Artin's Characters Table of the Group $(Q_{2n} \times D_3)$ When $n=p_1, p_2, \dots, p_n$ and p_1, p_2, \dots, p_n are Primes Number

Lecturer Naba Hasoon Jaber

University of Krufa, College of Education for Girls, Department of Mathematics, Iraq Email:nabaah.al-saedi@uokufa.edu.iq

Abstract: The main purpose of this paper is to find Artin's characters table of the group $(Q_{2n} \times D_3)$ when $n=p_1, p_2, ..., p_n$, and $p_1, p_2, ..., p_n$ are primes number, which is denoted by $Ar(Q_{2n} \times D_3)$ where Q_{2m} is denoted to Quaternion group and D_3 is the Dihedral group of order 6.

Keywords: Artin, characters, group, Q_{2n}, D₃, prime.

1. INTRODUCTION

Let G be a finite group, two elements of G are said to be Γ -conjugate if the cyclic subgroups they generate are conjugate in G and this defines an equivalence relation on G and its classes are called Γ -classes [3].

Let H be a subgroup of G and let ϕ be a class function on H, the induced class function on G, is given by: $\phi'(g) = \frac{1}{|H|} \sum_{h \in G} \phi^{\circ}(hgh^{-1}), \forall g \in G$, where ϕ° is defined by:

 $\phi^{\circ}(x) = \begin{cases} \phi(x) & \text{if } x \in H \\ 0 & \text{if } x \notin H \end{cases} [2].$

Let H be a subgroup of G and ϕ be a character of H, then ϕ' is a character of G, and it is called the induced character on G[7]. In 1976 ,David.G[3] studied "Artin Exponent of arbitrary characters of cyclic subgroup ", Journal of Algebra,61,p 58-76. In 1996, Knwabusz .K[9] studied "Some Definitions of Artin's Exponent of finite Group", USA, National foundation Math,GR. In this work we find Artin's characters table of the group ($Q_{2n} \times D_3$) when $n=p_1.p_2....p_n$, and $p_1, p_2, ..., p_n$ are primes number.

2. PRELIMINARIES

2.1The Generalized Quaternion Group Q_{2m} [7]

For each positive integer m,the generalized Quaternion Group Q_{2m} of order 4m with two generators x and y satisfies $Q_{2n} = \{x^h \ y^k, 0 \le h \le 2n - 1, k = 0, 1\}$ which has the following properties

$\{x^{2n}=y^4=I, yx^ny^{-1}=x^{-n}\}.$

2.2The Dihedral Group D₃ [9]

The Dihedrael Group D3 is generate by a rotation r of order 3 and reflection s of order 2 then 6 elements of D3 can be written as: $\{1,r,r^2,s,sr,sr^2\}$.

2.3The Rational valued characters table:

<u>Definition(2.3.1)</u> [5]

A rational valued character θ of G is a character whose values are in Z, which is $\theta(g) \in \mathbb{Z}$ for all $g \in G$.

Theorem (2.3.2)[9]

Every rational valued character of G be written as a linear combination of Artin's characters with coefficient rational numbers. Corollary (2.3.3)[5]

The rational valued characters $\theta_i = \sum_{\sigma \in Gal(Q(\chi_i)/Q)} \sigma(\chi_i)$ Form a basis for $\overline{R}(G)$, where χ_i are the irreducible characters of G and their numbers are equal to the number of conjugacy classes of a cyclic subgroup of G.

Proposition(2.3.4)[9]

The number of all rational valued characters of finite G is equal to the number of all distinct Γ -classis.

Definition (2.3.5)[5]

The information about rational valued characters of a finite group G is displayed in a table called a rational valued characters table of G.We denote it by $\equiv (G)$ which is $l \times l$ matrix whose columns are Γ -classes and rows are the values of all rational valued characters where l is the number of Γ -classes.

