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Abstract. We investigated whether mathematicians typically agree about the qualities
of mathematical proofs. Between-mathematician consensus in proof appraisals is an
implicit assumption of many arguments made by philosophers of mathematics, but to
our knowledge the issue has not previously been empirically investigated. We asked
a group of mathematicians to assess a specific proof on four dimensions, using the
framework identified by Inglis and Aberdein (2014). We found widespread disagreement
between our participants about the aesthetics, intricacy, precision and utility of the
proof, suggesting that a priori assumptions about the consistency of mathematical
proof appraisals are unreasonable.

1. Proof Appraisals

A clichéd view of research-level mathematics, or at least research-level pure mathematics,
is that it is simply and solely concerned with logic: purported proofs are either valid or
invalid, and the job of a mathematician is to produce as many valid ones as possible.
On this account, there is little place for the appraisal of proofs in anything other than
a straightforwardly descriptive fashion. Proofs might be valid or invalid, published or
unpublished, short or long, but under the clichéd view it is hard to see how they could be
elegant, beautiful, or deep. However, a cursory glance at mathematical practice reveals
that mathematicians regularly make such appraisals. For example, in the citation for the
2003 Abel Prize, Jean-Pierre Serre’s work was described as being “profound”, “spectacular”,
and “magnificent”. So it is clear that a mathematician’s appraisal of a given piece of work
can go well beyond its validity. In this chapter we specifically focus on the evaluation of
mathematical proofs: how are such appraisals made, and what is their status?

A more systematic investigation of the ways in which mathematicians characterise
mathematical proofs is given in Table 1. It shows the most common adjectives used
to characterise proofs on MathOverflow, a website where research mathematicians ask
and answer questions about each others’ research.1 Although many of the adjectives are
straightforwardly descriptive (‘original’, ‘short’, ‘direct’, ‘algebraic’, ‘new’, ‘combinatorial’)
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2013. After data cleaning (i.e. removing html links and so on) this yielded a corpus of 1.83 million
words of what could reasonably be called informal mathematical discourse. We searched for all two-word
clusters with ‘proof’ as the second word. This yielded a total of 21,208 occurrences. Of course, many of
these clusters were not adjectival: nearly half were “the proof” (27.3%) or “a proof” (17.9%). Table 1
shows all those adjectival clusters with 20 or more occurrences.
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these data make clear that mathematicians regularly used their aesthetic judgement
(proofs can be ‘nice’, ‘slick’, ‘elegant’, ‘conceptual’, ‘beautiful’).

The status of proof appraisals is an issue of fundamental interest to mathematical
practice researchers. Several approaches to studying such appraisals have been adopted
during the course of the Mathematical Cultures project. Hanna and Mason (2014, MC2)
suggested that studying what makes a proof memorable provides an avenue in which less
well-specified characteristics can be investigated. They adopted Gowers’s (2007) notion
of the ‘width’ of a proof, and related this idea to Raman’s (2003) characterisation of ‘key
ideas’. Raman (MC2) herself hypothesised that the notion of mathematical beauty could
be related to ‘fit’. She analysed two proofs of Pythagoras’s Theorem and argued that
one exhibited ‘intrinsic fit’, in the sense that the proof captured “the essence of why the
theorem is true”, and that one did not.

