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Abstract

The notion of strength has featured prominently in recent debates about
abductivism in the epistemology of logic. Following TimothyWilliamson
and Gillian Russell, we distinguish between logical and scienti�c strength
and discuss the limits of the characterizations they employ. We then sug-
gest understanding logical strength in terms of interpretability strength
and scienti�c strength as a special case of logical strength. We present ap-
plications of the resulting notions to comparisons between logics in the
traditional sense and mathematical theories.

1 Introduction

Scienti�c theories are standardly thought to be selected on the basis of adequacy

to the data and how well they fare with respect to a number of theoretical virtues

(van Fraassen 1980; Lipton 2004; Keas 2017). One such virtue is strength,

which has been discussed in the philosophy of science. This paper provides an

account of the notions of logical and scienti�c strength. Our focus will be on

logical and mathematical theories. However, our account is su�ciently �exible

to be applicable also in more general contexts, such as scienti�c theories.

Our study is prompted by the recent interest in logical abductivism. This

is the view that logical theories should be selected in the same way as scienti�c

theories. Logical abductivism was famously advocated by Quine (1951), Good-

man (1955), and Putnam (1968). It has received much attention in the recent

literature as a way to navigate the wide array of non-classical solutions to the

logical, set-theoretic and semantic paradoxes (Priest 2005; 2016; Williamson

2013; 2017). Logical abductivism promises to provide a way of resolving in a

principled manner disputes between rival logics which would otherwise appear

hard to settle. Abductivism, so the story goes, replaces clashes of intuition with
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appeal to criteria for theory choice that are accepted by the broader scienti�c

community. For instance, rather than debating the status of paradoxical sen-

tences, one would determine which semantical theory scores better with respect

to those criteria.

According to the logical abductivist, then, theory choice in logic is no di�er-

ent from theory choice in the natural sciences. But the recent revival of interest

in abductivism has been associated with the idea that logic is similar to the nat-

ural sciences in other respects. This is known as anti-exceptionalism about logic.

The anti-exceptionalist may hold, for instance, that logical principles are not

analytic or (metaphysically) necessary or a priori (Hjortland 2017). As Gillian

Russell (2018) and Stephen Read (2018) have pointed out, however, some form

of exceptionalism is compatible with abductivism. Although our focus is on ab-

ductivism, our discussion is clearly relevant for any anti-exceptionalist position

which embraces an abductive methodology.

Abductive methodology has been employed also for theory choice in math-

ematics. BertrandRussell (1973) advocated the adoption of the regressivemethod

to justify mathematical axioms. An abductivist-friendly account is famously

given by Gödel (1947), who suggested that set-theoretic axiomsmay be extrins-

ically justi�ed. More recently, Priest (2006) defended naïve set theory against

iterative set theory on the grounds of alleged greater simplicity. A thorough-

going abductivist approach to the philosophy of set theory has been advanced

by Quine (1990: 95), who argues that considerations of simplicity, economy

and naturalness sanction the Axiom of Constructibility. Against this, Maddy

(1997) uses the maxims Unify and Maximize to instead reject Constructibility

as a candidate axiom for a foundation of mathematics.

In the philosophy of science, van Fraassen (1980: 67–68) distinguishes

between logical and empirical strength. A similar distinction is made byWilliam-

son (2017) and Russell (2018) under the labels of logical and scienti�c strength.

Roughly speaking, the notion of logical strength of a theory takes into account

only its deductive power, whereas the notion of scienti�c strength has mostly to

do with its informational content.

There has been some controversy about the status of the criterion of strength

in the recent abductivist literature. Williamson thinks that logical and scienti�c

strength are both virtues and that the former entails the latter. Russell accepts

that scienti�c strength is a virtue but criticizes the view that logical strength

should be regarded as one. A more radical position, adumbrated by Hjortland
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(2017), holds that logical weakness – and therefore the capability of a logic of

drawing more distinctions – is a virtue in a theory.

We examine these accounts of the notions of logical and scienti�c strength

and �nd them wanting. We suggest understanding logical strength in terms

of interpretability strength and scienti�c strength as a special case of logical

strength. The emerging picture contrasts with Russell’s analysis in that logical

and scienti�c strength may still be considered to be theoretical virtues, and with

Williamson’s, in that scienti�c strength is a special case of logical strength.

2 Logical Strength

The aim of this section is to o�er a novel account of logical strength. To clear

the ground for our account, we �rst rebut arguments against the status of logical

strength as a theoretical virtue and identify problems with extant accounts of

logical strength.

2.1 Logical strength as a theoretical virtue

Williamson characterizes logical strength in terms of deductive power. On his

account, a theory T is logically stronger than a theory T ∗ just in case every the-

orem ofT ∗ is a theorem ofT but not vice versa. This can be extended to con-

sequence relations by saying that a consequence relation ` is stronger than a

consequence relation `∗ just in case whenever `∗ holds so does ` but not vice
versa.

Williamson’s characterization of logical strength makes it sound as if the

comparison of logical theories is a metalinguistic a�air. However, Williamson

aims to vindicate the idea that it is not. To this end, he considers two strategies

for comparing logical theories in a non-metalinguistic way. The �rst strategy

consists in comparing logics by encoding a logic’s consequence relation as a spe-

cial set of the logic’s theorems. First one reduces logically valid arguments to

logical truths by replacing the entailment sign by a suitable conditional. Next,

one replaces all its non-logical constants with variables of the corresponding

type and universally binds them with quanti�ers of that type. With this reduc-

tion in place, comparing logical theories is tantamount to comparing the sets of

universal generalizations corresponding to their logical consequence relations.

The reduction of logical validity to logical truth makes use of the standard

structural rules and of the standard rules for implication (conditional proof and
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modus ponens). However, when evaluating logical theories, we want to consider

substructural logics or logics which do not have a su�ciently strong conditional.