Table(1)														
		Γ -classes of c_{2m}												
				X^{2r}			X^{2r+1}							
	Θ_1	1	1		1	<u>_</u>	1	-	1			1	1	
	Θ_2			* \									0	
	:			≡ * (C _m)					≡(C _m)	≡ (C _m)			:	
	$\Theta_{l/2}$												0	
	$\Theta_{(l/2)+1}$	1	1		1	L	1	1	1			1	-1	
Ī	:			≓ (C _m)									0	
Ī	Θ_{l-1}			=(C _m)						Н			:	
	Θ_l												0	
	Θ_{l+1}	2	2			2	-2	-2				-2	0	

The rational character table of Q_{2m} where m is an odd number (2.3.6) [7]

Where $0 \le r \le l$, l is the number of Γ -classes C_{2m} , θj such that $1 \le j \le l+1$ are the rational valued characters of group Q_{2m} and if we denote Cij the elements of $\equiv (C_m)$ and hij the elements of H as defined by: Hij= $\begin{cases} C_{ij} & \text{if } i = l \\ -C_{ij} & \text{if } i \neq l \end{cases}$

The rational character table of Q_{2n} when $n=p_1, p_2, \dots, p_n$ and p_1, p_2, \dots, p_n are primes number (2.3.7)[7]

	Table(2)											
Γ-classes	[1]	[x ²]	[x ⁿ]	[x]	[y]							
Θ_1	1	1	1	1	1							
θ_2	n-1	-1	n-1	-1	0							
θ_3	1	1	1	1	1							
$ heta_4$	n-1	-1	1-n	1	0							
θ_5	2	2	-2	-2	0							

The rational character table of $D_3(2.3.8)[6]$ **≡**(D₃)

Table(3)									
classes ₋	[1]	[r]	[s]						
$ CL_{\alpha} $	1	2	3						
$ C_{D_3}(cl_{\alpha}) $	6	3	2						
$ heta_1$	2	-1	0						
θ_2	1	1	1						
$ heta_3$	1	1	1						

3. ARTIN'S CHARACTER TABLES:

Theorem(3.1):[5]

Let H be a cyclic subgroup of G and h1,h2,...,hm are chosen representatives for the m-conjugate classes of H contained in CL(g) in G,then:

$$\varphi'(g) = \begin{cases} \frac{|c_G(g)|}{|c_H(g)|} \sum_{i=1}^m \varphi(h_i) & \text{if } h_i \in H \cap CL(g) \\ 0 & \text{if } H \cap CL(g) = \phi \end{cases}$$

Propostion(3.2)[5]

The number of all distinct Artin's characters on a group G is equal to the number of Γ -classes on G.Furthermore , Artin's characters are constant on each Γ -classes.

Theorem(3.3) [10]

The Artin's characters table of the Quaternion group Q_{2n} when m is odd number is given as follows:

Table(4)												
Γ-classes of C _{2m}												
Γ-classes			X ^{2r}		X ^{2r+1}				[y]			
$ CL_{\alpha} $	1	2		2	1	2			2n			
$ \mathcal{C}_{Q_{2n}}(\mathcal{C}L_{\alpha}) $	4n	2n		2n	4n	2n			2			
Φ_1									0			
Φ_2				2					0			
:		2Ar(C _{2n})										
Φ_{l}		Γ										
Φ_{l+1}	m	0		0	n	0		0	1			

Where $0 \le r \le m-1$, l is the number of Γ -classes of C_{2m} and Φj are the Artin characters of the Quaternion group Q_{2m} , for all $1 \le j \le l+1$. <u>Artin characters table of Q_{2n} when $n=p_1, p_2, \dots, p_n$, and p_1, p_2, \dots, p_n are primes number (4.4)[8] The general form of Artin's characters of Q_{2n} when $n=p_1, p_2, \dots, p_n$, and p_1, p_2, \dots, p_n are primes number</u>