This chapter builds directly on two further contributions to the Mathematical Cultures
project. Ernest (MC2) discussed different types of mathematical value, and noted that “it
is an open controversy as to whether beauty and aesthetics are objective or subjective
mathematical values”. Ernest’s question is fundamental to understanding the status
of mathematicians’ proof appraisals, and our goal in this chapter is to investigate it
empirically. But first we need to qualify Ernest’s distinction between objective and
subjective values. This might be understood as turning on whether an appraisal of
the value in question is factive, that is, on whether it reports upon matters of fact.
This is not an issue we can resolve empirically. However, we can empirically determine
whether a consensus of mathematicians are in agreement over a specific appraisal. Strictly
speaking, these questions are conceptually distinct: a spurious consensus may arise if
mathematicians are all wrong in the same way, whether or not there is even a fact of
the matter; conversely, mathematicians may disagree over an issue that is factive. Yet,
it seems to us to be prima facie implausible that appraisals of mathematical values
such as beauty or explanatoriness should motivate this sort of distinction: how might
a proof be explanatory if no mathematician finds it so, or lack beauty although most
mathematicians regard it as beautiful? Thus, although we wish to remain agnostic whether
mathematical values are factive, we hold it to be sufficient for present purposes to focus
on the following empirical question: are these values subjective, in the sense that they are
primarily an idiosyncratic property of the mathematician doing the judgement? Or are
they intersubjective, broadly shared across the community of mathematicians? To answer
this question we build on our work that was reported at the second Mathematical Cultures
Conference (Inglis & Aberdein, 2014, MC2). Before reviewing this contribution we offer
some remarks about the importance of the subjectivity/intersubjectivity distinction for
the validity of typical arguments deployed by philosophers of mathematics.

2. The Exemplar Philosophers

A common methodological move made by philosophers of mathematics is to offer an
example of a proof, or a mathematical object, assert that the proof has a given property,
and appeal to the readers’ intuitions for agreement. Here we characterise those who
adopt this approach as exemplar philosophers. Perhaps the most clear cut example of a
discussion between exemplar philosophers concerns mathematical explanation. Steiner
(1978) proposed an account of explanation based on characterising properties, which he
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Table 1. Most frequent adjectives used to describe proofs on Math-
Overflow, those adjectives with a frequency less than 20 are omitted.
Percentages are of all 2-word clusters, including non-adjectives (‘the proof’
constituted 27% of 2-word clusters).

Cluster Raw Freq % Freq

elementary proof 269 1.27
simple proof 223 1.05
original proof 164 0.77

short proof 156 0.74
direct proof 147 0.69

standard proof 117 0.55
formal proof 107 0.50

algebraic proof 104 0.49
complete proof 95 0.45

nice proof 92 0.43
usual proof 91 0.43

rigorous proof 84 0.40
new proof 83 0.39
easy proof 82 0.39
first proof 80 0.38

constructive proof 78 0.37
combinatorial proof 77 0.36

simpler proof 61 0.29
quick proof 59 0.28

geometric proof 55 0.26
theoretic proof 54 0.25
bijective proof 47 0.22

full proof 42 0.20
general proof 42 0.20

alternative proof 41 0.19
detailed proof 41 0.19

slick proof 38 0.18
analytic proof 37 0.17

mathematical proof 37 0.17
elegant proof 36 0.17
classical proof 35 0.17
inductive proof 32 0.15

conceptual proof 31 0.15
correct proof 29 0.14

consistency proof 28 0.13
shortest proof 28 0.13

topological proof 28 0.13
beautiful proof 23 0.11
similar proof 23 0.11

probabilistic proof 21 0.10
published proof 21 0.10

valid proof 20 0.09
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defined to be “a property unique to a given entity or structure within a family or domain
of such entities or structures” (p. 143). He suggested that an explanatory proof was one
which “makes reference to a characterising property of an entity or structure mentioned
in the theorem, such as that from the proof it is evident that the result depends on the
property” (p. 143).

Steiner’s argument is a model of the exemplar philosophers’ approach. First he
rejected an earlier characterisation of explanatoriness (Feferman’s (1969) suggestion that
explanatory proofs were those which are more general) by offering a proof of Pythagoras’s
theorem about which “it would be hard to claim that” it were more explanatory than
the standard proof, despite it being more general (p. 139). Next, Steiner offered his
own characterisation and justified it with reference to a proof (of the lemma that there
are no integers a and b such that a2 = 2b2) which he claimed was explanatory, and
which satisfied his characterisation. Finally, Steiner offered an example of a supposedly
non-explanatory proof of the identity 1+ 2+ 3+ . . .+n = n(n+1)/2, and showed that it
did not satisfy his characterisation. At each point in his argument Steiner asserted that
the proofs he presented were exemplars of explanatoriness or non-explanatoriness, and
offered no justification beyond his own judgement and an implicit appeal to his readers’
intuitions.