Not to prejudge any issue against the non-classical logician, Williamson there-

fore considers a second strategy for comparing logical theories. According to

this strategy, we compare logics by encoding their consequence relation via an

operator which takes a set of premises as argument and returns the set of its con-

sequences. Thus, if Γ is a set of sentences, Cn(Γ) is {i | Γ ` i}.1 Comparison of

logical theories then proceeds by comparing the di�erent Cn(Γ)s to which the

logical theories give rise for di�erent choices of well-con�rmed Γ. The second

strategy, however, appears to make theory comparison a metalinguistic a�air

again, contra Williamson’s intentions. For the set Cn(Γ) is individuated via the

relation Γ ` i, which is metalinguistic: the elements of Γ and i are mentioned

rather than used.2

Williamson claims that logical strength is a theoretical virtue and that this,

together with the fact that simplicity too is a virtue, amounts to a prima facie case

for classical logic:

Once we assess logics abductively, it is obvious that classical logic

has a head start on its rivals, none of which can match its combin-

ation of simplicity and strength. Its strength is particularly clear in

propositional logic, since PC is Post-complete, in the sense that the

only consequence relation properly extending the classical one is

trivial (everything follows from anything).

Recently, Gillian Russell (2018) has challengedWilliamson’s claims. She agrees

with Williamson’s characterization of logical strength but argues that logical

strength is neither a theoretical virtue nor a theoretical vice. According to her, if

logical strength were a virtue, then, ceteris paribus, if theoryT is logically stronger

than theory S,T is better than S. Similarly, if logical strength were a vice, then,

ceteris paribus, if theoryT is logically stronger than theory S,T is worse than S.

But, she continues, is plainly not the case that, ceteris paribus, a theory is always

better o� (worse o�) by having more (less) of logical strength: a theory can have

too much or too little logical strength. Triv, the trivial logic in which any sen-

tence follows from any set of premisses, is too strong: snow is white just does not

1In the current context it does not matter whether we characterize Cn in terms of logical con-
sequence or derivability. Clearly, this matters when one considers logics that are not complete.

2We thank Tim Button for rasing this interesting point.
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entail grass is purple. Ni, the empty logic in which nothing follows from any set

of premisses, is too weak: snow is white and grass is green do entail snow is white.

This argument will not persuade the defender of logical strength as a the-

oretical virtue. She can happily grant that if a theory is logically stronger than

another theory then, ceteris paribus, it is better; but she will insist that in the

case considered by Russell ceteris are not paribus. In particular, Triv is plainly

not adequate to the data: by entailing everything, the theory sanctions entail-

ments which contradict our intuitions about, say, grass is green not following

from snow is white. Thus, this is just a case, where logical strength is trumped

by the fact that the theory is not adequate to the data. As Williamson (2017:

335) puts it: ‘First comes �t with the evidence’. A similar response is available

to the defender of logical strength as a vice: by entailing nothing, Ni fails to be

adequate to the data.

Russell presents an analogy (which she credits to Dan Marshall). She sug-

gests that saying that logical strength always makes a theory better would be like

saying that theories of love on which more people love each other are always

better than ones on which fewer people do. But even granting that this analogy

works, the defender of strength can accept that such a theory of love will be

better other things being equal. However, she will deny that in several speci�c

cases things are equal: the hard reality of romantic life tells us, for instance, that

a theory of love on which everybody loves everybody else is hardly adequate to

the data.

Similar considerations apply to Read’s response to Williamson abductivist

argument for classical logic. Read begins by observing that classical logic is not

the only logic to be Post-complete, as witnessed by the case of Abelian logic.

He then writes:

A good argument would still ask which logic was the right one: in-

formation is not everything, if some of that information is wrong.

In the case of Abelian logic, some is indeed wrong: e.g.

((p → q) → q) → p (∗∗)

is valid in Abelian logic, but is simply false (as an account of condi-

tionals).

But we take it that Williamson would agree with much of this: logical strength

is not everything and the case for classical logic is to be understood with the
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proviso that the logic we want ought to also be data adequate. And classical lo-

gic’s �t with the evidence can and has been challenged, e.g. by relevant logicians

such as Read. One may consider logical strength a virtue whilst taking �t with

evidence as another criterion for theory of choice.

Indeed, considering logical strength as a virtue is compatible with thinking

that this virtue is always trumped by adequacy to the data. In the mathematical

context, Maddy comes close to claiming as much. She is arguing in favour of

the maxim Maximize, which tells us that we should strive for set theories which

are as generous as possible. Maddy is very clear that subscribing to Maximize as

a maxim in no way commits one to choosing the most generous of theories—

the trivial theory. For, she says, this maxim can be trumped or at least curtailed

by other maxims. In particular, she says, ‘consistency is an overriding maxim’

(Maddy 1997: p. 216).

Thus, the idea that logical strength is a virtue remains unscathed. Non-

etheless, we do not stake a stance on whether logical and also scienti�c strength

should ultimately be considered as virtues, vices or neither. Instead, our aim

is to provide a framework for comparing the strength of theories which can be

used by all parties in this dispute.

Even so, there are a number of issues with Williamson’s characterization

of logical strength as inclusion between sets of consequences. First, William-

son’s characterization is not immediately applicable to cases in which one deals

with di�erent languages. In general, on Williamson’s characterization, all we

can say about the relative strength of two logics featuring disjoint sets of logical

constants – such as intuitionistic propositional logic and S4 – is that they are

incomparable. On the other hand, our proposal will take into account trans-

lations between languages. This will enable us, for instance, to say something

informative about the relation between intuitionistic propositional logic and S4,
thanks to the so-called Gödel-McKinsey-Tarski translation.

Another issue with Williamson’s characterization of logical strength con-

cerns its use of the notion of a well-con�rmed sentence. The idea is that we

can assess a logic by considering Cn(Γ) where Γ is a set of well-con�rmed sen-

tences, such as well-established principles of physics. However, in typical cases,

whether the members of Γ are well-con�rmed or not depends on the back-

ground logic of the relevant theory. For instance, whether certain principles

of physics can be taken to be well-con�rmed depends on whether their con-

sequences �t with the data. But what these consequences are, in turn, may de-

6
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pend on the background logic. Thus, it is not clear that we can �nd adequate Γs

which we can take to be well-con�rmed independently of the background logic.

