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Abstract

Physics presents us with a symphony of natural constants: G, ~, c,
etc. Up to this point, constants have received comparatively little
philosophical attention. In this paper I provide an account of dimen-
sionful constants, in particular the gravitational constant. I propose
that they represent inter-quantity structure in the form of relations
between quantities with different dimensions. I use this account of G
to settle a debate over whether mass scalings are symmetries of New-
tonian Gravitation. I argue that they are not, but only if we interpret
mass anti-quidditistically. This is analogous to anti-haecceitism in the
presence of spacetime symmetries.
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1 Introduction

What are constants of nature? The laws of physics contain terms, such as c
or G, that are known as physical constants. But what do these terms refer
to?

The question is impossible to answer in its full generality, for there are
many different types of constants.1 I will consider one constant in particular:
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1 For an attempt at categorisation, see Lévy-Leblond (2019).
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the gravitational constant, denoted G. This constant has three distinctive
features. First, it is not associated to any particular kind of particle, con-
trary to the unit charge e of an electron. Secondly, it is a fundamental
constant, unlike the Rydberg constant R∞ which can be derived from quan-
tum mechanics. Finally, it is a dimensionful constant, distinct from the fine
structure constant α. Despite these features, G is not sui generis. The
Planck constant, for instance, is also universal, dimensionful and not asso-
ciated to any particular kind of object. I therefore suspect that my analysis
in this paper also applies to ~ and similar constants.

Apart from the fact that constants occur in most laws of physics, the
nature of G in particular is significant because it is decisive in a recent
debate over whether mass scalings are symmetries of Newtonian mechan-
ics.2 The tentative answer that has been reached in this discussion is that
if one scales G with all particle masses, then this results in an empirically
equivalent possibility. This could potentially lead to the sort of underde-
termination familiar from spacetime symmetries, such as the Leibniz shift.3

The remaining disagreement concerns whether a world in which G has a
different value is physically possible. If not, then the purported underdeter-
mination is not of any worrisome kind. Some assertions on this topic have
been made, but I believe that the question cannot be settled without an
account of the gravitational constant.

The aim of this paper is two-fold. First, it provides a definitive answer to
the question of whether mass scalings are symmetry-like transformations in
Newtonian mechanics. Based on the account of the gravitational constant
I will provide, the answer is: yes, if quidditism is true; no, if quidditism
is false. I will argue that the doctrine of quidditism saddles Newtonian
mechanics with redundant structure, so mass scalings ultimately do not pose
an underdetermination problem. Again, these conclusions mirror debates
about spacetime symmetries: the conclusion I advance is analogous to anti-
haecceitistic (or ‘sophisticated’) substantivalism.4

Secondly, my account of the gravitational constant is of independent
interest. I hope it will provide the first step for a comprehensive study of

2 See Baker (2020); Dasgupta (2013, 2020); Jacobs (2021); Martens (2019,?); Roberts
(2016).
3 I hesitate to call transformations that scale G ‘symmetries’, since this is inconsistent

with standard use of that term in physics. Cf. section 8.
4 The idea that one can apply sophistication to internal symmetries was first advanced

by Dewar (2019). Wolff (2020) has developed a ‘substantivalist’ position for mass similar
to the one I present here.
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constants of nature.5 I will develop an account on which constants are inter-
quantity connections. One can think of constants as ‘exchange rates’ between
the values of different quantities. For example, G has units of L3M−1T−2.
The role of G is thus to determine what length value is ‘equal’ to a pair of
values for mass and duration. The structure of space-time and the structure
of mass value space are thus intimately linked. The natural conclusion is
that in order to account for gravity, one should move from separate space-
time and mass structures to a joint space-time-mass structure.

The proposal presupposes a realist account of quantities: the determinate
values of a determinable quantity such as mass are universals that bear
second-order relations to each other. I will not defend this form of realism
here; for a defence, see Mundy (1987) or Eddon (2013).

2 The Structure of Newtonian Mechanics

In the tradition of the semantic view of theories, I will present Newtonian
Gravitation (NG) as a class of models. The kinematically possible models
(KPMs) of a theory are models that contain the correct sort of mathematical
objects to formulate the theory’s dynamics. The dynamically possible models
(DPMs) of a theory are those KPM that in addition satisfy the theory’s
equations of motion.

Here is a first proposal for the structure of NG, which will require sig-
nificant revision later on. The KPMs of NG are of the form:

NG 1: 〈D,E,T, xi(t),mi,R+〉

where D is a bare set of particles; E is a three-dimensional Euclidean affine
space; T is a one-dimensional Euclidean affine space; x : D × T → E is a
smooth function which represents the particles’ trajectories; and m : D →
R+ is a function into the positive real numbers which represents the particles’
masses (in some unit of mass). Since E is an affine space, for any pair of
points x, y ∈ E there is a unique vector from x to y denoted y−x; and likewise
for T. I will denote the associated vector spaces VE and VT respectively.
Moreover, both vector spaces come attached with a positive real-valued norm
|.| : V → R+ that represents the magnitude of each vector (in some unit of
length or time).

Notice that it is perhaps more common to set NG on a Newtonian space-
time 〈M, tab, h

ab,∇, σa〉, where M is a differentiable manifold and t, h, ∇
5 Constants have received little philosophical attention. For an exception, see Johnson

(1997) and references therein.
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and σ are certain geometric objects. But the idea that NG is more appro-
priately set on a Euclidean affine space is familiar from Stachel (1993); see
also Saunders (2013) and Dewar (2015). I will not discuss this issue further.

The DPMs of NG are those KPMs that satisfy the following equation of
motion:

ẍi(t) =
∑
j 6=i

G
mj

|rij(t)|3
rij(t) (1)

where rij(t) is the unique vector between xi(t) and xj(t), |rij(t)| is the real-
valued norm of that vector, and mj is the mass value of j. The value of G
is an experimentally determined real number.6

The left-hand side of this equation deserves some comment. For a given
particle i, xi(t) is a function T → E. The velocity of particle i at time t
is a measure of how much distance i covers (and in which direction) over
an infinitesimal period of time t from t. In other words, velocity is the
directional derivative of xi(t):

∇txi(t) := lim
ε→0

xi(t+ εt)− xi(t)
ε

(2)

where ε is a real number.7 This means that the velocity of i at t is represented
by a function from VT into VE .

We can then define acceleration as the directional derivative of velocity:

∇s∇txi(t) := lim
ε→0

∇txi(t+ εs)−∇txi(t)

ε
(3)

From this definition it follows that acceleration is a function from V2
T → VE .

