Artin's Characters Table of the Group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{3}\right)$ When $\mathrm{n}=p_{1} . p_{2} \ldots p_{n}$, and $p_{1}, p_{2}, \ldots, p_{n}$ are Primes Number
 Lecturer Naba Hasoon Jaber
 University of Krufa, College of Education for Girls, Department of Mathematics, Iraq Email:nabaah.al-saedi@uokufa.edu.iq

Abstract

The main purpose of this paper is to find Artin's characters table of the group $\left(Q_{2 n} \times D_{3}\right)$ when $n=p_{1} . p_{2} \ldots . p_{n}$, and $p_{1}, p_{2}, \ldots, p_{n}$ are primes number, which is denoted by $\operatorname{Ar}\left(Q_{2 n} \times D_{3}\right)$ where $Q_{2 m}$ is denoted to Quaternion group and D_{3} is the

 Dihedral group of order 6 .Keywords: Artin, characters,group, $\mathrm{Q}_{2 \mathrm{n}}, \mathrm{D}_{3}$, prime.

1. Introduction

Let G be a finite group, two elements of G are said to be Γ-conjugate if the cyclic subgroups they generate are conjugate in G and this defines an equivalence relation on G and its classes are called Γ-classes [3].
Let H be a subgroup of G and let ϕ be a class function on H , the induced class function on G , is given by: $\phi^{\prime}(\mathrm{g})$ $=\frac{1}{|H|} \sum_{\mathrm{h} \in \mathrm{G}} \phi^{\circ}\left(\mathrm{hgh}^{-1}\right), \forall \mathrm{g} \in \mathrm{G}$, where ϕ° is defined by:

$$
\phi^{\circ}(x)=\left\{\begin{array}{ll}
\phi(x) & \text { if } x \in H \\
0 & \text { if } x \notin H
\end{array}\right. \text { [2]. }
$$

Let H be a subgroup of G and ϕ be a character of H , then ϕ^{\prime} is a character of G , and it is called the induced character on G[7]. In 1976 ,David.G[3] studied "Artin Exponent of arbitrary characters of cyclic subgroup ", Journal of Algebra,61,p 58-76. In 1996, Knwabusz .K[9] studied "Some Definitions of Artin's Exponent of finite Group", USA, National foundation Math,GR. In this work we find Artin's characters table of the qroup $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{3}\right)$ when $\mathrm{n}=p_{1} . p_{2} \ldots . p_{n}$, and $p_{1}, p_{2}, \ldots, p_{n}$ are primes number.

2. Preliminaries

2.1The Generalized Quaternion Group $\mathbf{Q}_{2 \mathrm{~m}}$ [7]

For each positive integer m,the generalized Quaternion Group $Q_{2 m}$ of order $4 m$ with two generators x and y satisfies $Q_{2 n}=\left\{x^{h} y^{k}\right.$ $, 0 \leq h \leq 2 n-1, \mathrm{k}=0,1\}$ which has the following properties
$\left\{x^{2 n}=y^{4}=I, y x^{n} y^{-1}=x^{-1}\right\}$.
2.2The Dihedral Group D_{3} [9]

The Dihedrael Group D3 is generate by a rotation r of order 3 and reflection s of order 2 then 6 elements of D3 can be written as: $\left\{1, \mathrm{r}, \mathrm{r}^{2}, \mathrm{~s}, \mathrm{sr}, \mathrm{sr}^{2}\right\}$.

2.3The Rational valued characters table:

Definition(2.3.1) [5]
A rational valued character θ of G is a character whose values are in Z, which is $\theta(\mathrm{g}) \in \mathrm{Z}$ for all $\mathrm{g} \in \mathrm{G}$.
Theorem (2.3.2)[9]
Every rational valued character of G be written as a linear combination of Artin's characters with coefficient rational numbers. Corollary (2.3.3)[5]

The rational valued characters $\theta_{i}=\sum_{\sigma \epsilon G a l\left(Q\left(\chi_{i}\right) / Q\right)} \sigma\left(\chi_{i}\right)$ Form a basis for $\bar{R}(G)$, where χ_{i} are the irreducible characters of G and their numbers are equal to the number of conjugacy classes of a cyclic subgroup of G .
Proposition(2.3.4)[9]
The number of all rational valued characters of finite G is equal to the number of all distinct Γ-classis. Definition (2.3.5)[5]

The information about rational valued characters of a finite group G is displayed in a table called a rational valued characters table of G.We denote it by ${ }^{*}(\mathrm{G})$ which is $l \times l$ matrix whose columns are Γ-classes and rows are the valuses of all rational valued characters where l is the number of Γ-classes.