Finally, Williamson claims that logical strength entails a ‘looser notion’ of

scienti�c strength, but he does not provide a detailed account of scienti�c strength

and of why such an entailment should obtain. In fact, in what follows we will

provide a detailed account of scienti�c strength and of its relationship with lo-

gical strength in which such an entailment will fail. More speci�cally, we will

o�er a characterization of logical strength based on the notion of translation.

This notion will apply to theories formalized in di�erent signatures, and so will

bemore encompassing thanWilliamson’s characterization in terms of inclusion.

Second, our characterization will extend more naturally so as to apply beyond

the purely logical part of a theory. Finally, our characterization will form the

basis of a detailed account of scienti�c strength.

2.2 Characterizing logical strength

In our view, the strength of a theory has to do solely with its deductive power,

and in particular with the structure of its derivations. A theory is as strong as

another if the former can mimic the inferential structure of the latter. As men-

tioned, translations allow us to compare theories in di�erent languages. We

propose to compare the strength of theories in terms of the existence of suitable

translations between them. In order to be suitable, translations need to preserve

the structure of derivations.

In comparing theories with respect with their logical strength, we allow lo-

gical and non-logical primitives to be reinterpreted as long as the basic structure

of derivations is preserved. Any other notion of strength which demands pre-

servation of information in the logical or non-logical component of theories

would not count as logical strength, because it would not abstract away as much

as possible from speci�c content. For instance, our characterization entails that

Peano Arithmetic (PA) and PA +¬Con(PA) – where Con(T ) is a canonical con-
sistency statement forT – have equal logical strength. This is essentially because

¬Con(PA) can be translated in PA in a way that preserves its role in derivations

while re-interpreting the notion of provability involved in the consistency state-

ment.3 As we will see later on, what distinguishes logical and scienti�c strength

3For the relevant facts concerning interpretations of inconsistency in reasonable theories con-
taining a modicum of arithmetic, we refer to (Lindström 2003: Ch 7), and in particular (Lind-
ström 2003: Thm. 8).
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of theories is how speci�c information contained in their logical or non-logical

primitives is handled. In particular, in comparing the scienti�c strength of the-

ories we will impose stricter conditions on how speci�c information contained

in the primitive concepts of theories is preserved under suitable translations.

We now implement these ideas into a formal framework for logical strength.

We take mathematical theories to be axioms closed under some rules of infer-

ence. Logics are then identi�ed with the closure of the empty set of axioms

under speci�c rules of inference. When comparing mathematical theories in

classical logic, it is customary to say that a translation from a language L1 to

a language L2 consists of an ordered pair g = 〈X , F〉 where X is the domain

of the translation and F is a recursive mapping associating each n-ary relation

symbol R(y1 , . . . , yn) of L1 with an L2-formula F (R) (y1 , . . . , yn). The trans-
lation g commutes with the connectives and X relativizes the quanti�ers so that,

e.g. (∀xi)g := ∀x(X (x) → ig ). A translation g from the language L1 of a the-

oryT1 to the language L2 of a theoryT2 is then an interpretation ofT1 intoT2
if for every set ofL1-sentences Γ andL1-sentence i, if Γ `T1 i, then Γg `T2 ig

(where, as usual, Γ `T i is a shorthand for Γ ∪T ` i, and Γg is {ig |i ∈ Γ}).
Finally,T1 andT2 are mutually interpretable ifT1 is interpretable inT2 and

vice versa. Given these de�nitions, we could then characterize logical strength

for theories in classical logic by saying that a theoryT1 has greater or equal lo-

gical strength than a theoryT2 just in case there is an interpretation ofT1 inT2,

and that they have the same logical strength just in case they are mutually inter-

pretable. However, since we aim to deal with mathematical theories formulated

in a given non-classical logic as well, we generalize the notion of interpretation

above, and call a translation fromL1 toL2 any recursivemapping that associates

formulas of L2 with primitive concepts of L1 and that is recursively extended

to more complex formulas by suitably commuting with the logical constants.

An interpretation is then a translation that preserves provability in a such given

logic.

Let us consider a few examples that will be relevant also for our later dis-

cussion. The proposed characterization entails that the following pairs of the-

ories have the same logical strength: PA + ¬Con(PA) and PA as mentioned, ZFC
(Zermelo-Fraenkel set theory with the Axiom of Choice) and ZF, PA and ZFFin
(ZF with the Axiom of In�nity replaced by its negation).4 To mention examples

4The interpretation of �nite set theory in arithmetic is due to Ackermann (1937). For the
interpretation of the axiom of choice, the classical references areGödel (1948) andCohen (1963).
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of non-classical theories, the theory PAk3(P) – that is Peano arithmetic formu-

lated in the three-valued Strong-Kleene logic K3 and in the language with an

additional predicate P , whose interpretation may not be classical – is mutually

interpretable (relative to the logic K3) with PAk3(P)+¬Con(PA(P)).5 Hence,

the proposed characterization entails that the two theories have the same logical

strength.

The characterization of logical strength in terms of mutual interpretability

provides a precise formal counterpart to the idea that logical strength resides

in a theory’s capability of mimicking inferential structures, possibly via transla-

tions that reinterpret primitive concepts. However, the characterization is not

su�cient to deal with all cases of comparison of logical strength. For instance,

we want to be able to compare pure logics, and in that case we want to reinter-

pret the logical vocabulary itself, whereas the standard notion of interpretation

is designed so as to leave the logical vocabulary alone.