Table(5)											
Γ-classes	[1]	[x ²]	[x ⁿ]	[x]	[y]						
$ CL_{\alpha} $	1	2	1	2	2n						
$ C_{Q_{2n}}(CL_{\alpha}) $	4n	2n	4n	2n	2						
Φ_1	4n	0	0	0	0						
Φ_2	4	4	0	0	0						
Φ_3	2n	0	2n	0	0						
Φ_4	2	2	2	2	0						
Φ_5	n	0	n	0	1						

The Artin characters of D₃ (4.5)[9]

Table(6)										
Γ-classes	[1]	[r]	[s]							
$ CL_{\alpha} $	1	2	3							
$ C_{D_3}(CL_{\alpha}) $	6	3	2							
Φ_1	6	0	0							
Φ2	2	2	0							
Φ_3	3	0	1							

4. THE MAIN RESULTE

Propostion(4.1)

If $n = p_1 \cdot p_2 \dots \cdot p_n$, and p_1, p_2, \dots, p_n are primes number, then The Artin's character table of the group $(Q_{2n} \times D_3)$ is given as: The general form of the Artin characters of the group $(Q_{2n} \times D_3)$ when $n = p_1 \cdot p_2 \dots \cdot p_n$, and p_1, p_2, \dots, p_n are primes number

		Table(7)	
Γ-classes	[1,I][x ² ,I][x ⁿ ,I][x,I][y,I]	[1,r][x ² ,r][x ⁿ ,r][x,r][y,r]	[1,s][x ² ,s][x ⁿ ,s][x,s][y,s]
$ CL_{\alpha} $	1 2 1 2 2n	1 2 1 2 2n	1 2 1 2 2n
$ C_{Q_{2n^{x}D_{3}}}(CL_{\alpha}) $	24n 24n 12n 12	24n 12n 24n 12n 12	24p 12n 24n 12n 12
$\begin{array}{c} \Phi_{(1,1)} \\ \Phi_{(2,1)} \\ \vdots \end{array}$	6Ar(Q _{2n})	0	0
$\Phi_{(l+1,1)}$			
$\begin{array}{c} \Phi_{(1,2)} \\ \Phi_{(2,2)} \\ \vdots \end{array}$	2Ar(Q _{2n})	2Ar(Q _{2n})	0
Ф _{(l+1,2}			
$\Phi_{(1,3)} \\ \Phi_{(2,3)} \\ \vdots$	3Ar(Q _{2n})	0	Ar(Q _{2n})
Ф _(l+1,3)			

which is (5×5) square matrix.

<u>Proof:</u> Let $g \in (Q_{2n} \times D_3)$; $g = (q,d), q \in Q_{2n}, d \in D_3$

Case(I):

If H is a cyclic subgroup of $(Q_{2n} \times \{I\})$, then 1- H=<(x,I)> 2- H=<(y,I)> And φ the principle character of H, Φ_i Artin's characters of Q_{2n} , $1 \le j \le l+1$, then by using theorem (4.1)

$$\Phi_{j}(\mathbf{g}) = \begin{cases} \frac{|C_{G}(\mathbf{g})|}{|C_{H}(\mathbf{g})|} \sum_{i=1}^{n} \varphi(hi) & \text{if } hi \in H \cap CL(\mathbf{g}) \\ 0 & \text{if } H \cap CL(\mathbf{g}) = \phi \end{cases}$$

(i) $H = \langle (x, I) \rangle$ (i) If g = (1, I)

$$\Phi_{(j,1)}(1,I) = \frac{|C_{Q_{2n} \times D_3}(g)|}{|C_H(g)|}, \varphi(g) = \frac{24n}{|C_H(g)|}, 1 = \frac{6.4n}{|C_H(g)|}, 1 = \frac{6|C_{Q_{2n}}(1)|}{|C < x > (1)|}, \varphi(1) = 6, \Phi_j(1) \text{ since } H \cap CL(1,I) = \{(1,I)\}$$

