The Conjunction and Disjunction Theses

Mark Jago

Mind 118, 411-15, 2009

Abstract: Rodriguez-Pereyra (2006) argues for the *disjunction thesis* but against the *conjunction thesis*. I argue that accepting the disjunction thesis undermines his argument against the conjunction thesis.

IN AN IMPORTANT recent paper on truthmaking, Gonzalo Rodriguez-Pereyra (2006) argues for the *disjunction thesis*:¹

(D) If an entity *e* is a truthmaker for a disjunction $(P \lor Q)$, then either *e* is a truthmaker for (P) or *e* is a truthmaker for (Q).

He also argues against the *conjunction thesis*:

(C) An entity *e* is a truthmaker for a conjunction $(P \land Q)$ iff *e* is a truthmaker both for (P) and for (Q).

His argument, which is against the 'only if' direction of (C), is simple. (Peter is a man \land Saturn is a planet) is true in virtue of *Peter's being a man and Saturn's being a planet*. But (Peter is a man) is not true in virtue of *Peter's being a man and Saturn's being a planet*. Hence truthmakers for conjunctions are not always truthmakers for the conjuncts (2006, pp. 970–1). Note that this argument does not affect the 'if' direction of (C):

(C_I) If *e* is a truthmaker for $\langle P \rangle$ and a truthmaker for $\langle Q \rangle$, then *e* is a truthmaker for $\langle P \land Q \rangle$.

Since (C_I) is highly plausible and Rodriguez-Pereyra gives no argument against it, I will assume that it is true. I will also assume:

(D_I) If *e* is a truthmaker for $\langle P \rangle$, then *e* is a truthmaker for $\langle P \lor Q \rangle$ and a truthmaker for $\langle Q \lor P \rangle$.

This is also a perfectly uncontroversial principle and is accepted by Rodriguez-Pereyra (2006, p. 968).

I will argue that the doctrine which accepts (D) but rejects (C) is hard to maintain. Let $\langle P \rangle \rightsquigarrow \langle Q \rangle$ abbreviate 'all truthmakers for $\langle P \rangle$ are truthmakers for $\langle Q \rangle$ '. The key principle for my argument is:

 $(\star) \ \langle ((P \land Q) \lor P) \lor Q \rangle \rightsquigarrow \langle P \lor Q \rangle$

1. I follow Rodriguez-Pereyra in writing $\langle P \rangle$ to mean 'the proposition that *P*'.

which, together with (D_I) , entails that $\langle P \land Q \rangle \rightsquigarrow \langle P \lor Q \rangle$. For suppose that *e* is a truthmaker for $\langle P \land Q \rangle$. Given (D_I) , *e* is a truthmaker for $\langle (P \land Q) \lor P \rangle$ and hence for $\langle ((P \land Q) \lor P) \lor Q \rangle$, which, together with (\star) , entails that *e* is a truthmaker for $\langle P \lor Q \rangle$. (\star) is problematic for Rodriguez-Pereyra because (\star) and (D) together entail that, if *e* is a truthmaker for $\langle P \land Q \rangle$, then either *e* is a truthmaker for $\langle P \rangle$ or *e* is a truthmaker for $\langle Q \rangle$. Rodriguez-Pereyra cannot accept this conclusion, for (by his lights) neither (Peter is a man) nor (Saturn is a planet) is true in virtue of *Peter's being a man and Saturn's being a planet*. Hence Rodriguez-Pereyra must reject (\star).

(*) merits discussion in the truthmaking debate because it is entailed by the following six principles:

