple means that there are no iterative loops and conditional statements are encapsulated in
functions such as abs, log, sum or exp. Many problems in machine learning are of this form
because the objective function should be handled efficiently by the differentiation tool.

We stress that many of the existing computational platforms are not equipped with functions
for computing Lie derivatives. One toolbox that allows the computation of Lie derivatives is
ADOL-C, a c++ package for automatic differentiation of algorithms written in C/C++ [8, 9, 10].

Additional techniques are those based on dual numbers [11, 12] and hyperdual numbers theory
[13], that allow the computation of the first derivative and of the second derivative respectively,
and the ones based on complex and multicomplex numbers [14]. This latter can be used for
computing derivatives of any order [14].

A framework that allows an automatic and easy computation of derivatives is provided by the
Infinity Computer, a computational platform able to handle infinite and infinitesimal numbers
and to execute operations on them. Interestingly, the differentiation tool devised inside this
environment can successfully be applied even to black-box functions, namely functions whose
analytical expression may be not accessed. In other words, the function f may be given by a
code or formula which are unknown to the user. He/she provides an argument y and obtains a
result f(y) without any knowledge about how this result has been obtained. As was emphasized
above, in this case the user cannot calculate exact derivatives either analytically or symbolically
(see [3, 15, 16, 17, 18]).

This tool has been theoretically analysed in [18] and extended to Lie derivatives in [15, 16,
17, 19] where Taylor methods for solving (1) have been proposed and in [3] where the class of
multiderivative Euler-MacLaurin methods has been analyzed.

The Infinity Computer is based upon a positional numeral system with the infinite radix ¬
(called grossone) representing the number of elements of the set of natural numbers N. For a
complete description of the related theory we refer the reader to [20, 21, 22, 23, 24, 25].

A number C in this system, called grossnumber, is a linear combination of powers of ¬ of the

2



form
C = cpm

¬pm + . . .+ cp1
¬p1 + cp0

¬p0 + cp−1
¬p−1 + . . .+ cp−l

¬p−l , (2)

where all numerals ci 6= 0 belong to a traditional numeral system and are called grossdigits, while
numerals pi, that may be finite, infinitesimal or infinite, are sorted in the decreasing order

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(l−1) > p−l,

with p0 = 0 and called grosspowers. A grossnumber has a finite part if the grossdigit associated
with the grosspower p0 is different from zero (see [25, 26] and the patents [27] for details).

Terms having finite positive grosspowers represent the simplest infinite parts of C. Anal-
ogously, terms having negative finite grosspowers represent the simplest infinitesimal parts of
C. For example, the number C1 = 2¬−1 + 3.54¬−2 represents only infinitesimal parts, the
number C2 = −5.34 · 10−3¬2 + 2.77 · 105¬1 represent only infinite parts, while their sum
C3 = C2 + C1 = −5.34 · 10−3¬2 + 2.77 · 105¬1 + 2¬−1 + 3.54¬−2 brings both infinite and
infinitesimal quantities. A number is called purely finite if it does not contain infinitesimal
parts. Hereinafter, for the sake of simplicity, we will call these numbers just finite. In positional
notation, a grossnumber takes the form

C = cpm
¬pm . . . cp1

¬p1cp0
¬p0cp−1

¬p−1 . . . cp−l
¬p−l .

So, for example, the number C3 is represented as C3 = (−5.34·10−3)¬22.77·105¬12¬−13.54¬−2.
As we will see, for the computation of the derivative, the simplest grossnumber used is

¬−1, which corresponds to evaluate the Lie derivative using forward finite difference with an
infinitesimal step.

Besides the computation of derivatives, the ¬-based methodology has been successfully ap-
plied in several areas of Mathematics and Computer Science: e.g., in optimization (see [28, 29,
30, 31, 32, 33, 34]) and going through infinite series (see, e.g., [25, 35]), in modeling and numer-
ical simulation ([3, 15, 36, 37]), fractals and cellular automata (see [38, 39]), the first Hilbert
problem and Turing machines (see [25, 40]), infinite decision making processes, game theory, and
probability (see [41, 42, 43, 44]), etc.

The paper is organized as follows. In Section 2, we give a brief review about the technique
used for the computation of standard derivatives of a function y(t) using the Infinity Computer.
Section 3 focuses on the computation of Lie derivatives, and a new technique is introduced and
analyzed. Finally, in Section 4, the techniques presented are compared with algorithms based on
symbolic differentiation and automatic differentiation using Matlab.

2. Differentiation techniques using the Infinity Computer

The computation of the derivatives using the Infinity Computer has been first derived in
[18]. It is worth noting that, since the Infinity Computer works numerically (not symbolically),
the algorithm that performs the evaluation of the derivative only needs an implemented version
of the function y = g(x) as input. In fact, we will see that a suitable numerical evaluation of this
function on the Infinity Computer will allow the users to get the requested evaluation of g′(x)
with an accuracy close to the unit roundoff. For completeness we report the related theorem
whose proof may be found in [18]:

Theorem 1. Assume that:

(i) for a function g(x) evaluated by a procedure implemented on the Infinity Computer there
exists an unknown Taylor expansion in a finite neighborhood δ(u) of a finite point u;

3



(ii) g(x), g′(x), g′′(x), · · · , g(l)(x) assume finite values or are equal to zero for finite x ∈ δ(u);

(iii) g(x) has been evaluated at a point u+ ¬−1 ∈ δ(u).

Then the Infinity Computer returns the result of this evaluation in the positional numeral system
with the infinite radix ¬ in the following form

g(u+ ¬−1) = c0¬0c1¬−1c2¬−2 . . . c(l−1)¬
−(l−1)cl¬

−l . . . ,

where
g(u) = c0, g′(u) = c1, g′′(u) = 2!c2, . . . , g(l)(u) = l!cl.

To better understand this result, we report an example where the function g(x) is evaluated,
using an infinitesimal step, in g(x + ¬−1). All the arithmetic operations are performed using
the arithmetic that works on grossnumbers. For simplicity, we choose the simple polynomial
function

g(u) = u4 + 2u.

To compute the derivatives of g at a finite point x, we perform on the Infinity Computer arith-
metic the evaluation of g(u) at x+ ¬−1:

g(x+ ¬−1) = (x+ ¬−1)(x+ ¬−1)(x+ ¬−1)(x+ ¬−1) + 2(x+ ¬−1),

that is

x4+4x3¬−1+6x2¬−2+4x¬−3+¬−4+2x+2¬−1 = (x4+2x)¬0(4x3+2)¬−1(6x2)¬−2(4x)¬−3¬−4.

It is clear that the derivatives of the function are contained in the coefficients of the Taylor
expansion of g. Observe that the computation is performed numerically and not symbolically,
so the obtained results are exact up to machine precision.

Moreover, it should be stressed that this procedure is completely different from the one related
to the dual and hyper-dual numbers and to multi-complex number. In facts, using the Infinity
Computer it is possible to compute derivatives of any order. Other examples related to the
computation of the derivatives could be found in [18].