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2000-000X
Vol. 3 Issue 4, April - 2019, Pages: 1-8

The rational character table of $\mathrm{Q}_{\underline{2}} \underline{\text { where } m \text { is an odd number(2.3.6) [7] }}$
Table(1)

Where $0 \leq r \leq l, l$ is the number of Γ-classes $C_{2 m}, \theta j$ such that $1 \leq j \leq l+1$ are the rational valued characters of group $Q_{2 m}$ and if we denote Cij the elements of $\xlongequal[=]{ }\left(\mathrm{C}_{\mathrm{m}}\right)$ and hij the elements of H as defined by: $\mathrm{Hij}=\left\{\begin{array}{lll}C_{i j} & \text { if } & i=l \\ -C_{i j} & \text { if } & i \neq l\end{array}\right.$

Table(2)

Γ-classes	$[1]$	$\left[x^{2}\right]$	$\left[x^{n}\right]$	$[x]$	$[y]$
Θ_{1}	1	1	1	1	1
θ_{2}	$\mathrm{n}-1$	-1	$n-1$	1	0
θ_{3}	1	1	1	1	0
θ_{4}	$\mathrm{n}-1$	-1	$1-\mathrm{n}$	-2	0
θ_{5}	2	2	-2	1	

The rational character table of $\mathrm{D}_{3}(2.3 .8)$ [6] $\stackrel{*}{*}\left(\mathrm{D}_{3}\right)$

Table(3)

classes $\Gamma-$	$[!]$	$[\mathrm{r}]$	$[\mathrm{s}]$
$\left\|C L_{\alpha}\right\|$	1	2	3
$\left\|C_{D_{3}}\left(c l_{\alpha}\right)\right\|$	6	3	2
θ_{1}	2	-1	0
θ_{2}	1	1	1
θ_{3}	1	1	1

3. Artin's Character Tables:

Theorem(3.1):[5]

Let H be a cyclic subgroup of G and $h_{1}, h_{2}, \ldots, h_{m}$ are chosen representatives for the m-conjugate classes of H contained in CL(g) in G,then:

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2000-000X
Vol. 3 Issue 4, April - 2019, Pages: 1-8

$$
\varphi^{\prime}(\mathrm{g})= \begin{cases}\frac{\left|C_{G}(g)\right|}{\left|c_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(g) \\ 0 & \text { if } H \cap C L(g)=\phi\end{cases}
$$

Propostion(3.2)[5]

The number of all distinct Artin's characters on a group G is equal to the number of Γ-classes on G.Furthermore, Artin's characters are constant on each Γ-classes.
Theorem(3.3) [10]
The Artin's characters table of the Quaternion group $\mathrm{Q}_{2 \mathrm{n}}$ when m is odd number is given as follows:
Table(4)

	「-classes of $\mathrm{C}_{2 \mathrm{~m}}$								[y]
「-classes	$\mathrm{X}^{2 r}$				$\mathrm{X}^{2 r+1}$				
$\left\|C L_{\alpha}\right\|$	1	2	...	2	1	2	...		2 n
$\left\|C_{Q_{2 n}}\left(C L_{\alpha}\right)\right\|$	4 n	2 n	...	2 n	4 n	2 n	...		2
Φ_{1}									0
Φ_{2}									0
\vdots					(!
Φ_{1}									0
Φ_{1+1}	m	0	...	0	n	0	...	0	1

Where $0 \leq \mathrm{r} \leq \mathrm{m}-1, \mathrm{l}$ is the number of Γ-classes of $\mathrm{C}_{2 \mathrm{~m}}$ and Φj are the Artin characters of the Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$, for all $1 \leq \mathrm{j} \leq l+1$.
Artin characters table of $\mathrm{Q}_{2 \mathrm{n}}$ when $\mathrm{n}=p_{1} . p_{2} \ldots p_{n}$, and $p_{1}, p_{2}, \ldots, p_{n}$ are primes number (4.4) [8]
The general form of Artin's characters of $\mathrm{Q}_{2 \mathrm{n}}$ when $\mathrm{n}=p_{1} . p_{2} \ldots . p_{n}$, and $p_{1}, p_{2}, \ldots, p_{n}$ are primes number
Table(5)