We are normally only interested in the case in which t = s, so acceleration
really is another function from VT → VE . We can turn this into a vector
quantity by choosing the unique unit vector t̂ in the positive time direction
as our unit of time. T has no privileged orientation, so the choice of direction
is conventional. Once this choice is made, let ẍi(t) := ∇2

t̂
xi(t). This quantity

takes value in VE .
It hardly seems necessary to point out that (1) is a well-defined equation.

On the left-hand side is a displacement vector. The quantities G, m, and

6 Note that I will not consider alternative formulations of the law of universal gravitation,
such as Martens’ (2019) Machian comparativism.
7 This definition departs from Dewar (2021), who instead lets ẋ take value in a separate

velocity value space. Although either approach works out mathematically, I prefer the
parsimony of defining velocity in terms of the vector spaces that are already part of NG’s
spacetime structure.
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|r| are all real numbers, and r is a vector; scalar multiplication of vectors is
well-defined, so on the right-hand side of (1) is also a displacement vector.
The equation of motion compares like with like. However, I will show below
that this is an artefact of the redundant real number structures encoded into
the theory’s kinematics. When this redundant structure is removed, (1) is
no longer well-defined. In order to resolve this puzzle, an account of the
nature G is required. I will give one that does so in §5.

3 Redundant Real Numbers

The theory of Newtonian Gravitation has three dimensionful quantities:
length, time and mass. Each of these quantities has an associated value
space. Consider, for example, mass value space. This space represents the
determinable quantity mass; elements of it represent determinate mass mag-
nitudes. The structure of mass value space encodes the relations between
mass magnitudes. For example, the magnitude ‘being 10 kg’ stands in the
relation of ‘being twice as much’ to the magnitude ‘being 5 kg’. Similarly,
lengths and durations stand in certain relations to each other.

This raises the question which particular relations these quantities stand
in to each other. What is the structure of the theory’s value spaces? In the
above, I assumed that these value spaces are isomorphic to the positive
real numbers (R+). For instance, the mass function m simply assigned
each particle a positive real number. This is often tacitly assumed: in
foundational treatments of NG considered as a field theory, for instance, the
mass density field ρ is defined as a scalar field, i.e. a function from spacetime
points into (positive) real numbers (Friedman, 1983; Malament, 2012). But
it turns out that this real number structure is too rich for a dimensionful
quantity. This will lead to a second, more realistic proposal, namely that
value spaces have an additive extensive structure.

The problem with R+ is that it, in effect, endows quantities with a pre-
ferred unit. Consider the case of mass, and suppose that, for some particle
i and some positive real number x, m(i) = x. Since x ∈ R+, the mass of i is
associated to a particular real number. And since mass value space is meant
to represent objective physical structure, this association does not depend
on any particular choice of unit. But this association between numbers and
masses is spurious. In Martens’ (2019) words: there is nothing ‘five-ish’
about a 5 kg mass. So, mass value space cannot have the structure of the
real numbers. Wolff (2020, §8.2.1) presents a similar reductio: her conclu-
sion is that when mass value space has no non-trivial automorphisms, then
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there is a unique homomorphism from that value space into the positive real
numbers—contrary to our freedom to choose a mass scale.

Martens (2019, 2518) correctly claims that the received view amounts
to a “fail[ure] to distinguish between physical magnitudes and the numer-
ical quantities used to represent them”. Instead, both Martens and Wolff
endorse a type of structure that is studied under the guise of ‘measurement
theory’.8 These structure are concisely characterised as so-called principal
homogeneous spaces for the group 〈R+,×〉 of positive real numbers under
multiplication. The principal homogenous space (PHS) of R+ is a set R+

over which one has defined a regular action of R+. The result is a structure
that has ‘forgotten’ the multiplicative identity of R+, but retains the latter’s
order and composition structure.

There is a different way of defining these structures that is physically
more perspicuous. Known as additive extensive structures, they are of the
form 〈M,6, ◦〉, where M is a set of cardinality 2ℵ0 , 6 imposes a total order
on M , and ◦ is an associative binary function. When these relations satisfy
certain axioms, the resulting structure is equivalent to the PHS defined
above.9 In physical terms, 6 is interpreted as the binary relation of one
mass being less than or equal to another, and ◦ as the tertiary relation of
two masses equalling a third. The intuitive thought behind the fact that ◦
admits of no inverses or identity is that there are neither negative nor zero
masses.

Hölder (1901) proves that one can represent 〈M,6, ◦〉 on R+ in the
following sense: there exists a function fr : M → R+ such that (i) x 6 y
iff f(x) ≤ f(y) and (ii) x ◦ y = z iff f(x) + f(y) = f(z). Furthermore,
this representation is unique up to multiplication by a positive constant α,
so that fr and f ′r both represent the same structure 〈M,6, ◦〉 iff there is
some α > 0 such that f ′r = αfr. This non-uniqueness provides a precise
sense in which the former has less structure than the latter. Unlike the
real number structure, an additive extensive structure does not define a
privileged system of units. The fact that fr is defined up to multiplication
by a positive constant means that any system of units related by such a
transformation represents the structure of mass value space equally well.

Therefore, additive extensive structures are apt to represent the value
spaces of dimensionful quantities such as mass, length and time. This means
that the norm over VE is not real-valued; it takes value in a value space
isomorphic to the PHS for R+. The same is true for the norm over VT . I

8 The locus classicus is Krantz et al. (1971); see Wolff (2020, Ch. 5) for a recent treatment.
9 See Dewar (2021, §A) for a clear proof of this equivalence claim.
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will let VM , VL and VT denote the value spaces for mass, length and time
respectively. Note that these value spaces are distinct, albeit isomorphic.
There is no canonical isomorphism between them.

4 A Puzzle for Intrinsic NG

With these revisions to the theory in mind, I will rewrite the models of NG
as follows:

NG 2: 〈D,E,T,VM ,VL,VT , xi(t),mi〉

Although the value spaces for length and time are part of the vector space
structure over E and T, I write them out explicitly in order to emphasise that
the norm over these vector spaces is not real-valued. Call this formulation
intrinsic NG.

Let’s return to NG’s equation of motion:

ẍi(t) =
∑
j 6=i

G
mj

|rij(t)|3
rij(t) (1)

When mj and |rij | are interpreted as real numbers, the right-hand side of
this equation is a well-defined vector quantity. But in the previous section I
argued that these quantities are not real numbers but elements of the PHS
for R+. The product of a vector in VE by these elements is ill-defined. In
particular, there is no canonical way to associate such elements to a unique
real number.