3. Computation of Lie derivatives

Some classes of methods for the solution of the differential equation (1) use Lie derivatives at
each step. A relevant example is the class of Hermite–Obreshkov (HO) linear multistep methods
[45], which take the form

k∑
i=0

αiyn+i =

l∑
j=1

hj
k∑

i=0

βjiy
(j)
n+i, (3)

where y
(j)
n+i denotes an approximation to the j-th derivative of the solution y(t) at tn+i, with

tn+i = tn + ih, and is defined below at formula (5). Recently, we have analyzed four different one
step (k = 1) HO methods: the Euler–Maclaurin methods, which are higher derivative collocation
methods deriving their name from the well-known Euler–Maclaurin integration formula; the BS
Hermite Obreckoff methods based on B-spline collocation [5]; the Multi-Derivative Midpoint and
Trapezoidal methods, generalizations of the midpoint and the trapezoidal rule respectively based
on the implicit and explicit Taylor expansions up to a given order [4].

4



Let us now remind that if the Initial Value Problem (IVP) is scalar and autonomous the first
four derivatives of y(t) in terms of the function f are:

y′(t) = f(y(t)),

y′′(t) = f ′(y(t))f(y(t)),

y′′′(t) = f ′′(y(t))(f(y(t))2 + (f ′(y(t)))2f(y(t)),

y(iv)(t) = f ′′′(y(t))(f(y(t)))3 + 4f ′′(y(t))f ′(y(t))(f(y(t)))2 + (f ′(y(t)))3f(y(t)).

(4)

If we apply a numerical method such as (3), the involved Lie derivatives are defined as

y(j)n := Dj−1f(yn), j = 1, 2, . . . , l, (5)

where

- D0 = I is the identity operator;

- the operator Dlf(u) is defined as the l-th total derivative of f(y(t)) computed at y(t) = u,
assuming that y(t) satisfies the differential equation in (1).

We have used the subscript to define this operator to avoid confusion with the same order
classical derivative operator denoted by Dl. Of course, the two operators yield the same result
when applied to the projection of the true solution y(t) on the mesh points but, in general, they
will differ.

The techniques for computing the derivatives based on symbolic or automatic differentiation
can be used to obtain the desired result [9]. Recall that (see [46] ) working with a system
of differential equations, that is with m > 1 the analytical computation of the j-th derivative
y(j) involves a tensor of order j and the computation becames, in general, more involved. For
example,

y′′(t) =
d

dt
f(y(t)) = f ′(y(t)) f(y(t)),

where f ′(y) := ∂f
∂y is a m×m matrix (tensor of rank 2) denoting the Jacobian of f with respect

to y. Analogously, for the third derivative we get

y′′′(t) =
d

dt

(
f ′(y(t)) f(y(t))

)
= f ′′(y)(f(y), f(y)) + (f ′(y(t)))2f(y(t)),

where f ′′(y) := ∂2f
∂y2 (y(t)) is a tensor of rank 3 and dimension m×m×m, that is a bilinear map.

One further differentiation would yield

y(iv)(t) = f ′′′(y(t))(f(y(t)), f(y(t), f(y(t)) + 3f ′′(y(t))(y′′(t), f(y(t))) + f ′(y(t))y′′′(t),

where the third derivative f ′′′(y) := ∂3f
∂y3 (y(t)) is a tensor of rank 4 and dimension m×m×m×m,

that is a trilinear map. Notice that the computation of y(j), j ≥ 1 according to the formulae
above, would require O(mj) function evaluations and as many multiplications. It turns out that
for large m and j, methods based on such formule would be too time consuming to be practical.

The only technique that does not produce a huge increase in its computational complexity
when evaluating Lie derivatives of increasing order is the one based on finite differences: this is
the approach adopted on the Infinity Computer. In fact, this strategy only requires the evaluation
of the function f in some specific values yn thus avoiding the use of tensor matrices.

5



Two techniques for computing the l-th Lie derivative y
(l)
n have been developed in [3, 16]. The

first one is based on finite differences computed on approximations of y(t) using infinitesimal
steps: this strategy will be referred to as FDY. The second one is based on finite differences
computed on approximations of f(y(t)) (strategy FDF). Here we propose a new technique that
outperforms the previous ones, based on the explicit Taylor Method (ETM). Hereafter we illus-
trate the three possible approaches.

3.1. Strategies FDY and FDF

Strategy FDY was first proposed in [16] and consists in performing l infinitesimal steps
starting at time tn using the explicit Euler formula with stepsize h = ¬−1 as follows:

yn,1 = yn + ¬−1f(yn), yn,2 = yn,1 + ¬−1f(yn,1), . . . , yn,l = yn,l−1 + ¬−1f(yn,l−1).

Then, the values of the needed derivatives are obtained by means of the forward differences

F l
¬−1 [yn,0, yn,1, . . . , yn,l] =

l∑
j=0

(−1)j
(
l

j

)
yn,l−j , yn,0 = yn, (6)

as follows

y
(l)
i = Dl−1f(yn) =

F l
¬−1 [yn,0, yn,1, . . . , yn,l]

¬−l
+O(¬−1). (7)

As was proven in [16], since the error of the approximation is O(¬−1), the finite part of the value

F l
¬−1 [yn,0, yn,1, . . . , yn,l]

¬−l

gives the exact derivative y
(l)
n .

In strategy FDF finite differences are employed directly on the value of f as follows:

y(l)n = Dl−1f(yn) =
F l−1

¬−1 [f(yn,0), f(yn,1), . . . , f(yn,l−1)]

¬−(l−1)
+O(¬−1). (8)

In [3], it has been proved that formulae (7) and (8) are equivalent.

3.2. Strategy ETM

The new proposed strategy uses the explicit Taylor expansion for approximating the differ-
ential equation (1) and is based on the following result.

Theorem 2. Let f : Ω ⊂ Rm → Rm, m ≥ 1, be a Cl function on an open domain Ω and u ∈ Ω
be assigned. Assume that:

(a) for the function f(z) calculated by a procedure implemented on the Infinity Computer there
exists an unknown Taylor expansion in a finite neighborhood δ(u) of the point u;

(b) all partial derivatives up to order k of f assume finite values or are equal to zero for finite
z ∈ δ(u);

(c) all the Lie derivatives Dj−1f(u), j = 1, . . . , l, for some l ≥ 1 are known.

6



Then, given the truncated B-series expansion

Bl(u) = u+ ¬−1f(u) +
¬−2

2
D1f(u) + · · ·+ ¬−(l)

l!
Dl−1f(u),

the coefficient of ¬−l in the Taylor expansion of f(Bl(u)) multiplied by l! is equal to the Lie
derivative Dlf(u).

