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1. The Ross paradox and the Prior paradox

Opponents of non-declarative logic believe that only declarative sentences, i.e. declaratives, are

sentences in the logical sense. To support their position, they cite the Ross paradox, formulated by

the Danish lawyer and legal philosopher Alf Niels Christopher Ross (1899-1979), and the Prior

paradox, formulated by the New Zealand logician Arthur Norman Prior (1914-1969).

The  strength  of  Ross's  paradox  comes  from  the  recognition  of  the  rule  of  disjunctive

amplification as an implication, which in the Classical Propositional Calculus (CPC) has the form

p=>p˅q (or q=>p˅q), and in deontic logic the form OA=>O(A˅B). The deontic formula says that if

a given action is obligatory, then the given action or some other is obligatory. For example, if the

variable "A" is defined as "Send a letter!", the implication leads to the conclusion "Send the letter or

burn it!", which is unacceptable (Ross 1941).
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Prior's  paradox concerns  the  formula  of  deontic  logic  O~A=>O(A=>B).  If  it  is  read as  an

implication, one must agree to the reasoning according to which committing a prohibited act obliges

the perpetrator to do something more – for example, committing theft also obliges him to commit

adultery. Von Wright found Prior's observation a "real difficulty" (Von Wright 1956) and, in order to

solve this paradox, he created the first system of dyadic deontic logic, which gave rise to a whole

galaxy of similar solutions, but without the expected result. 

Describing the paradoxes of Ross and Prior, the Swedish logician Jörg Hansen states that "since

these paradoxes have troubled deontic logic for three generations and called the whole enterprise of

deontic logic into question, a solution would be extremely welcome" (Hansen 2006).

2. Solution to the Ross paradox

The key to solving Ross's paradox is – firstly – the correct identification of the nature of the

logical  operation  known  since  antiquity  as  implication,  and  –  secondly  –  the  recognition  of

imperatives as sentences in the logical sense.

The identification of the nature of the alleged implication was made in the article Solving the

Paradox  of  Material  Implication  –  2024 (Pociej  2024/1).  It  turned  out  that  the  implication  is

actually  a  kind  of  opposition,  for  which  the  name "competition"  was  proposed.  Replacing  the

implication with the competition required an appropriate change of the connective, so instead of the

connective "if...  then" the conjunction "but" was proposed, and because it turned out that some

sentences of the competition sound better with the use of other opposing conjunctions, such as

“neverthless”, "alternatively” or “rather…than”, their use has also been proposed. 

The fact of logical sense of imperative sentences – and in general of all sentences except self-

sentences – was demonstrated in the article Solving Jörgensen’s Dilemma (Pociej 2024/2).

Based on the above-mentioned philosophical decisions, the formula p=>(p˅q) can be read as

the following sentence:

PR1: “Send the letter; alternatively, send it or burn it!”

There is nothing paradoxical about such a sentence and therefore it can be considered that the

Ross paradox has been resolved on the basis of the CPC. Logicians, however, looked for a solution

to Ross's paradox not within the framework of the CPC, but on the basis of deontic logic, because it

referred to sentences in the imperative mood. These sentences do not contain modal verbs, but the

imperative mood makes their predicates play the role of commands, which are one of the deontic
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modalities.  The obligation  operator  in  the  formula  OA=>O(A˅B) could  therefore  mean both  a

modal verb (e.g. should) and imperative mood. However, a similar ambiguity does not apply to the

permission operator. This raises the question of what deontic operators actually mean and what their

mutual relations are.