Whilst we cannot hope to preserve the meanings of the connectives when

translating between logics, it seems that a translation between logics, besides the

basic requirement of being recursive, ought at least to (i) be uniform so that, e.g.,

it is not the case that p∧q is translated as p∨q but r∧s is translated as r → s and (ii)

allow going beyond translating each operator with a single operator, e.g. we want

to be able to translate, say, p∧q as ¬(¬p∨¬q). A suitable notion of translation is

the notion of a schematic translation (Prawitz andMalmnäs 1968;Wojcicki 1988;

Pellettier and Urquhart 2003). The general idea is that a translation is schematic

if the translation of a complex formula is a �xed schema of the translation of its

parts. As a result, formulae instantiating the same schema are translated in the

same way. So, for instance, if p ∧ q is translated as p ∨ q, then r ∧ s must be

translated as r ∨ s. But it is possible to translate p ∨ q as ¬(¬p ∧ ¬q).
To de�ne the notion of a schematic translation, we �rst de�ne the notion

of a schema. A schema is a map from formulae (and possibly variables) to the

formulae instantiating a schema-string, i.e. an expression featuring metalinguistic

variables such as i ∨ k or ∀Ui (Dewar 2018). We say that a translation from

the language L1 of a logic L1 to the language L2 of a logic L2 is schematic if it

is a recursive mapping g such that (i) each atom p of L1 is assigned a L2 for-

mula, and (ii) for each piece ♠ of logical vocabulary inL1 there is anL2-schema

T such that for all sequences i1 , . . . , iW of L1-formulae (♠i1 , . . . , iW )g :=

5In particular, in PAk3 (P) P can appear in induction, and the induction principle of PA needs
to be formulated as a rule to preserve soundness (Halbach and Nicolai 2018).

9
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T(ig
1 , . . . , i

g
W ). A schematic translation g from L1 to L2 is sound if for every Γ

and i in the language of L1, we have that if Γ `L1 i then Γg `L2 ig . A schematic

translation g from L1 to L2 is exact if for every Γ and i in the language of L1,

we have that Γ `L1 i if and only if Γg `L2 ig .

Schematic translations played a prominent role in the history of logic. Gödel,

via the so-called negative translation, showed that there is a (exact) schematic

translation of classical logic into intuitionistic logic. In doing so, he established

the consistency of classical logic and classical arithmetic (Peano Arithmetic) re-

lative to their intuitionistic counterparts. He also provided the basis of prov-

ability logic, justi�cation logic, and Kripke semantics for intuitionistic logic by

providing a schematic translation of the latter logic into the modal logic S4.
We take sound schematic translatability to be a core component of our ac-

count of logical strength. In fact, if we were dealing just with logics, we could

simply characterize logical strength by saying that a logic L1 has greater or equal

logical strength than a logic L2 just in case there is a sound schematic translation

of L2 in L1, and that they have the same logical strength if this holds mutually.

One would obtain a di�erent notion of logical strength with exact translations

instead of sound ones. Although we believe this to be an alternative worth ex-

ploring, we here focus on sound schematic translations in order to preserve the

intuitive idea that S being a sublogic ofT implies thatT is at least as (logically)

strong as S.

So far we have only a�orded the means of comparing either di�erent logics

or mathematical theories cast in the same background logic. However, we also

want to be able to compare mathematical theories cast in di�erent logics. For

instance, we want to compare the logical strength of ZF and Heyting Arithmetic

(HA), the theory whose axioms are those of PA but whose logic is intuitionistic

logic rather than classical logic.

This kind of case leads us to our full characterization of the notion of logical

strength, which is obtained via a two-stage process and subsumes the character-

izations of logical strength that would be suitable in the case of logics or in the

case of theories cast in the same logic. Given a theory T1 with logic L1 and a

theory T2 with logic L2, the idea is that to determine whether T1 is at least as

strong asT2 one �rst schematically interprets L2 into L1 and then interpretsT2
(under the logic L1) intoT1.

Logical strength T1 is at least as logically strong as T2 i� there is a

sound schematic translation g of the logic L2 of T2 in the logic L1

10
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ofT1, and there is an interpretation (relative to the logic L1) ofT g
2

inT1.

We say that T1 is logically stronger than T2 if T1 is at least as logically strong as

T2 but not vice versa. Our de�nitions entail that, for mathematical theories for-

mulated in classical logic, logical strength coincides with the familiar notion of

interpretability strength. More generally, for mathematical theories in a given

logic, logical strength coincides with the notion of interpretability strength relat-

ive to that logic. Similarly, when comparing purely logical systems, our charac-

terization of logical strength reduces to the existence of a schematic translation,

since we are taking logics to be theories with the empty set of non-logical prin-

ciples.

We now discuss some applications of our characterization. We begin by

considering cases of comparison between logics. Since schematic interpretab-

ility preserves undecidability, it is clear that classical predicate logic is logic-

ally stronger than classical propositional logic.6 The Gödel-Gentzen transla-

tion (Troelstra and Schwichtenberg 2003: §2.3) is an exact schematic transla-

tion of classical logic into intuitionistic logic. Therefore, intuitionist logic can

mimic the structure of classical derivations – modulo reinterpreting some lo-

gical vocabulary. As a consequence, intuitionistic logic is as strong as classical

logic. Moreover, intuitionistic logic is a sublogic of classical logic, and hence

it can be trivially (schematically) translated in a sound way into classical logic.

Hence, intuitionistic logic and classical logic have equal logical strength. The

Gödel-McKinsey-Tarski translation is an exact schematic translation of intu-

itionistic logic into S4. Hence, S4 is at least as logically strong as intuitionistic

logic. Similarly to the previous case, we can also reproduce the structure of S4-
derivations into intuitionistic logic.7 Thus, S4 and intuitionistic logic have the

same logical strength. In the context of comparison between modal logics, by

translating �A with �A ∧ A, one can show that the modal logics K and T have

the same logical strength.

We now turn to applications of our notions to non-logical axioms. The full

power of our characterization of logical strength comes into play when we con-

sider theories formulated in di�erent logics. For instance, our notion enables

6If one allows non-e�ective translations, one obtains the unsound result that classic �rst-order
logic and classical propositional logic have the same logical strength (Kocurec 2017).