(ii) If $g = (x^n, I), g \in H$ then

$$\Phi_{(j,1)}(g) = \frac{|C_{Q_{2n}} x_{D_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{24n}{|C_H(g)|} \cdot 1 = \frac{6|C_{Q_{2n}}(x^n)|}{|C_{xx}(x^n)|} \varphi(x^n) = 6. \ \Phi_j(x^n) \text{ since } H \cap CL(g) = \{g\}, \varphi(g) = 1$$
(iii) If $g = (x^2, I)$ or $g = (x, I)$ and $g \in H$ then

$$\begin{split} \Phi_{(j,1)}(g) &= \frac{|c_{Q_{2n}} x_{D_3}(g)|}{|c_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{12n}{|c_H(g)|} (1+1) = \frac{3.4n}{|c_H(g)|} \cdot 2 = \frac{3|c_{Q^{2n}(q)}|}{|c_{H(q)}|} \cdot 2 = 6. \ \Phi_j(q) \\ \text{since } H \cap \mathcal{C}L(g) &= \{g, g^{-1}\} \text{ and } \varphi(g) = \phi(g^{-1}) = 1 \text{ and since } g = (q, I), q \in Q_{2n}, q \neq x^n \\ \text{(iv)} \quad \text{if } g \notin H \text{ then} \end{split}$$

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2000-000X Vol. 3 Issue 4, April – 2019, Pages: 1-8