Proof. We first prove the assertion for l = 1. To simplify the notation, but without loss of
generality, we consider m = 1. We have that B1(u) = u + ¬−1f(u). The Taylor expansion of
f(B1(u)) is

f(B1(u)) = f(u+ ¬−1f(u)) = f(u) + ¬−1
∂f

∂y
(u)f(u) +O(¬−2) = f(u) + ¬−1D1f(u) +O(¬−2),

so the coefficient of ¬−1 is D1f(u) and the theorem is stated. For l = 2 we obtain

f(B2(u)) = f(u+ ¬−1f(u) +
¬−2

2
D1f(u)) =

f(u) + ¬−1
∂f

∂y
(u)f(u) +

¬−2

2
(
∂f

∂y
(u)D1f(u) +

∂2f

∂y2
(u)f2(u))) +O(¬−(3)),

and again the coefficients associated with ¬−1 and ¬−2 are D1f(u) and D2f(u)/2 respectively.
To prove the results for a generic index l we need to apply the theory of B-series, since the
Taylor expansion may be viewed as a special B-series method. The result is proved with similar
arguments as in [46, Theorem 1.9, page 58]. 2

Let us go back to the question of evaluating the Lie derivatives (5) needed by formula (3).
The ETM computes the Lie derivative iteratively, at each step of the computational procedure,
starting from D1f(yn).

The first step of the ETM is the same as the one resulting from the FDF approach: we
perform one step of the explicit Euler method with stepsize ¬−1, that corresponds to the first
order explicit Taylor method; we truncate all the terms of order higher than one in ¬−1; we get
D1f(yn) as the coefficient associated with the grosspower −1 of f(B1(yn)).

After this step D1f(yn) is available, and hence it is possible to execute one step of the explicit
Taylor method of order two using as integration step ¬−1 and grosspowers up to −2. We obtain:

B2(yn) = yn + ¬−1f(yn) +
¬−2

2
D1f(yn).

Now given f(B2(yn)) by Theorem 2 we can compute D2f(yn) as the coefficient of the
grosspower −2 multiplied by 2.

More in general, the algorithm to obtain the derivative up to order l is the following. Starting
from f(yn), for j = 1, . . . ,l, form the truncated B-series Bj(yn) of order j,

Bj(yn) = yn +

j∑
s=1

¬−s

s!
Ds−1f(yn).

Then compute the Taylor approximation of f(Bj(yn)) using grosspowers up to−j. The coefficient
of the grosspower −j of this expansion multiplied by j! is equal to the Lie derivative Djf(yn).

The main advantage of ETM is that its computational cost is far lower than those resulting
from the FDY and FDF strategies, for the following reasons:

7



1. We do not need to compute approximations of the solution at several mesh-points tn +j¬−1,
but we compute approximations of increasing order at tn + ¬−1.

2. All the computations in (7) (strategy FDY) should be performed using the grosspowers up
to −l. A slight improvement is yielded by strategy FDF, since formula (8) allows us to
work with the numbers using only the grosspowers up to −(l−1). In contrast, ETM allows
us to use a variable number of grosspowers, starting from −1 and increasing the value for
each new derivative computed, up to −(l − 1).

To better elucidate this aspect, let us consider the following example taken from [3, 17].

Example 1. Let us consider the following initial value problem:

dy

dt
= f(t, y) :=

y − 2ty2

1 + t
, y(t0) = 0.4, (9)

whose exact solution is

y(t) =
1 + t

2.5 + t2
. (10)

The problem has been rewritten as an autonomous system, but to simplify the notation we leave
the dependence on t in the description. We would like to find the first 3 derivatives D1f(t0, y0),
D2f(t0, y0) and D3f(t0, y0) of the solution y(t) at the point t0 = 0. Differentiating (10) we get
the exact values of these Lie derivatives:

D1f(t0, y0) = −0.32, D2f(t0, y0) = −0.96, D3f(t0, y0) = 1.536.

Now, let us find these derivatives using the FDY approach. First, we perform 3 iterations of the
Euler method with integration step ¬−1, truncating all values after the grosspower −4:

y1 = y0 + ¬−1f(t0, y0) = 0.4 + 0.4¬−1,

y2 = y1 + ¬−1f(t0 + ¬−1, y1) = 0.4 + 0.8¬−1 − 0.32¬−2 − 0.32¬−3,

y3 = y2 + ¬−1f(t0 + 2¬−1, y2) = 0.4 + 1.2¬−1 − 0.96¬−2 − 1.92¬−3 + 1.344¬−4,

y4 = y3 + ¬−1f(t0 + 3¬−1, y3) = 0.4 + 1.6¬−1 − 1.92¬−2 − 5.76¬−3 + 6.912¬−4.

Applying formulae (7) and (6), we obtain

D1f(t0, y0) ' ¬2 · F 2
¬−1 [y0, y1, y2] = ¬2 · (y2 − 2y1 + y0)

= ¬2 · (0.4 + 0.8¬−1 − 0.32¬−2 − 0.32¬−3 − 2(0.4 + 0.4¬−1) + 0.4)

= −0.32− 0.32¬−1 = −0.32 +O(¬−1),

D2f(t0, y0) ' ¬3 · F 3
¬−1 [y0, y1, y2, y3] = ¬3 · (y3 − 3y2 + 3y1 − y0)

= ¬3 · (0.4 + 1.2¬−1 − 0.96¬−2 − 1.92¬−3 + 1.344¬−4

−3(0.4 + 0.8¬−1 − 0.32¬−2 − 0.32¬−3) + 3(0.4 + 0.4¬−1)− 0.4)

= −0.96 + 1.344¬−1 = −0.96 +O(¬−1),

D3f(t0, y0) ' ¬4 · F 4
¬−1 [y0, y1, y2, y3, y4] = ¬4 · (y4 − 4y3 + 6y2 − 4y1 + y0)

= ¬4 · (0.4 + 1.6¬−1 − 1.92¬−2 − 5.76¬−3 + 6.912¬−4

−4(0.4 + 1.2¬−1 − 0.96¬−2 − 1.92¬−3 + 1.344¬−4) +

6(0.4 + 0.8¬−1 − 0.32¬−2 − 0.32¬−3)− 4(0.4 + 0.4¬−1) + 0.4)

= 1.536,

8



from where we can extract the exact values of D1f(t0, y0), D2f(t0, y0) and D3f(t0, y0) as finite
parts of −0.32− 0.32¬−1, −0.96 + 1.344¬−1 and 1.536, respectively.

Let us now apply the FDF strategy. Here, we need to perform 3 steps of the Euler method,
obtaining the values y1, y2 and y3, truncating them after the grosspower −3, and then we evaluate
the function f :

f(t0, y0) = 0.4,

f(t0 + ¬−1, y1) = 0.4− 0.32¬−1 − 0.32¬−2,

f(t0 + 2¬−1, y2) = 0.4− 0.64¬−1 − 1.6¬−2 + 1.344¬−3.

f(t0 + 3¬−1, y3) = 0.4− 0.96¬−1 − 3.84¬−2 + 5.568¬−3.