- (T₁) $\langle P \lor P \rangle \rightsquigarrow \langle P \rangle$
- (T2) $\langle (P \lor Q) \lor R \rangle \rightsquigarrow \langle Q \lor (P \lor R) \rangle$
- $(T_3) \langle P \land P \rangle \rightsquigarrow \langle P \rangle$
- $(T_4) \ \langle (P \land Q) \lor R \rangle \rightsquigarrow \langle (P \lor R) \land (Q \lor R) \rangle$
- (T₅) If $\langle P \rangle \rightsquigarrow \langle Q \rangle$, then:
 - (a) $\langle P \lor R \rangle \rightsquigarrow \langle Q \lor R \rangle$,
 - (b) $\langle R \lor P \rangle \rightsquigarrow \langle R \lor Q \rangle$,
 - (c) $\langle P \wedge R \rangle \rightsquigarrow \langle Q \wedge R \rangle$, and
 - (d) $\langle R \wedge P \rangle \rightsquigarrow \langle R \wedge Q \rangle$.
- (T6) If $\langle P \rangle \rightsquigarrow \langle Q \rangle$ and $\langle Q \rangle \rightsquigarrow \langle R \rangle$, then $\langle P \rangle \rightsquigarrow \langle R \rangle$.

In effect, (T_1-T_6) give a small (and incomplete) proof system for truthmaking claims, with (T_1-T_4) as axioms and (T_5) and (T_6) as rules of inference, in which one can prove (\star) (a derivation is given in the appendix). I now turn to arguing for each of (T_1-T_6) .

(T1) is an instance of (D) and so cannot be denied without rejecting (D). (T2), a combination of associative and commutative principles, follows immediately from (D) and (D₁). For suppose that *e* is a truthmaker for $\langle (P \lor Q) \lor R \rangle$. By (D), it is a truthmaker for at least one of $\langle P \rangle$, $\langle Q \rangle$ and $\langle R \rangle$. In each case, given (D₁), *e* is a truthmaker for $\langle Q \lor (P \lor R) \rangle$ and so (T1) holds. (T6) is a transitivity principle: if all truthmakers for $\langle P \rangle$ are truthmakers for $\langle Q \rangle$ and all of $\langle Q \rangle$'s truthmakers are truthmakers for $\langle R \rangle$, then clearly all truthmakers for $\langle P \rangle$ are thereby truthmakers for $\langle R \rangle$. Hence (T1), (T2) and (T6) are straightforwardly true.

The remaining principles all involve ' \wedge ' and so require something to be said about truthmakers for conjunctions. Rodriquez-Pereyra takes the only plausible truthmakers for conjunctions to be either conjunctive facts, such as the fact *that Peter is a man and Saturn is a planet* or non-conjunctive facts taken together, such as the collection of facts *that Peter is a man, that Saturn is a planet* (2006, p. 970).² I will use the brackets '{' and '}' as notation for whatever are the correct truthmakers for conjunctions, so that '{*that P, that Q*}' denotes either the conjunctive fact *that P and Q* or the collection of facts *that P, that Q*. The general form of a truthmaker for a conjunction is $\{e_1, e_2\}$, where e_1 and e_2 are themselves facts or collections of facts. Using this notation, we can formulate Rodriquez-Pereyra's view that truthmakers for conjunctions are either conjunctive facts or collections of facts as follows.

- (C^{*}) If e_1 is a truthmaker for $\langle P \rangle$ and e_2 is a truthmaker for $\langle Q \rangle$, then $\{e_1, e_2\}$ is a truthmaker for $\langle P \land Q \rangle$.
- (C^{**}) If *e* is a truthmaker for $\langle P \land Q \rangle$, then there are entities e_1 and e_2 such that $e = \{e_1, e_2\}, e_1$ is a truthmaker for $\langle P \rangle$ and e_2 is a truthmaker for $\langle Q \rangle$.

Both principles are uncontroversial and in no way rely upon (C). Note that (C^{**}) is perfectly compatible with e_1 and e_2 being identical (but does not entail that they are).