Steiner’s characterisation of explanatoriness was criticised by Resnik and Kushner
(1987), again using the exemplar approach. They offered two proofs, one “that meets
Steiner’s criterion but doesn’t explain and one which ought to explain if any proof does
but fails to meet Steiner’s criterion” (p. 146). With respect to the second proof, of the
intermediate value theorem, the authors suggested that it was explanatory because “We
find it hard to see how someone could understand this proof and yet ask why the theorem
is true” (p. 149). As with Steiner then, no substantive evidence was offered, beyond their
own judgement, for the (non-)explanatoriness of Resnik and Kushner’s exemplar proofs.

This reliance on personal intuitions was criticised by Hafner and Mancosu (2005),
who suggested that relying upon exemplar proofs identified by philosophers might not
accurately reflect those proofs considered explanatory by working mathematicians. They
offered a different exemplar to challenge Steiner, a proof of Kummer’s Convergence
Test produced by Pringsheim. In contrast to Steiner and Resnik and Kushner, Hafner
and Mancosu appealed to the intuition of the proof’s author, not simply to their own
intuitions: “According to Pringsheim this proof gives ‘the true reason why the Cn [. . . ] can
eventually be replaced by completely arbitrary positive numbers Bn’ ” (p. 229). Based on
this evidence, Hafner and Mancosu concluded that their proof was genuinely an exemplar
of explanatoriness, and used it to probe the adequacy of Steiner’s characterisation.

A critical assumption of all existing exemplar accounts of explanatoriness is that intu-
itions about whether a proof is explanatory or non-explanatory are widely shared.2 For the
arguments offered by Steiner and Resnik and Kushner to persuade, it is crucial that their
own judgements about explanatoriness are representative of the mathematical community
at large. Hafner and Mancosu require a weaker assumption, that the judgement made
by Pringsheim, a working mathematician, is representative of the larger mathematical
community. Nevertheless, both approaches require the assumption of intersubjectivity,

2Note that, although we have focused on explanatoriness here, there are accounts of other mathematical
values which use exemplars (e.g., Montaño, 2014; Tappenden, 2008a, 2008b).
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that judgements about the properties of proofs are broadly shared across the mathemat-
ical community. If this assumption did not hold, then the domain of applicability of
Steiner’s theory would be substantially smaller than the whole mathematical community
(it would merely be the collection of mathematicians who shared Steiner’s intuitions,
a group of unknown size). Further, as Ernest (MC2) pointed out, whether or not the
assumption of intersubjectivity is reasonable is currently an unresolved open question.
If the assumption is incorrect, and if there are disagreements between mathematicians
about the explanatoriness of the exemplars offered by the exemplar philosophers, then the
whole exemplar approach to characterising mathematical qualities such as explanatoriness
or beauty seems problematic.

Our goal in this chapter is to empirically investigate the extent to which proof appraisals
are shared between mathematicians. To do this, we build on our earlier analysis of the
structure of mathematical proof appraisals (Inglis & Aberdein, 2014, MC2).

3. The Structure of Proof Appraisals

In earlier work (Inglis & Aberdein, 2014) we argued that the ways in which mathemati-
cians evaluate mathematical proofs can be considered an analogous problem to the ways
in which people evaluate human personalities. In both cases there are a large number of
adjectives which can be applied (proofs can be appealing, bold, dense, etc.; humans can
be bashful, creative, moody, etc.). And in both cases some of these adjectives appear to
capture very similar ideas (elegant proofs seem intuitively likely to also be characterised
as beautiful; rude people seem likely to also be characterised as unsympathetic). Social
psychologists have approached the study of human personalities by asking participants
to rate how accurately a given person (perhaps themselves, perhaps an acquaintance)
would be described by a long list of adjectives. These ratings can then be subjected
to an exploratory factor analysis, a statistical procedure which clusters the adjectives
depending on how well they are correlated. For example, if a person who is accurately
described by the word ‘unsympathetic’ is highly likely to be accurately described by the
word ‘rude’, then in some sense the two adjectives are measuring the same trait. One of
the most robust findings in social psychology is the observation that human personality
traits cluster around five broad dimensions (Donnellan, Oswald, Baird, & Lucas, 2006;
John, Naumann, & Soto, 2008).