 $\Phi_{(i,1)}(g)=0$ since $H\cap CL(g)=\phi$ 2- If $H = \langle (y,I) \rangle = \{(1,I), (y,I)(y^2,I)(y^3,I)\}$ then If g=(1,I) then (i)
$$\begin{split} \Phi_{(l+1,1)}(g) &= \frac{|C_{Q_{2n}} \times_{D_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{24n}{4} \cdot 1 = 6.n = 6. \Phi_{l+1}(1) \qquad \text{since } H \cap CL(1,I) = \{(1,I)\} \\ \text{(ii)} \qquad \text{If } g = (x^n, I) = (y^2, I) \text{ and } g \in H \text{ then} \end{split}$$
(ii)
$$\begin{split} \Phi_{(I+1,1)}(g) &= \frac{|C_{Q_{2n}} x_{D_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{24n}{4} \cdot 1 = 6.n = 6. \Phi_{I+1}(x^n) \quad \text{ since } H \cap CL(g) = \{g\}, \varphi(g) = 1 \\ (\text{iii}) \quad \text{ If } g \neq (x^n, I) \text{ and } g \in H \text{ ,i.e.} \{g = (y, I) \text{ or } g = (y^3, I)\} \quad \text{ then } \end{split}$$
 $\Phi_{(l+1,1)}(g) = \frac{|CQ_{2n}xD_3(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{12}{4} (1+1) = 3.2 = 6. \Phi_{l+1}(y) \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1.00 \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1.00 \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1.00 \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1.00 \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ since } H \cap CL(g) =$ Otherwise $\Phi_{(l+1,l)}(g)=0$ since $H \cap CL(g) = \phi$ Case(II): If H is a cyclic subgroup of $(Q_{2n}x{r})$ then: 1- $H = \langle (x,r) \rangle$ 2- $H = \langle (y,r) \rangle$ 1-H=<(x,r)>and φ the principle character of H, then by using theorem (4.1) $\Phi_{j}(\mathbf{g}) = \begin{cases} \frac{|C_{G}(\mathbf{g})|}{|C_{H}(\mathbf{g})|} \sum_{i=1}^{n} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(\mathbf{g}) \\ 0 & \text{if } H \cap CL(\mathbf{g}) = \phi \end{cases}$ (i) If g=(1,I),(1,r) then $\Phi_{(j,2)}(g) = \frac{|C_{Q_{2n} \times D_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{24.n}{|C_H(1,I)|} \cdot 1 = \frac{6.4n}{|C_H(1,I)|} \cdot 1 = \frac{6|C_{Q_{2n}}(1)|}{3|C_{<X>}(1)|} \varphi(1) = 2.\Phi j(1)$ since $H \cap CL(g) = \{(1,1), (1,r), (1,r^2)\}$ $g=(1,I),(x^{n},I),(x^{n},r),(1,r); g \in H$ (ii) if g=(1,I),(1,r) then $\Phi_{(\mathbf{j},\mathbf{2})}(\mathbf{g}) = \frac{|\mathcal{C}_{Q2n} \times D_3(g)|}{|\mathcal{C}_H(g)|} \varphi(\mathbf{g}) = \frac{24n}{|\mathcal{C}_H(g)|} \cdot 1 \quad \text{since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$ $= \frac{6.3n}{|\mathcal{C}_H(g)|} \cdot 1 = \frac{6|\mathcal{C}_{Q2n}(1)|}{3|\mathcal{C}_{<x>}(1)|} \varphi(1) = 2\Phi_{\mathbf{j}}(1)$ if $g = (x^n, I), (x^n, r)$ then (iii)
$$\begin{split} \Phi_{(\mathbf{j},\mathbf{2})}(\mathbf{g}) &= \frac{|\mathcal{C}_{Q2n} x \mathcal{D}_3(\mathbf{g})|}{|\mathcal{C}_H(\mathbf{g})|} \ \varphi(\mathbf{g}) = \frac{24n}{|\mathcal{C}_H(\mathbf{g})|} \cdot 1 = \frac{6.3p}{|\mathcal{C}_H(\mathbf{g})|} \cdot 1 = \frac{6|\mathcal{C}_{Q2n}(x^n)|}{3|\mathcal{C}_{<x>}(x^n)|} \varphi(1) = 2\Phi_{\mathbf{j}}(x^n) \\ (\mathsf{iv}) \qquad \text{if } \mathbf{g} \neq (\mathbf{x}^n, \mathbf{I}), (\mathbf{x}^n, \mathbf{r}) \text{ and } \mathbf{g} \in H \text{ then} \end{split}$$
 $\Phi_{(\mathbf{j},2)}(g) = \frac{|C_{Q2n} \times D_3(\mathbf{g})|}{|C_H(\mathbf{g})|} (\varphi(g) + \varphi(g^{-1})) = \frac{12n}{|C_H(\mathbf{g})|} (1+1) \quad \text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$ $= \frac{3.4n}{|C_H(\mathbf{g})|} (1+1) = \frac{3|C_{Q2n}(q)|}{3|C_{<x>}(q)|} \cdot 2 = 2\Phi_j(q)$ Since $g=(q,r), q \in Q_{2n}, q \neq$ (v) if $g \notin H$ then $=0 = \Phi_{j}(q) \text{ since } H\cap CL(g) = \phi$ 2- if H=<(y,r)>={(1,1),(y,1),(y^{2},1),(y^{3},1),(1,r),(y,r),(y^{2},r),(y^{3},r)} $\Phi_{(i,2)}(g) = 0 = \Phi_i(q)$ if g=(1,I),(1,r) then (i) $\Phi_{(l+1,2)}(g) = \frac{|c_{Q_{2nXD3}}(g)|}{|c_{H}(g)|} \varphi(g) = \frac{24n}{12} \cdot 1 = 2n = 2\Phi_{l+1}(g)$ (ii) if $g = (y^2, l) = (x^n, l), (y^2, r)$ and $g \in H$ then (ii)

 $\Phi_{(l+1,2)}(g) = \frac{|C_{Q_{2nxD3}}(g)|}{|C_{H}(g)|} \varphi(g) = \frac{24n}{12} \cdot 1 = 2n = 2\Phi_{l+1}(g) \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$ (iii) if $g \neq (x^n, l)$ and $g \in H$ i.e. $g = \{(y, l), (y, r)\}$ or $g = \{(y^3, l), (y^3, r)\}$ then

$$\begin{split} \Phi_{(l+1,2)}(g) &= \frac{|C_{Q_{2RXD3}}(g)|}{|C_{H}(g)|} \left(\varphi(g) + \varphi(g^{-1})\right) = \frac{12}{12} (1+1) = 2\Phi_{l+1}(g) \\ & \text{ since } \mathsf{H} \cap \mathsf{CL}(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1 \end{split}$$