7A sound translation of S4 into intuitionistic logic can be de�ned as follows. One can employ
the ‘erasure’ translation schema to translate S4 in classical logic, and then employ the Gödel-
Gentzen translation. Transitivity of sound translations then gives us the claim.
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us compare ZF to HA. Clearly, there is a sound translation of intuitionistic logic

into classical logic such that:

HA `IL i⇒ HA `CL i.

Then one simply interprets HA in ZF by means of the interpretation that rela-

tivizes quanti�cation over natural numbers as quanti�cation over �nite ordinals.

Since there is no interpretation of PA in ZF, this establishes that ZF is logic-

ally stronger than HA. Similar reasoning establishes that intuitionistic ZF (IZF
for short) is logically stronger than PA.8 One �rst employs the Gödel-Gentzen

translation gg to obtain:

PA `CL i⇔ PAgg `IL igg

Then one would need to show that PAgg, qua subtheory of HA, is interpretable
in IZF.9 Since IZF has (much) higher consistency strength than HA, there is no

interpretation of the former in the latter theory.

The examples just discussed lend support to the adequacy of our character-

ization of logical strength based on preservation of inferential structure. One

of the main advantages of our characterization is its generality. We are able to

compare both logics and theories, and various combination thereof. We be-

lieve this generality is essential to the abductive comparison of logics and the-

ories. Without the possibility of comparing theories with di�erent logical and

non-logical primitive vocabulary, there is little hope for logical abductivism to

succeed.

Yet another advantage of our characterization is that it leads naturally to a

precise characterization of scienti�c strength. It is to this issue that we now turn.

3 Scienti�c strength

In this section we �rst discuss Williamson’s and Russell’s accounts of scienti�c

strength. We then propose our own account.

8IZF is obtained by taking the background logic to be intuitionistic and replacing ZF’s Axioms
of Foundation and Replacement with the Axioms of ∈-induction and Collection.

9This point requires extra care in de�ning a suitable notion of interpretation for intuitionistic
theories. Our claim is true for reasonable notions of interpretation for intuitionistic theories
(Visser 1999).
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3.1 Williamson and Russell on scienti�c strength

Williamson (2017) holds that logical strength entails a ‘looser’ notion of scienti�c

strength. For instance, since classical logic proves all instances of i ∨¬i and in-

tuitionistic logic doesn’t, the former is logically stronger, but also scienti�cally

stronger than the latter: according toWilliamson, a general claim – all instances

of excluded middle are valid – is scienti�cally more informative than its nega-

tion. Similarly, ‘the time between 3:14 and 3:16’ is more informative than ‘the

time between 4:00 and 12:00’. So, although Williamson does not provide a

detailed account of scienti�c strength, both logical form and a certain degree of

accuracy are relevant for his view.

Russell (2018) rejects Williamson’s claim that logical strength implies sci-

enti�c strength. She does so by distinguishing between two senses of scienti�c

strength. According to the �rst, a logic L is scienti�cally strong if it is able to

decide, for each argument form in a given language, whether the argument is

L-valid or not. In this �rst sense, each logic is as strong as another, no mat-

ter how di�erent they are in logical strength: each logic partitions the set of all

argument forms into valid and invalid.

Russell describes her second sense of scienti�c strength as follows:

If our question is ‘which instances of LL can we use?’ (where LL

is some disputed logical law) then the logically stronger logic tells

us ‘all of them’ whereas the weaker logic says ‘not all of them’ –

and this tells us nothing further about which particular instances

are untarnished (Russell 2018: p. 12).

In this second sense the trivial logic Triv is the strongest logic, because to the

question ‘How many instances of the argument form (Γ, i) can we use?’ it an-

swers ‘All of them’. Classical logic would then seem to be scienti�cally weaker

than Triv, but stronger than, say, its logically weaker sublogics K3, the Logic of
Paradox LP, and First Degree Entailment FDE. There are in fact some argu-

ment forms (Γ, i) of which, unlike Triv, classical logic can accept only some

instances. Similarly, there are familiar argument forms, such as (Γ, i ∨ ¬i) or
({i, ¬i}, k), whose instances are uniformly licensed by classical logic but fail

to be so in K3, LP, or FDE. Therefore, it would seem that there is a sense of

scienti�c strength that is entailed by logical strength. However, Russell claims

that this conclusion would be hasty: any sublogic ofTriv can be extended to a lo-
gic that decides which instances of an argument form are acceptable, and which

13
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aren’t. In other words, each logic can be extended in such a way that, to the

question ‘How many instances of the argument form (Γ, i) can we use?’, it no

longer provides the uninformative answer ‘Not all of them’. Instead, the ques-

tion is answered by providing a list of acceptable and unacceptable instances.

Russell calls this process ‘Triv recapture’. Now any logic that is subject to the

procedure of ‘Triv recapture’ ends up being as informative as another. Since

this equally applies to logic with substantially di�erent logical strength, Russell

concludes that there is no sense of scienti�c strength that is implied by logical

strength.

We believe that both accounts of scienti�c strength o�ered by Russell are

unsatisfactory. We start with Russell’s �rst account: on this view, all logics are

on a par with respect to scienti�c strength because either Γ �L i or Γ 2L i: ac-

cording to Russell, a well-de�ned consequence relation is cast in a set-theoretic

(classical) metatheory (Russell 2018: p. 557). However, it’s clear that under this

characterization the speci�c properties of consequence relations are not relev-

ant at all for their scienti�c strength. In fact, it is simply a feature of Russell’s

classical metatheory that excluded middle holds for logical consequence claims.

It follows that, as long as a notion of consequence is well-de�ned, any logic is as

strong as it could be. But if the notion of scienti�c strength is to play any role

in abductive methodology, then it should be capable of discriminating at least

between some logics.