Once again, the analogy between logical functionality and the results of a football match, used

in the article  Solving the Paradox of Material Implication – 2024, helps to find answers to these

questions. There, atomic sentences refer to simple events – scoring or not scoring a goal, and their

combinations, interpreted in various ways using logical functions, describe the results of the match,

such as winning, not losing, etc. By analogy to that analogy, it should be considered that such

imperatives, like "Send a letter!" and "Don't send the letter!" mean particular modalities (facts), i.e.

commands and prohibitions, and their combinations constitute general modalities (states of affairs),

which are equivalents of logical operations. Particular modalities, as mentioned above, do not have

to be expressed in separate verbs, but they create general modalities in the same way as the facts of

scoring  or  not  scoring  goals  create  the  result  of  the  match.  Therefore,  it  can  be  assumed that

between the imperative "Send a letter!" and the normative "You have to send a letter!" there is a

relationship similar to that between an individual command and a statement of obligation.

Having established this, let us proceed to solve Ross's paradox on the basis of deontic logic.

The starting point will be the second axiom of deontic logic, formulated by Von Wright, having the

form O(A=>B)=>(OA=>OB) and read as an implication: "If the implicaation from A to B is valid,

then the validity of A implies the validity of B”. Taken as a competition, this axiom would take the

form O(A=>B)<=>(OA=>OB) and would mean: "If the competition between A and B holds, then

the obligation of A competes with the obligation of B." Consequently, the formula O(A=>(A˅B))

would be transformed into the formula OA=>O(A˅B), which would be read as:

PR2: "You should send the letter; alternatively, you should send it or burn it."

As you can see, the deontic version seems to correspond to the propositional version. However,

a question immediately arises regarding the logical values of deontic operators: what exactly are

they? How is it that the logical value of the obligation operator of a disjunction seems to be the

same as the value of the obligation operator of one of its terms? To answer these questions, we must

first determine the set of all deontic operators. 
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3. Completing the set of deontic operators

Logicians  (Lewis,  Kripke,  Feyes,  Von  Wright)  developed  several  systems  of  modal

propositional calculus, but their search focused on using a minimum number of operators (most

often these are operators of necessity and possibility, which in deontic logic function as operators of

command and permission). To create a complete list of deontic operators, opposition geometry turns

out to be more useful. Its core is the logical square described by Aristotle, also called the square of

opposition. According to this geometry, the oppositions create a structure, called by Alessio Moretti

the b3-structure, whose spatial counterpart, in the form of a tetraicosahedron, was discovered by the

French mathematician Régis Pellissier. The view of this structure is as follows (Moretti 2009, 209):

 Figure 1

Vertices  denote opposing elements,  and edges  and diagonals  denote  relations  of  opposition

(contradiction, contrariety, subcontrariety and subalternation). The opposing elements can be both

logical operations (conjunction, disjunction, etc.) and deontic operators or the results of a football

match.  Oppositions  are  logical  operations:  the  contravalence  corresponds  to  contradiction

(contradictio), the non-conjunction to contrariety  (contrarietas), the disjunction to subcontrariety

(subcontrarietas) and the competition to subalternation (subalternatio).

The geometry of oppositions in connection with the isness table method allows us to establish

an  analogy  between  logical  functions  and  deontic  operators.  Four  of  these  operators,  meaning

command, prohibition and permission to do something or permission not to do something – marked

in the traditional logical square by the letters A, E,  I  and O – have been known for centuries.

However,  Pellisier's  structure  contains  six  other  operators  that  have  yet  to  be  identified.  Their

identification is aided by an analogy to the results of a football match, as seen in the table below.
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Table 1  (Operator Table)

States of affairs
related to the match

Symbols
of logical
operations

Logical
values

Modal operators
(here: deontic)

A score a goal  A 1100 AA
command A

(one should A)

A don’t score a goal ~A 0011 AA
prohibition A

(one shouldn’t A)

B score a goal B 1010 AB
command B

(one should B)

B don’t score a goal  ~B 0101 AB
prohibition B,

(one shouldn’t B)

A win,
B lose

A≠>B 0100 AA, AB
bindingness of A, impermissibility of B; 

(it’s binding to A/not B;
it’s impermissible not to A/ to B;

one should A, but not B/ not B, but A)

A lose,
B win

A<≠B 0010 AA, AB
impermissibility of A, bindingness of B; 