otherwise $\Phi_{(I+1,2)}(g)=0$ since $H \cap CL(g)=\phi$ <u>case(III)</u>:

and φ the principle character of H, then by using theorem (4.1)

$$\Phi_{j}(\mathbf{g}) = \begin{cases} \frac{|\mathcal{C}_{G}(\mathbf{g})|}{|\mathcal{C}_{H}(\mathbf{g})|} \sum_{i=1}^{n} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(\mathbf{g}) \\ 0 & \text{if } H \cap CL(\mathbf{g}) = \phi \end{cases}$$
1- H=<(x,s)>

(i) If g=(1,I) then

$$\Phi_{(\mathbf{j},\mathbf{3})}(g) = \frac{|C_{Q_{2n}xD_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{24n}{|C_H(1,I)|} \cdot 1 = \frac{6.4n}{|C_H(1,I)|} \cdot 1 = \frac{6|C_{Q_{2n}}(1)|}{2|C_{}(1)|} \cdot 1 = 3\Phi_{\mathbf{j}}(1) \text{ since } \mathsf{H} \cap \mathsf{CL}(g) = \{(1,I)\}$$

If $g = \{(1,s)\}$ then
$$\Phi_{(\mathbf{j},\mathbf{3})}(g) = \frac{|C_{Q_{2n}xD_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{8n}{|C_H(1,s)|} \cdot 1 = \frac{2.4n}{|C_H(1,s)|} \cdot 1 = \frac{2|C_{Q_{2n}}(1)|}{2|C_{}(1)|} \cdot 1 = \Phi_{\mathbf{j}}(1) \text{ since } \mathsf{H} \cap \mathsf{CL}(g) = \{(1,s)\}$$

(ii) If $g = (1,I), (x^n, I), (x^n, s), (1,s); g \in H$ then
If $g = (1,I)$ then

$$\begin{split} \Phi_{(j,3)}(g) &= \frac{|C_{Q_{2n}xD_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{24n}{|C_H(g)|} \cdot 1 & \text{since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1 \\ &= \frac{6.4n}{|C_H(g)|} \cdot 1 = \frac{6|C_{Q_{2n}}(1)|}{2|C_{}(1)|} \varphi(1) = 3\Phi_j(1) \\ \text{If } g = \{(1,s)\} \text{ then} \\ \Phi_{(j,3)}(g) &= \frac{|C_{Q_{2n}xD_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{8n}{|C_H(g)|} \cdot 1 = \frac{2.4n}{|C_H(g)|} \cdot 1 = \frac{2|C_{Q_{2n}}(1)|}{2|C_{}(1)|} \cdot 1 = \Phi_j(1) \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1 \\ (\text{iii)If } g = (x^n, 1) \text{ then} \\ \Phi_{(j,3)}(g) &= \frac{|C_{Q_{2n}xD_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{24n}{|C_H(g)|} \cdot 1 = \frac{64n}{|C_H(g)|} \cdot 1 = \frac{6|C_{Q_{2n}}(x^n)|}{2|C_{}(x^n)|} \varphi(1) = 3\Phi_j(x^n) \\ \text{If } g = (x^n, s) \text{ then} \\ \Phi_{(j,3)}(g) &= \frac{|C_{Q_{2nxD_3}}(g)|}{|C_H(g)|} \varphi(g) = \frac{8n}{|C_H(g)|} \cdot 1 = \frac{2|C_{Q_{2n}}(x^n)|}{2|C_{}(x^n)|} \varphi(1) = \Phi_j(x^n) \\ \text{(iv)If } g \neq (x^n, 1), (x^n, s) \text{ and } g \in H \\ \text{If } g \neq (x^n, 1), (x^n, s) \text{ and } g \in H \\ \text{If } g \neq (x^n, 1) \text{ then} \\ \Phi_{(j,3)}(g) &= \frac{|C_{Q_{2nxD_3}}(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{12n}{|C_H(g)|} (1 + 1) \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1 \\ &= \frac{3.4n}{|C_H(g)|} (1 + 1) = \frac{3|C_{Q_{2n}}(g)|}{2|C_{}(q)|} \cdot 2 = 3 \Phi_j(q) \\ \text{Since } g = (q, I), q \in Q_{2n}, \quad q \neq x^n \end{aligned}$$