Γ-classes	[1]	[x^{2}]	[x^{n}]	[x]	[y]
$\left\|C L_{\alpha}\right\|$	1	2	1	2	2 n
$\left\|C_{Q_{2 n}}\left(C L_{\alpha}\right)\right\|$	4 n	2 n	4 n	2 n	2
Φ_{1}	4 n	0	0	0	0
Φ_{2}	4	4	0	0	0
Φ_{3}	2 n	0	2 n	0	0
Φ_{4}	2	2	2	2	0
Φ_{5}	n	0	n	0	1

The Artin characters of D_{3} (4.5)[9]
Table(6)

Γ-classes	$[1]$	$[\mathrm{r}]$	$[\mathrm{s}]$
$\left\|C L_{\alpha}\right\|$	1	2	3
$\left\|C_{D_{3}}\left(C L_{\alpha}\right)\right\|$	6	3	2
Φ_{1}	6	0	0
Φ_{2}	2	2	0
Φ_{3}	3	0	1

4. The main resulte

Propostion(4.1)

If $\mathrm{n}=p_{1} . p_{2} \ldots p_{n}$, and $p_{1}, p_{2}, \ldots, p_{n}$ are primes number, then The Artin's character table of the group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{3}\right)$ is given as: The general form of the Artin characters of the group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{3}\right)$ when $\mathrm{n}=p_{1} . p_{2} \ldots p_{n}$, and $p_{1}, p_{2}, \ldots, p_{n}$ are primes number

Table(7)

「-classes	[1, I] [$\left.{ }^{2}, 1\right]\left[x^{n}, 1\right][x, l][y, I]$	$[1, r]\left[x^{2}, r\right]\left[x^{n}, r\right][x, r][y, r]$	$[1, s]\left[x^{2}, s\right]\left[x^{n}, s\right][x, s][y, s]$
$\left\|C L_{\alpha}\right\|$	$120122 n$	$121022 n$	121220
$\left\|C_{Q_{2 n^{\times} D_{3}}}\left(C L_{\alpha}\right)\right\|$	$24 \mathrm{n} \quad 24 \mathrm{n} \quad 12 \mathrm{n} \quad 12$	24 n 12n $\quad 24 \mathrm{n} \quad 12 \mathrm{n} \quad 12$	24p ${ }^{12 n} \quad 24 n \quad 12 \mathrm{n} \quad 12$
$\begin{gathered} \Phi_{(1,1)} \\ \Phi_{(2,1)} \\ \vdots \\ \Phi_{(l+1,1)} \end{gathered}$	$6 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{n}}\right)$	0	0
$\begin{gathered} \hline \Phi_{(1,2)} \\ \Phi_{(2,2)} \\ \vdots \\ \\ \Phi_{(1+1,2} \end{gathered}$	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{n}}\right)$	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{n}}\right)$	0
$\begin{gathered} \Phi_{(1,3)} \\ \Phi_{(2,3)} \\ \vdots \\ \Phi_{(1+1,3)} \end{gathered}$	$3 \operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{n}}\right)$	0	$\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{n}}\right)$

which is (5×5) square matrix .
Proof: Let $g \in\left(Q_{2 \mathrm{n}} \times \mathrm{D}_{3}\right) ; \mathrm{g}=(\mathrm{q}, \mathrm{d}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{n}}, \mathrm{d} \in \mathrm{D}_{3}$
Case(I):
If H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{n}} \times\{\mathrm{I}\}\right)$, then $1-\mathrm{H}=<(\mathrm{x}, \mathrm{I})>\quad 2-\mathrm{H}=<(\mathrm{y}, \mathrm{I})>$
And φ the principle character of H, Φ_{j} Artin's characters of $\mathrm{Q}_{2 \mathrm{n}}, 1 \leq \mathrm{j} \leq 1+1$, then by using theorem (4.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{lc}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{n} \varphi(h i) & \text { if } h i \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