(it’s binding to B/not A;
it’s impermissible not to B/ to A;

one should B, but not A/ not A, but B)

A don’t lose,
B don’t win

A<=B 1101 AA, AB
permissibility of A, non-bindingness of B;

(it’s permissible to A/ not B; it’s omissible to B;
one should B, but/neverthless/alternatively should A;

one should rather A than B)

A don’t win
B don’t lose

A=>B 1011 AA, AB
non-bindingness of A, permissibility of B;

(it’s not binding to A; it’s permissible to B/ not A;
one should A, but/neverthless/alternatively should B;

one should rather B than A)

a draw A<=>B 1001 A
equality

(one should equally A if B)

not a draw
A<≠>B 0110 A

non-equality
(one should non-equally A if not B)

a goal draw A˄B 1000 A
co-bindingness

(one should A and B together)
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a goalless draw A↓B 0001 A
co-impermissibility

(one should both not-A and not-B)

not a goal draw A↑B 0111 A
non-co-bindingness

(one shouldn’t A and B together)

not a goalless draw A˅B 1110 A
non-co-impermissibility

(one shouldn’t both not A and not B)

 

The selection of names for some operators may be controversial – as is usually the case with

new proposals. Deontic literature talks, on one hand, about such deontic operators as “command”,

“prohibition”  and  “permission”,  and  on  the  other,  about  “obligation”  or  “bindingness”,

“impermissibility”,  “permissibility”  and  “omissibility”.  Moreover,  the  term  "order"  is  used

interchangeably with the terms “command” and "obligation", and the term “prohibition” replaces

here and there the term “prohibition”.  With such abundant terminology at  our disposal,  all  that

remains is to choose appropriate names for the operators defined by Boolean functions. The terms

"command" and "prohibition" seem to best express simple modalities such as "Do A!" and "Don't

do  A!"  The  term “bindingness”  (rather  than  "obligation")  should  be  reserved  for  the  operator

corresponding  to  Boolean  inhibition  (former  non-implication).  Since  “bindingness”  and

“permissibility” form the A-I side of the logical square, the E-vertex symbolizing the contrariety of

“bindingness”  and  the  negation  of  “permissibility”  should  be  called  "impermissibility".

Consequently,  the  operator  corresponding  to  the  vertex  O  should  be  given  the  name  "non-

bindingness".

Four operators – bindingness, permissibility, non-bindingness and impermissibility – form a

logical square in which command, prohibition and two varieties of permission were traditionally

placed.  This  square  remains  valid.  Permissibility  and  non-bindingness  remain  two  varieties  of

permission, while command and prohibition are replaced by bindingness and impermissibility, as

can be seen in the illustration below.
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        Figure 2

An analogous logical square is formed by the operators of co-bindingness co-impermissibility,

non-co-impermissibility and non-co-bindingness. Its correctness seems obvious.

    Figure 3

The proposed names of the remaining new operators,  such as "co-bindingness" or "non-co-

impermissibility", are, admittedly, long-winded, but they seem precise enough to conduct further

considerations.

4. The Classical Modal Calculus

Of  course,  the  question  arises  why  for  centuries  there  has  been  no  distinction  between

"command" and "bindingness" or "prohibition" and "impemissibility". The reason seems to be the

close affinity of the meanings of these terms – every bindingness is closely related to a command
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and every impermissibility is closely related to a prohibition. Seemingly, it is only possible to notice

the differences between them thanks to the application of modality calculus.

Such a  calculus  exists  and  has  so  far  been  treated  as  the  Classical  Propositional  Calculus

extended  to  include  the  operators  of  command,  prohibition  and  permission.  However,  by

completing the set of deontic operators and assigning command and prohibition operators roles

analogous to sentence variables, the modality calculus becomes the full-fledged Classical Modality

Calculus   (CMC).  Thus,  the  theorem about  the  non-existence  of  truth-functionality  –  or  more

precisely, isness-functionality – of modal operators is falsified. This functionality exists and allows

semantics to be written in the isness-tables format.