Applying formulae (8), we obtain

D1f(t0, y0) ' ¬1 · F 1
¬−1 [f(t0, y0), f(t0 + ¬−1, y1)]

= ¬ · (f(t0 + ¬−1, y1)− f(t0, y0))

= ¬ · (0.4− 0.32¬−1 − 0.32¬−2 − 0.4) = −0.32− 0.32¬−1

= −0.32 +O(¬−1),

D2f(t0, y0) ' ¬2 · F 2
¬−1 [f(t0, y0), f(t0 + ¬−1, y1), f(t0 + 2¬−1, y2)]

= ¬2 · (f(t0 + 2¬−1, y2)− 2f(t0 + ¬−1, y1) + f(t0, y0))

= ¬2 · (0.4− 0.64¬−1 − 1.6¬−2 + 1.344¬−3 − 2(0.4− 0.32¬−1 − 0.32¬−2) + 0.4)

= −0.96 + 1.344¬−1 = −0.96 +O(¬−1),

D3f(t0, y0) ' ¬3 · F 3
¬−1 [f(t0, y0), f(t0 + ¬−1, y1), f(t0 + 2¬−1, y2), f(t0 + 3¬−1, y3)]

= ¬3 · ((t0 + 3¬−1, y3)− 3f(t0 + 2¬−1, y2) + 3f(t0 + ¬−1, y1)− f(t0, y0))

= ¬3 · (0.4 + 1.2¬−1 − 0.96¬−2 − 1.92¬−3

−3(0.4 + 0.8¬−1 − 0.32¬−2 − 0.32¬−3) + 3(0.4 + 0.4¬−1)− 0.4)

= 1.536,

from where we can again extract the exact values of D1f(t0, y0), D2f(t0, y0), and D3f(t0, y0) as
finite parts of −0.32− 0.32¬−1, −0.96 + 1.344¬−1, 1.536 respectively.

It should be noticed that the value y3 cannot be truncated after the grosspower −3 using the
first strategy, because the coefficient of ¬−3 at the value y3 is used also for computing D3f(t0).
On the contrary, the FDF method allows us to use the grosspowers up to −3, which decreases the
computational cost of the procedures computing the 2−nd and the 3−rd Lie derivatives.

Let us now apply the ETM. Here, we compute three approximations of the solution at step
t0 + ¬−1 by exploiting the explicit Taylor method with increasing order. We get:

B1(t0, y0) = y0 + f(t0, y0)¬−1 = 0.4 + 0.4¬−1,

f(t0 + ¬−1, B1(y0)) = 0.4− 0.32¬−1,

the first Lie derivative is computed as: D1f(t0, y0) = −0.32;

B2(t0, y0) = y0 + f(t0, y0)¬−1 +
1

2
D1f(t0, y0)¬−2

= 0.4 + 0.4¬−1 − 0.16¬−2,

f(t0 + ¬−1, B2(y0)) = 0.4− 0.32¬−1 − 0.96

2
¬−2,

9



the second Lie derivative is then computed as: D2f(t0, y0) = −0.96;

B3(t0, y0) = y0 + f(t0, y0)¬−1 +
1

2
D1f(t0, y0)¬−2 +

1

6
D2f(t0, y0)¬−3

= 0.4 + 0.4¬−1 − 0.16¬−2 − 0.16¬−3,

f(t0 + ¬−1, B3(y0)) = 0.4− 0.32¬−1 − 0.96

2
¬−2 +

1.536

6
¬−3,

the third Lie derivative is finally obtained: D3f(t0, y0) = 1.536. We stress that now we have
computed Djf(t0, y0) using grosspowers up to −j, for j = 1, 2, 3.

Each technique, used in combination with a numerical method for ODEs, defines a new
scheme based on finite and infinitesimal steps. In particular, numerical methods for the solution
of the ODEs that use the infinitesimal steps, explicit Euler methods for the EMY and EMF
strategies and explicit Tayor method for the ETM are used to compute the unknown values of
the Lie derivatives.

4. Numerical illustrations

To compare the proposed techniques, we evaluate the Lie derivatives for the following differ-
ential problems of increasing dimension m: the nonlinear pendulum (m = 2), the Kepler problem
(m = 4), the Argon problem (m = 28), the Brusselator problem (m = 38) and the Burgers’ equa-
tion (m = 38). The first three problems have been analyzed in [47], and for the first two we have
applied the multiderivative HO methods in [3, 4, 5]. The Brussellator and Burgers’ problems are
available in the Matlab ODE suite [48].

The strategies discussed in Section 3 have been implemented in a new Matlab class, using
only grossnumbers defined by a finite expansion of integer grosspowers such as, for example,

X = ¬P
T∑

j=0

xj¬
−j , with grossdigits xj ∈ R, (11)

where P and T are given positive integers. This restriction is sufficient for the purposes considered
in the present work since the theory related to both derivatives and Lie derivatives is based on the
Taylor expansion in finite (integer) powers of ¬. The advantage is that this working assumption
makes each floating-point operation on grossnumbers analogous to the corresponding one in the
ring of polynomials, with a relevant reduction of the associated computational cost. As an
example, for the two grossnumbers

X = ¬P (x0¬0 + x1¬−1), Y = ¬P (y0¬0 + y1¬−1 + y2¬−2), (12)

we get
X + Y = ¬P ((x0 + y0)¬0 + (x1 + y1)¬−1 + y2¬−2),

X · Y = ¬2P (x0y0¬0 + (x0y1 + x1y0)¬−1

+(x0y2 + x1y1)¬−2 + x1y2¬−3),

and analogously for the division X/Y . The same subclass of grossnumbers has been used in
[49, 36] to implement a dynamic precision floating point arithmetic. For the moment, the Matlab
class has been implemented without using the vectorization facility, thus requiring a loop for
vectorial functions.1

1This question will be addressed in a future work.

10



The first test compares the three strategies presented in the previous section for the Infinity
Computer, just to show that the new proposed method is more efficient independently on the
size of the problem. The experiments have been performed on a computer with the Windows 10
operating system, an i7-8550U processor, 8 GB of RAM, and the Matlab version 2016b.

1 2 3 4 5 6 7 8 9 10

Differentiation order

0

1

2

3

4

5

6

7

8

9

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

10-3 Evaluation times on the Pendulum problem

FDY

FDF

ETM

(a)

1 2 3 4 5 6 7 8 9 10

Differentiation order

0

0.002

0.004

0.006

0.008

0.01

0.012

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Kepler problem

FDY

FDF

ETM

(b)

1 2 3 4 5 6 7 8 9 10

Differentiation order

0

0.05

0.1

0.15

0.2

0.25

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Argon problem

FDY

FDF

ETM

(c)

1 2 3 4 5 6 7 8 9 10

Differentiation order

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Burgers' problem

FDY

FDF

ETM

(d)

1 2 3 4 5 6 7 8 9 10

Differentiation order

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Brusselator problem

FDY

FDF

ETM

(e)

Figure 1: Average evaluation times for the computation of the Lie derivative of order k, k = 1, · · · , 10 for the 5
test functions using the three strategies FDY, FDF and ETM.

11



In Figure 1, the graph of the average values of the execution times obtained after 50 iteration
are presented for the three computational strategies on the Infinity Computer. It can be seen
that the strategy FDF has a smaller execution time with respect to the strategy FDY in almost
all the cases, while the strategy ETM has the smallest execution time in all the cases with respect
to both FDY and FDF.