1- $\mathrm{H}=<(x, I)>$
(i) \quad If $g=(1, I)$
$\Phi_{(\mathrm{j}, 1)}(1, \mathrm{I})=\frac{\left|C_{Q_{2 n}{ }^{ } D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \cdot \varphi(\mathrm{g})=\frac{24 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6.4 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6 \mid C_{Q_{2 n}(1) \mid}}{|C<x>(1)|} \cdot \varphi(1)=6 . \Phi_{j}(1)$ since $\mathrm{H} \cap C L(1, I)=\{(1, I)\}$
(ii) If $g=\left(x^{n}, I\right), g \in H$ then
$\Phi_{(\mathrm{j}, 1)}(\mathrm{g})=\frac{\mid C_{Q_{2 n}{ }^{x} D_{3}(\mathrm{~g}) \mid}}{\left|C_{H}(\mathrm{~g})\right|} \varphi(g)=\frac{24 n}{\left|C_{H}(\mathrm{~g})\right|} .1=\frac{6 \mid C_{Q_{2 n}\left(x^{n}\right) \mid}}{\left|C<x>\left(x^{n}\right)\right|} \varphi\left(x^{n}\right)=6 . \Phi_{j}\left(x^{n}\right)$ since $\mathrm{H} \cap C L(g)=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(iii) If $g=\left(x^{2}, I\right)$ or $g=(x, I)$ and $g \in H$ then
$\Phi_{(\mathrm{j}, 1)}(\mathrm{g})=\frac{\left|C_{Q_{2 n}{ }^{{ }^{D_{3}}}}(\mathrm{~g})\right|}{\left|C_{H}(g)\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12 n}{\left|C_{H}(\mathrm{~g})\right|}(1+1)=\frac{3.4 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 2=\frac{3 \mid C_{Q 2 n(q) \mid}}{\left|C_{H(q)}\right|} \cdot 2=6 . \Phi_{j}(q)$
since $\mathrm{H} \cap C L(g)=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varnothing\left(\mathrm{g}^{-1}\right)=1$ and since $\mathrm{g}=(\mathrm{q}, \mathrm{I}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{n}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{n}}$
(iv) if $\mathrm{g} \notin \mathrm{H}$ then

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2000-000X
Vol. 3 Issue 4, April - 2019, Pages: 1-8
$\Phi_{(\mathrm{j}, 1}(\mathrm{g})=0$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
2- If $H=<(y, l)>=\left\{(1, I),(y, l)\left(y^{2}, I\right)\left(y^{3}, l\right)\right\}$ then
(i) If $\mathrm{g}=(1, \mathrm{l})$ then

(ii) If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{n}}, \mathrm{l}\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right)$ and $\mathrm{g} \in H$ then
$\Phi_{(l+1,1)}(\mathrm{g})=\frac{\mid C_{Q_{2 n^{*}} D_{3}(\mathrm{~g}) \mid}}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 n}{4} .1=6 . \mathrm{n}=6 . \Phi_{1+1}\left(\mathrm{x}^{\mathrm{n}}\right) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{n}}, \mathrm{I}\right)$ and $\mathrm{g} \in \mathrm{H}$, i.e. $\left\{\mathrm{g}=(\mathrm{y}, \mathrm{I})\right.$ or $\left.\mathrm{g}=\left(\mathrm{y}^{3}, \mathrm{l}\right)\right\}$ then

$$
\Phi_{(\mid+1,1)}(\mathrm{g})=\frac{\left|C_{Q_{2 n} \times D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12}{4}(1+1)=3 \cdot 2=6 \cdot \Phi_{1+1}(\mathrm{y}) \text { since } \operatorname{HnCL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1
$$

Otherwise
$\Phi_{((+1,1)}(\mathrm{g})=0 \quad$ since $\mathrm{HnCL}(\mathrm{g})=\phi$
Case(II):
If H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{n}} \mathrm{x}\{\mathrm{r}\}\right)$ then:
1- $H=<(x, r)>2-H=<(y, r)>$ $1-H=<(x, r)>$
and φ the principle character of H , then by using theorem (4.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{n} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