For example, statements such as:

1) “Permissibility is the disjunction of bindingness and equality, just as not losing is the disjunction 

of winning and drawing.” 

and

2) “Non-bindingness is the disjunction of impermissibility and equality, just as not winning is the 

disjunction of losing and drawing.”

can be written as in the table below.

       Table 2

AA
AB

AA
AB

(AA<=>AB)
<=>

A(A<=>B)

(AA˅A(A<=>B))<=>AA (AA˅A(A<=>B))<=>AA

0 0 1 1 1

1 0 0 1 0

0 1 0 0 1

0 0 1 1 1

Similarly, statements such as:

1) "The equality of permissions is the conjunction of the permission to A and the permission to

B, just as a draw is the conjunction of not losing and not winning."

and

2) "The conjunction of commands is a co-bindingness, just as an equal number of goals scored

means a goal-draw, and the conjunction of prohibitions is a co-impermissibility, just as neither team

scoring a goal means a goalless draw."

can be written as in the table below.
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Table 3

AA
AB

AA
AB

(AA˄AB)
<=>

A(A<=>B)

AA AB (AA˄AB)
<=>

A(A˄B)

AA AB (AA˄AB)
<=>

A(~A˄~B)

1 1 1 1 1 1 0 0 0

1 0 0 1 0 0 0 1 0

0 1 0 0 1 0 1 0 0

1 1 1 0 0 0 1 1 1

The transformations of the formulas in both tables were made based on several rules that should

be mentioned here.

First rule: the logical values of variables are identical to the logical values of the command and

prohibition operators associated with these variables, which can be written as the first axiom of the

Classical Modality Calculus in the form:  AX|<=>|X| and |AX|<=>|~X|, where "X" stands for a

sentence variable. This axiom is the basis for the unity of CPC and CMC.

Second rule: operators of logical operations, hereinafter referred to as operational operators, are

equivalent to the results of these operations on variable operators, which can be written as the

second axiom in the form F(A–B)<=>(FA–FB), where “F” stands for the appropriate operator, and

the symbol “–” denotes a logical operation. For example, (AA˄AB)<=>A(A˄B).

Third rule: if the logical value of the operational operator is different from the logical value of

the  operation  on  variables,  the  variable  operation  operator  must  be  adapted  to  the  operational

operator. For example: (AA˄AB)<=>A(A<=>B).

Fourth rule:  in  connection  with the  logical  co-valence  of  the  operators  of  bindingness  and

impermissibility  (|AA|<=>|AB|, |AB|<=>|AA|) as well as permissibility and non-bindingness  (|

AA|<=>|AB|, |AB|<=>|AA|), the following rules apply when choosing an operational operator:

1)  In  single-operation  formulas,  one  or  another  of  the  co-valent  operators  can  act  as  the

operational operator. For example, the formula AA(A≠>B), which can be read as "It’s binding to

A." is equivalent to the formula AB(A≠>B), which can be read as "It’s impermissible to B." If a co-

valent operational operator is not accompanied by a variable, it should be assumed that its logical

value corresponds to the operator with variable A.

2) In formulas involving more than one operation, the operator of the child operation is to be

aligned with the operator of the parent operation. For example, regarding the formula F=>F(A˅B),

if  the  antecedent  of  the  competition  refers  to  the  variable  A,  the  operational  operator  of  the
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disjunction constituting the consequent1 is also to refer to the variable A, which can be written as

FA=>FA(A ˅B). However, if the antecedent refers to variable B, then the operational operator in the

consequent must also refer to variable B, which can be written as FB=>FB(A˅B).

Rule  five:  because  the  equality,  co-bindingness  and co-impermissibility  operators  and  their

negations refer to both variables, they can be written without adding variables.

Rule six: each logical formula in the CPC can constitute the basis of many deontic formulas.