To avoid such an essential dependence on classical metatheory, one might

try to generalize Russell’s �rst de�nition of scienti�c strength by requiring that

each logic L is as strong as another one by its own light. On this reading, however,

Russell’s claims cannot be true in general. There is nothing that guarantees

that the notion of logical consequence we are employing satis�es bivalence. For

instance, if our metatheory is formulated in a paracomplete setting governed

by the logic K3, it won’t in general be the case that ‘i follows from Γ or it’s not

the case that i follows from Γ’, because the very notion of consequence may

be partial (Nicolai and Rossi 2018). Moreover, in such scenario, it would seem

that logical strength does indeed in many cases entail scienti�c strength. For

instance, classical logic is able, for each Γ, i, to determine whether Γ � i or

Γ 2 i, whereas FDE and K3 cannot.

Russell’s second sense of scienti�c strength is based on the notion of Triv
recapture: any logic L can be consistently extended to a logic that decides which

instances of a given argument form are valid or not. This understanding of sci-

14
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enti�c strength faces serious di�culties too. First, it is worth noticing that Rus-

sell’s Triv recapture is substantially di�erent from standard recapture strategies

found in the literature on semantic paradoxes. Let us consider the case-study

discussed by Russell. If one’s language amounts to a formal syntax plus a truth

predicate Tr , one can provide models of transparent truth – Tr pAq is intersub-

stitutable with A in every context – that satisfy classical logic for all sentences

without Tr . In other words, ifLTr := L∪{Tr } is the language under consider-
ation, one can consistently formulate a logic that satis�es all classical principles

for L and the nonclassical principles for LTr . This is what is often called ‘clas-

sical recapture’ (Field 2008; Beall 2013).

However, this form of recapture is not su�cient for Russell’s purposes. She

requires something much stronger – what she calls Small Square Complete-

ness: for any argument form in a given language, one has to be able to decide

which instances are licensed and which aren’t. For instance, each speci�c in-

stance of the form Tr piq∨¬Tr piqmust be decided one way or another. This

is a hugely complex task. If Tr piq is interpreted via �xed-point semantics in

the style of Kripke (1975), the problem at hand reduces to a decision procedure

for the set of paradoxical, or ungrounded sentences. Unlike the simple syn-

tactic decision problem underlying recapture strategies, already in the simplest

Kripkean setting (the minimal �xed point) this problem is highly non-e�ective

(Burgess 1986). And these problems become much more complex for more

sophisticated constructions such as other Kripkean �xed points, the revision ex-

tensions inGupta and Belnap (1993), the theory of Field (2008), just tomention

a few. Moreover, the complexity of the procedure envisaged by Russell is only

going to increase if we move from the speci�c languageLTr to less rare�ed lan-

guages closer to English. Therefore, the procedure of Triv recapture is simply

unmanageable; it is not the case that any logic can be consistently extended

to a Small-Square Complete logic, unless by logic we mean extensions of highly

non-e�ective in�nitary logics whose set of validities is muchmore complex than

the provable sentences of any recursively axiomatised theory.

3.2 Characterizing Scienti�c Strength

We now come to our approach to scienti�c strength. Our proposal shares with

Williamson’s the idea that scienti�c strength is more closely related to the in-

formativeness of a theory than logical strength is. Our proposal goes further in

that scienti�c strength is obtained by placing extra conditions on the relation of
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being logically stronger. Thus, scienti�c strength entails logical strength.

Intuitively, logical strength is a coarser grained relation than scienti�c strength

in that it mainly deals with preserving the deductive structure of theories, and

hence allows for radical re-interpretation of logical and non-logical vocabulary

in derivations. Scienti�c strength is then obtained by supplementing logical

strength with stricter conditions so as to preserve some structural information

contained in the theories’ primitives. In particular, we no longer allow radical

re-interpretations of primitives, but we impose conditions on the preservation,

in derivations, of some structural aspects of logical and non-logical constants

of theories. For instance, we have seen that PA and PA + ¬Con(PA) have equal
logical strength, because the arithmetical primitives used to de�ne provability

in ¬Con(PA) can be re-interpreted by PA in a way that does not entail its in-

consistency. However, they will not have the same scienti�c strength, because

our extra conditions on interpretations will require the role in derivations of

¬Con(PA) to be preserved in a much more accurate way.

We formally render these ideas by means of the notion of intertranslat-

ability. Intertranslatability is also known as de�nitional equivalence (Glymour

1970) and synonymy (DeBouvère 1965; Pellettier andUrquhart 2003). Earlier

we distinguished between interpretations, which relate theories with non-logical

axioms in the same logic, and schematic translations, which relate logics. Ana-

logously, we now de�ne intertranslatibility as applied to both cases. Logics L1
and L2 are intertranslatable if and only if there are sound schematic translations

f from the language L1 of L1 to the language L2 of L2 and g from L2 to L1

such that10

i a`L1 (if)g for any formula i of L1;

(ig )f a`L2 i for any formula i of L2.

Similarly, one says that theories S andT in a given logic are intertranslatable if

there are interpretations f from S toT , and g fromT to S (with both f and g

relative to the given logic) such that

i a`S (if)g for any formula i of LS;

(ig )f a`T i for any formula i of LT .

10For an excellent overview of various notions of translations between logics extending sound
and schematic translations, including original contributions, we refer to French (2010).
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Since we are dealing both with pure logics and theories featuring non-logical

axioms, we again need to characterize scienti�c strength in terms of a two-step

process.

Intuitively, the idea behind our characterization is that a theory T (where,

recall, logics are limiting cases of theories) is scienti�cally stronger than another

theory S if there is some subtheory ofT that can faithfully reproduce the logical

and non-logical information contained in the inferential structure of S. The idea

of ‘faithfully reproducing’ is captured in the strict requirement imposed to the

translation by the notion of intertranslatibility. In particular, intertranslatability

requires that both theories recognize (via provability) that the translations that

relate them are ‘companion’ to each other in the way they process the original

information: when the two translations are suitably combined, they return the

original information.