(i) If $\mathrm{g}=(1, \mathrm{I}),(1, \mathrm{r})$ then
 since $\operatorname{H\cap CL}(\mathrm{g})=\left\{(1, \mathrm{I}),(1, \mathrm{r}),\left(1, \mathrm{r}^{2}\right)\right\}$
(ii) $\quad \mathrm{g}=(1,1),\left(\mathrm{x}^{\mathrm{n}}, 1\right),\left(\mathrm{x}^{\mathrm{n}}, \mathrm{r}\right),(1, r) ; \mathrm{g} \in H$

$$
\text { if } \mathrm{g}=(1, \mathrm{I}),(1, r) \text { then }
$$

$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{Q 2 n} \times D_{3}(g)\right|}{\left|C_{H}(g)\right|} \varphi(\mathrm{g})=\frac{24 n}{\left|C_{H}(g)\right|} \cdot 1 \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$

$$
=\frac{6.3 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6\left|C_{Q 2 n}(1)\right|}{3\left|C_{<x\rangle}(1)\right|} \varphi(1)=2 \Phi_{\mathrm{j}}(1)
$$

(iii) if $g=\left(x^{n}, 1\right),\left(x^{n}, r\right)$ then
$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{Q 2 n} \times D_{3}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6.3 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6\left|C_{Q 2 n}\left(x^{n}\right)\right|}{3\left|C_{<x>}\left(x^{n}\right)\right|} \varphi(1)=2 \Phi_{\mathrm{j}}\left(x^{n}\right)$
(iv) if $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{n}}, \mathrm{l}\right),\left(\mathrm{x}^{\mathrm{n}}, \mathrm{r}\right)$ and $\mathrm{g} \in H$ then
$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{Q 2 n} x D_{3}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12 n}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$

$$
=\frac{3.4 n}{\left|C_{H}(\mathrm{~g})\right|}(1+1)=\frac{3\left|C_{Q 2 n}(q)\right|}{3\left|C_{c_{x>}}(q)\right|} \cdot 2=2 \Phi_{j}(q)
$$

Since $\mathrm{g}=(\mathrm{q}, \mathrm{r}), \mathrm{q} \in \mathrm{Q}_{2 n}, \mathrm{q} \neq \mathrm{x}^{\mathrm{n}}$
(v) if $\mathrm{g} \notin H$ then
$\Phi_{(\mathrm{j}, 2}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad$ since $\mathrm{HnCL}(\mathrm{g})=\phi_{3}$
2- if $H=\langle(y, r)\rangle=\left\{(1,1),(y, 1),\left(y^{2}, l\right),\left(y^{3}, 1\right),(1, r),(y, r),\left(y^{2}, r\right),\left(y^{3}, r\right)\right\}$
(i) if $g=(1, I),(1, r)$ then
$\Phi_{((1+1,2)}(\mathrm{g})=\frac{\mid C_{Q_{2 n \times D}(\mathrm{~g}) \mid}^{\left|C_{H}(\mathrm{~g})\right|}}{} \varphi(\mathrm{g})=\frac{24 n}{12} \cdot 1=2 \mathrm{n}=2 \Phi_{1+1}(\mathrm{~g})$
(ii) if $g=\left(y^{2}, l\right)=\left(\mathrm{x}^{\mathrm{n}}, \mathrm{I}\right),\left(\mathrm{y}^{2}, \mathrm{r}\right)$ and $\mathrm{g} \in H$ then

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2000-000X
Vol. 3 Issue 4, April - 2019, Pages: 1-8
$\Phi_{(l+1,2)}(\mathrm{g})=\frac{\left|C_{Q_{2 n x D 3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 \mathrm{n}}{12} \cdot 1=2 \mathrm{n}=2 \Phi_{1+1}(\mathrm{~g})$ since $\mathrm{HnCL}(\mathrm{g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
(iii) if $g \neq\left(\mathrm{x}^{\mathrm{n}}, \mathrm{l}\right)$ and $\mathrm{g} \in H$ i.e. $\mathrm{g}=\{(\mathrm{y}, \mathrm{I}),(\mathrm{y}, \mathrm{r})\}$ or $\mathrm{g}=\left\{\left(\mathrm{y}^{3}, \mathrm{l}\right),\left(\mathrm{y}^{3}, \mathrm{r}\right)\right\}$ then
$\Phi_{(\mathrm{l}+1,2)}(\mathrm{g})=\frac{\left|C_{Q_{2 n \times D 3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12}{12}(1+1)=2 \Phi_{1+1}(\mathrm{~g})$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
otherwise $\Phi_{(l+1,2)}(\mathrm{g})=0$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
case(III):
if H is a cyclic subgroup of $\left(\mathrm{Q}_{2 n \times\{ }\{ \}\right\}$ then
1- $H=<(x, s)>, 2-H=<(y, s)>$
and φ the principle character of H , then by using theorem (4.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{n} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