Summary operation tables can be helpful in quickly finding the results of logical operations on

operators. For example, one line of such a table, containing the disjunctons of the command A and

set of operators B, looks like in the table below:

Table 4

Lp 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 AA ˅AB ˅AA ˅AB ˅AB ˅AB ˅AB ˅AB ˅A ˅A ˅A A ˅A ˅A

1
1
0
0

1
0
1
0

1
1
1
0

0
0
1
1

1
1
1
1

0
1
0
1

1
1
0
1

0
0
1
0

1
1
1
0

0
1
0
0

1
1
0
0

1
0
1
1

1
1
1
1

1
1
0
1

1
1
0
1

1
0
0
1

1
1
0
1

0
1
1
0

1
1
1
0

1
0
0
0

1
1
0
0

0
1
1
1

1
1
1
1

0
0
0
1

1
1
0
1

1
1
1
0

1
1
1
1

A ⊤ AA
AB

A AA ⊤ AA
AB

AA
AB

A AA ⊤ AA
AB

⊤

On its basis, it can be concluded that the formula with the operational operator “command” is

valid in at least two cases: (AA˅AB)<=>A(A˅(A≠>B)) and (AA˅A)<=>A(A˅(A˄B))

5. Inclusive and exclusive functionality

Logical  operations  performed  on operators  reveal  that  when the  variables  A and  B denote

sentences describing mutually exclusive states of affairs – for example, sending and burning a letter

– the co-bindingness of these states is not possible. This means that out of four combinations of

logical values of the sentences – 11, 10, 01 and 00 – there can be three – 10, 01 and 00. As a result,

classical logic becomes reduced logic and the table of logical functions takes the form shown below.

Names with a strikethrough indicate those variables and functions whose argument sets are reduced.

1 Since the true nature of the implication turned out to be opposition, the name “consequent” should be replaced with 
the name “opponent” in the future. Footnote JP.
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Table 5

Lp 1 2 3 4

1 pq 10 01 00

2 antilogy
co-bindingness (A˄B)

0 0 0

3 bindingness A, impermissibility B (A≠>B)
command A

1 0 0

4 impermissibility A, bindingness B (A<≠B)
command B

0 1 0

5 non-equality (A<≠>B)
non-co-impermissibility (A˅B) 

1 1 0

6 co-impermissibility (A↓B)
equality (A<=>B)

0 0 1

7 permissibility A, non-bindingness B (A<=B)
prohibition B

1 0 1

8 non-bindingness A, permissibility B (A=>B)
prohibition A

0 1 1

9 non-co-bindingness (A↑B)
tautology

1 1 1

The second degree of reduction is also possible, when the combination of logical values 00 is

excluded. This degree refers to sentences describing states of affairs that exclude not only inclusive

connection of commands,  but also the exclusive connection – for  example,  such as  deciding a

football match with penalty kicks.

Consequently, it should be stated that there are two varieties of modal functionality – inclusive,

including mutually non-exclusive sentences, and two-stage exclusive, including mutually exclusive

sentences. To enable them to be distinguished in the notation, a marking should be introduced to

identify the exclusive variety – for example, in the form of a single underscore of the variable B for

the first degree and a double underscore B for the second degree.

The geometry of opposition takes a different shape for each type of functionality. In the case of

inclusive  functionality,  the  contents  of  each  column  of  Table  1  create  a  structure  that  can  be

expressed in the form of a rhombic dodecahedron, similar to Pellisier's tetraicosahedron. In the

figure below, the vertices of the dodecahedron represent deontic operators. The colors for marking

oppositions were adopted in accordance with the standard proposed by Moretti: contrariety – blue,

contradiction – red, subcontrariety – green, subalternation – black (Moretti 2009, 80).
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           Figure 4

The isness-table method makes it possible to prove that the 36 opposites shown in the figure are

tautologies. There are ninety-one oppositions in total between the operators in the dodecahedron,

but the twelve of them, which appear between the operators at the pyramid vertices (command A,

prohibition A, command B, prohibition B, equality of A and B, non-equality of A and B) as longer

diagonals of rhombuses, are undefined relations, that is: there are no logical functions by which

these  relations  could  be  determined.  The  remaining  79  oppositions  can  be  called  canonical

oppositions, and the entire structure of the dodecahedron – the canon of oppositions.

