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Abstract. Why microscopic objects exhibit wave properties (are delocalized), but
macroscopic do not (are localized)? Traditional quantum mechanics attributes wave
properties to all objects. When complemented with a deterministic collapse model
(Quantum Stud.: Math. Found. 3, 279 (2016)) quantum mechanics can dissolve
the discrepancy. Collapse in this model means contraction and occurs when the
object gets in touch with other objects and satisfies a certain criterion. One single
collapse usually does not suffice for localization. But the object rapidly gets in touch
with other objects in a short time, leading to rapid localization. Decoherence is not
involved.
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1 The deterministic collapse model

The conclusions of the present note are consequences of the deterministic collapse
model [1]. We therefore briefly recall those features that are required here. Thus,
collapse occurs when two wavepackets, representing microscopic or macroscopic
objects, overlap and satisfy the following criterion:
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ay is the absolute phase constant of wavepacket 1, and a9 that of 3. These
constants are new elements of the model, and are pseudorandom numbers in the
interval [0,27] modulo 27. ag is Sommerfeld’s fine-structure constant. « is the
smaller of a1 and asg

The collapse, then, suddenly contracts both wavepackets to the overlap volume,
that is, where |91 (r,t)|[12(7, t)| is practically concentrated (its effective support).
According to the formulas (1), (2) the overlap volume need not be extremely small.



2 Quantum mechanical objects

We consider nonrelativistic quantum mechanics and describe an object by the
wavepacket:
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e (r,t) is the center-of-mass (CM) function, which is a superposition of de Broglie
waves representing the free object as a whole. Yr(p1, -, pn,t) is the internal
function, which represents the relative positions p; and the internal dynamics of
the elementary particles or clusters constituting the object [2]. For an elementary
particle, there is only a CM function. The width (effective support, spatial volume)
of [Yr(p1,- -+, pn,t)|? represents the size of the object. The spatial volume of the CM
function may be much larger than that of the internal function. When the volume
of the CM function is very small, say that of an atom, the objet is called localized,
otherwise delocalized.

A microscopic object of mass 1.7 x 10723 kg (molecule of tetraphenylporphyrin)
and diameter 5 x 107 m can be delocalized over a hundred times its own diameter
[3]. A macroscopic object like a grain of sugar (from a sugar cube) of mass 1077 kg
and diameter 0.5 x 1073 m is always observed to be localized. Why?

3 Localization

Consider a particular delocalized object. When its CM function overlaps with the
function of another object and the criterion for collapse (1), (2) is satisfied, the
volume of the CM function of our object (as well as that of the other object) contracts
to the overlap volume. This volume may be relatively large, so that this collapse
does not succeed in localizing our object. However, any subsequent collapse cannot
enlarge the volume of the object’s CM function, only diminish it. Now, an object
suffers many collapses in a short time due to the many other objects (photons, air
molecules, etc.) in its environment, and these rapidly localize the object.

It is reasonable to assume that the considered object’s phase constant, say aq,
which enters formula (1), is that of its CM function v, as long as the volume of 1)
totally covers the volume of the internal function g. If this ceases to be the case
in the process of localization, some objects from the environment may no longer
overlap with the CM function v, but only with the wave function of one of the
clusters, which constitute the object [4]. That is, a; is no longer the phase constant
of the CM function 1, but that of one of the clusters. This decreases the shrinking
rate of the volume of v, that is, of its final localization. Due to the large number of
environmental objects, however, the rate will still be extremely high.



4 Transition micro-macro

So far the above considerations apply to both macroscopic and microscopic objects.
Imagine that both move in the same environment. Now the question is reversed:
why do microscopic objects remain delocalized? The answer lies in the spreading of
a wavepacket due to Schrodinger dynamics. This spreading velocity vg (transverse
as well as longitudinal) is given by [5]:
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d is the minimum diameter of the object at the beginning of spreading, and mg is
its mass.

Let us consider the molecule of tetraphenylporphyrin mentioned in Sec. 2 as a
microscopic object. Let us assume that its minimum radius is the Bohr radius. Then
its spreading velocity is vgmic = 6 cm/s .

Let us, on the other hand, take the grain of sugar mentioned in Sec. 2 as a
macroscopic object, and let its minimum radius again be the Bohr radius. Then
Vsmac = 107" m/s = 3 x 1071 m/year.

These examples demonstrate that after a contraction due to collapse microscopic
objects rapidly recover their delocalization, whereas macroscopic objects cannot
because their spreading velocity is negligible.

vg

So, somewhere between tetraphenylporphyrin molecules and grains of sugar lies
the borderline between microscopic and macroscopic objects. Actually, it is difficult,
if not impossible, to exactly define it because it depends on the environment [3, p.
9]. This is in line with the observation that even the delocalization of microscopic
objects lasts only for limited time intervals [3, p. 2, 3, 6, 9]. In any case, mass plays
an important role because it determines the spreading velocity.
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