1- $H=\langle(x, s)>$
(i) If $\mathrm{g}=(1, \mathrm{I})$ then

$$
\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{Q_{2 n} \times D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 n}{\left|C_{H}(1, l)\right|} \cdot 1=\frac{6.4 n}{\left|C_{H}(1, l)\right|} \cdot 1=\frac{6\left|C_{Q 2 n}(1)\right|}{2\left|C_{<x\rangle}(1)\right|} \cdot 1=3 \Phi_{\mathrm{j}}(1) \quad \text { since } \quad \mathrm{HnCL}(\mathrm{~g})=\{(1, \mathrm{I})\}
$$

If $\mathrm{g}=\{(1, \mathrm{~s})\}$ then
(ii) If $\mathrm{g}=(1, \mathrm{I}),\left(\mathrm{x}^{\mathrm{n}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{n}}, \mathrm{s}\right),(1, \mathrm{~s}) ; \mathrm{g} \in H$ then

$$
\text { If } g=(1,1) \text { then }
$$

$$
=\frac{6.4 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6\left|C_{Q_{2 n}}(1)\right|}{2\left|C_{\ll>}(1)\right|} \varphi(1)=3 \Phi_{\mathrm{j}}(1)
$$

If $\mathrm{g}=\{(1, \mathrm{~s})\}$ then

$$
\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{Q_{2 n} \times D_{3}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{8 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{2.4 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{2\left|C_{Q 2 n}(1)\right|}{2\left|C_{<x\rangle}(1)\right|} \cdot 1=\Phi_{\mathrm{j}}(1) \quad \text { since } \quad \mathrm{H} \mathrm{CL}(\mathrm{~g})=\{\mathrm{g}\} \text { and } \varphi(\mathrm{g})=1
$$

(iii)If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{n}}, \mathrm{I}\right)$ then
$\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{Q_{2 n x D}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6.4 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{6 \mid C_{Q_{2 n}\left(x^{n}\right) \mid}^{2}}{2\left|C_{\chi_{\chi}>}\left(x^{n}\right)\right|} \varphi(1)=3 \Phi_{\mathrm{j}}\left(\mathrm{x}^{n}\right)$
If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{n}}, \mathrm{s}\right)$ then
$\Phi_{(\mathrm{j}, \mathrm{3})}(\mathrm{g})=\frac{\left|C_{Q_{2 n \times D 3}(\mathrm{~g}) \mid}\right| C_{H}(\mathrm{~g}) \mid}{\mid c} \varphi(\mathrm{~g})=\frac{8 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{2.4 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{2 \mid C_{Q_{2 n}\left(x^{n}\right) \mid}^{2\left|C_{<x\rangle}\left(x^{n}\right)\right|}}{} \varphi(1)=\Phi_{\mathrm{j}}\left(\mathrm{x}^{n}\right)$
(iv)If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{n}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{n}}, \mathrm{s}\right)$ and $\mathrm{g} \in H$

If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right)$ then
$\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\mid C_{Q_{2 n} \times D_{3}(\mathrm{~g}) \mid}^{\left|C_{H}(\mathrm{~g})\right|}}{}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12 n}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \quad$ since $\mathrm{HnCL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$

$$
=\frac{3.4 n}{\left|C_{H}(g)\right|}(1+1)=\frac{3 \mid C_{Q_{2 n}(q) \mid}}{2\left|C_{\langle x\rangle}(q)\right|} \cdot 2=3 \Phi_{\mathrm{j}}(q)
$$