The oppositions between deontic operators in the examined case can be illustrated using a Venn

diagram, identical to the diagram for CPC, or a quadratic diagram, which, thanks to the regularity of

divisions, allows for easier remembering of logical operations. The quadratic diagram for inclusive

functionality  and  the  table  indicating  the  sets  of  propositional  arguments  corresponding  to

individual operators look like below.
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Figure 5

A, ~A AA AB A A A AA, AB AA, AB

B, ~B AA AB A A A AA, AB AA, AB

The geometry of the opposition of exclusive functionality does not need to be described in this

article. The box diagram for the first-degree exclusive functionality and the table with the sets of

modal sentences corresponding to individual operators of the first-degree exclusive functionality

look as follows. 

Figure 6
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A, ~A B, ~B AA, AB AA, AB AA, AB AA, AB A A A

The  second-degree  exclusive  functionality  is  reduced  to  four  combinations  as  in  the  table

below.

Table 6

Lp 1 2 3

1 pq 10 01

2 antilogy
co-bindingness (A˄B)

co-impermissibility (A↓B)
equality (A<=>B)

0 0

3 bindingness A, impermissibility B (A≠>B)
command A

permissibility A, non-bindingness B (A<=B)
prohibition B

1 0

4 impermissibility A, bindingness B (A<≠B)
command B

non-bindingness A, permissibility B (A=>B)
prohibition A

0 1

5 non-equality (A<≠>B)
non-co-impermissibility (A˅B) 

non-co-bindingness (A↑B)
tautology

1 1

As  in  the  first-degree  exclusive  functionality  table,  the  crossed-out  names  indicate  those

variables and functions whose argument sets are reduced.

A diagram illustrating the second-degree exclusive functionality and a table illustrating possible

sets of modal sentences look like below.
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Figure 7

A, ~A B, ~B AA, AB AA, AB A

This rudimentary functionality refers to commands such as "Save life!" and “Destroy a life!”,

“Do good!” and “Do evil!”, “Turn on the light!” and “Turn out the light!” The existence of one state

of affairs  means the non-existence of the other.  As you can see,  there is  no equilibrium in the

mentioned pairs of states. The only case where both variables are covered by one logical function

(contravalence) is non-equality.

6. The final procedure for solving Ross's paradox

Having made the above-mentioned findings, we can proceed to the final procedure for solving

Ross's paradox. The sentences appearing in this paradox are mutually exclusive sentences, but it is

possible that the both states of affairs they describe are impermissible. Therefore, the solution must

be  carried  out  using  the  first-degree  exclusive  functionality,  even though the  disjunction  in  its

formula excludes the existence of co-impermissibility.

Based on the  formula  p=>(p˅q),  it  is  possible  to  create  several  dozen tautological  deontic

formulas with the command operator A in the antecedent, among which the formula AA=>A(A˅B)

mentioned at the beginning should appear, but now it is immediately visible that there is an error in

it: namely,  the logical value of the operational operator in the competition consequent is different
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from the logical value of the operation on variables. To achieve compliance of the formula with the

axiom of co-valence, the command operator in the consequent should be replaced with the non-

equality operator. The consequent takes the form A(A˅B). Now it is necessary to adapt the operator

in the antecedent and the operation in the consequent to the requirements of first-degree exclusive

functionality.  Since  in  this  functionality  command is  reduced  to  bindingness  and  non-co-

impermissibility to non-equality, the entire formula takes the form AA=>A(A<≠>B), which should

be read in the language of logic as:

RPD/1:  “The letter  must  be sent;  alternatively,  the letter  should be non-equally sent,  if  not

burned.”