In the second series of experiments, the strategy ETM is compared with a couple of available
tools for computing Lie derivatives. In more detail, we have considered using the symbolic
Matlab toolbox and ADiGator, which is a Matlab toolbox for Automatic Differentiation (AD).
This latter has shown very interesting potentialities with respect to other existing AD toolboxes
(see [50, 51]). We have carried out the computation of the Lie derivatives according to (4) using
these two toolboxes as follows. First, we have implemented formulae (4) for the computation of
the derivatives of order up to 6. In the following we report the formulae for m = 1:

D1f(y0) = f
(1)
y (y0)f(y0), D2f(y0) = f

(2)
y (y0)(f(y0))2 + f

(1)
y (y0)D1f(y0),

D3f(y0) = f
(3)
y (y0)(f(y0))3 + 3f

(2)
y (y0)f(y0)D1f(y0) + f

(1)
y (y0)D2f(y0),

D4f(y0) = f
(4)
y (y0)(f(y0))4 + 6f

(3)
y (y0)(f(y0))2D1f(y0) + 3f

(2)
y (y0)(D1f(y0))2+

+4f
(2)
y (y0)f(y0)D2f(y0) + f

(1)
y (y0)D3f(y0),

D5f(y0) = f
(5)
y (y0)(f(y0))5 + 10f

(4)
y (y0)(f(y0))3D1f(y0) + f

(3)
y (y0)f(y0)[10f(y0)D2f(y0)+

+15(D1f(y0))2] + 10f
(2)
y (y0)D1f(y0)D2f(y0) + 5f

(2)
y (y0)f(y0)D3f(y0)+

+f
(1)
y (y0)(D4f(y0)),

D6f(y0) = f
(6)
y (y0)(f(y0))6 + 15f

(5)
y (y0)(f(y0))4D1f(y0) + f

(4)
y (y0)(f(y0))2[45(D1f(y0))2+

+20f(y0)D2f(y0)] + f
(3)
y (y0)f(y0)[60D1f(y0)D2f(y0) + 15f(y0)D3f(y0)]+

+15f
(3)
y (y0)(D1f(y0))3 + 6f

(2)
y (y0)f(y0)D4f(y0) + 15f

(2)
y (y0)D1f(y0)D3f(y0)+

+10f
(2)
y (y0)(D2f(y0))2 + f

(1)
y (y0)D5f(y0),

(13)

where f
(k)
y (y0) = ∂k

∂yk f(y0) denotes the k-th order partial derivatives of the function f(y) eval-
uated at y = y0. These formulae have been generalized for vectorial problems, and thus using
tensors for representing the higher order partial derivatives of f with respect to y. With this
implementation we experienced two drawbacks:

1) Due to the “out of memory” error, the symbolic computation is not able to generate the
derivative of order higher than three for Burgers’ problem and Brussellator and four for
Argon problem, while ADiGator is not able to generate the codes that computes partial
derivatives of order higher than five for Argon problem and three for Burgers’ problem.

2) The evaluation of the Lie derivative generates an “out of memory” when we use symbolic
computation for Lie derivatives higher than four for Argon problem and three for Brus-
selator and Burgers’ problems. A similar problem is experienced when using ADiGator,
which is not able to compute the solution for Lie derivatives of order higher than four for
Argon and Brusselator problems and three for Burgers’ problem. This issue is caused by
the need of using an intermediate full multidimensional array in the computation (note
that in Matlab it is not possible to define sparse multidimensional arrays).

12



We tried to solve the drawback 2) by exploiting the tensor toolbox available in [52], which allows
one to work with sparse tensors. However, we experienced much higher computational costs and
execution times, so we decided not to report here the obtained results.

The second type of implementation is based upon the following recurrence relation for the
computation of Lie derivatives:

Djf(y(t)) =
∂f

∂y
Dj−1f(y(t))f(y(t)), j ≥ 1, (14)

that requires, at each step, only the computation of the Jacobian of the Lie derivative obtained
at the previous computed step. This relation is simpler from an implementation point of view,
but the associated evaluation cost is higher, because we cannot reuse the information already
obtained for evaluating the lower order derivatives. On the other hand, it requires less memory
and so, for large-dimensional problems, this approach is preferable.

In the following, we denote by “Tensor (T)” the implementation described in (13) and by
“Jacobian (J)” the one using the recurrence relation (14).

In Table 1, the obtained average execution times over 50 trials are presented for the five test
problems: the first 6 Lie derivatives have been successfully computed by means of the Tensor
method, while the Jacobian method was able to compute the first 9 Lie derivatives. We also report
the times needed to create the higher order partial derivatives (SGT, AGT) and the Jacobian of
the iterative formula (SGJ, AGJ). Concerning the symbolic computations, the expression of the
Jacobian has been simplified by means of the Matlab command “simplify” for the Pendulum,
Kepler, and Brusselator problems. For the Argon and Burgers’ problems, the Jacobian was not
simplified due to the “out of memory” errors during the execution of the command “simplify”.
We observe that, for the Argon, Burgers’ and Brussellator problems, both methods fail due to a
“out of memory” issue when the order of the Lie derivative increases.

In Figure 2, graphs of average evaluation times are presented for the 5 test problems and
the first 10 derivatives computed by the symbolic toolbox, ADiGator and ETM on the Infinity
Computer. One can see that the behaviour of the Tensor implementation and the Jacobian
implementation is similar, but the Jacobian approach allows us to calculate the derivatives of
a higher order. Moreover, the ADiGator has calculated the 3-rd and 4-th derivatives of the
Brusselator problem using the Jacobian faster than using Tensors, since for this problem the
sparsity pattern of the tensors was not duly exploited. An opposite behavior has been observed
for the Pendulum problem, since this problem has a small dimension and formulae (13) allowed
us to optimize the computations by using the results obtained in the previous iterations.

For the first two Lie derivatives, ADiGator performs better than the Infinity Computer, but
as soon as the order of the Lie derivative is increased, the curve of the computational times grows
faster for the algorithm based on symbolic computation and automatic differentiation so that the
results become always in favour of the ETM. Keeping into account that the Infinity Computer
simulator is not optimized, we think that this procedure for computing the Lie derivatives is
promising, also considering that no computational time is required to preprocessing the data.

Observe that the Infinity Computer is able to construct the first 10 Lie derivatives of all 5
test problems showing a good computational efficiency even when the dimension of the problem
is relatively high. For example, the Infinity Computer is able to calculate the 6-th Lie derivative
for the Burgers’ problem faster than what ADiGator does for the 3-rd derivative.