The left-hand side also requires a different interpretation. In section
2, I defined ẍi(t) as the second directional derivative of i’s trajectory with
respect to the unit vector t̂ in the positive time direction. But when vectors
in VT take value not in R+ but in a PHS over R+, there is no unique unit
vector even after a temporal orientation is fixed by convention: there is no
unique vector t such that |t| is canonically mapped onto the multiplicative
identity. The best option is therefore to redefine acceleration such that
ẍi(t) := ∇2

txi(t), where t is a variable rather than a fixed input. This means
that acceleration becomes a function from VT → VE .

This leads to a puzzle for the intrinsic formulation of NG. While the left-
hand side of (1) is a function VT → VE , the right-hand side is a product of
(a) a vector in VE , (b) the norm of that vector, (c) a mass value, and (d) the
constant G. Even if we can make sense of this product, it is unclear what it
means to say that these quantities are equal. It seems that (1), interpreted
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in this way, does not compare like with like. This is a fatal problem for
intrinsic NG: it leaves the theory’s dynamics undefined.

Of course, once we attach numbers to these quantities we can equate
them with ease. Using Hölder’s representation theorem, it is possible to
assign positive real numbers to mass values in a way that is faithful to mass
value space’s internal structure, and similar for length and time. Based
on this procedure, one could formulate NG’s dynamics as follows: a KPM
of NG is a DPM iff for any faithful maps from VM , VL and VT onto R+,
equation (1) is satisfied for that model. This avoids the puzzle raised above.

On this interpretation, the fundamental equation of Newtonian Grav-
itation quantifies over assignments of numbers to physical quantities, or
systems of units. Field has criticised such quantification as illegitimate.
Numbers are physically inert: the laws are not true in virtue of facts about
them. As Field wrote about G:

The role [G] plays is as an entity extrinsic to the process to be
explained, an entity related to the process to be explained only by
a function (a rather arbitrarily chosen function at that). Surely
then it would be illuminating if we could show that a purely
intrinsic explanation of the process was possible, an explanation
that did not invoke functions to extrinsic and causally irrelevant
entities [i.e. numbers]. (Field, 1980, 44)

Although I will not defend Field’s programme of intrinsic physics here, I
find these concerns persuasive.10 The excision of redundant structure from
the theory’s kinematics is a virtue; this virtue is undone if the same re-
dundancies recur in the dynamics. I will therefore develop an alternative
interpretation of (1) on which no quantification over numbers is required.
This interpretation requires an account of the role of G, to which I now turn.

5 The Nature of Dimensionful Constants

I have purposefully remained vague about the role of the gravitational con-
stant, G, in Newtonian mechanics. In the first approximation of NG, the
gravitational constant was another real number; but from an intrinsic point
of view this is clearly unsatisfactory. The theory has reached a breaking
point that can only be overcome by considering the dynamical role of G in
more detail. That is the aim of this section.

10 For more explicit discussions, see Sider (2020), Dewar (2021) and Jacobs (2022).
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5.1 Example: Hooke’s Law

Consider first a simpler example. Hooke’s law relates the restoring force of
a spring to the displacement of the load away from equilibrium:

Fs = −kx (4)

where k is a ‘stiffness’ constant which depends on the material constitution
of the spring in question. This constant is quite unlike G in that it is specific
to a particular (kind of) object and not part of any fundamental law. But
like G it is dimensionful, which will allow us to draw a comparison between
them.

Hooke’s law relates one quantity—force—to another—displacement. We
cannot equate these quantities directly. It makes no sense to say that the
force on a spring is equal to a certain amount of displacement, although this
is obscured when we express both quantities vectorially. This is in fact the
same puzzle as the one discussed in the previous section: when quantities
are interpreted ‘intrinsically’, equations of motion such as (1) and (4) seem
ill-defined.

I propose that the role of the constant k is to facilitate comparisons
of forces and displacements. The spring constant determines an ‘exchange
rate’ between these quantities: such-and-so displacement is ‘worth’ so much
force. This is the role of dimensionful constants: to convert the value of
one type of quantity into the value of another type of quantity. In this way,
constants can restore the balance between both sides of the equation.

In more detail, recall that displacement vectors live in a vector space
VE over E. In my formulation of NG, forces had no existence of their own:
by combining Newton’s second law with the law of universal gravitation,
forces dropped out of the equation. But suppose for the sake of example
that forces are real. Then their values would live in a distinct value space
F, which is a vector space isomorphic to VE . Despite the isomorphism,
there is no canonical map between VE and F. Although one can compare
the directions of vectors in either vector space, one cannot compare their
magnitudes. There simply is no answer to the question: how much force is
equivalent to a certain displacement in the same direction?

But the spring constant k provides a link between these value spaces.
From the many maps between F and VE , it picks out one as privileged. By
k’s standards, we can say whether a vector in F is equivalent to a vector in
VE . We can construe the spring constant as a function k : VE → F. This
means that (4) should really be read as:

9
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Fs = −k(x) (5)

where x now functions as input for k. On both the left-hand side and the
right-hand side of (5) are force-valued quantities: like is compared with
like. The puzzle for intrinsic dynamics is solved without recourse to the real
numbers.

Since k should ultimately be derived k from more fundamental physics,
there is no reason to believe that k represents any fundamental relations
between displacements and forces. But the same account also applies to
more fundamental constants, such as G.

5.2 The Gravitational Constant

The dynamical role of G is to determine the contribution of the gravitational
attraction of a massive particle to the acceleration of another particle some
distance away from the first. Recall that acceleration is a function from
VT → VE . So, G is a function from mass values m ∈ VM and displacement
vectors v ∈ VE to functions from VT to VE :

G : V × VE → (VT → VE) (6)

For a given mass and displacement, G yields an acceleration. The function
is surjective but not injective: for every acceleration there is some mass-
duration pair which yields that acceleration; but this pair is not unique.11

BUt G is not just any such function. It satisfies these four requirements,
where λ is a real number:

(i) G(λm,v)(t) = λG(m,v)(t)

(ii) G(m,λv)(t) = λ−2G(m,v)(t)

(iii) G(m,v)(t) ∝ v

(iv) G(m,Rv)(t) = RG(m,v)(t)

These requirements say that (i) G scales proportionally with mass; (ii) G
scales inversely proportional to the square of distance; (iii) the acceleration
is in the same direction as the displacement; and (iv) rotations have no effect

11 This proposal bears similarities to Dewar’s (2021) account of G as an isomorphism
between distinct value spaces, although the details differ. In particular, Dewar posits a
separate value space for forces. Again, I prefer the parsimony of an account that only
relies on length, time and mass value space.
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on the magnitude of the acceleration. These requirements are not a priori
principles; they are determined experimentally. It is through careful obser-
vation that we know that a test particle accelerates twice as fast towards a
body that is twice as massive, and so on.