We adopted an analogous strategy by asking a large group of mathematicians to think
of a specific proof that they had recently refereed or read, and to state how accurately a
long list of adjectives described it. We found that there were four broad dimensions upon
which mathematical proofs vary, which we labelled Aesthetics, Intricacy, Precision and
Utility (Inglis & Aberdein, 2014).3 Importantly, all other adjectives in our study could
be approximated by linear combinations of these dimensions. For example, proofs were
likely to be rated as explanatory if they were useful, precise and non-intricate.4 Thus, to

3We also found a fifth group of adjectives which consisted of those which were uniformly poor descriptors
of the participants’ chosen proofs (e.g. very few of the participants’ chosen proofs were characterised as
careless, crude, or flimsy). We characterised these as the Non-Use adjectives.

4The adjective ‘explanatory’ had loadings of 0.101, 0.002, -0.308, 0.313 and 0.367 on the Aesthetics,
Non-Use, Intricacy, Utility and Precision dimensions respectively.
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investigate the subjectiveness of any of our original adjectives, including ‘explanatory’, it
suffices to consider the subjectiveness of these four dimensions.

Although our earlier study gives an indication of the structure of the space in which
mathematical appraisals operate, it does not indicate whether proof appraisals are
idiosyncratic subjective judgements which vary greatly between mathematicians, or
intersubjective judgements that are broadly shared across the mathematical community.
In the studies reported in this paper we sought to address this question by asking a
group of mathematicians to study a particular proof, and then appraise it within the
four-dimensional space earlier identified. In order to achieve this aim, we first produced a
short research instrument which could reliably capture mathematicians’ proof appraisals.
The two studies involved in this process are reported in the Appendix. In the next section,
we describe the methods used in our main study.

4. Method, Procedure and Participants

All mathematics departments with graduate programmes ranked by U.S. News &
World Report were invited by email to participate in the study. If the department agreed,
they forwarded an email invitation to participate to all research-active mathematicians
in their departments. Potential participants were asked to visit a website where the
purpose of the study was explained. If they agreed to participate, they clicked through
to the first page, where they were asked to state their research area (pure mathematics,
applied mathematics or statistics) along with the AMS subject classification which best
characterised their work, and their position (PhD student, postdoc, faculty with less than
5 years experience, or faculty with more than 5 years experience).

On the next page participants were presented with a proof of the Sylvester-Gallai
theorem, shown in Figure 1, taken from Proofs from the Book (Aigner & Ziegler, 2000).
Aigner and Ziegler attributed the proof to L. M. Kelly and described it as being “simply
the best” (p. 63). We chose this proof because it seemed to be relatively accessible, but
also non-trivial. In addition, because it appeared in Proofs from the Book, we had reason
to believe that it would elicit aesthetic reactions from at least some participants.

After studying the proof, participants were asked to select how accurately each of
the twenty adjectives shown in Table 2 described it. The adjectives were presented in a
random order and participants were asked to respond using a five-point Likert scale (very
inaccurate, moderately inaccurate, neither inaccurate nor accurate, moderately accurate,
very accurate).

Finally, participants were thanked for their time and invited to contact the research
team should they have any questions.

A total of 112 mathematicians completed the study, consisting of 47 PhD students, 12
postdocs, 52 faculty (of whom 11 had less than five years experience), and 1 participant
who declined to answer. The majority, 83% of participants, were pure mathematicians,
15% were applied mathematicians, and only 2% were statisticians.

5. Results and Discussion

Internal consistency is a critical aspect of psychometric instrument development. Be-
cause such instruments typically consist of several different Likert-scale items designed
to measure the same construct, it is important to determine that each of these items
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Theorem. In any configuration of n points in the plane, not all on a line, there is a
line which contains exactly two of the points.