As we can see from the numerical tests, our implementation using ADiGator and symbolic
computation is not able to produce results for problems of a relatively high dimension due to the
“out of memory” errors, that is the code cannot be executed on the Matlab environment because
requires more memory than the available one. A better implementation that exploits the sparsity
pattern of the tensor or the Jacobian matrices could solve this issue, but it is important here to

13



Table 1: Times needed to generate the higher order partial derivatives and average evaluation times for the
computation of the first 9 Lie derivatives of 5 test functions by means of the symbolic toolbox (rows SGT and
SET using (13), SGJ and SEJ using (14) ), by means of ADiGator (rows AGT and AET using (13), AGJ and
AEJ using (14)) and by means of the strategy ETM on the Infinity Computer (rows IC). A star in the table
means that the method is not able to end the computation.
Method D1 D2 D3 D4 D5 D6 D7 D8 D9

Pendulum
SGT 9.57e− 2 1.21e− 1 1.21e− 1 2.56e− 1 3.79e− 1 7.20e− 1
SET 6.94e− 3 7.11e− 3 7.71e− 3 8.20e− 3 9.91e− 3 1.17e− 2
AGT 1.78e + 0 3.50e + 0 5.40e + 0 7.23e + 0 9.95e + 0 1.09e + 1
AET 7.06e− 5 1.20e− 4 2.05e− 4 4.09e− 4 7.96e− 4 1.59e− 3
SGJ 1.98e− 1 1.15e− 1 1.50e− 1 1.73e− 1 2.42e− 1 3.06e− 1 3.72e− 1 4.52e− 1 5.13e− 1
SEJ 7.02e− 3 7.17e− 3 7.80e− 3 8.14e− 3 9.11e− 3 9.89e− 3 1.11e− 2 1.18e− 2 1.27e− 2
AGJ 9.24e + 0 3.77e + 0 2.74e + 0 2.45e + 0 3.01e + 0 3.92e + 0 4.86e + 0 7.06e + 0 1.16e + 1
AEJ 6.43e− 5 1.87e− 4 4.77e− 4 1.02e− 3 2.29e− 3 4.22e− 3 8.67e− 3 1.65e− 2 3.13e− 2
IC 4.46e− 4 7.65e− 4 1.20e− 3 1.60e− 3 2.03e− 3 2.55e− 3 3.08e− 3 3.87e− 3 4.23e− 3

Kepler
SGT 3.37e− 2 1.13e− 1 2.28e− 1 6.94e− 1 2.44e + 0 9.32e + 0
SET 1.14e− 2 1.49e− 2 2.56e− 2 5.59e− 2 1.33e− 1 4.73e− 1
AGT 1.85e + 0 3.79e + 0 6.01e + 0 9.37e + 0 1.26e + 1 1.95e + 1
AET 1.03e− 4 2.77e− 4 8.35e− 4 2.32e− 3 7.19e− 3 2.30e− 2
SGJ 1.26e− 1 2.39e− 1 5.88e− 1 1.49e + 0 3.16e + 0 6.11e + 0 1.03e + 1 1.68e + 1 2.54e + 1
SEJ 1.22e− 2 1.32e− 2 1.60e− 2 2.30e− 2 3.51e− 2 4.97e− 2 7.47e− 2 1.39e− 1 1.90e− 1
AGJ 1.36e + 0 2.01e + 0 2.65e + 0 3.45e + 0 5.43e + 0 1.02e + 1 2.23e + 1 4.76e + 1 1.07e + 2
AEJ 9.66e− 5 4.23e− 4 1.73e− 3 4.18e− 3 1.22e− 2 2.93e− 2 6.75e− 2 1.59e− 1 3.77e− 1
IC 6.32e− 4 1.18e− 3 1.89e− 3 2.36e− 3 3.00e− 3 3.90e− 3 4.42e− 3 5.47e− 3 6.02e− 3

Argon
SGT 3.45e− 1 4.66e + 0 7.90e + 1 2.88e + 3 * *
SET 4.68e− 1 2.96e + 0 1.63e + 1 9.97e + 1 * *
AGT 2.72e + 0 9.21e + 0 2.22e + 1 5.72e + 1 2.46e + 2 *
AET 2.95e− 3 9.63e− 3 5.94e− 2 1.08e + 0 * *
SGJ 5.29e− 1 1.38e + 0 5.88e + 0 ∗ ∗ ∗ ∗ ∗ ∗
SEJ 4.68e− 1 3.07e + 0 3.01e + 1 ∗ ∗ ∗ ∗ ∗ ∗
AGJ 3.18e + 0 7.23e + 0 1.57e + 1 4.13e + 1 1.72e + 2 ∗ ∗ ∗ ∗
AEJ 3.23e− 3 1.66e− 2 8.20e− 2 5.99e− 1 9.28e + 0 ∗ ∗ ∗ ∗
IC 1.83e− 2 3.59e− 2 5.32e− 2 7.34e− 2 9.57e− 2 1.15e− 1 1.31e− 1 1.44e− 1 1.65e− 1

Burgers’
SGT 9.44e− 1 2.44e + 1 0.80e + 3 * * *
SET 4.65e− 1 1.26e + 1 3.32e + 2 * * *
AGT 3.28e + 0 1.61e + 1 6.23e + 1 * * *
AET 7.14e− 3 3.05e− 2 3.28e− 1 * * *
SGJ 8.80e− 1 6.07e + 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
SEJ 4.58e− 1 1.15e + 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
AGJ 3.55e + 0 1.20e + 1 4.34e + 1 ∗ ∗ ∗ ∗ ∗ ∗
AEJ 7.51e− 3 4.75e− 2 3.58e− 1 ∗ ∗ ∗ ∗ ∗ ∗
IC 2.69e− 2 5.36e− 2 8.65e− 2 1.19e− 1 1.44e− 1 1.73e− 1 2.09e− 1 2.55e− 1 2.85e− 1

Brusselator
SGT 2.35e + 0 6.54e + 0 0.95e + 2 * * *
SET 8.65e− 2 .18e− 1 2.02e− 1 * * *
AGT 1.94e + 0 4.64e + 0 7.11e + 0 1.03e + 1 1.37e + 1 1.77e + 1
AET 4.23e− 4 1.30e− 3 3.48e− 2 2.11e + 0 * *
SGJ 1.70e + 0 2.90e + 0 1.10e + 1 4.79e + 1 2.38e + 2 1.15e + 3 ∗ ∗ ∗
SEJ. 8.72e− 2 1.07e− 1 1.53e− 1 3.35e− 1 1.10e + 0 4.19e + 0 ∗ ∗ ∗
AGJ 1.43e + 0 2.17e + 0 3.24e + 0 4.74e + 0 6.61e + 0 9.04e + 0 1.34e + 1 2.43e + 1 6.90e + 1
AEJ 4.79e− 4 1.61e− 3 4.51e− 3 9.90e− 3 1.99e− 2 4.45e− 2 1.23e− 1 4.60e− 1 2.21e + 0
IC 7.68e− 3 1.58e− 2 2.35e− 2 3.18e− 2 4.03e− 2 4.84e− 2 5.61e− 2 6.30e− 2 7.13e− 2

consider that the ETM strategy only requires ` function evaluations in the Infinity Computer
arithmetic, where ` is the order of the derivative.