These constraints jointly determine G up to a scale factor. We can think
of this scale factor as a ‘choice of unit’—but note that we are not concerned
here with numerical scales. This residual freedom in the definition of G will
lead to the possibility of different ‘values’ for G considered in the second
half of this paper.

The above only concerns the mathematical representation of G. I do
not intend to suggest that the world itself contains a function that causally
contributes to the motions of particles. On my view, G is a complex piece of
real cross-value space structure between VE , VT and VM . Unlike k it does
not connect just two value spaces, but three. G represents a complex relation
that holds between masses, displacements and durations. It is similar to the
relations between values of the same quantity, such as mass ratios, in that it
is a physical relation between quantity-values; the difference is that it holds
between values of different quantities. We can visualise these relations as
threads between the elements of these various value spaces. One can follow
the thread from one space and arrive at the value of a quantity in a different
one. For example, one can follow the thread from a certain mass: this thread
has many branches, one for each displacement. Follow one such branch, and
one arrives at an acceleration; follow another, and one arrives at a different
acceleration. Or start from a displacement, and one is faced with many
branches that correspond to different masses. Choose one, and arrive at an
acceleration, which may or may not be distinct from before. Thus value
spaces are not isolated islands; they are interconnected networks.12

6 The Structure of Newtonian Mechanics Revis-
ited

I have argued that the gravitational constant G represents real kinematical
structure of Newtonian Gravitation. This kinematical structure connects

12 This bears similarities to Baker’s (2013) ‘comparativism with mixed relations’. The
main difference is that on Baker’s proposal, inter-quantity relations are taken as funda-
mental, whereas here they are ‘induced’ by a constant of nature. This may provide a
more ‘natural’ approach to mixed relations than an approach on which they are posited
as primitive, but further research is required to evaluate the relative merits of these ap-
proaches.
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the theory’s various value spaces.
Since G represents physical structure, it deserves a place in the theory’s

models. This yields the third and final version of NG’s kinematics:

NG 3: 〈D,E,T,VM ,VL,VT , xi(t),mi, G〉

It is not always necessary to explicitly list value space structure amongst
the theory’s posits. I have not explicitly written down the action of VE on
E, for instance, since this is just part of the structure of E. Yet this is not
the case for G, since G links the various value spaces the theory posits; it is
not part of any one value space. Therefore, it really is necessary to include
G in the theory’s models for a full account of the kinematical structure of
NG.

This account of the gravitational constant also provides a solution to the
puzzle raised in section 2. Recall the puzzle: the left-hand side of (1) is an
acceleration—a function from VT to VE—while the right-hand side of (1)
is a complicated product. It seems that these are distinct quantities that
cannot be compared. But G was the missing piece of the puzzle. Given a
mass and a displacement, G outputs an acceleration that we can compare
directly to the left-hand side of (1). In other words, (1) should read as
follows:

ẍi(t) =
∑
j 6=i

G(mj , rij(t)) (7)

where as before rij(t) := xj(t)− xi(t).
It may seem odd that this novel equation only involves the displacement

vector between xi and xj , but not the norm of that vector. But the norm
is itself a function from vectors of VE into VL, so G may involve the norm
indirectly. This is indeed the case. The occurrence of |r|−2 in the law of
universal gravitation tells us that acceleration is inversely proportional to
the square of distance: it famously is an inverse-square law. Here, that fact
is encoded in condition (ii) on G. Likewise, the occurrence of the unit vector
|v̂ij | in the law of universal gravitation tells us that acceleration is in the
same direction as displacement. That fact is here encoded in conditions (iii)
and (iv). Despite the ‘disappearance’ of distance, then, (7) has the same
empirical content as (1).

This proves that an account of G is not just an optional element of
an interpretation of NG. Insofar as we are driven by a desire for intrinsic
theories, an account of G is crucial to the enterprise. Once we have an
account of G, we can consistently interpret the equation of motion of NG
intrinsically.

12
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7 Active Mass Symmetries

I have thus established the first aim of this paper: providing an account
of the gravitational constant, G. I will now use this account to illumate
the recent debate about mass symmetries. I start by defining active mass
scalings in this section; in the next section I consider scalings of G.

Unlike passive transformations, which only alter which numbers we use
to represent particular masses, an active transformation changes the actual
mass values assigned to particles themselves. The effect of an active mass
scaling is that each particle’s mass (as represented on R+) is multiplied by
a constant α.

Take any arbitrary representation f of mass values on R+ (where f is
the ‘internal space’ analogue of a coordinate chart).13 We can carry out
a passive transformation on this representation that transforms f(m) into
f ′(m) = αf(m). The effect of this transformation is to assign each mass
value m a different real number. In order to turn this passive transformation
into an active one, we keep fixed the representation relation f and consider
an automorphism φα on VM defined such that φα(m) = (f−1 ◦ αf)(m). If
a mass m is associated in some system of units to some number x, then φα
maps m onto the unique mass that is associated to the number αx in the
same system of units.

The automorphism φα in turn acts on m(x)—the function from particles
into VM—as φα ◦m(i) ≡ (φα ◦m)(i). In this way, an active mass scaling
induces a transformation on the models of NG:

〈D,E,T,VM , x(i, t),m(i)〉 Scaling→ 〈D,E,T,VM , x(i, t), (φα ◦m)(i)〉 (8)

This transformation is a symmetry of NG only if the model before the trans-
formation is a solution to NG’s equations of motion whenever the same
model after the transformation is also a solution.14

Are active mass scalings symmetries of Newtonian Gravitation? The
obvious answer is ‘No’. This follows immediately from NG’s equations of

13 One may wish for a more ‘intrinsic’ characterisation of active mass scalings, i.e. one that
does not proceed via a particular choice of units. This is indeed possible. Hölder (1901)
shows that one can associate a unique positive real number to every pair of elements of
V, which denotes their ratio. In order to multiply an element m1 by a constant α, then,
one maps it to the unique element m2 such that their ratio m2 : m1 is equal to α.
14 This is a necessary but not sufficient condition on symmetries. As a definition of
symmetries, the condition is far too weak: it would mean that any pair of models are
symmetry-related (Belot, 2013). But as a necessary condition it is uncontroversial, and
that is all I need to assume here.
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motion: the right-hand side of (7) contains a mass quantity and so changes
value with mass—in accordance with condition (i) on G—while the left-hand
side is independent of mass and so remains the same. Unless α = 1, this
transformation affects the satisfaction of NG’s equation of motion.