Proof. Let P be the given set of points and consider the set L of all lines which pass
through at least two points of P. Among all pairs (P, `) with P not on `, choose a
pair (P0, `0) such that P0 has the smallest distance to `0, with Q being the point on
`0 closest to P0 (that is, on the line through P0 vertical to `0).

Claim: This line `0 does it!

If not, then `0 contains at least three points of P, and thus two of them, say P1 and
P2, lie on the same side of Q. Let us assume that P1 lies between Q and P2, where
P1 possibly coincides with Q. The figure below shows the configuration. It follows
that the distance of P1 to the line `1 determined by P0 and P2 is smaller than the
distance of P0 to `0, and this contradicts our choice for `0 and P0. �

`0

`1

P2

P0

P1
Q

Figure 1. The proof used in the study, taken from Aigner and Zeigler
(2000, p. 63).

results in a similar score to every other item which purportedly measures that construct.
For example, the mini IPIP personality scales consist of four items for each of the five
dimensions of human personality (Donnellan et al., 2006). If two items designed to assess
how neurotic a person was resulted in substantially different responses, then we would say
that the neuroticism dimension had poor internal consistency, and scores derived from it
should be treated with caution. Typically the internal consistency of a scale is assessed
using either a split-half reliability coefficient or the Cronbach’s alpha statistic. To calculate
the split-half reliability of a scale one calculates individuals’ overall score on half the items
(the odd numbered items, say) and correlates this figure with that from the other half
of the items. If the scale has high internal consistency, this correlation coefficient (once
adjusted for the reduced test length) should be high. The Cronbach’s alpha coefficient
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Table 2. The adjectives used in the short scale.

Adjective Dimension

ingenious Aesthetics
inspired Aesthetics
profound Aesthetics
striking Aesthetics
dense Intricacy

difficult Intricacy
intricate Intricacy
∗simple Intricacy
careless Non-Use
crude Non-Use
flimsy Non-Use

shallow Non-Use
careful Precision

meticulous Precision
precise Precision

rigorous Precision
applicable Utility

informative Utility
practical Utility

useful Utility
∗reverse scored

results from a more involved calculation, but operates on the same principles and can be
interpreted in an similar manner (e.g., Knapp & Mueller, 2010). Typically a split-half
or alpha coefficient of 0.7 or greater is considered to indicate acceptably high internal
consistency (e.g., Nunnally, 1978).

We first calculated the internal consistencies of the four dimensions. This yielded
Cronbach’s alphas of .877, .743, .839 and .797 for the Aesthetics, Intricacy, Precision and
Utility dimensions respectively. As in the final pilot study (reported in the Appendix) all
alphas were above the typical guideline of .7 (Nunnally, 1978).

We then calculated dimension scores for each participant by adding their Likert scale
responses for each dimension (with “very inaccurate” given a score of 1, and “very accurate”
a score of 5). The responses for ‘simple’ were reverse scored. This yielded four scores for
each participant, one for each dimension, which could vary from 4 to 20 (so, for example,
if a participant had a score of 20 on the Intricate dimension, they found the proof to
be highly intricate). We then plotted the distributions of the scores, these are shown in
Figure 2. Inspection of these histograms revealed widely spread distributions of scores for
each of the four dimensions.

We further analysed participants’ responses by conducting a hierarchical cluster analysis
(using Ward’s method with a Euclidean squared metric). This is a statistical procedure
which attempts to cluster participants into groups based on the similarity of their scores
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Figure 2. Histograms showing how participants rated the proof on each
of the four dimensions.

on different dimensions. Inspection of the resulting dendrogram suggested that a three
cluster solution was optimal. The mean ratings of each group for each dimension are
shown in Figure 3. Participants in Cluster 1 (N = 51) rated the proof as being high on
the Aesthetics, Precision and Utility dimensions, and low on the Intricacy dimension;
participants in Cluster 2 (N = 25) rated it as being low on the Aesthetics, Intricacy
and Precision dimensions, and high on the Utility dimension; and participants in Cluster
3 (N = 36) rated the proof as being low on all dimensions, and especially low on the
Aesthetics dimension.