Scientific strength A theory T1 is scienti�cally as strong as T2 if

(i) T1 is at least as logically strong as T2, (ii) the logic L2 of T2 is

intertranslatable with a sublogic of L1 – say, with g : L2 → L1 –,

and (iii) there is a subtheoryT0 ofT1 such thatT g
2 is intertranslatable

withT0 (with respect to the logic L1).

Condition (i) in the characterization of scienti�c strength may be dropped in

certain, well behaved cases, for instance when we deal with mathematical theor-

ies cast in classical logic. However, we chose to keep it in the general case because

we aim to provide a template to deal with a large class of logics, for which the

notion of interpretation may be underspeci�ed. This makes it di�cult to prove

that condition (i) is redundant in full generality.

We now show that the de�nition delivers intuitively acceptable verdicts on

the comparative scienti�c strength of theories. We start with examples of the-

ories formulated in the same logic.

Since scienti�c strength entails logical strength, it obviously follows that any

theories that do not have the same logical strength do not have the same sci-

enti�c strength either. For instance, ZFC plus the assertion that there exists a

inaccessible cardinal is scienti�cally stronger than ZFC which, in turn, is sci-

enti�cally stronger than PA. For T a reasonable classical theory containing a

modicum of arithmetic,T + Con(T ) is logically stronger thanT , and properly

so, since T + Con(T ) is not interpretable in T (Lindström 2003: Ch. 7). It is

worth noticing that Con(T ) is aΠ01-sentence of the language of arithmetic, i.e. a
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purely universal claim. In general, the addition of an independent Π01-sentence

results in a scienti�cally stronger theory. This last example obviously extends

to theories in di�erent languages that interpret a su�ciently strong arithmetical

theory. So our characterization of scienti�c strength vindicates Williamson’s

claim that a universally quanti�ed sentence adds informativeness to a theory.

More generally, our characterization entails that a theory is always scienti�cally

as strong as any of its subtheories.

However, our notion of scienti�c strength is also �exible enough to accom-

modate cases of theories that prima facie deal with di�erent mathematical do-

mains. One example concerns set theory with and without urelemente. By a

result of Löwe (2006), ZF and ZF plus urelemente are intertranslatable. There-

fore, they have equal scienti�c strength. A similar phenomenon concerns ZFC
and ZFA (ZFC without Foundation plus Aczel’s (1988) Anti-Foundation Axiom).

ZFC-sets can be interpreted in ZFA as well-founded sets. ZFA-sets can be in-

terpreted in ZFC as equivalence classes of graphs with lowest rank. Such inter-

pretations yield the intertranslatability of the two theories (Visser and Friedman

2014). This example shows that sameness of scienti�c strength does not amount

to sameness of meaning of the theories’ primitives, but only to equivalence with

respect to salient aspects of a theory’s primitives that are relevant in the struc-

ture of derivations. Our characterization also applies to theories formulated in

di�erent signatures. Consider, for instance, the theory ZFFin. Although this the-

ory is not intertranslatable with PA (Enayat et al. 2011: Thm. 5.1), it becomes

so once one adds to it the claim that every set has a transitive closure (Kaye and

Wong 2007).

Crucially, our analysis of scienti�c strength yields natural counterexamples

to Williamson’s implication from logical to scienti�c strength. A striking ex-

ample concerns set theory with and without the axiom of choice. ZF and ZFC
have the same logical strength but not the same scienti�c strength. In particu-

lar, ZFC is not intertranslatable with ZF. Therefore, ZFC is scienti�cally stronger

than ZF (Enayat 2016).11 This nicely �ts with the intuition that the addition of

the axiom of choice to ZF, although innocent from the point of view of mere

consistency strength, results in an increase of informativeness of the axioms.

Similarly, although adding the Continuum Hypothesis or its negation to ZFC
11Enayat shows that, for extensions of ZF in the language L∈ of set theory, the relation of

bi-interpretability – a slight weakening of the notion of intertranslatability – reduces to the sub-
theory relation. This yields that the two theories cannot be bi-interpretable, and therefore not
intertranslatable.
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does not increase its logical strength, it does increase its scienti�c strength. As

anticipated, canonical consistency statements display a similar behaviour: al-

though PA + ¬Con(PA) has the same logical strength as PA, it is scienti�cally
stronger than PA. There is in fact a subtheory of PA + ¬Con(PA) that is inter-
translatable with PA, but the converse does not hold (Visser 2006: Cor. 9.4). A

similar phenomenon holds for ZF(C) and ZF(C) + ¬Con(ZF(C)), as well as full
second-order arithmetic Z2 and Z2 + ¬Con(Z2).

We now turn to the comparison of logics. We said in §2.2 that classical

predicate logic is logically stronger than classical propositional logic. Since clas-

sical propositional logic is a subtheory of classical predicate logic, it follows that

classical predicate logic is also scienti�cally stronger than classical propositional

logic. We can also show that classical propositional logic is scienti�cally stronger

than themany-valued propositional logicsK3, LP and FDE. That classical pro-
positional logic is as scienti�cally strong as K3, LP and FDE obtains because of

the sublogic relation. For the other direction, we can show that none of K3, LP
andFDE can de�ne the classical connectives. Since translational equivalence for

logics entails that the connectives of one logic can be de�ned in the other without

reinterpreting propositional letters (Pellettier and Urquhart 2003: Thm. 2.8),

this establishes the failure of intertranslatability.

Here is our proof for K3. If K3 were intertranslatable with classical pro-

positional logic, then it would feature formulas N (·) and O(·, ·) de�ning in K3
classical negation and disjunction. However, in K3, one can prove by induc-

tion on its complexity that for any formula i containing only one propositional

letter p, i and N (p) are K3-logically equivalent, where N (p) can be one of:

p, ¬p, p ∨ ¬p, ¬(p ∨ ¬p).