Martens (2019) illustrates this with the ‘comparativist’s bucket’, an ana-
logue of Newton’s famous bucket experiment based on a thought experiment
due to Baker (2020). The escape velocity of a projectile is given by:

vesc =

√
2Gm2

r
(9)

where G is the gravitational constant, m2 is the mass of the body the pro-
jectile is escaping from (say, the Earth), and r is the distance between them.
Suppose that in one model, the actual velocity of the projectile v is just over
vesc—so the projectile escapes. But under an active mass scaling the Earth
multiplies in mass by a factor α, hence vesc is multiplied by a factor

√
α.

Consequently, v may no longer exceed vesc: the projectile crashes back to
Earth. Since the actual trajectory xi(t) of the projectile is left the same
by an active mass scaling, the transformed model is inconsistent with the
equations of motion. Therefore, active mass scalings are not symmetries of
NG.

8 Scaling G

We have not yet considered the gravitational constant, G. G is a con-
stant with dimensions proportional to M−1. It is commonly thought that
if one were to scale G with all particle masses, active mass scalings become
symmetry-like transformations after all (Roberts, 2016; Wolff, 2020). Wolff,
for instance, argues that since we fix the reference of the term ‘G’ by osten-
sion, it will have a different referent in a mass-scaled world. While that may
be true, it is irrelevant to the question of whether G itself has a different
value in such a world. The inhabitants of a mass-scaled world use the same
symbol ‘G’ to denote a different constant, but this does not mean that the
constant we denote with ‘G’ has a different value in that world. I therefore
concur with Martens (2019) that there is no reason to believe that one must
scale G when we scale all particle masses.

It remains possible that one could change the value of G in addition to
scaling all particle masses. This allows us to define another transformation—
call it an inclusive active mass scaling—which is a symmetry-like transfor-
mation of NG insofar as it seems to relate empirically equivalent physical
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possibilities. But Martens goes on to make the stronger claim that we can-
not change the value of G without moving to a different theory: “It is not
at all surprising that if one were allowed to change (the strength of) the
laws at will for each possible world one could get any (or at least many) of
the evolutions one may have wanted. That is simply not an option within
the rules of the game we are playing” (Martens, 2019, 12). Martens claims
that changing G is akin to changing the laws, which is against ‘the rules
of the game’. But who set out these rules? It seems to me that there are
different conceptions of what a constant of nature is, that in turn have dif-
ferent consequences for whether a change in G is ‘allowed’. In particular,
once we reject real number structures as redundant, it becomes untenable
to hold that G is a parameter with a fixed numerical value. The cross-value
space structure of G is determined by the conditions (i)-(iv) listed above,
but these conditions only determine G up to a ‘choice of unit’. To demand
that G is fully fixed is to introduce an “unnecessary global assumption”, in
the words of Earman and Norton (1987), akin to hard-coding the particular
Minkowski metric diag(−1, 1, 1, 1) into the fabric of relativistic spacetime.
It may turn out that different G-functions ultimately represent the same
cross-value space structure, as I will argue below. This follows not from any
pre-determined rulebook, but from a philosophical analysis of the role of G
in Newtonian Gravitation.

It remains possible that Martens simply has a different conception of
what counts as ‘the’ theory of Newtonian Gravitation: perhaps on Martens’
conception, the value of G is hard-coded into that theory. In that case, the
disagreement is over the precise definition of NG’s space of models, rather
than over the behaviour of G in particular. Nevertheless, if one adopts a
more liberal account of NG, as I have urged above, this has consequences for
the possible values of G. In what follows I will assume such a more liberal
account.

I will thus formulate an inclusive active mass scaling as follows. For any
automorphism φα of V:

〈D,E,T,V, x(i, t),m(i)〉
Inc. Scaling→ 〈D,E,T,V, x(i, t), (φα ◦m)(i), φ∗αG〉 (10)

where φ∗α is the pullback of φα, defined such that φ∗αG(m,v) = G(φ−1α (m),v).
The effect of this transformation is to change the cross-value space relations
between VM and VE . If m and v were previously connected to some accel-
eration ẍ, for instance, then after this transformation they are connected to
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some different acceleration αẍ.
It is easy to see that such a transformation preserves the dynamics: when

φ acts on both G and m, φ∗G(φ(m(i)),v) = G(m(i),v). Given a particle’s
mass value and a displacement vector, G yields the same acceleration be-
fore and after an inclusive mass scaling. This transformation therefore also
preserves escape velocities. Suppose, for instance, that φα(m) = αm; then
φ∗αG = G/α. In the formula for escape velocity, these factors of α precisely
cancel each other out.

Perhaps it would be a misnomer to call this transformation a symme-
try.15 The best definition of symmetries is a matter of current debate, but
Earman’s (1989) definition of dynamical symmetries is a useful first approx-
imation.16 As the name suggests, dynamical symmetries act on a theory’s
dynamical objects. In the case of NG, these are the position and mass quan-
tities.17 Importantly, a dynamical symmetry does not act on the theory’s
kinematical structure, which here includes G. So, an inclusive mass scaling
is not a dynamical symmetry because it does act on G. Earman contrasts
dynamical symmetries with spacetime symmetries, which leave the dynami-
cal objects alone and instead affect the theory’s (fixed) spacetime structure.
We can generalise this definition to include non-spatiotemporal kinematic
structure.18 On this definition, kinematic symmetries are transformations
only of the theory’s kinematic structure—potentially including G. Again,
inclusive mass scalings are not kinematic symmetries, since they transforms
both kinematical and dynamical structure.