Next we investigated whether participants’ responses could be predicted using their
research area. We ran a multivariate analysis of variance (Manova), with research area
(pure or applied mathematics) as the predictor, and scores on the four dimensions as the
dependent variables. For the purposes of this analysis we classified the two statisticians
in the sample as being applied mathematicians. Overall, there was no main effect of
research area, F (4, 107) = 1.733, p = .148. Looking at the dimensions separately revealed
a trend for the applied mathematicians to find the proof more intricate than the pure
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Figure 3. The mean ratings on each dimension of the three clusters.
Error bars show ±1 SE of the mean.

mathematicians (mean ratings: 10.2, 8.6; t(110) = 1.895, p = .061), and a trend for
the applied mathematicians to find the proof less useful than the pure mathematicians
(means: 10.5, 12.4; t(19.8) = 1.840, p = .081), but neither of these trends approached
the Bonferroni-corrected significance level of .013. Similarly, there was no significant
relationship between cluster membership and research area, χ2(2) = 4.038, p = .133.

Finally, we ran a Manova predicting scores on the four dimensions with our career stage
variable (because we had relatively few faculty with less than 5 years experience in our
sample, we merged the experienced and inexperienced faculty categories in this analysis;
this left three categories: research students, postdocs and faculty). We found no main
effect of career stage, F (8, 212) = 1.261, p = .265, and neither did career stage predict
any of the dimension scores individually. There was also no association between career
stage and cluster membership, χ2(4) = 4.181, p = .382. Overall, we found no evidence
that participants’ appraisals of this proof were strongly predicted by either their research
area or their career stage.

6. Discussion

We found a remarkable level of disagreement between our participants’ ratings of the
proof. For each of the four dimensions of proof appraisal there were participants who
thought the proof should score high on that dimension, and there were participants who
thought the proof should score low on that dimension. Furthermore, neither research area
nor career stage seemed to be predictive of mathematicians’ appraisals on any of the four
dimensions.
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Recall that the proof was taken from Proofs from the Book, a collection of proofs
modelled on Paul Erdős’s suggestion that there is a book “in which God maintains the
perfect proofs for mathematical theorems, following the dictum of G. H. Hardy that there
is no permanent place for ugly mathematics” (Aigner & Ziegler, 2000, p. V). Proofs from
the book are said to contain “brilliant ideas, clever insights and wonderful observations”
(p. V). Given this, we expected that the proof used in this study would be seen by most
participants as being relatively strong on the aesthetics dimension. But this was not the
case: there was widespread disagreement about how aesthetic the proof was, and in fact
a majority of participants (60.4%) rated it below the midpoint (12) of the aesthetic scale,
with just 31.5% rating it above the midpoint.

Recall that Ernest (MC2) noted that “it is an open controversy as to whether beauty
and aesthetics are objective or subjective mathematical values”. Our study here provides
some support for the latter position. If beauty and aesthetics were objective, or at least
intersubjective, we would have expected much greater clustering around a mean rating
on the Aesthetics dimension. Indeed, our findings allow us to go further, and suggest
that no qualities which can be represented as linear combinations of aesthetics, intricacy,
precision and utility are intersubjective. Our findings are, in this respect, in line with
other recent empirical evidence about mathematical practice. For example, Weber, Inglis,
and Mejía-Ramos (2014) reviewed a series of studies which demonstrated that there is
substantial heterogeneity about how persuasive mathematicians find different types of
evidence for mathematical assertions.

Exemplar philosophers have typically relied upon their own intuitions about the qualities
of a proof to draw philosophical conclusions. The data we have presented here suggest
that these intuitions may not be widely shared, potentially causing a serious problem
for this approach. Of course, our study involved only a single proof, and we cannot say
that our findings would generalise to all mathematical arguments. In particular, perhaps
the approach of the exemplar philosophers could be rescued by supposing that there
is widespread agreement about the qualities of the proofs chosen as exemplars by the
exemplar philosophers. We cannot refute this suggestion, but we do suggest that our data
indicate that assuming a priori that there would be agreement is unwarranted. We have
demonstrated that, for at least one proof (one which was deemed worthy of inclusion
in Proofs from the Book), there is no consensus, so whether or not there is agreement
among mathematicians about the qualities of any particular proof (including, for example,
Steiner’s (1978) exemplars) should be regarded as an open empirical question.