(T5) can now be derived. To do so, assume (throughout this paragraph) that $\langle P \rangle \rightsquigarrow \langle Q \rangle$. Suppose also that *e* is a truthmaker for $\langle P \lor R \rangle$. Given (D), *e* is either a truthmaker for $\langle P \rangle$, in which case (by assumption) it is also a truthmaker for $\langle Q \rangle$, or else it is a truthmaker for $\langle R \rangle$. Either way, by (D_I), *e* is a truthmaker for $\langle Q \lor R \rangle$. By a similar argument, if *e* is a truthmaker for $\langle R \lor P \rangle$ then, given the assumption, *e* is a truthmaker for $\langle R \lor Q \rangle$ as well. Next, suppose that *e* is a truthmaker for $\langle P \land R \rangle$. By (C^{**}), there are entities e_1 and e_2 such that $e = \{e_1, e_2\}$, e_1 is a truthmaker for $\langle P \rangle$ and e_2 is a truthmaker for $\langle R \land B \rangle$. By assumption, e_1 is a truthmaker for $\langle Q \land R \rangle$. By a similar argument, if *e* is a truthmaker for $\langle R \land P \rangle$ then, given the assumption, *e* is a truthmaker for $\langle R \land Q \rangle$ and so, by (C^{*}), $\{e_1, e_2\}$ and hence *e* is a truthmaker for $\langle Q \land R \rangle$. By a similar argument, if *e* is a truthmaker for $\langle R \land P \rangle$ then, given the assumption, *e* is a truthmaker for $\langle R \land Q \rangle$ as well. This establishes (T5).

This leaves (T₃) and (T₄) which, given that they are principles directly concerning conjunctions, are key to deriving (*). (T₄) is derived as follows. Assume that *e* is a truthmaker for $\langle (P \land Q) \lor R \rangle$. Given (D), either *e* is a truthmaker for $\langle P \land Q \rangle$ or *e* is a truthmaker for $\langle R \rangle$. If the latter then, by (D_I), *e* is a truthmaker for $\langle (P \lor R) \rangle$ and for $\langle Q \lor R \rangle$ and so, by (C_I), *e* is a truthmaker for $\langle (P \lor R) \land (Q \lor R) \rangle$. If the former then, by (C^{**}), there are entities *e*₁ and *e*₂ such that *e* = {*e*₁, *e*₂}, *e*₁ is a truthmaker for $\langle P \lor R \rangle$ and *e*₂ is a truthmaker for $\langle Q \lor R \rangle$. Then, by (C^{*}), {*e*₁, *e*₂} (and hence *e*) is a truthmaker for $\langle (P \lor R) \land (Q \lor R) \rangle$. This establishes (T₄).

It follows that, in order to accept (D) and reject (C), one must reject (T₃), for this is the only way to reject (\star). But this is a hard doctrine to maintain. (T₃) is intuitively appealing because there is an intuitive sense in which the propositions $\langle P \rangle$ and $\langle P \wedge P \rangle$ say the very same thing as one another. It would be strange for two propositions to say the same thing as one another, yet for one to require

^{2.} It should be added that, in special cases, single non-conjunctive entities can be truthmakers for conjunctions. Given (C_I), it is plausible to take each natural number, on its own, to be a truthmaker for (there exists a number \land there exists a natural number).

more to be made true than the other. But regardless of this, Rodriguez-Pereyra's argument against (C) provides no argument against (T₃). In the case of (C), he argues that

the fact that *Saturn is a planet* is not anything in virtue of which (Peter is a man) is true and it is totally irrelevant to the truth of (Peter is a man). And when a fact is totally irrelevant to the truth of a proposition, no plurality of facts one of which is that fact, and no conjunctive fact of which that fact is a conjunct, is something the proposition in question is true in virtue of. (2006, p. 972)

This is plausible but provides no argument against (T₃). It requires that, if $\{e_1, e_2\}$ is a truthmaker for $\langle P \land P \rangle$, then both e_1 and e_2 are individually relevant to $\langle P \rangle$. If so, $\{e_1, e_2\}$ is wholly relevant to $\langle P \rangle$ and so, for all Rodriguez-Perayra has said, may truthmake it. We have been given no reason for thinking that any truthmaker for $\langle P \land P \rangle$ fails to be a truthmaker for $\langle P \rangle$.

To sum up, if one wants to reject (C) but accept (D), as Rodriguez-Pereyra does, then one must reject (T₃). But (T₃) is appealing and Rodriguez-Pereyra gives no argument against it. I conclude that Rodriguez-Pereyra should not reject (C) whilst accepting (D).

Reference

Rodriguez-Pereyra, Gonzalo 2006: 'Truthmaking, Entailment, and the Conjunction Thesis'. *Mind*, 115, pp. 957–82.