By employing the explosion law for p and ¬p, and excluded middle for p ∨ ¬p
and ¬(p ∨ ¬p), one can see that none of these alternatives are possible.12

12In more detail: since p, ¬p classically entails q, we would have

p, N (p) �K3 q

However, this cannot be the case ifN (p) ≡ p, ifN (p) ≡ ¬(p∧¬p), ifN (p) ≡ p∨¬p. IfN (p) ≡ ¬p,
we can use O(p, q). In K3, there are only the following forms O(p, q) can take:

p ∨ q , p ∨ ¬q , ¬p ∨ q , ¬p ∨ ¬q , ¬(p ∨ q) , ¬(¬p ∨ q) ∨ ¬(¬q ∨ p)

But K3 does not entail:

p ∨ ¬p, p ∨ ¬¬p, ¬p ∨ ¬p, ¬p ∨ p, ¬(p ∨ ¬p) , ¬(¬p ∨ ¬p) ∨ ¬(p ∨ p) ,
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There are also logics that despite having the same logical strength have dif-

ferent scienti�c strength. One notable example is given by the modal logics K
and T. We have seen that they have equal logical strength. However, a result of

Pellettier and Urquhart (2003: Th. 4.5) entails that T is scienti�cally stronger

than K (and vice versa) because they are not intertranslatable. The reason for

this is that, since both logics have the �nite model property, translational equi-

valence requires isomorphism of classes of �nite models. However, since K is

a sublogic of T, there are models of K of size n that are not models of T. The
same result entails that the logics B, S4, S5, T, B all di�er in scienti�c strength.

There are nonetheless logics that have equal scienti�c strength. For instance, by

a result of Lenzen (1979), the modal logics S4.4 and KD45 are intertranslat-

able.

Finally, what has been said so far also enables us to compare theories in

di�erent logics by means of scienti�c strength. In general, if S is a subtheory

of T and formulated in a sublogic of the logic of T then S will be scienti�cally

weaker than any extension of T which is not scienti�cally as strong as T . For

instance, HA is a subtheory of PA, and therefore, by Visser’s result on extensions

of PA, HA is scienti�cally weaker than any proper extensions of PA. Similarly, HA
is scienti�cally weaker than any theory that is properly logically stronger than

ZFFin plus the assertion that every set has a transitive closure.

As we have seen in the case of logical strength, the examples just presented

show that our notion of scienti�c strength gives intuitive verdicts for an interest-

ing class of combinations of logics and mathematical theories. The core insight

behind our notion of scienti�c strength is to preserve some structural informa-

tion of the logical and non-logical primitives of a theory in derivations. This is

realized by requiring that the re-interpretations of such primitives need to be,

so to say, inverse to each other.

4 Abductivism and its strengths

We have presented a framework to analyze the notions of logical and scienti�c

strength. By employing translations between theories, the framework allows

one to compare the logical and scienti�c strength of theories in a formally pre-

since
¬(¬p ∨ ¬p) ∨ ¬(p ∨ p) ��K3 ¬¬p ∨ ¬p ��K3 p ∨ ¬p.
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cise way.

The framework is directly applicable to the debate on logical and math-

ematical abductivism. Williamson (2017) and Russell (2018) analyzed logical

strength essentially in terms of the subtheory relation. This fails to capture

many interesting cases of theory comparison. Our framework allows theory

comparison between theories that are not cast in the same language. Nonethe-

less, it also clari�es how the subtheory relation �ts into a more general account

of logical strength. In particular, being a proper subtheory of another theory

implies being logically weaker than it.

One important question for the abductivist concerns the relation between

logical and scienti�c strength. According to Williamson, logical strength en-

tails scienti�c strength, essentially because more deductive power yields more

information. If this is perhaps a plausible picture when comparing theories cast

in the same language, it becomes harder to defend when one must translate

between theories. For, if not suitably regimented, translations may compromise

the information contained in theorems, and this is not compatible with theories

having the same scienti�c strength. For instance, facts such as the interpretation

of PA+‘PA is inconsistent’ in PA rely essentially on distorting the information

contained in ‘PA is inconsistent’. It then follows that logical strength cannot en-

tail scienti�c strength.

By ensuring that the consequences of a theory are translated in accordance

to suitable information-preserving constraints, our proposal maintains the gen-

erality given by understanding logical strength in terms of translations, while

providing a notion of scienti�c strength as a re�nement of the logical one. As

a result, scienti�c strength implies logical strength but not vice versa: not all

translations involved in the relation of logical strength are adequate for scienti�c

strength. For instance, for PA to be scienti�cally as strong as PA+‘PA is incon-

sistent’, the structural role played by ‘PA is inconsistent’ in derivations should be

preserved, and PA has to be inconsistent after all. Hence, our notion of scienti�c

strength gives its due to the intuitive idea that scienti�c strength has to do with

the information contained in a theory.

Our framework combines notions of reducibility and equivalence that are

usually employed in di�erent domains. Interpretability strength is the standard

tool to comparemathematical theories, schematic translations are generally em-

ployed to compare pure logics, and intertranslatability is a standard measure of

theoretical equivalence for scienti�c theories. Therefore, our framework paves
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the way to a uni�ed approach to the comparison of formal theories. The spe-

ci�c combination of notions of reducibility employed in our characterization of

logical and scienti�c strength delivers especially intuitive verdicts when applied

to canonical examples. However, several alternatives are possible. For instance,

faithful interpretability – in which not only provability, but also unprovability

is preserved via the translation – may replace the looser notion of interpretab-

ility. Analogously, instead of focusing on sound translations in the comparison

of pure logics, one can consider the stricter notion of exact translation. Finally,

instead of intertranslatability, which is occasionally considered to be too strict

for theoretical equivalence (Weatherall 2019), can be replaced by looser notions

such as bi-interpretability (a.k.a. weak intertranslatability, homotopy equival-

ence) or categorical equivalence (Halvorson 2019). These alternatives will be

considered in future work.13
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