What of Hafner and Mancosu’s (2005) alternative approach? They criticised Steiner
(1978) and Resnik and Kushner (1987) for relying on personal intuitions, and instead
appealed to the judgement of Pringsheim, the author of their exemplar proof. While
this approach certainly seems preferable to Steiner’s and Resnik and Kushner’s, our data
suggest that it still may be insufficient for Hafner and Mancosu’s needs. While Pringsheim
found his proof to be explanatory, our data suggest that it is entirely plausible that he
was an outlier in this respect. Whether or not this is the case is uncertain, a matter
which can only be resolved by sampling a sufficiently large number of mathematicians,
and asking them to assess the explanatoriness of his proof.

Of course we are not the first to suggest that philosophers should be wary of assuming
that their personal intuitions about semantics are widely shared. Concerns about the



12 DIVERSITY IN PROOF APPRAISAL

validity of this assumption were central to the ‘empirical semantics’ approach of the
Oslo Group in the early-to-mid twentieth century (e.g., Gullvåg, 1955; Naess, 1938, 1981;
Tönnessen, 1955). Gullvåg, for instance, pointed out that any suggestion about a term’s
meaning “is merely an unsupported guess as long as no systematic testing of it has been
attempted”, and that “to test it systematically it is hardly sufficient that a single person
registers his own reactions to this or that sentence, or makes pronouncements based
on intuitions, or undertakes scattered observations of others’ usage” (p. 343). Similar
concerns are at the root of more recent work on experimental philosophy where, among
other topics, empirical methods have been used to explore the generality of philosophers’
intuitions about ethical dilemmas (e.g., Appiah, 2008; Nadelhoffer & Nahmias, 2007).
The results we have presented here strongly suggest that analogous concerns are valid
in the context of mathematical practice, and that empirical data which demonstrate
that personal intuitions about exemplar proofs are shared (i.e. which demonstrate that
exemplars are indeed exemplary) are necessary if the exemplar approach is to yield
productive insights.

One unresolved question from our study concerns the origin of mathematicians’ proof
appraisals. If we are correct that there are large individual differences in how mathemati-
cians evaluate proofs, and if these differences cannot be predicted by the mathematicians’
experience or research area, then what lies behind these differences? This is a question
for which we do not have a good answer, or even a good hypothesis. It seems ripe for
future research.
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Appendix A. Producing a Short Scale

The goal of the two studies reported in the Appendix was to create a short scale which
could reliably capture mathematicians’ proof appraisals. Specifically, we were concerned
to develop an instrument which showed sufficiently high internal consistency on all four
of the dimensions identified by Inglis and Aberdein’s (2014) exploratory factor analysis.

We constructed our initial scale for testing by taking the four adjectives which had
the highest loadings on each of the four dimensions. These are shown in Table 3. We
also included four adjectives from the Non-Use dimension. Although we did not believe
that this formed a genuine dimension, we felt it useful to include adjectives which were
likely to elicit negative responses, in order to reduce the likelihood of participants simply
selecting “very accurate” for each adjective.

A.1. Study 1.

A.1.1. Method, Participants and Procedure. Participants were 53 research-active math-
ematicians recruited from Australia, Canada and New Zealand. Departments in the
three countries were invited by email to participate in the study. If they agreed, they
forwarded an email to all research-active mathematicians in the department inviting them
to participate. The email gave an outline of the purpose of the study, and provided a link
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Table 3. The adjectives used in Studies 1 and 2. Changed adjectives are
shown in italics.