Elsewhere in the literature, the kind of transformation we are interested
in is called a similarity.19 This term originates in a passage from Poincaré
(2003, originally published in 1908):

Suppose that in one night all the dimensions of the universe
became a thousand times larger. The world will remain similar
to itself, if we give the word similitude the meaning it has in
the third book of Euclid. Only, what was formerly a metre long

15 I thank David Wallace for discussion of this point.
16 For further debate, see Belot (2013), Dasgupta (2016), Wallace (2022), Read and Møller-
Nielsen (2020) and references therein.
17 It is perhaps controversial to categorise mass as a dynamical object, since masses are
fixed across time. But I have in mind a broader notion of dynamics, namely the structure
that varies across solutions of the theory. This is opposed to the kinematical structure
that remains fixed across solutions. On this definition, masses count as dynamical since
the mass of any particle is not fixed across models.
18 For a similar suggestion, see Hetzroni (2019).
19 For a recent discussion, see Gryb and Sloan (2021).
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will now measure a kilometre, and what was a millimetre long
will become a metre. The bed in which I went to sleep and
my body itself will have grown in the same proportion. When
I awake in the morning what will be my feeling in face of such
an astonishing transformation? Well, I shall not notice anything
at all. The most exact measures will be incapable of revealing
anything of this tremendous change, since the yard-measures I
shall use will have varied in exactly the same proportions as the
objects I shall attempt to measure.

The case in which all mass-valued quantities are scaled follows the same pat-
tern as set out by Poincaré. Following Poincaré, I will say that an inclusive
mass scaling is a similarity of NG.

Despite the fact that this transformation is a similarity rather than a
symmetry, it poses similar metaphysical and epistemological questions. In
particular, the models related by an inclusive mass scaling describe empir-
ically equivalent states of affairs. But on certain views, those states are
physically distinct. This would lead to a worrisome form of underdetermi-
nation: particle masses become undetectable even in principle, since mass
measurements have the same outcome in similar worlds despite the fact that
particles have different masses in them.20 The presence of such undetectable
quantities is a hallmark of redundant theoretical structure.

The physical distinctness of mass-scaled solutions follows from Martens’
(2019) belief that mass values possess primitive identities, or quiddities:
non-qualitative properties that are uniquely possessed by individual mass
magnitudes.21 The reason Martens postulates quiddities is that the elements
of VM are absolutely indiscernible: for no m ∈M does there exist a formula
with one free variable that is true of m only.22 However, Martens claims,
the laws treat different masses differently—the more massive an object is,

20 The argument that variant quantities are undetectable is found in Roberts (2008), Das-
gupta (2016) and Martens (2019). Middleton and Murgueitio Ramı́rez (2020) are sceptical,
but see Jacobs (2020) for a response.
21 It is common to refer to the primitive identities of properties as quiddities, but the term
is used both for determinables, such as mass or charge, and determinates, such as the
property of being five kilograms. I will use the term in the latter sense; cf. Martens (2019,
fn. 6).
22 Martens writes that masses are ‘qualitatively identical’, but this is false in the sense
that elements of m are at least relatively discernible, i.e. there are formulas with more
than one free variable that apply to sets of elements in only one particular order (cf.
Saunders (2003)). For example, if m1 < m2, then m1 is relatively discernible from m2 as
the smallest of the two. Wolff (2020) uses the more appropriate term ‘homogeneous’.
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the slower it accelerates in response to gravitational attraction. Therefore,
Martens continues, we must introduce quiddities that tell forces how to
‘latch onto’ masses: they are “required for the forces to be well-defined, in
the sense of uniquely matching up instances of initial conditions, including
masses, with, say, accelerations” (Martens, 2019, 2519).

When masses are scaled, each particle is assigned a different mass value.
When each mass comes attached with a quiddity, this represents a real
phyical difference. The presence of qualitatively identical yet physically
distinct posibilities is just the sort of problematic underdetermination that
is familiar from debates around the structure of spacetime. When a theory’s
spacetime symmetries match the dynamical symmetries, symmetry-related
models seem to represent worlds that differ merely over which spacetime
point plays which qualitative role. This is the case, for example, for boost-
related models of Newtonian Gravitation set on Galilean spacetime. There,
a renouncement of primitive identities as redundant solves the issue: the
difference between boost-related models becomes a distinction without a
difference. I claim that in the present case, the quiddities of mass values are
also redundant. Without quiddities the spectre of underdetermination fades
away.

Recall that Martens claims that quiddities are necessary for forces to
‘latch on’ to the right mass magnitudes. This ignores the gravitational
constant. The real way in which forces latch onto masses is via the cross-
value space structure represented by G. When we include G within the
theory’s kinematical structure, quiddities become unnecessary. For example,
consider once more the escape velocity of a projectile. Which velocity the
projectile requires to escape from a massive body with mass m2 depends on
the acceleration the projectile acquires as a result of the gravitational pull
of the massive body. For a displacement r, this acceleration is equivalent to
G(m2,v). We can thus find out the acceleration of the projectile without the
quiddity of m2. The gravitational attraction can simply latch onto masses
via G to produce the observed accelerations.

There is a helpful analogy here with Aristotelian spacetime. Aristotelian
spacetime results from adding a privileged worldline to a Newtonian space-
time. This additional structure is surplus in Newtonian Gravitation, but
would be necessary to express the laws if forces were to depend on absolute
positions. It is exactly because translations of all material bodies are not
symmetries of such an Aristotelian theory that we would need to introduce a
worldline to represent the ‘centre’ of the universe. Similarly, it is because of
the fact that mass scalings are not dynamical symmetries of NG that there
must exist some structure that distinguishes the points of mass value space.
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Furthermore, translations of both all material bodies and the centre-
of-the-universe worldline are symmetries of the Aristotelian theory; models
related by such translations are isomorphic. Likewise, a scaling of all particle
masses and G is a similarity of Newtonian Gravitation; models related by
such scalings are isomorphic, too. Once one rejects primitive identities,
however, these models therefore represent the same possibility. Consider the
privileged Aristotelian worldline. If we think of it as a property of a certain
special collection of spacetime points, it seems that a translation of the centre
of the universe assigns this special property to a different collection of points.
The result is an empirically equivalent yet physically distinct state of affairs.
It seems more natural to consider the Aristotelian worldline as a property
that individuates spacetime points: to be this spacetime point is just to be
the point that is located in a certain way relative to the centre of the universe.
This view entails that a shift of all particles and spacetime structure has
no physical effect: matter remains in the same location with respect to
the Aristotelian worldine. Compare this with Stachel’s (1993) view of the
metric in GR as a dynamical individuating field. Both views follow from
anti-haecceitism: the view that spacetime points have no primitive identities,
but are qualitatively individuated.