If $g \neq (x^{n}, s)$ then $\Phi_{(j,3)}(g) = \frac{|C_{Q_{2n}xD_{3}}(g)|}{|C_{H}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{8n}{|C_{H}(g)|} (1 + 1) \quad \text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$ $= \frac{2.4n}{|C_{H}(g)|} (1 + 1) = \frac{2|C_{Q_{2n}}(q)|}{4|C_{<x>}(q)|} \cdot 2 = \Phi_{j}(q)$

Since $g=(q,s), q \in Q_{2n}$, $q \neq x^n$

(v) if $g \notin H$ then

 $\Phi_{(j,3)}(g)=0 = \Phi_j(q)$ since $H \cap CL(g)=\phi$

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2000-000X Vol. 3 Issue 4, April – 2019, Pages: 1-8

 $\begin{aligned} 2\text{-if } H=&<(y,s)>=\{(1,I),(y,I),(y^{2},I),(y^{3},I),(1,s),(y,s),(y^{2},s),(y^{3},s)\} \text{ then } \\ (i)If g=&(1,I) \text{ then } \\ \Phi_{(l+1,3)}(g)=&\frac{|C_{Q_{2n}xD_{3}}(g)|}{|C_{H}(g)|}\varphi(g)=&\frac{24n}{8}.1=3.n=3\Phi_{l+1}(g) \\ \text{ If } g=&(1,s) \text{ then } \\ \Phi_{(l+1,3)}(g)=&\frac{|C_{Q_{2n}xD_{3}}(g)|}{|C_{H}(g)|}\varphi(g)=&\frac{8n}{8}.1=n=\Phi_{l+1}(g) \\ (ii)If g=&(y^{2},I)=(x^{n},I) \text{ and } g\in H \text{ then } \\ \Phi_{(l+1,3)}(g)=&\frac{|C_{Q_{2n}xD_{3}}(g)|}{|C_{H}(g)|}\varphi(g)=&\frac{24n}{8}.1=3.n=3\Phi_{l+1}(g) \text{ since } H\cap CL(g)=\{g\} \text{ and } \varphi(g)=1 \\ \text{ If } g=&(y^{2},s) \text{ and } g\in H \text{ then } \\ \Phi_{(l+1,3)}(g)=&\frac{|C_{Q_{2n}xD_{3}}(g)|}{|C_{H}(g)|}\varphi(g)=&\frac{8n}{8}.1=n=\Phi_{l+1}(g) \text{ since } H\cap CL(g)=\{g\} \text{ and } \varphi(g)=1 \\ (iii)If g\neq &(x^{n},I) \text{ and } g\in H \text{ i.e. } g=\{(y,I),(y,s)\} \text{ or } g=\{(y^{3},I),(y^{3},s)\} \text{ then } \\ \Phi_{(l+1,3)}(g)=&\frac{|C_{Q_{2n}xD_{3}}(g)|}{|C_{H}(g)|}(\varphi(g)+\varphi(g^{-1}))=&\frac{12}{8}(1+1)=3\Phi_{l+1}(g) \\ \text{ since } H\cap CL(g)=\{g,g^{-1}\} \text{ and } \varphi(g)=\varphi(g^{-1})=1 \end{aligned}$