Study 1 Study 2

Adjective Dimension Adjective Dimension

ingenious Aesthetics ingenious Aesthetics
inspired Aesthetics inspired Aesthetics
profound Aesthetics profound Aesthetics
striking Aesthetics striking Aesthetics
dense Intricacy dense Intricacy

difficult Intricacy difficult Intricacy
intricate Intricacy intricate Intricacy

unpleasant Intricacy ∗simple Intricacy
careless Non-Use careless Non-Use
crude Non-Use crude Non-Use
flimsy Non-Use flimsy Non-Use

shallow Non-Use shallow Non-Use
careful Precision careful Precision

meticulous Precision meticulous Precision
precise Precision precise Precision

rigorous Precision rigorous Precision
applicable Utility applicable Utility

efficient Utility useful Utility
informative Utility informative Utility

practical Utility practical Utility
∗reverse scored

to the study’s website. Participants who clicked on the link first saw an introductory page
which again explained the purpose of the study. On the second page participants were
asked to select their research area (applied mathematics, pure mathematics, or statistics),
and state their level of experience (PhD student, postdoc, or faculty). On the third page
participants were given the following instructions, which were identical to those used by
Inglis and Aberdein (2014):

Please think of a particular proof in a paper or book which you have
recently refereed or read. Keeping this specific proof in mind, please use
the rating scale below to describe how accurately each word in the table
below describes the proof. Describe the proof as it was written, not how
it could be written if improved or adapted. So that you can describe
the proof in an honest manner, you will not be asked to identify it or its
author, and your responses will be kept in absolute confidence. Please
read each word carefully, and then select the option that corresponds to
how well you think it describes the proof. (Emphasis in the original)

Participants were then shown the list of twenty adjectives given in Table 3 in a random
order, and asked to select how well each described their chosen proof using a five-point
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Likert scale (very inaccurate, inaccurate, neither inaccurate nor accurate, accurate, very
accurate). Finally participants were thanked for their time, and invited to contact the
research team if they wanted further information.

A.1.2. Results and Discussion. We calculated the internal consistency of each of the
four dimensions (excluding the Non-Use dimension) using the Cronbach’s alpha statistic.
Recall that an alpha of 0.7 or above is typically considered acceptable (e.g., Nunnally,
1978). The Cronbach’s alpha for each dimension are shown in Table 4.

Table 4. The Cronbach’s alphas of each dimension in Studies 1 and 2,
and the Main Study.

Dimension Study 1 Study 2 Main Study

Aesthetics .850 .864 .877
Intricacy .595 .770 .743
Precision .805 .788 .839
Utility .485 .832 .797

The alphas associated with the Aesthetics and Precision dimensions were considerably
above the 0.7 guideline, but those for Intricacy and Utility dimensions fell somewhat short,
indicating a lack of consistency between the items on these dimensions. To address this
problem we calculated, for these two dimensions, the item without which the resultant
three-item scale had the highest alpha. These were ‘unpleasant’ and ‘efficient’ for the
Intricacy and Utility dimensions respectively. We then replaced these items with two
new adjectives, each of which had loaded strongly onto these dimensions in Inglis and
Aberdein’s (2014) factor analysis: ‘simple’ and ‘useful’. Because a very simple proof would
have a low score on the Intricacy dimension, we reverse scored the item (i.e. a participant
choosing “very accurate” for ‘simple’ would be given a score of 1 rather than 5). We then
conducted a second study to investigate the performance of our revised scale.

A.2. Study 2.

A.2.1. Method, Participants and Procedure. The procedure was identical to that of Study 1
except that ‘efficient’ was replaced with ‘useful’ on the Utility dimension, and ‘unpleasant’
with ‘simple’ on the Intricacy dimension (with ‘simple’ reverse scored). The full list
of adjectives is given in Table 3. Participants were 53 research active mathematicians
from universities in Ireland and Scotland. They were recruited in a similar manner to
participants in Study 1.

A.2.2. Results and Discussion. The Cronbach’s alphas for the four dimensions are given
in Table 4. With the revised scale, all four alphas were above the 0.7 guidelines, suggesting
that each dimension had acceptable internal consistency. We therefore used this revised
scale in our main study.
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