Since $g=(q, I), q \in Q_{2 n}$,

$$
q \neq x^{n}
$$

If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{n}}, \mathrm{s}\right)$ then

$$
=\frac{2.4 n}{\left|C_{H}(g)\right|}(1+1)=\frac{2\left|C_{Q_{2 n}}(q)\right|}{4\left|C_{<x\rangle}(q)\right|} \cdot 2=\Phi_{\mathrm{j}}(q)
$$

Since $\mathrm{g}=(\mathrm{q}, \mathrm{s}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{n}}, \quad \mathrm{q} \neq \mathrm{x}^{\mathrm{n}}$
(v) if $\mathrm{g} \notin H$ then

$$
\Phi_{(\mathrm{j}, 3 \mathrm{3}}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad \text { since } \mathrm{HCCL}(\mathrm{~g})=\phi
$$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2000-000X
Vol. 3 Issue 4, April - 2019, Pages: 1-8
2-if $\mathrm{H}=\left\langle(\mathrm{y}, \mathrm{s})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),(1, \mathrm{~s}),(\mathrm{y}, \mathrm{s}),\left(\mathrm{y}^{2}, \mathrm{~s}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\}\right.$ then (i)If $\mathrm{g}=(1, \mathrm{I})$ then

If $\mathrm{g}=(1, \mathrm{~s})$ then
$\Phi_{((+1,3)}(\mathrm{g})=\frac{\mid C_{Q_{2 n} \times D_{3}(\mathrm{~g}) \mid}}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{8 n}{8} .1=\mathrm{n}=\Phi_{1+1}(\mathrm{~g})$
(ii)If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{I}\right)=\left(\mathrm{x}^{\mathrm{n}}, \mathrm{I}\right)$ and $\mathrm{g} \in H$ then
$\Phi_{((+1,3)}(\mathrm{g})=\frac{\mid C_{Q_{2 n} \times D_{3}(\mathrm{~g}) \mid}}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{24 n}{8} \cdot 1=3 \cdot \mathrm{n}=3 \Phi_{1+1}(\mathrm{~g}) \quad$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{~s}\right)$ and $\mathrm{g} \in H$ then

(iii)If $\mathrm{g} \neq$ ($\left.\mathrm{x}^{\mathrm{n}}, \mathrm{I}\right) \quad$ and $\mathrm{g} \in H$ i.e. $\mathrm{g}=\{(\mathrm{y}, \mathrm{I}),(\mathrm{y}, \mathrm{s})\}$ or $\mathrm{g}=\left\{\left(\mathrm{y}^{3}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\} \quad$ then
$\Phi_{(l+1,3)}(\mathrm{g})=\frac{\left.\left\lvert\, C_{Q_{2 n} \times D_{3}(\mathrm{~g}) \mid}^{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{12}{8}(1+1)=3 \Phi_{1+1}(\mathrm{~g})\right.,{ }^{12}\right)}{}$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
(iv)If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{~s}\right), \mathrm{g} \in \mathrm{H}$ then
$\Phi_{(l+1,3)}(\mathrm{g})=\frac{\mid C_{Q_{2 n} \times D_{3}(\mathrm{~g}) \mid}^{\mid C_{H}(\mathrm{~g} \mid}}{} \varphi(\mathrm{g})=\frac{8 n}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8 n}{8} \cdot 1=\Phi_{1+1}(\mathrm{~g})$
(v)If $\mathrm{g}=(\mathrm{y}, \mathrm{s})$ then
$\Phi_{(l+1,3)}(\mathrm{g})=\frac{\mid C_{Q_{2 n} \times D_{3}(\mathrm{~g}) \mid}}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{4}{\left|C_{H}(\mathrm{~g})\right|} \cdot(1+1)=\frac{4}{8} \cdot 2=1$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
otherwise $\Phi_{(l+1,3)}(\mathrm{g})=0$ sinceH $\cap C L(\mathrm{~g})=\phi$