Conclusion

A novel approach based on on the Infinity Computer arithmetic for calculating the Lie
derivative of a function, even in the case where its analytical expression is not available, has
been presented. A comparison with symbolic and automatic differentiation shows the poten-

14



1 2 3 4 5 6 7 8 9 10

Differentiation order

10-5

10-4

10-3

10-2

10-1

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Pendulum problem

Symbolic computations (with tensors)

Symbolic computations (with Jacobians)

ADiGator (with tensors)

ADiGator (with Jacobians)

ETM (Infinity Computer)

(a)

1 2 3 4 5 6 7 8 9 10

Differentiation order

10-5

10-4

10-3

10-2

10-1

100

101

102

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Kepler problem

Symbolic computations (with tensors)

Symbolic computations (with Jacobians)

ADiGator (with tensors)

ADiGator (with Jacobians)

ETM (Infinity Computer)

(b)

1 2 3 4 5 6 7 8 9 10

Differentiation order

10-3

10-2

10-1

100

101

102

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Argon problem

Symbolic computations (with tensors)

Symbolic computations (with Jacobians)

ADiGator (with tensors)

ADiGator (with Jacobians)

ETM (Infinity Computer)

(c)

1 2 3 4 5 6 7 8 9 10

Differentiation order

10-3

10-2

10-1

100

101

102

103

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Burgers' problem

Symbolic computations (with tensors)

Symbolic computations (with Jacobians)

ADiGator (with tensors)

ADiGator (with Jacobians)

ETM (Infinity Computer)

(d)

1 2 3 4 5 6 7 8 9 10

Differentiation order

10-4

10-3

10-2

10-1

100

101

102

A
v
e

ra
g

e
 e

v
a

lu
a

ti
o

n
 t

im
e

Evaluation times on the Brusselator problem

Symbolic computations (with tensors)

Symbolic computations (with Jacobians)

ADiGator (with tensors)

ADiGator (with Jacobians)

ETM (Infinity Computer)

(e)

Figure 2: Average evaluation times for the computation of the first 10 Lie derivatives of 5 test functions (graphs
(a)–(e), respectively) symbolically (black and cyan dashed lines), by ADiGator (green and red dotted lines) and
by the strategy “ETM” on the Infinity Computer (blue line).

tiality of the proposed technique, especially for higher order derivatives and for problems of
relatively high dimension. The presented strategy, in fact, only requires ` function evaluations
in the Infinity Computer arithmetic, where ` is the order of the derivative. In a future research,

15



a more detailed comparison of the Infinity Computer with respect to different computational
methodologies will be performed. The software simulator of the Infinity Computer will be opti-
mized for this purpose using vector operations and, probably, parallel computations, allowing us
to improve the computational efforts of the proposed methodology.

Acknowledgement

This work was funded by the INdAM-GNCS 2020 Research Project “Numerical algorithms in
optimization, ODEs, and applications” (the authors are members of the INdAM Research group
GNCS). We wish to thank two anonymous reviewers for careful reading our manuscript and for
the valuable comments and suggestions they posted which improved the quality of the paper.

References

[1] J. M. Lee, Introduction to Smooth Manifolds, Vol. 218 of Graduate Texts in Mathematics,
Springer, New York, 2006.

[2] A. Isidori, Nonlinear Control Systems, third edition, Communications and Control Engi-
neering, Springer-Verlag London, 1995.

[3] F. Iavernaro, F. Mazzia, M. S. Mukhametzhanov, Y. D. Sergeyev, Conjugate-symplecticity
properties of Euler-Maclaurin methods and their implementation on the infinity computer,
Applied Numerical Mathematics. 155 (2020) 58–72. doi:10.1016/j.apnum.2019.06.011.

[4] F. Iavernaro, F. Mazzia, On conjugate-symplecticity properties of a multi-derivative exten-
sion of the midpoint and trapezoidal methods, Rendiconti del Seminario Matematico 76 (2)
(2018) 123–134.

[5] F. Mazzia, A. Sestini, On a class of conjugate symplectic Hermite-Obreshkov one-step meth-
ods with continuous spline extension, Axioms 7 (3). doi:10.3390/axioms7030058.

[6] A. Günes Baydin, B. Pearlmutter, A. Andreyevich Radul, J. Mark Siskind, Automatic
differentiation in machine learning: A survey, Journal of Machine Learning Research 18
(2018) 1–43.

[7] F. Srajer, Z. Kukelova, A. Fitzgibbon, A benchmark of selected algorithmic differentiation
tools on some problems in computer vision and machine learning, Optimization Methods
and Software 33 (4-6) (2018) 889–906. doi:10.1080/10556788.2018.1435651.

[8] K. Röbenack, J. Winkler, S. Wang, LIEDRIVERS- a toolbox for the efficient computation
of lie derivatives based on the object-oriented algorithmic differentiation package ADOL-
C, in: Proceedings of the 4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, EOOLT 2011, 2011, pp. 57–66.

[9] K. Röbenack, Computation of multiple Lie derivatives by algorithmic differentia-
tion, Journal of Computational and Applied Mathematics 213 (2) (2008) 454–464.
doi:10.1016/j.cam.2007.01.036.

[10] A. Walther, A. Griewank, Getting started with ADOL-C, in: U. Naumann, O. Schenk
(Eds.), Combinatorial Scientific Computing, Chapman-Hall CRC Computational Science,
2012, Ch. 7, pp. 181–202.

16



[11] W. Yu, M. Blair, DNAD, a simple tool for automatic differentiation of fortran codes
using dual numbers, Computer Physics Communications 184 (5) (2013) 1446–1452.
doi:10.1016/j.cpc.2012.12.025.

[12] J. A. Fike, J. J. Alonso, Automatic differentiation through the use of hyper-dual numbers
for second derivatives, in: S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther, T. J.
Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, T. Schlick (Eds.), Recent
Advances in Algorithmic Differentiation, Vol. 87 of Lecture Notes in Computational Science
and Engineering, Springer Berlin Heidelberg, 2012, pp. 163–173.

[13] J. Fike, J. Alonso, Automatic differentiation through the use of hyper-dual numbers for
second derivatives, Lecture Notes in Computational Science and Engineering 87 LNCSE
(2012) 163–173.

[14] G. Lantoine, R. Russell, T. Dargent, Using multicomplex variables for automatic com-
putation of high-order derivatives, ACM Transactions on Mathematical Software 38 (3).
doi:10.1145/2168773.2168774.

[15] P. Amodio, F. Iavernaro, F. Mazzia, M. S. Mukhametzhanov, Y. D. Sergeyev, A generalized
Taylor method of order three for the solution of initial value problems in standard and
infinity floating-point arithmetic, Mathematics and Computers in Simulation 141 (2017)
24–39.

[16] Y. D. Sergeyev, Solving ordinary differential equations by working with infinitesimals nu-
merically on the infinity computer, Applied Mathematics and Computation 219(22) (2013)
10668–10681.

[17] Y. D. Sergeyev, M. S. Mukhametzhanov, F. Mazzia, F. Iavernaro, P. Amodio, Numerical
methods for solving initial value problems on the Infinity Computer, International Journal
of Unconventional Computing 12(1) (2016) 3–23.

[18] Y. D. Sergeyev, Higher order numerical differentiation on the Infinity Computer, Optimiza-
tion Letters 5(4) (2011) 575–585.