The interpretation presented is strict, but distant from everyday speech. If we want to achieve a

sound more similar to plain language, we can decompose the operational operator of non-equality

into bindingness operators of variables. The formula  AA=>(AA<≠>AB) appears, which can be

read as:

RPD/2: 'The letter must be sent; alternatively, the letter must be sent, unless it must be burned.”

Checking the reduced tautologicality of formulas using isness tables is presented in the table

below:

     Table 7

AA AB (AA<≠>AB)

<=>

A(A<≠>B)

AA=>(AA<≠>AB)

<=>

AA=>A(A<≠>B

1 0 1 1

0 1 1 1

0 0 0 1

This is the solution to Ross's paradox.

7. Solution to Prior’s paradox

Let us begin the solution of the Prior paradox with the tautology on which Von Wright based his

deontic formula. It has the form ~p=>(p=>q). The British logicians Bertrand Russell (1872-1970)

and Alfred North Whiteahead (1861-1947) read it as implying that “from a false proposition any
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proposition follows” (Curley 1975). This reading was probably intended to be a modern version of

the  ex falso quodlibet rule.  Von Wright transposed it  into the deontic form O~A=>(OA=>OB),

which concealed Prior's paradoxical conclusion.

Once  the  Ross  paradox  is  solved,  explaining  the  Prior  paradox  does  not  pose  any  major

difficulties and comes down to reading both the propositional formula ~p=>(p=>q) and the deontic

formula O~A=>(OA=>OB) as the competitions.

The propositional formula in the competitive version can be read as:

PPP: “Don't drink coffee; alternatively, drink coffee, but add milk.”

Reading  the  deontic  formula  in  the  form  A~A=>A(A=>B) might  seem  equally  clear  and

simple, but in the light of CMC it turns out to be incorrect for two reasons:

1) the parent competition is not a tautology,

2) the logical value of the child competition is not the same as the logical value of its operation

operator.

If  the  antecedent  of  the  parent  competition  is  to  be retained in  the  formula,  the  operation

operator in the consequent should take on the logical value 0011, 1011, 0111 (tautology 1111 is not

a sentence that meets the sense of the formula). The three logical values mentioned correspond

respectively to (1) prohibition A, (2) non-bindingness of A and (3) non-co-bindingness of A and B.

Combination  1011  is  closest  to  the  propositional  formula,  because  the  logical  value  of  non-

bindingness of A is the same as the logical value of the competition of commands A and B. After

inserting the non-bindingness A into the formula, the equivalence appears:

(AA=>(AA=>AB))<=>(AA=>A(A=>B))

Consequently, the deontic formula can be read as:

PPD/1: “You are not to drink coffee; alternatively, you are to drink coffee, but you have to drink

milk.”

or as:

PPD/2: "You are not drink coffee, but you do not have to drink milk rather than coffee."

As in the case of the solution to the Ross paradox, the formula with operators standing at

variables is closer to everyday speech than the formula with an operational operator, but in a good

mood it can be considered more sophisticated.

Checking the tautologicality of formulas using isness tables is presented in the table below:
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      Table 8

A~A
<=>
AA

A

A
A

B

A
<=>

(AA=>AB)
AA=>(AA=>AB) AA=>A(A=>B)

0 1 1 1 1 1

0 1 0 0 1 1

1 0 1 1 1 1

1 0 0 1 1 1

This is the solution to Prior's paradox.

7. Summary

The  resolution  of  the  title  paradoxes  turned  out  to  be  possible  thanks  to  the  reading  of

propositional and deontic formulas based on previous findings, including (1) the real nature of the

implication, (2) the real nature of logical values and (3) the geometry of oppositions.

Based on the geometry of oppositions, six deontic operators not previously mentioned in the

literature were identified.

Moreover, during the conducted investigations, (1) the Classical Modal Calculus (CMC) was

discovered, based on the same principles as the Classical Propositional Calculus (CPC), and (2) a

modal diagram, which is a graphical illustration of the CMC.
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