The analogue of anti-haecceitism for quantities is anti-quidditism: phys-
ical magnitudes have no primitive identities, but are qualitatively individu-
ated. I propose anti-quidditism about mass.23 The idea is that mass mag-
nitudes are identified by their pattern of instantiation. Teller (1991, 393)
puts the idea as follows:

What is it to be the property of having a mass of five grams?
Perhaps it is no more and no less than bearing certain mass re-
lations to other masses, or possibly to other exemplified masses.
On this account we still take there to be individual mass proper-
ties, but we take the principle of individuation of an individual
mass to be its mass relations to other masses, so that the mass
relations between masses become essential to all of them.

Since the structural relations that the particles’ masses stand in to each
other and to the elements of VE and VT (as determined by G) are the same
across models related by inclusive scalings, anti-quidditism implies that the

23 The possibility of anti-quidditism in response to the presence internal symmetries has
already been noted by Arntzenius (2012), Dewar (2018), Martens and Read (2020) and
Wolff (2020).
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same masses are instantiated in these models. The differences between iso-
morphic models are representationally irrelevant, since they concern quiddi-
tistic facts about which particular mass values are instantiated. This is also
a distinction without a difference.

This conclusion allows us to avoid the spectre of underdetermination
that normally accompanies symmetry-like transformations. If inclusive mass
scalings merely change the way a possibility is represented, rather than that
possibility itself, then there are no empirically equivalent yet physically dis-
tinct possibilities to speak of. Therefore, scaling G with all particle masses
does not lead to a distinct physical possibility. This conclusion does not
follow from any preconceived notion of G as a fixed parameter, but from an
account of the metaphysical nature of G in conjunction with anti-quidditism.
The position I have presented is therefore structurally similar to sophisti-
cated substantivalism about spacetime (cf. Wolff’s (2020) ‘sophisticated
quantity substantivalism’).

9 Constants and Symmetries

I have presented an account of what dimensionful constants represent: cross-
value space relations. I have then used this account to argue in favour of
anti-quidditism about mass values. But a further question could be raised:
why are there constants in the first place? It is not an a priori fact that
distinct value spaces should be connected in this way. This is not the type
of question that always has an answer. But in this case I believe that there
is an answer, namely that constants are necessary in order to coordinate the
dynamical symmetries of different quantities. I will now elaborate on this
idea.

Recall Earman’s distinction between dynamical and kinematical symme-
tries, where I will include the symmetries of non-spatiotemporal kinematical
structure in the latter. Earman (1989) famously posited a pair of symmetry
principles:

SP1 Every dynamical symmetry is a kinematical symmetry

SP2 Every kinematical symmetry is a dynamical symmetry

The motivation for SP1 is to avoid redundant structure. If SP1 fails, then the
theory posits kinematical structure that is dynamically inefficacious. The
classical example here is the standard of absolute rest of Newtonian space-
time: since the dynamics of Newtonian Gravitation are boost-invariant, such
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a standard is superfluous. The motivation for SP2, on the other hand, is to
make sure that the theory has enough structure to sustain the dynamics. If
SP2 fails, then the dynamics distinguish between elements that are qualita-
tively the same. An example is Leibnizian spacetime, which lacks a standard
of absolute acceleration. Since Newtonian Gravitation is sensitive to abso-
lute accelerations, Leibnizian spacetime does not have enough structure to
sustain the theory’s dynamics.

Consider now the structure of mass value space, VM . On the one hand,
the mass scalings φα—applied just to particles—are not dynamical symme-
tries of NG. On the other, they are symmetries of the kinematical structure
of VM , since the relations 6 and ◦ defined over M are invariant under the
φα transformation. Consider arbitrary m1,m2 such that m1 6 m2. By
Hölder’s representation theorem, f(m1) ≤ f(m2) for any representation
f : V → R+. Since α is positive, αf(m1) ≤ αfr(m2). By another applica-
tion of the representation theorem, (f−1 ◦αf)(m1) 6 (f−1 ◦αf)(m2). Since
φα(m) = (f−1 ◦αf)(m), this shows that m1 6 m2 iff φ(m1) 6 φ(m2), hence
6 is invariant under the action of φ. The proof for ◦ is analogous.

There is thus a mismatch between the kinematical and dynamical sym-
metries of VM in violation of SP2. Earman’s argument in favour of SP2
(applied to masses) is that were the principle to fail, “the theory would have
to contain names, regarded as rigid designators, of [elements] of [mass value
space]” (47, 1989). This is exactly what Martens believes: that the laws of
NG ‘latch onto’ masses via their quiddities. The laws must pick out masses
independently from their qualitative features; so in this sense the theory
‘names’ particular mass magnitudes. Earman, however, sees this as a de-
fect: “But such a difference in lawlike behavior is reason to suppose that
[m1] and [m2] differ in some structural property that grounds the difference
in behavior” (47, 1989). In other words, the fact that gravity acts in a cer-
tain way on a certain mass should follow from facts about what that mass
is like—not just from the irreducible fact that it is that mass! This suggests
that mass value space has more than an additive extensive structure.

Let us suppose not only that mass scalings are not dynamical symme-
tries, but that no transformation that acts solely on mi is a symmetry of
NG. Put differently, no non-trivial automorphisms of VM are dynamical
symmetries. It is then tempting to conclude, by SP2, that mass value space
itself has no non-trivial automorphisms. This would mean that VM has the
sort of rigid real number structure discussed in section 3. The real number
structure is richer than an additive extensive structure exactly because it
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has fewer symmetries.24 Unfortunately, this does not solve the inconsistency
with SP1 and SP2. We have already seen that this structure endows mass
value space with a privileged unit, contrary to the conventional (and correct)
wisdom that the choice of unit is arbitrary. But there is an more general ar-
gument against this sort of structure, which turns on the scale-independence
of Newtonian Gravitation.

Suppose one were to double all particle masses, and all distances between
particles, and all durations between events. It turns out that this is a
symmetry of NG. Generally, consider a joint scaling of mass by a factor
µ, of length by a factor λ, and of time by a factor τ : this transformation
is a dynamical symmetry of NG iff λ3 = µτ2. One can easily see from
dimensional analysis that under such a joint scaling, the left-hand side of
(7) is multiplied by a factor of λτ−2 whereas the right-hand side is multiplied
by a factor of µλ−2. These factors are equal iff λ3 = µτ2. The special case
of λ = τ = µ shows that the theory is invariant under a joint rescaling of all
quantities by the same factor, i.e. it is scale-independent.