Example (4.2): To find Artine's character table of the group $\left(\mathrm{Q}_{66} \mathrm{XD}_{3}\right)$.
$\operatorname{Ar}\left(\mathrm{Q}_{66} \times \mathrm{D}_{3}\right)=\operatorname{Ar}\left(\mathrm{Q}_{2.3 .11} \times \mathrm{D}_{3}\right)=$
Table(8)

| Γ-classes | $[1, I]$ | $\left[\mathrm{x}^{2}, \mathrm{I}\right]$ | $\left[\mathrm{x}^{3}, \mathrm{I}\right]$ | $[\mathrm{x}, \mathrm{I}]$ | $[\mathrm{y}, \mathrm{I}]$ | $[1, \mathrm{r}]$ | $\left[\mathrm{x}^{2}, \mathrm{r}\right]$ | $\left[\mathrm{x}^{33}, \mathrm{r}\right]$ | $[\mathrm{x}, \mathrm{r}]$ | $[\mathrm{y}, \mathrm{r}]$ | $[1, \mathrm{~s}]$ | $\left[\mathrm{x}^{2}, \mathrm{~s}\right]$ | $\left[\mathrm{x}^{33}, \mathrm{~s}\right]$ | $[\mathrm{x}, \mathrm{s}]$ | $[\mathrm{y}, \mathrm{s}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|c L_{\alpha}\right\|$ | 1 | 2 | 1 | 2 | 2 n | 2 | 2 | 2 | 2 | 2 n | 3 | 3 | 3 | 3 | 6 n |
| $\left\|c_{Q_{2 n^{*} D_{3}}}\left(c L_{\alpha}\right)\right\|$ | 792 | 396 | 792 | 396 | 12 | 396 | 396 | 396 | 396 | 12 | 264 | 264 | 264 | 264 | 4 |
| $\Phi_{(1,1)}$ | 792 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(2,1)}$ | 264 | 264 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(3,1)}$ | 396 | 0 | 132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(4,1)}$ | 24 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(5,1)}$ | 8 | 8 | 0 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(1,2)}$ | 12 | 0 | 4 | 12 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(2,2)}$ | 396 | 0 | 0 | 0 | 0 | 0 | 396 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(3,2)}$ | 132 | 132 | 0 | 0 | 0 | 0 | 132 | 132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(4,2)}$ | 198 | 0 | 66 | 0 | 0 | 0 | 198 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(5,2)}$ | 12 | 0 | 0 | 12 | 0 | 0 | 12 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{(1,3)}$ | 4 | 4 | 0 | 4 | 4 | 0 | 4 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 |
| $\Phi_{(2,3)}$ | 6 | 0 | 2 | 6 | 0 | 2 | 6 | 0 | 2 | 6 | 0 | 2 | 0 | 0 | 0 |
| $\Phi_{(3,3)}$ | 198 | 0 | 0 | 0 | 0 | 0 | 198 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| $\Phi_{(4,3)}$ | 66 | 66 | 0 | 0 | 0 | 0 | 66 | 66 | 0 | 0 | 0 | 0 | 2 | 2 | 0 |
| $\Phi_{(5,3)}$ | 99 | 0 | 33 | 0 | 0 | 0 | 99 | 0 | 33 | 0 | 0 | 0 | 3 | 0 | 1 |

References:

[1] M.J.Hall "The Theory of Group ",Macmillan,Neyork,1959.
[2] I. M. Isaacs, "On Character Theory Of Finite Groups", Academic Press, Newyork,1976.
[3] David.G "Artin Exponent of arbitrary characters of cyclic subgroup ", Journal of Algebra, 1976,p 58-76.
[4] M.S.Kirdar,"The factor Group of the Z-valued class function Modulo the group of the Generalized characters"University of Birmingham1980
[5] C.Curits and I.Reiner,"Methods of Representation Theory with Application to finite Groups and order",John Wily and sons,NewYork,1981.
[6] H.H.Abass, "On the factor Group of class function over the Group of Generalized characters of D_{n} ",M.S.C.thesis,Technology University,1994.
[7] N.R.Mahamood"The cyclic Decomposition of the factor group of $\frac{\left(Q_{2 m}\right)}{\bar{R}\left(Q_{2 m}\right)}$ ",M.SC. thesis University of Technology,1995.
[8] A.S.Abid,"Artin's characters table of Dihedral group for odd number",M.S.C.thesis,University of Kufa,2006.
[9] K . Knwabusz, "some Definitions of Artin's Exponent of finite Group", USA, National foundation Math,GR,1996.
[10] A.H.Abdul-Mun'em,"On Artin Cokernel of the Quaternion Group $\mathrm{Q}_{2 \mathrm{~m}}$ when m is odd number ",2008.