Appendix

To prove (\star) , $\langle ((P \land Q) \lor P) \lor Q \rangle \rightsquigarrow \langle P \lor Q \rangle$, using (T1-T6), we proceed as follows.

 $I. \ \langle (P \land Q) \lor P \rangle \rightsquigarrow \langle (P \lor P) \land (Q \lor P) \rangle \tag{T4}$

2.
$$\langle ((P \land Q) \lor P) \lor Q \rangle \rightsquigarrow \langle ((P \lor P) \land (Q \lor P)) \lor Q \rangle$$
 (I, T5a)

3.
$$\langle ((P \lor P) \land (Q \lor P)) \lor Q \rangle \rightsquigarrow \langle ((P \lor P) \lor Q) \land ((Q \lor P) \lor Q) \rangle$$
 (T4)

4.
$$\langle (Q \lor P) \lor Q \rangle \rightsquigarrow \langle P \lor (Q \lor Q) \rangle$$
 (T2)

5.
$$\langle ((P \lor P) \lor Q) \land ((Q \lor P) \lor Q) \rangle \rightsquigarrow$$

 $\langle ((P \lor P) \lor Q) \land (P \lor (Q \lor Q)) \rangle$ (4, T5d)

 $6. \langle P \vee P \rangle \rightsquigarrow \langle P \rangle \tag{T1}$

7.
$$\langle (P \lor P) \lor Q \rangle \rightsquigarrow \langle P \lor Q \rangle$$
 (6, T5a)

8.
$$\langle ((P \lor P) \lor Q) \land (P \lor (Q \lor Q)) \rangle \rightsquigarrow \langle (P \lor Q) \land (P \lor (Q \lor Q)) \rangle$$
 (7, T5c)

9.
$$\langle Q \lor Q \rangle \rightsquigarrow \langle Q \rangle$$
 (T1)

$$10. \ \langle P \lor (Q \lor Q) \rangle \rightsquigarrow \langle P \lor Q \rangle \tag{9, T5b}$$

$$\text{II. } \langle (P \lor Q) \land (P \lor (Q \lor Q)) \rangle \rightsquigarrow \langle (P \lor Q) \land (P \lor Q) \rangle \tag{Io, T5d}$$

12.
$$\langle (P \lor Q) \land (P \lor Q) \rangle \rightsquigarrow \langle P \lor Q \rangle$$
 (T3)

$$13. \left\langle \left((P \land Q) \lor P \right) \lor Q \right\rangle \rightsquigarrow \left\langle \left((P \lor P) \lor Q \right) \land \left((Q \lor P) \lor Q \right) \right\rangle$$

$$(2, 3, T6)$$

$$\mathbf{14.} \ \left\langle \left((P \land Q) \lor P \right) \lor Q \right\rangle \rightsquigarrow \left\langle \left((P \lor P) \lor Q \right) \land \left(P \lor \left(Q \lor Q \right) \right) \right\rangle \tag{5, 13, T6}$$

$$15. \left\langle \left((P \land Q) \lor P \right) \lor Q \right\rangle \rightsquigarrow \left\langle (P \lor Q) \land (P \lor (Q \lor Q)) \right\rangle$$

$$(8, 14, T6)$$

$$16. \left\langle ((P \land Q) \lor P) \lor Q \right\rangle \rightsquigarrow \left\langle (P \lor Q) \land (P \lor Q) \right\rangle$$

$$(11, 15, T6)$$

$$\mathbf{17.} \ \langle ((P \land Q) \lor P) \lor Q \rangle \rightsquigarrow \langle P \lor Q \rangle \tag{12, 16, T6}$$

The strategy is simple although, as is usual with axiom systems, the proof is unlovely. Lines 1-5 distribute 'v' over ' $^$ ' twice in the left-hand side of (*) and re-order to get to $\langle ((P \lor P) \lor Q) \land (P \lor (Q \lor Q)) \rangle$. Lines 6-12 reduce this to $\langle P \lor Q \rangle$ by eliminating 'duplicates'. Finally, lines 13-17 put these together, using the transitivity of ' \sim ' to get (*).