[19] F. Mazzia, Y. D. Sergeyev, F. Iavernaro, P. Amodio, M. S. Mukhametzhanov, Numerical
methods for solving ODEs on the Infinity Computer, in: Proc. of the 2nd Intern. Conf.
“Numerical Computations: Theory and Algorithms”, Vol. 1776, AIP Publishing, New York,
2016, p. 090033.

[20] Y. D. Sergeyev, Lagrange Lecture: Methodology of numerical computations with infinities
and infinitesimals, Rendiconti del Seminario Matematico dell’Università e del Politecnico di
Torino 68(2) (2010) 95–113.

[21] Y. D. Sergeyev, Independence of the grossone-based infinity methodology from non-standard
analysis and comments upon logical fallacies in some texts asserting the opposite, Founda-
tions of Science 24 (1) (2019) 153–170.

[22] G. Lolli, Metamathematical investigations on the theory of grossone, Applied Mathematics
and Computation 255 (2015) 3–14.

[23] M. Margenstern, Using grossone to count the number of elements of infinite sets and the
connection with bijections, p-Adic Numbers, Ultrametric Analysis and Applications 3 (3)
(2011) 196–204.

17



[24] F. Montagna, G. Simi, A. Sorbi, Taking the Pirahã seriously, Communications in Nonlinear
Science and Numerical Simulation 21 (1–3) (2015) 52–69.

[25] Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and
repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences 4(2) (2017)
219–320.

[26] Y. D. Sergeyev, Arithmetic of Infinity, Edizioni Orizzonti Meridionali, CS, 2003, 2nd ed.
2013.

[27] Y. D. Sergeyev, Computer system for storing infinite, infinitesimal, and finite quantities and
executing arithmetical operations with them, USA patent 7,860,914, 2010.

[28] M. Cococcioni, M. Pappalardo, Y. D. Sergeyev, Lexicographic multi-objective linear pro-
gramming using grossone methodology: Theory and algorithm, Applied Mathematics and
Computation 318 (2018) 298–311. doi:10.1016/j.amc.2017.05.058.

[29] M. Cococcioni, A. Cudazzo, M. Pappalardo, Y. D. Sergeyev, Solving the lexicographic
multi-objective mixed-integer linear programming problem using branch-and-bound and
grossone methodology, Communications in Nonlinear Science and Numerical Simulation
(2020) 84,105177doi:https://doi.org/10.1016/j.cnsns.2020.105177.

[30] R. De Leone, G. Fasano, Y. D. Sergeyev, Planar methods and grossone for the conjugate gra-
dient breakdown in nonlinear programming, Computational Optimization and Applications
71 (2018) 73–93.

[31] M. Gaudioso, G. Giallombardo, M. S. Mukhametzhanov, Numerical infinitesimals in a vari-
able metric method for convex nonsmooth optimization, Applied Mathematics and Compu-
tation 318 (2018) 312–320.

[32] L. Lai, L. Fiaschi, M. Cococcioni, Solving mixed pareto-lexicographic multi-objective opti-
mization problems: The case of priority chains, Swarm and Evolutionary Computation (In
Press).

[33] Y. D. Sergeyev, D. E. Kvasov, M. S. Mukhametzhanov, On strong homogeneity of a class
of global optimization algorithms working with infinite and infinitesimal scales, Communi-
cations in Nonlinear Science and Numerical Simulation 59 (2018) 319–330.

[34] R. D. Leone, G. Fasano, M. Roma, Y. D. Sergeyev, Iterative grossone-based computation of
negative curvature directions in large-scale optimization, Journal of Optimization Theory
and Applications 186 (2), in press.

[35] A. Zhigljavsky, Computing sums of conditionally convergent and divergent series using the
concept of grossone, Applied Mathematics and Computation 218(16) (2012) 8064–8076.

[36] P. Amodio, L. Brugnano, F. Iavernaro, F. Mazzia, On the use of the infinity computer
architecture to set up a dynamic precision floating-point arithmetic, Soft Computing, in
press.

[37] A. Falcone, A. Garro, M. S. Mukhametzhanov, Y. D. Sergeyev., Representation of grossone-
based arithmetic in simulink for scientific computing, Soft Computing, submitted.

[38] F. Caldarola, The exact measures of the Sierpinski d-dimensional tetrahedron in connection
with a diophantine nonlinear system, Communications in Nonlinear Science and Numerical
Simulation 63 (2018) 228–238.

18



[39] L. D’Alotto, A classification of one-dimensional cellular automata using infinite computa-
tions, Applied Mathematics and Computation 255 (2015) 15–24.

[40] Y. D. Sergeyev, A. Garro, Single-tape and multi-tape Turing machines through the lens of
the Grossone methodology, Journal of Supercomputing 65(2) (2013) 645–663.

[41] L. Fiaschi, M. Cococcioni, Numerical asymptotic results in game theory using Sergeyev’s
Infinity Computing, Int. Journal of Unconventional Computing 14 (1) (2018) 1–25.

[42] D. Rizza, A study of mathematical determination through Bertrand’s Paradox, Philosophia
Mathematica 26 (2018) 375–395.

[43] D. Rizza, Numerical methods for infinite decision-making processes, Int. Journal of Uncon-
ventional Computing 14 (2) (2019) 139–158.

[44] C. S. Calude, M. Dumitrescu, Infinitesimal probabilities based on grossone, SN Computer
Science, 1 (2020) 36. doi:10.1007/s42979-019-0042-8.

[45] E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations. I. Nonstiff
problems., Second ed., Springer Series in Computational Mathematics 8, Springer-Verlag,
Berlin, 1993.

[46] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving
Algorithms for Ordinary Differential Equations, Second ed., Springer, Berlin, 2006.

[47] L. Brugnano, F. Iavernaro, Line Integral Methods for Conservative Problems, Monographs
and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.

[48] L. F. Shampine, M. W. Reichelt, The MATLAB ODE suite, SIAM Journal on Scientific
Computing 18(1) (1997) 1–22. doi:10.1137/S1064827594276424.

[49] P. Amodio, L. Brugnano, F. Iavernaro, F. Mazzia, A dynamic precision floating-point arith-
metic based on the Infinity Computer framework, Lecture Notes in Comput. Sci. 11974
(2020) 289–297. doi:10.1007/978-3-030-40616-5_22.

[50] M. A. Patterson, M. Weinstein, A. V. Rao, An efficient overloaded method for computing
derivatives of mathematical functions in MATLAB, ACM Trans. Math. Softw. 39 (3) (2013)
17:1–17:36.

[51] M. Weinstein, A. Rao, Algorithm 984: ADiGator, a toolbox for the algorithmic differen-
tiation of mathematical functions in MATLAB using source transformation via operator
overloading, ACM Transactions on Mathematical Software 44 (2). doi:10.1145/3104990.

[52] B. W. Bader, T. G. Kolda, Efficient MATLAB computations with sparse and factored ten-
sors, SIAM Journal on Scientific Computing 30 (1) (2007) 205–231. doi:10.1137/060676489.

19