(iv)If $g=(y^2, s), g \in H$ then $\Phi_{(l+1,3)}(g) = \frac{|C_{Q_{2R} \times D_3}(g)|}{|C_H(g)|} \varphi(g) = \frac{8n}{|C_H(g)|} \cdot 1 = \frac{8n}{8} \cdot 1 = \Phi_{l+1}(g)$ (v)If g=(y,s) then $\Phi_{(l+1,3)}(g) = \frac{|C_{Q_{2R} \times D_3}(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{4}{|C_H(g)|} \cdot (1+1) = \frac{4}{8} \cdot 2 = 1$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\varphi(g) = \varphi(g^{-1}) = 1$ otherwise $\Phi_{(l+1,3)}(g) = 0$ since $H \cap CL(g) = \phi$

Example (4.2): To find Artine's character table of the grou	$p(Q_{66}xD_3)$.
$Ar(Q_{66}xD_3) = Ar(Q_{2,3,11}xD_3) =$	
	$T_{a}h_{a}(9)$

							Table(8								
Γ-classes	[1,I]	[x ² ,I]	[x ³³ ,I]	[x,I]	[y,I]	[1,r]	[x ² ,r]	[x ³³ ,r]	[x,r]	[y,r]	[1,s]	[x ² ,s]	[x ³³ ,s]	[x,s]	[y,s]
$ cL_{\alpha} $	1	2	1	2	2n	2	2	2	2	2n	3	3	3	3	6n
$ c_{Q_{2n^{x}D_{3}}}(cL_{\alpha}) $	792	396	792	396	12	396	396	396	396	12	264	264	264	264	4
Φ _(1,1)	792	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(2,1)	264	264	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(3,1)	396	0	132	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(4,1)	24	0	0	24	0	0	0	0	0	0	0	0	0	0	0
Φ(5,1)	8	8	0	8	8	0	0	0	0	0	0	0	0	0	0
Φ(_{1,2)}	12	0	4	12	0	4	0	0	0	0	0	0	0	0	0
Φ _(2,2)	396	0	0	0	0	0	396	0	0	0	0	0	0	0	0
Φ _(3,2)	132	132	0	0	0	0	132	132	0	0	0	0	0	0	0
Φ _(4,2)	198	0	66	0	0	0	198	0	66	0	0	0	0	0	0
Φ _(5,2)	12	0	0	12	0	0	12	0	0	12	0	0	0	0	0
Φ _(1,3)	4	4	0	4	4	0	4	4	0	4	4	0	0	0	0
Φ _(2,3)	6	0	2	6	0	2	6	0	2	6	0	2	0	0	0
Ф _(3,3)	198	0	0	0	0	0	198	0	0	0	0	0	6	0	0
Φ _(4,3)	66	66	0	0	0	0	66	66	0	0	0	0	2	2	0
Ф _(5,3)	99	0	33	0	0	0	99	0	33	0	0	0	3	0	1

REFERENCES:

[1] M.J.Hall "The Theory of Group ",Macmillan,Neyork,1959.

[2] I. M. Isaacs, "On Character Theory Of Finite Groups", Academic Press, Newyork, 1976.

[3] David.G "Artin Exponent of arbitrary characters of cyclic subgroup ", Journal of Algebra, 1976, p58-76.

[4] M.S.Kirdar, "The factor Group of the Z-valued class function Modulo the group of the Generalized characters" University of Birmingham 1980

[5] C.Curits and I.Reiner,"Methods of Representation Theory with Application to finite Groups and order", John Wily and sons, NewYork, 1981.

[6] H.H.Abass,"On the factor Group of class function over the Group of Generalized characters of D_n ", M.S.C.thesis, Technology University, 1994.

[7] N.R.Mahamood"The cyclic Decomposition of the factor group of $\frac{(Q_{2m})}{\bar{R}(Q_{2m})}$ ",M.SC. thesis University of Technology,1995.

[8] A.S.Abid, "Artin's characters table of Dihedral group for odd number", M.S.C.thesis, University of Kufa, 2006.

[9] K. Knwabusz, "some Definitions of Artin's Exponent of finite Group", USA, National foundation Math, GR, 1996.

[10] A.H.Abdul-Mun'em, "On Artin Cokernel of the Quaternion Group Q_{2m} when m is odd number ",2008.