These transformations are dynamical symmetries: they act on the dy-
namical objects mi and xi(t) (and their derivatives). From SP1, it follows
that there are corresponding kinematical symmetries. But these kinemat-
ical symmetries are special in that they act simultaneously on quantities
with different value spaces. We cannot account for these symmetries with
changes to the structure of the theory’s value spaces in isolation. If we were
to let VM , VL and VT individually remain invariant under scale transforma-
tions, for instance, then this would entail that scale transformations of mass,
length and time are dynamical symmetries of NG even when λ3 6= µτ2, con-
trary to the conclusion of section 7 that mass scalings are not dynamical
symmetries.

In order to find the kinematical counterpart of NG’s scale-independence,
a piece of structure that connects the theory’s value spaces is required: the
graviational constant. On the one hand, G is not invariant under scale
transformations of mass, length or time by themselves. This correctly en-
tails that such transformations are not dynamical symmetries of NG. On the
other hand, G is invariant under any joint scale transformation for which
λ3 = µτ2. From (i) and (ii), it follows that G(µm, λv) = µλ−2G(m,v). But
the resultant value of G(m,v) is an acceleration, which scales with λτ−2.
The function G is therefore preserved whenever µλ−2 = λτ−2, or equiva-
lently, whenever λ3 = µτ2. While each individual value space is invariant
under scale transformations, the connections between these value spaces are

24 For an account of the relation between symmetries and structure, see Barrett (2020).
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only invariant when these transformations are related in this particular way.
Is the occurence of constants a consequence of the dynamics’ scale-

independence? Or are the dynamics scale-independent because of the oc-
currence of G in the equations of motion? This question is reminiscent of
the debate between the geometrical approach and the dynamical approach
to spacetime structure (Brown and Read, 2021). On the former view, the
dynamical symmetries of NG are a consequence of the theory’s spacetime
structure. In the case under discussion, this translates into the view that
the scale-independence of NG is a consequence of the occurrence of G in
the equation of motion. Suppose that the equations of motion did not con-
tain G; then they would not remain invariant under scale-transformations of
the sort discussed above. The latter view reverses the order of explanation:
spacetime structure is only a reflection of the theory’s dynamical symme-
tries. On such a view the gravitational constant merely codifies the details
of NG’s scale-independence. The particular transformation properties of G
reflect the fact that these dynamics are invariant whenever λ3 = µτ2. G
becomes a ‘glorious non-entity’, to borrow a phrase from Brown and Pooley
(2004). Whether the parallel between the gravitational constant and space-
time structure is sufficiently strong to warrant a similar treatment for both
remains to be seen. The benefit of a clear account of constants is that it
affords us the means to ask such questions in the first place.

10 Conclusion

I have used the controvery over mass symmetries of Newtonian Gravitation
as a case study for an account of the nature of natural constants. My
account has yielded an answer to the question whether mass scalings are
similarities of Newtonian Gravitation: yes, as long as one endorses anti-
quidditism. Although hinted at by Teller (1991), the only contemporary
defence of this position is Wolff’s (2020). It is therefore a relatively novel
position in the debate between absolutists and comparativists, but one that
I believe is superior to the alternatives.

Yet the real added value is the account of the gravitational constant.
On the view I have presented, G represents cross-value space structure,
i.e. relations between the elements of different quantities’ value spaces. The
value spaces that G connects are mass value space, VM , displacement space,
VE , and duration space, VT . Since these value spaces are intricately linked,
one cannot consider their structure in isolation. Instead of a theory set on
space-time, then, it seems better to conceive of Newtonian Gravitation as a
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theory set on space-time-mass: each of these spaces is equally indispensible
to the theory’s dynamics. This parallels the earlier move from space and time
considered as separate entities to one joint space-time. The transformation
properties of G are closely related to the scale-independence of Newtonian
Gravitation, although different accounts of the arrow of explanation are
possible.

This account of constants exposes a host of questions for further research.
It has focused on G in particular; does it extend to other constants, such
as the speed of light, c, or Planck’s constant, ~? The observation that G is
dimensionful, universal and not associated to any particular kind of object
is highly relevant here. It would seem that a constant such as the mass of
an electron, me, does not represent cross-value space structure. In addition,
it has sometimes been suggested that one can obtain a ‘natural’ system of
units by setting all constants to unity. Can we account for this intuition if
we interpret constants as cross-value space relations? On this point, Lesche
(2014) seems to suggest that setting a constant to unity amount to identify-
ing distinct value spaces. Finally, is it possible to rid physics of dimensionful
constants altogether, as has been the desire of physicists from Eddington to
Einstein? We have already seen that without constants, physics is not scale-
independent. But it is not yet clear whether a well-defined constant-free
version of classical mechanics is possible at all.

These and further questions deserve further exploration. I hope to have
provided a framework within which to consider them.

References

Arntzenius, F. (2012). Space, Time, and Stuff. Oxford University Press. Oxford,
New York.

Baker, D. J. (2013). Comparativism with Mixed Relations. http://philsci-
archive.pitt.edu/20814/.

Baker, D. J. (2020). Some Consequences of Physics for the Comparative Meta-
physics of Quantity In Oxford Studies in Metaphysics Volume 12, Bennett, K.
and Zimmerman, D. W. (eds). Oxford University Press. pp. 75–112.

Barrett, T. W. (2020). How to count structure. Noûs.
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die Verhandlungen der Königlich Sächsichen Gesellschaft der Wissenschaften zu
Leipzig, Mathematisch-Physikalische Classe. 53, 1–64.

Jacobs, C. (2020). Absolute Velocities Are Unmeasurable: Response to Middleton
and Murgueitio Ramirez. Australasian Journal of Philosophy.

25



§References Caspar Jacobs

Jacobs, C. (2021). Symmetries As a Guide to the Structure of Physical Quantities.
D.Phil Thesis. University of Oxford.

Jacobs, C. (2022). Invariance, intrinsicality and perspicuity. Synthese. 200(2), 135.

Johnson, P. (1997). The Constants of Nature a Realist Account. Ashgate Publishing.

Krantz, D. H., Suppes, P. and Luce, R. D. (1971). Foundations of Measurement I:
Additive and Polynomial Representations. Academic Press. New York.

Lesche, B. (2014). The c=}=G=1—question. Studies in History and Philosophy
of Science Part B: Studies in History and Philosophy of Modern Physics. 47,
107–116.
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